WO1993017159A1 - Reactor para la produccion de fibras cortas ceramicas a partir de gases - Google Patents

Reactor para la produccion de fibras cortas ceramicas a partir de gases Download PDF

Info

Publication number
WO1993017159A1
WO1993017159A1 PCT/ES1993/000012 ES9300012W WO9317159A1 WO 1993017159 A1 WO1993017159 A1 WO 1993017159A1 ES 9300012 W ES9300012 W ES 9300012W WO 9317159 A1 WO9317159 A1 WO 9317159A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
fibers
substrate
length
gases
Prior art date
Application number
PCT/ES1993/000012
Other languages
English (en)
French (fr)
Inventor
Antonio Madroñero De La Cal
Original Assignee
Consejo Superior Investigaciones Cientificas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior Investigaciones Cientificas filed Critical Consejo Superior Investigaciones Cientificas
Priority to DK93905349T priority Critical patent/DK0604654T3/da
Priority to EP93905349A priority patent/EP0604654B1/en
Priority to DE69324663T priority patent/DE69324663T2/de
Publication of WO1993017159A1 publication Critical patent/WO1993017159A1/es
Priority to GR990401849T priority patent/GR3030764T3/el

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1271Alkanes or cycloalkanes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1271Alkanes or cycloalkanes
    • D01F9/1272Methane
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1278Carbon monoxide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/133Apparatus therefor

Definitions

  • Carbon fibers are used as a reinforcing element in the manufacture of polymeric, metallic or ceramic matrix composites.
  • the level of characteristics of composite materials depends, in addition to other aspects such as amount of reinforcement incorporated, fiber orientation etc. , and the quality of the fiber, which runs even at its price.
  • the composite materials that must be produced at a moderate cost are limited to the use of only reduced price fibers, such as fiber glass.
  • High performance fibers such as silicon carbide, aramid and carbon fibers, are limited to be used in those materials composed of very high performance levels (aerospace and defense industry, for example), which They can afford high costs.
  • the carbon fiber-graphite concept covers a large sample of ceramic fibers, of pure graphite from the chemical point of view, but with a wide variation in as regards its degree of graffiti and structure-properties relationship. Basically these three big families are:
  • ex-PAN carbon-graphite fiber so called because it is manufactured from polyacrylonitrile (PAN) or rayon textile yarn, which is roasted and pyrolyzed until only the skeleton remains of the starting polymer or precursor from the heavily textured graphite network.
  • PAN polyacrylonitrile
  • rayon textile yarn which is roasted and pyrolyzed until only the skeleton remains of the starting polymer or precursor from the heavily textured graphite network.
  • ex-PITCH carbon-graphite fiber so called because it is manufactured from tar or tar, to which additives are added to stimulate the formation of a "mesophase".
  • this pitch is shaped as a thread and then subjected to a pyrolization treatment such as conventional graphite. Its mechanical characteristics are due to the reduced grain size of the graphite processed in this way.
  • this ex-Pitch fiber was going to be the carbon fiber that would displace the ex-PAN for its lower price, but the only types of high-performance ex-Pitch fiber correspond to fibers Young's high modulus and very low elongation at breakage, so its potential market is very small.
  • VGCF Vapor Growth Carbon Fiber Fibers
  • obtaining relatively long ceramic fibers by pyrolysis or reduction of appropriate gases is achieved by passing a gaseous mixture through a substrate [6] (in principle a wire mesh or steel wire cloth) placed frontally to the direction of the gas stream and placed in an oven [4] where the gas reaches a temperature of the order of 1 000 ° C.
  • the device outlined in the aforementioned figure 1, consists of the corresponding gas tanks, [1] hydrocarbon and [2] carrier or activating gas or gases, a preheating mixing chamber [3], said furnace [4] a whose outlet [5] collects or destroys flammable gases, and the grid [6] from whose surface, properly activated, carbon fibers grow.
  • stainless steel is indicated in the bibliography as suitable material for the fibers to grow on it, in principle (and without limiting it) it can be used to manufacture the substrate, which according to the present invention , and as shown in figure 2, it can be
  • a metal mesh disk of appropriate light made of stainless steel wire.
  • the operational conditions of temperature, composition of the mixture and time required are conventional.
  • the operating temperature is preferably 1,065 ° C, and the reactant atmosphere is 85% hydrogen with 15% methane;
  • the operation time is one hour.
  • the essence of the invention is that the gas passes through the substrate located frontally to the flow passage, so that since the flow (in which turbulence should be avoided) parallel to the direction of fiber growth, they can reach a length of up to 10 or 12 cm, with a thickness of 4 to 15 ⁇ m.
  • the device consists of a preheating and homogenization chamber [3] of the mixture, which although not an essential part of the invention, from a practical point of view, is essential in order to save energy and decrease the time it takes to reach the working regime temperature.
  • the geometry of the furnace (except being tubular) or the heating system an essential part of the invention. Due to its ease of regulation, electric heating is advisable. Electric power consumption heating supports two equally valid variants, Joule effect heating, and induction heating. In the first case it takes longer to reach the working temperature, and in the second the cost of equipment is higher.
  • the substrates which in principle may be those indicated in Figure 2, may, strictly speaking, be used interchangeably both in the Joule effect heating system and in the induction heating system. However, this topic will be discussed in more detail later.
  • the furnace can be as long as desired, with an operating time that grows with its length.
  • the duration of the operation can be minimized.
  • the word substrate is used to define an object on which the fiber growth takes place.
  • the substrate is a support that either by its own nature or because seeds are provided (which will be discussed later) allows such growth.
  • Figure 2 various geometric shapes have been shown that can be given to the substrates, whose periphery has been drawn circular assuming that it has to be adapted to a cylindrical housing, but they could also have another shape, for example square.
  • Figure 6 shows a different type of substrate formed by a spirally wound wire, to which, optionally, a second spiral of thinner wire can be wound as shown in the lower part of the figure.
  • a wide range of metallic materials can be used, with the only requirement that they withstand the operating temperature (between 600 and 1 300 ° C) without deteriorating or losing shape (none rust because the oven works with reducing atmosphere).
  • any quality ceramic material alumina, mullite, silicon carbide, etc. can also be used.
  • the grooves or perforations present the jagged edges, which improve the fertility of the substrate since they stimulate the accumulation of the tiny seeds.
  • the substrates can be used directly, in direct contact with the furnace wall (which in this case acts as a housing), although it is preferable to use them wrapped in a tubular wire netting.
  • the mask as already defined (passive wall with flow regulating perforations, located frontally to its direction), constitutes a perforated screen whose mission is to provide a redistribution of the gas flow to make it more uniform and regular and they must be positioned, as shown in figures 3, 4 and 5, at the inlet and outlet of the gas. Its use is very convenient but does not constitute an essential part of the invention.
  • Figure 7 shows different forms of masks with which good results have been achieved, forms that, of course, can be varied without affecting the essence of the invention. They can be manufactured interchangeably with the graphite cardboard already mentioned or with any of the metallic or ceramic materials already described for the previous ones.
  • organometallic compounds especially advisable to form seeds that give rise to very fine fibers (thickness ⁇ 4 ⁇ m).
  • inorganic salts of transition metals especially indicated (iron salts) to form fibers of intermediate thickness (3 ⁇ m ⁇ 0 ⁇ 7 ⁇ m), or to form thick fibers (double anion salts) with a thickness of 5 ⁇ m ⁇ 0 ⁇
  • organometallic compounds there may be mentioned ferrocene, thiophene, Cr and Ni metallocene, oxalates (from Fe, Ni, Cr and Co).
  • Inorganic we can indicate nitrates, nitrites, sulfates (and ammonium sulfates) and chlorides (alone, mixed and with additions such as potassium and sodium hydroxide).
  • the same salts of Zr, V, W, Mo, Mn, Pd, Ir and Pt can also be used with less efficiency.
  • the dilution margins of each are very wide and not very significant in their result; As a general rule, it can be said that they are used in concentrations between 50% and 80% of saturation.
  • hydrocarbons such as methane, ethane, propane and butane; alkenes, such as ethylene, butadiene, etc; alkynes, such as acetylene, etc; arical hydrocarbons, such as benzene, toluene, styrene, etc; aromatic condensed ring hydrocarbons, such as indene, naphthalene, phenanthrene, etc; cycloparaffins, such as cyclopropylene, cycloexano, etc .; cycloolefins such as cyclopentene, cycloexen, etc; alicyclic condensed ring hydrocarbons, such as steroids, etc; sulfurated aliphatic compounds such as methyllotiol, methyl-ethyl sulfide, methyl ethyl sulfide, dimethylthioketone, etc; sulfur aromatic compounds, such as fenitrol, diphen
  • the structure and properties of the fibers produced depend very little on the hydrocarbon chosen, so such a choice is usually made in terms of costs, degree of toxicity and danger of handling, process time, etc.
  • Figure 8 shows the dimensioning of the elementary device.
  • Example 2 Figure 9 shows the multi-compartment reactor of decreasing length in the direction of flow.
  • the operating conditions are as follows: * Warming by Joule effect.
  • the present reactor can be used to obtain ceramic fibers other than those of carbon.
  • ceramic fibers other than those of carbon For example, using the mixture of gases and temperatures described by Motojima and Hasegawa [Journal of Crystal Growth, 87, (1988), 311-317], SiC fibers with the lengths and thicknesses described in the previous examples for VGCF fibers can be obtained .
  • the operating conditions for this specific case are:
  • Metal salts are used as seeds.
  • the deposition temperature is maintained between 1 030 and 1 200 ° C.
  • An atmosphere consisting of Si 2 Cl 6 , CH 4 , H 2 and Ar is used with a C / Si ratio of 2 and a minimum of 10% of H 2 and a maximum of Ar of 40%.
  • Double spiral variant ..
  • Figure 8 Type reactor layout

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Fibers (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

La obtención de las fibras se consigue haciendo pasar una mezcla gaseosa que contiene un hidrocarburo gaseoso o un gas apropiado a través de un substrato [6] (en principio una tela metálica de acero) colocada frontalmente a la dirección de la corriente gaseosa y situada en un horno [4] donde el gas alcanza una temperatura del orden de 1 000 °C. El dispositivo, esquematizado consta de los correspondiente depósitos de gases, [1] de hidrocarburo y [2] gas o gases portadores y activadores, una cámara de mezcla y precalentamiento [3], el mencionado horno [4] a cuya salida [5] se recogen no destruyen los gases inflamables, y la rejilla [6] a partir de cuya superficie, debidamente activada, crecen las fibras de carbono. Lo esencial del invento es que el gas atraviase el substrato situado frontalmente al flujo, de forma que este flujo de gases sea paralelo a la dirección de crecimiento de las fibras. La longitud máxima de las fibras viene dada por la distancia entre el substrato [6] y un substrato o máscara (no mostrado en la figura) situado al otro extremo de la cámara.

Description

Título
REACTOR PARA LA PRODUCCIÓN DE FIBRAS CORTAS CERÁMICAS A PARTIR DE GASES .
Campo de la técnica
Aparatos especialmente adaptados a la fabricación de filamentos de carbono (D01F).
Fabricación de fibra de carbono a partir de hidrocarburos
Introducción
Las fibras de carbono se utilizan como elemento de refuerzo en la fabricación de materiales compuestos de matriz polimérica, metálica o cerámica. El nivel de caracterís¬ ticas de los materiales compuestos depende, además de otros aspectos tales como cantidad de refuerzo incorporado, orientación de la fibra etc. , y de la calidad de la fibra, que corre pareja a su precio.
En consecuencia, los materiales compuestos que deben producirse con un costo moderado (para productos de no alto precio y gran volumen de mercado, como asientos, carcasas, etc) se ven limitados al empleo de solamente fibras de precio reducido, como es la fibra de vidrio.
Las fibras de altas prestaciones, como son las fibras de carburo de silicio, de aramida y de carbono, quedan circunscritas a ser utilizadas en aquellos materiales com¬ puestos de muy alto nivel de prestaciones (industria aeroespacial y de Defensa, por ejemplo), que pueden permitirse altos costos.
Es, por tanto, de un gran interés, conseguir producir fibras de altas prestaciones a un precio más asequible. En este sentido se viene investigando mucho, y sobre todo, en la fibra de carbono.
El concepto fibra de carbono-grafito cubre un amplio muestrario de fibras cerámi¬ cas, de puro grafito desde el punto de vista químico, pero con una amplia variación en cuanto se refiere a su grado de grafitización y relación estructura-propiedades. Básicamen¬ te son estas tres grandes familias:
i) fibra de carbono-grafito ex-PAN, así llamada por ser fabricada a partir de hilo textil de poliacrilonitrilo (PAN) o de rayón, que se va tostando y pirolizan- do hasta que del polímero de partida o precursor sólo queda el esqueleto de la red de grafito fuertemente texturizado. Principalmente por el consumo de energía que su fabricación supone, su precio es prácticamente imposible de disminuir; es la fibra típica de los materiales compuestos para la aeronáutica y los vehículos espaciales.
ii) fibra de carbono-grafito ex-PITCH, así llamada por ser fabricada a partir de la brea o alquitrán, a la que se añaden aditivos para estimular la forma¬ ción de una "mesofase". En estado pastoso, a esta brea se la da forma de hilo y se la somete después a un tratamiento de pirolización como al grafito conven¬ cional. Sus características mecánicas se deben al reducido tamaño de grano del grafito procesado de esta forma. Hubo un tiempo que se pensó que esta fibra ex-Pitch iba a ser la fibra de carbono que iba a desplazar a la ex-PAN por su menor precio, pero los únicos tipos de fibra ex-Pitch de alto nivel de prestaciones corresponden a fibras de alto módulo de Young y muy reducido alargamiento en la rotura, por lo que su mercado potencial es muy reducido.
iii) A diferencia de las dos familias anteriores, que se encuentran disponi¬ bles en el libre mercado desde hace bastante tiempo, la fibra de carbono tipo VGCF (Vapour Growth Carbón Fibres), se encuentra todavía en etapa de labora¬ torio-planta piloto, y constituye la esperanza de industrias como la automovilística, que no va a poderse permitir nunca el costo de las fibras de carbono-grafito ex-PAN y ex-Pitch.
Estado de la técnica
Su proceso de producción consiste, simplemente, en una producción de negro de humo en la que se toman las especiales precauciones necesarias para que el producto tome la forma filamentosa, tal y como se viene haciendo en la fabricación de whiskers, por mas que exista una amplia controversia acerca de los mecanismos físico-químicos que regulan la formación de estas fibras. El proceso consiste en utilizar unas diminutas partículas metálicas, que actuando como semillas, reciben todo el carbono proveniente de la descom posición del hidrocarburo y adoptan la forma de filamentos.
El sistema experimental para crecer estas fibras está ampliamente descrito en l bibliografía [ ver G. G. Tibbetts "Vapor grown carbón fibers", Capítulo del libro: J. L Figueiredo et al. (Editors) "Carbón fibres filaments and composites" Klu wer Academi Publishers (1990) pag 73 - 94; F. Benissad, P. Gadelle, M. Coulon y L. Bonnetai "Formation de fibres de carbone a partir du methane: I. Croissance catalytique et epais sissement pyrolytique" Carbón, vol 26 (1988) pag 61 a 69; G.G. Tibbetts "From catalysi to chemical vapor deposition: graphite fibers from natural gas" Ponencia presentada en e congreso "Graphite Intercalation Compounds" organizado por la Materials Researc Society. Boston (USA) Noviembre 1984; M. Erido y H. Ueno "Growth and application of vapor-grow n carbón fibres" Ponencia presentada en el congreso "Graphite Intercalatio compounds" organizado por la Materials Research Society . Boston (USA) Noviembr 1984]. Se dispone de un tubo de cuarzo en cuyo interior, a temperaturas un poco po encima de los 1 000 °C, se colocan unas semillas de un metal de transición muy finamen te dividido, en una atmósfera mezcla de hidrógeno (que puede ir acompañado de CO) con un hidrocarburo gaseoso. El carbono es adsorbido por las partículas metálicas y e exceso lo expulsan en forma de filamento carbonoso.
Básicamente, hay dos técnicas para producir fibra de carbono tipo VGCF, en lech fijo, en donde las semillas están quietas y lo único que se desplaza es la mezcla de gase reactantes (las fibras se generan y crecen fijadas en el substrato o bandeja), y en lech fluidizado, en donde las semillas son arrastradas por los gases (al igual que el vient arrastra partículas de polvo) mientras van creciendo [M. Endo, A. Katoh, T. Sugiura M. Shiraishi, "High resolution electromicroscopy on vapour-gro wn carbón fibres obtaine by ultra-fine fluid catalyst" Ponencia presentada en la 18th Biennial American Conferenc on Carbón. Worchester 1987]. Las fibras VGCF que ambas técnicas producen, so iguales, aunque por regla general las fibras procedentes de lecho fijo tienen una longitud media algo mayor que las fibras que se producen en lecho fluidizado.
Los dos grandes escollos, hasta la fecha no resueltos, que han impedido la fabrica- ción a escala industrial de las fibra de carbono tipo VGCF (pese a la mucha bibliografía técnica existente, todavía no tuvo lugar la aparición en el mercado libre a escala comercial de las fibras VGCF), son:
i) Escasa longitud ii) Muy escasa cantidad de fibra producida por hora de operación.
El tema de la longitud de las fibras es muy limitador, desde el punto de vista de segmento de mercado de la fibra corta. Hay procesos de fabricación de materiales com¬ puestos, de uso muy extendido, que precisan fibra corta, pero con una cierta longitud mínima. Así, por ejemplo, el proceso SMC (Sheet Moulding Compound), mediante el cual se fabrican los paragolpes de tantos automóviles, precisa de fibras cortas de 2.5 cm de longitud, aproximadamente.
En el caso de sistemas de lecho fijo, que son los capaces de producir fibras VGCF con mayor longitud, la bibliografía [F. Benissard, P. Gadelle, M. Coulon y L. Bonnetain
"Formation de fibres de carbone a partir du methane. DI: Influence de la nature du precurseur du catalyseur". Carbón, vol 27 (1989) pag 585 - 592; G.G. Tibbets "Length of carbón fibres grown from iron catalyst particles in natural gas" Journal of Crystal
Growth, vol 73 (1985) pag 431 - 438] nos indica que no pueden superarse los 1.5 mm de longitud media. En el único documento donde declaran superar ampliamente esta longitud de fibra, es en la patente [14] (ver más abajo), donde dicen alcanzar la longitud de 75 mm, aunque no explican si esta largura se refiere a la longitud media de las fibras obtenidas en una hornada ("batch"), o si (lo que es más probable), se refiere a la longitud de unas pocas fibras excepcionalmente largas aparecidas en el substrato o bandeja.
Buscando una producción de fibras lo más rápida posible, los trabajos encaminados a buscar la producción industrial de las fibras de carbono VGCF, se suele optar por los sistemas de lecho fluidizado, que producen longitudes de fibra de solamente 500 μm (patente [17]), 5 μm < 1 < 5 mm. La siguiente relación de patentes, a las que hacemos referencias por el número entre corchetes, contemplan estos procesos:
[1] MANUFACTURA DE FIBRAS DE CARBONO POR CRECIMIENTO EN
FASE VAPOR
Autores: M. Endo, T. Okada, M. Ishioka, K. Nakazato, Y. Okuyama y K. Matsubara. Solicitante: Nippon Kokan K.K. N° PAT en la Oficina de PAT en Tokyo: 01 92425 (89/92425)
Fecha de Solicitud: 30.09.87 Sol. de pat.: 87/246178
[2] MANUFACTURA, A BAJO COSTE, DE FIBRAS DE CARBONO POR CRECIMIENTO EN FASE VAPOR.
Autor: M. Endo, M. Ishioka, T. Okada, K. Nakazato, Y.
Okuyama y K. Matsubara.
N° PAT en la Oficina de PAT en Tokyo: 01 92423 (89/92423)
Fecha de Solicitud: 30.09.87 Solicitante: Nippon Kokan K.K.
Sol. de pat.: 87/246174
[3] MANUFACTURA, A BAJO COSTE, DE FIBRAS DE CARBONO POR CRECIMIENTO EN FASE VAPOR. Autor: M. Endo, T. Okada, M. Ishioka, K. Nakazato, Y.
Okuyama y K. Matsubara.
N° PAT en la Oficina de PAT en Tokyo: 01 92420 (89/92420) Fecha de Solicitud: 30.09.87 Sol. de pat.: 87/246171
[4] MANUFACTURA DE FIBRAS DE CARBONO ULTRAFINO POR CRECI¬ MIENTO EN FASE VAPOR Autor: M. Nakatini y Y. Komatsu Solicitante: Asahi chemical Industry Co. Ltd N° PAT en la Oficina de PAT en Tokyo: 63 282313 (88/282313) Fecha de Solicitud: 15.05.87 Sol. de pat.: 87/116663
[5] MANUFACTURA DE FIBRAS DE CARBONO ULTRAFINO POR CRECI¬ MIENTO EN FASE VAPOR Autor: M. Nakatini y Y. Komatsu Solicitante: Asahi chemical Industry Co. Ltd
N° PAT en la Oficina de PAT en Tokyo: 62 282020 (87/282020) Fecha de Solicitud: 26.05.86 Sol. de pat.: 86/120789
[6] MANUFACTURA DE FIBRAS DE CARBONO ULTRAFINO POR CRECI¬
MIENTO EN FASE VAPOR Autor: A. Furuichi y Y. Komatsu Solicitante: Asahi chemical Industry Co. Ltd N° PAT en la Oficina de PAT en Tokyo: 62 288819 (87/268819) Fecha de Solicitud: 15.05.86
Sol. de pat.: 86/109606
[7] MANUFACTURA DE FIBRA DE CARBONO Autor: Y. Komatsu y K. Nakamura Solicitante: Asahi chemical Industry Co. Ltd
N° PAT en la Oficina de PAT en Tokyo: 61 225321 (86/225321) Fecha de Solicitud: 23.05.85 Sol. de pat.: 85/58812
[8] MANUFACTURA DE FIBRAS DE CARBONO POR CRECIMIENTO EN
FASE VAPOR Autor: S. Morimoto Solicitante: Showa Denko K.K.
N° PAT en la Oficina de PAT en Tokyo: 61 194223 (86/194223) Fecha de Solicitud: 22.02.85 Sol. de pat.: 85/32817
[9] MANUFACTURA DE FIBRAS DE CARBONO POR CRECIMIENTO EN FASE VAPOR Autor: H. Ito y K. Murata
Solicitante: Mitsui Engineering and shipbuilding Co Ltd N° PAT en la Oficina de PAT en Tokyo: 01 104834 (89/104834)
Fecha de Solicitud: 15.10.87 Sol. de pat.: 87/ 260139
[10] MANUFACTURA DE FIBRAS DE CARBONO POR CRECIMIENTO EN FASE VAPOR UTILIZANDO RADIACIÓN LÁSER
Autor: K. Murata, K. Sato y M. Matsumoto
Solicitante: Mitsui Engineering and Shipbuilding Co Ltd
N° PAT en la Oficina de PAT en Tokyo: 01 85320 (89/85320)
Fecha de Solicitud: 28.09.87 Sol. de pat.: 87/ 243292
[11] MANUFACTURA DE FIBRAS DE CARBONO POR CRECIMIENTO EN FASE VAPOR UTILIZANDO RADIACIÓN LÁSER Autor: K. Murata, K. Sato y M. Matsumoto Solicitante: Mitsui Engineering and Shipbuilding Co Ltd
N° PAT en la Oficina de PAT en Tokyo: 01 85321 (89/85321) Fecha de Solicitud: 28.09.87 Sol. de pat.: 87/ 243293
[12] MANUFACTURA DE FIBRA DE CARBÓN
Autor: M. Murakami y S. Yoshimura Solicitante: Research & Development Corporation of Japan N° PAT en la Oficina de PAT en Tokyo: 61 55220 (86/55220) Fecha de Solicitud: 24.08.84
[13] FABRICACIÓN DE FIBRAS DE CARBONO A PARTIR DE UN HIDROCARBURO GASEOSO
Autor: Y. Komatsu
Solicitante: Showa Denko S.A.
N° de Patente Europea: 86901499.3 (WO 86/04937)
Fecha de Publicación: 28 de Agosto de 1986
[14] APARATO PARA LA FABRICACIÓN DE FIBRA DE CARBONO POR
EL MÉTODO DE LA DESCOMPOSICIÓN TÉRMICA.
Autor: K. Koma y M. Watanabe
Solicitante: Showa Denko S.A. N° PAT en la Oficina de PAT en Tokyo: 60 8138
Fecha de Publicación: 09.06.1983
[15] MÉTODO DE FABRICACIÓN DE FIBRA DE CARBONO POR CRECIMIENTO EN FASE GASEOSA. Autor: K. Okada y cois
Solicitante: Nippon Kokan Kabushiki, Tokyo
N° PAT en la Oficina de PAT en Tokyo: 61-150838
Fecha de Publicación: 20.01.1988
[16] 1VIANUFACTURA DE FIBRAS DE CARBONO ULTRAFINAS POR
CRECIMIENTO EN FASE GASEOSA.
Autor: S. Marimoto
Solicitante: Showa Denkko K.K.
N° PAT en la Oficina de PAT en Tokyo: 63 92726 Fecha de Solicitud: 01.10.86
Sol. de pat.: 86/233758 [17] MÉTODO DE FABRICACIÓN DE FIBRAS DE CARBONO POR CRECIMIENTO EN FASE GASEOSA. Autores: M. Endo, M. Ishioka, K. Nakazato, T. Okada, Y. Okuyama y K. Matsubara. Solicitante: Nippon Kokan K.K. Tokyo.
N° PAT en la Oficina de PAT en Tokyo: 01-92421 (89/92421) Fecha de Solicitud: 30.09.87 Sol. de pat.: 87/246172
[18] PREPARACIÓN DE FIBRAS CARBONADAS MICROSCÓPICAS POR
UN MÉTODO DE FASE VAPOR.
Autor: K. Arakawa
Solicitante: Nikkiso Co Ltd Tokyo
N° PAT en la Oficina de PAT en Tokyo: 61 34221 (PE 84109710.8 y PE 85103297.8)
Fecha de Solicitud: 27.7.1984
[19] PROCEDIMIENTO PARA FABRICACIÓN DE FIBRAS DE CARBON DEPOSITADAS A PARTIR DE METANO Autor: M. Coulon, N. Kandani, L. Bonnetain y J. Maire
Solicitante: Le Carbón Lorraine N° Patente Internacional: WO 8505383 Fecha de Publicación: 05.12.1985
[20] PROCESO MEJORADO PARA CRECIMIENTO DE FIBRAS DE GRAFI
TO.
Autor: J.R. Bradley, J.M. Burkstrand y G.G. Tibbetts N° de Patente Europea 83306001.5 (WO 109165) Fecha de Solicitud: 04.10.83
[21] PROCEDIMIENTO DE PIRÓLISIS DE METANO Autor: G.G. Tibbetts y M.G. Devour N° de Patente: US 642.574 (20.08.84), US 685.046 (21.12.84), ES 546.245 (19.08.85)
[22] TRATAMIENTO POR NITRATO FÉRRICO PARA NUCLEACION DEL CRECIMIENTO DE FIBRAS DE GRAFITO MEDIANTE PIRÓLISIS DEL
METANO. Autor: G.G. Tibbetts Solicitante: General Motors Corporation N° de Patente Europea: 84302043.9 (WO 132909) Fecha de solicitud: 13.02.85
[23] ESTIMULACIÓN MEDIANTE PULSOS DE PRESIÓN DEL CRECÍ MIENTO DE FIBRAS DE GRAFITO Autor: G.G. Tibbetts Solicitante: General Motors Corporation
N° de Patente Europea: 86307589.1 (WO 222492) Fecha de solicitud: 02.10.86
Muy escasas, en cambio, son las opciones por el lecho fijo (patentes [12], [14] y [18]), aunque obtienen longitudes de 100 μm < 1 < 500 μm (en la patente [12]), 2 mm < 1 < 3 mm (en la patente [18]), etc.
Puede decirse, por tanto, que en líneas generales, las opciones de lecho fluidizado tienden a producir "fibra molida" (escasamente el milímetro de longitud), mientras que las posibilidades de fabricar "fibra corta" (longitud superior a 5 mm) son potencialmente conseguibles por lecho fijo, pero mejorando con futuras investigaciones la eficiencia de los equipos descritos en la bibliografía ya mencionados.
El otro tema clave, el de la velocidad de producción de las fibras VGCF durante el proceso de fabricación, es igualmente limitador. Así por ejemplo, en la patente [13], dicen obtener 6.5 g de fibra después de 5 horas de producción en lecho fluidizado, mientras que usando lecho fijo, en la patente [14] declaran que llegan alcanzar 2.5 g en una operación de 5 h (con el comentario adicional de que en los sistemas convencionales, que no identifican con precisión, la producción es de 1.8 g en el mismo tiempo).
Entendemos que a resolver ambos aspectos deben ir encaminadas los esfuerzos de I + D en esta tecnología.
Breve descripción de la invención
Como se muestra en la figura 1, la obtención de fibras cerámicas relativament largas por pirólisis o reducción de los gases apropiados (hidrocarburos cuando se pretend obtiene fibras de carbono, mezclas hidrógeno-cloruro de silicio-hidrocarburo cuando s pretende obtener fibras de carburo de silicio, etc.), se consigue haciendo pasar un mezcla gaseosa a través de un substrato [6] (en principio una malla ó tela metálica de hil de acero) colocada frontalmente a la dirección de la corriente gaseosa y situada en un horno [4] donde el gas alcanza un temperatura del orden de 1 000 °C. El dispositivo, esquematizado en la citada figura 1, consta de los correspondiente depósitos de gases, [1] de hidrocarburo y [2] gas o gases portadores y activadores, una cámara de mezcla precalentamiento [3], el mencionado horno [4] a cuya salida [5] se recoge o destruyen lo gases inflamables, y la rejilla [6] a partir de cuya superficie, debidamente activada, crecen las fibras de carbono.
Partiendo del hecho de que el acero inoxidable está indicado en la bibliografí como material apto para que sobre él crezcan las fibras, en principio (y sin que ello se limitativo) se puede utilizar éste para fabricar el substrato, que de acuerdo con la present invención, y como se muestra en la figura 2, puede ser
- Un disco de malla metálica de luz apropiada, de alambre de acero inoxidable.
- Un disco de chapa de acero, de espesor conveniente, en los que están perforado unos orificios de tamaño apropiado.
Con estos substratos se consigue que las semillas que se forman lo hagan separa das. Para ello puede emplearse una técnica convencional consistente en que los discos una vez limpios, desengrasados y decapados con ácido clorhídrico diluido, se siembran, aplicando unas pinceladas de una solución alcohólica de, por ejemplo, nitrato férrico Fe(NO3)3.
Las condiciones operacionales de temperatura, composición de la mezcla y tiempo necesario, son convencionales. La temperatura de operación es, preferentemente de 1 065 °C, y la atmósfera reactante un 85 % de hidrógeno con 15 % de metano; el tiempo de operación es de una hora.
Lo esencial del invento es que el gas atraviese el substrato situado frontalmente al paso del flujo, de forma que al ser el flujo (en el que deben evitarse las turbulencias) paralelo a la dirección de crecimiento de las fibras, estas pueden alcanzar una longitud de hasta 10 ó 12 cm, con un grosor de 4 a 15 μm.
En las puntas de las fibras, debido al flujo exigido, se renueva el gas del entorno de su extremo activo, manteniéndolo con todo el contenido en metano, que permite la continuidad de su crecimiento.
De cara a una producción industrial, es conveniente disminuir la luz de la malla (o el tamaño de los orificios) hasta alcanzar el máximo de cobertura de la sección trans¬ versal del horno, dejando el suficiente espacio libre como para que pase, sin obstruc¬ ciones, la corriente de los gases reactantes que alimentarán el crecimiento de las fibras VGCF. También tendrá interés colocar el máximo número posible de bandejas-substratos, de forma que en el espacio útil cilíndrico-tubular que constituye el reactor-horno, se produzcan simultáneamente el mayor número posible de fibras.
Descripción detallada de la invención
Como se ha indicado en la figura 1, el dispositivo consta de una cámara [3] de precalentamiento y homogeneización de la mezcla, que aunque no constituye una parte esencial de la invención, desde un punto de vista práctico, es esencial al objeto de ahorrar energía y disminuir el tiempo que se tarda en alcanzar la temperatura de régimen de trabajo. Tampoco constituye una parte esencial del invento la geometría del horno (salvo ser tubular) ni el sistema de calentamiento. Debido a su facilidad de regulación, es aconsejable la calefacción eléctrica. El calentamiento por consumo de energía eléctrica admite dos variantes igualmente válidas, calentamiento por efecto Joule, y calentamiento por inducción. En el primer caso se tarda más tiempo en alcanzar la temperatura de trabajo, y en el segundo el costo del equipamiento es mayor.
La manera más sencilla de eliminación de los gases residuales, se efectúa quemán¬ dolos en una antorcha cuando, como es habitual, se trabaja a presión atmosférica; si se desease variar esta presión, en vez de la antorcha se pondría un recipiente cerrado con un escape de presión regulada (presión superior a la atmosférica), o una bomba de vacío (presión inferior a la atmosférica). En cualquier caso conviene destacar lo siguiente:
i) en todo lo que se refiere a dimensiones, estas dependen fundamentalmente de la capacidad de producción prevista. El caudal de gas debe ser tal que su velocidad lineal (reducciendo su volumen a condiciones normales) esté comprendida entre 2 y 16 cnvmin'1.
ii) Los substratos, que en principio pueden ser los indicados en la figura 2, pueden, en sentido estricto de la palabra, ser indistintamente utilizados tanto en el sistema con caldeo por efecto Joule como en el sistema con caldeo por inducción. No obstante, este tema será tratado con más detalle posteriormente.
iii) Una mejora esencial estriba en la especialización de los soportes en substratos y máscaras. Realmente no hay una clara distinción entre ambos conceptos, ya que los dos sistemas pueden estar incluidos en una sola pieza como hasta ahora se ha indicado (figura 1). Se trata, simplemente de que algunas geometrías, correspon¬ dientes a las que asociamos al concepto de "máscara", palabra con la que abrevia¬ damente se indica una máscara pasiva reguladora de flujo consistente en un pared delgada, con perforaciones realizadas al efecto, que por su sola colocación frontal a la corriente de gases reactantes, tiende a mejorar la regularidad y lamina ridad del flujo de gases. Estas máscaras juegan un buen papel como repartido res-uniformadores del flujo de los gases dentro del horno-reactor, teniendo en cambio muy escasa eficiencia como bandejas generadoras de fibras de carbono VGCF u otro tipo de material cerámico, aunque en lo que sigue nos vamos a ceñir a las fibras VGCF, que son las de más frecuente aplicación. En consecuencia, una opción muy favorable es escoger, como en el caso de la figura 4, una secuencia de bandejas máscara de entrada-substratos-substrato y/o máscara de salida, de forma que los substratos intermedios producen el máximo de fibra VGCF, pero esto es una opción ventajosa, no un requerimiento.
En este sentido, en la figura 3, se muestra lo que podríamos llamar unidad funda¬ mental de la invención. Esta unidad puede repetirse un número determinado de veces como se observa en la figura 4. A la entrada del horno [1] es muy conveniente (pero no necesaria) la existencia de la máscara [2] que tiene como misión fundamental distribuir regularmente el gas antes de su entrada en el substrato [3] donde se forman las fibras de carbono. Dado que en una unidad no llega a agotarse el contenido de hidrocarburo de la mezcla gaseosa, esta puede pasar a la segunda unidad y de ésta a la tercera, etc. Al final de la última serie de substratos en cascada, es muy conveniente que exista una segunda máscara [2] en lugar de un substrato, para que consiga evitar que las turbulencias que pueden ocasionarse en el gas como consecuencia del estrangulamiento a la salida no afecten al régimen laminar en la última unidad.
Existe otro aspecto opcional que puede verse comparando las figuras 4 y 5. En la primera, la longitud, L, de cada unidad es la misma, mientras que en la segunda es diferente, disminuyendo en la dirección de desplazamiento del gas.
La razón es la siguiente. Cuando la mezcla de gases reactantes alcanza el substrato segundo (que denominaremos S2), viene algo empobrecida por haber descargado parte de su potencial de carbono en la alimentación del crecimiento de las fibras VGCF crecidas sobre el substrato primero, SI. En consecuencia, al cabo de, por ejemplo, veinte minutos de operación, el substrato SI está poblado con fibras VGCF de longitud media L, mien¬ tras que las fibras crecidas sobre S2 miden una longitud promedia menor de L. Por consiguiente, entre el extremo de las fibras crecidas sobre S2 y el subsiguiente substrato S3 queda un espacio desaprovechado. Lo lógico es, por tanto, situar a los substratos con una separación progresivamente menor.
Esto no quiere decir que no se pueda trabajar con unos substratos equidistantes. Si, por ejemplo, se han colocado a los substratos equidistantes a 6 cm, lógicamente se llegaría a una situación en la que las fibras VGCF crecidas sobre SI, por haber alcanzado los 6 cm de largo, llegan a tocar con sus extremos al substrato S2, lo que provoca la detención de su crecimiento. Si ahora se prolonga la operación, las fibras crecidas sobre S2 pasen a crecer más rápidamente, pues ahora las llega una atmósfera más rica en hidrocarburos. Una vez que las fibras crecidas sobre S2 alcanzan al substrato S3, una posterior prolongación del tiempo de operación permite a las fibras crecidas sobre S3 llegar a tocar al substrato S4, y así sucesivamente.
Es decir, se tiene la libertad de escoger entre fibras con un único tamaño, que corresponden a la situación de substratos equidistantes, y fibras con unos cuantos tamaños escalonados, según los correspondientes valores decrecientes de L. En el primer caso, el horno puede ser tan largo se desee, con un tiempo de operación que crece con su longi¬ tud. En el segundo caso se puede hacer mínima la duración de la operación.
Descripción de los substratos
En la presente descripción se emplea la palabra substrato para definir un objeto sobre el cual tiene lugar el crecimiento de la fibra. El substrato es un soporte que bien por su propia naturaleza o porque se le aporten semillas (de la que mas adelante se tratará) permite dicho crecimiento.
En la figura 2 se han mostrado diversas formas geométricas que pueden darse a los substratos, cuya periferia se ha dibujado circular suponiendo que ha de adaptarse a una carcasa cilindrica, pero también podrían tener otra forma, por ejemplo cuadrada. En la figura 6 se muestra un tipo de substrato diferente formado por un alambre arrollado en espiral, al cual, opcionalmente, se puede arrollar a su vez una segunda espiral de hilo más fino como se muestra en la parte inferior de la figura. Para fabricar, por ejemplo este último, puede emplearse una amplia gama de materiales metálicos, con el solo requerimiento de que aguanten la temperatura de opera¬ ción (entre 600 y 1 300 °C) sin deteriorarse ni perder forma (ninguno se oxida porque el horno trabaja con atmósfera reductora). Resultan especialmente indicadas las aleaciones base Co, Ni, W y ferroaleaciones, aceros refractarios e inoxidables-refractarios, pudién¬ dose emplear en las calidades con que normalmente se emplean en el comercio, Vita- lium®, Nicrhome®, KhantaP, Stellite®, wolframio de pureza comercial, etc.
Para construir los substratos descritos en figura 2, pueden utilizarse las aleaciones ya reseñadas para el substrato de la figura 6, o bien cualquiera de los cartones de grafito disponibles en el comercio para juntas de alta temperatura (marcas habituales Cardboard® de la firma Ashland en USA, y Papyex® fabricado en Francia por Le Carbonne Lorraine).
Para fabricar el substrato del tipo de la figura 2, también puede emplearse cual- quier material cerámico de calidad, alúmina, mullita, carburo de silicio, etc. En este caso es muy conveniente que las ranuraciones o perforaciones presenten los bordes dentados, que mejoran la fertilidad del substrato ya que estimulan la acumulación de las diminutas semillas.
Los substratos pueden utilizarse directamente, en contacto directo con la pared del horno (que en este caso actúa como carcasa), aunque es preferible utilizarlos envueltos en un tubular de tela metálica.
Máscaras La máscara, como ya se ha definido (pared pasiva con perforaciones reguladora del flujo, situada frontalmente a la dirección de éste), constituye una pantalla perforada cuya misión es la de proporcionar una redistribución del flujo de gases para hacerlo más uniforme y regular y deben situarse, como se muestran en las figuras 3, 4 y 5, a la entrada y salida del gas. Su utilización es muy conveniente pero no constituye una parte esencial de la invención. En la figura 7 se muestran diferentes formas de máscaras con las que se han conseguido buenos resultados, formas que, naturalmente, pueden variarse sin afectar a lo esencial de la invención. Pueden ser fabricados indistintamente con el cartón de grafito ya mencionado o con cualquiera de los materiales metálicos o cerámicos ya reseñados para los anteriores.
Preparación de semillas y de mezclas para gases reactantes La utilización de determinadas sustancias que actúan como germen para iniciar la formación de la fibra siendo esencial para la realización de la invención no constituye parte de la misma. Por ello nos limitamos aquí a recoger la información divulgada a través de la bibliografía sobre el tema, alguna ya reseñada, así como la que se refiere a mezclas de gases y temperaturas de operación.
i) Preparación de las semillas.- De acuerdo con las técnicas descritas, pueden emplearse como compuestos cuya reducción da lugar a semillas catalíticamente activas para esta fabricación, las siguientes familias de substancias:
i.l) compuestos organometálicos, especialmente aconsejables para formar semillas que dan lugar a fibras muy finas (grosor < 4 μm ).
i.2) sales inorgánicas de los metales de transición, especialmente indicadas (sales de hierro) para formar fibras de grosor intermedio (3 μm < 0 < 7 μm ), o para formar fibras gruesas (sales de doble anión) con un grosor 5 μm < 0 <
20 μm.
Entre los compuestos organometálicos pueden citarse ferroceno, tiofeno, metaloce- no de Cr y Ni, oxalatos (de Fe, Ni, Cr y Co). Entre las sales . inorgánicas podemos indicar nitratos, nitritos, sulfatos (y sulfatos amónicos) y cloruros (solos, mezclados y con adiciones como hidróxido potásico y sódico). También pueden emplearse, con menor eficiencia, las mismas sales de Zr, V, W, Mo, Mn, Pd, Ir y Pt. Los márgenes de dilución de cada uno son muy amplios y no muy significativos en su resultado; como regla general puede decirse que se utilizan en concentraciones de entre el 50 % y el 80 % de la de saturación. ii) Mezclas para gases reactantes.- En cuanto a la composición de atmósferas reactantes, es siempre una mezcla de gas reductor y de hidrocarburo gaseoso, estando éste en una proporción del 5 a 40 % . Como gas reductor puede usarse hidrógeno puro, que es la mejor opción desde el punto de vista funcional, ó, para abaratar costos, hidrógeno con adición de CO, gases nobles, anhídrido carbónico y SH2. Como hidrocarburos pueden emplearse prácticamente todos, aléanos, como el metano, etano, propano y butano; alquenos, como el etileno, butadieno, etc; alquinos, como el acetileno, etc; hidrocarburos arñicos, como el benceno, tolueno, estireno, etc; hidrocarburos aromáticos de anillo condensado, como el indeno, naftalina, fenantreno, etc; cicloparafinas, como el ciclopro- paño, cicloexano, etc.; cicloolefinas como el ciclopenteno, cicloexeno, etc; hidrocarburos alicíclicos de anillo condensado, como esteroides, etc; compuestos alifáticos sulfurados como metílotiol, sulfuro de metilo-etílico, metil etil sulfuro, dimetiltiocetona, etc; com¬ puestos aromáticos sulfurados, como fenitrol, difenilsulfuro, etc; compuestos heterocícli- cos sulfurados como benzotiofenona, tiofenona, etc. Un simple keroseno o bencina pueden valer perfectamente, siempre que se les vaporicé adecuadamente.
La estructura y propiedades de las fibras producidas depende muy poco del hidro¬ carburo escogido, por lo que tal elección suele efectuarse en término de costos, grado de toxicidad y peligrosidad de manejo, tiempo de proceso, etc.
iii) Temperaturas de operación.- En cuanto a las temperaturas de operación para la producción de estas fibras de carbono tipo VGCF, los márgenes reconocidos son de 600 a 1 300 °C, siendo el intervalo óptimo entre 900 y 1 200 °C.
Ejemplos
Ejemplo n° 1:
En la figura 8 se da el dimensionado del dispositivo elemental.
Ejemplo n°2: En la figura 9 se muestra esquemáticamente el reactor de varios compartimentos de longitud decreciente en el sentido del fluj o . Las condiciones operatorias son las siguientes : * Calentamiento por efecto Joule.
* Máscara de entrada, el que figura en la parte superior de la figura 7, realizado con cartón de grafito.
* Máscara de salida, el que figura en la parte inferior izquierda de la figura 7 , realizado en chapa de acero inoxidable 18/8.
* Cuatro substratos como los de la figura 6, realizados (tanto el alambre fino como el grueso) con KhanthalA® (Aleación Co-Si), un material muy habitual para la realización de resistencias eléctricas. Las distancias de separación se acotan en la figura
* Todos los substratos fueron sembrados untándolos con un pequeño pincel mojado en una solución alcohólica de nitrato de hierro al 60 % de saturación a temperatura ambiente.
* Temperatura de operación 1 065 °C.
* Ciclo de operación. Se inició un proceso de precalentamiento (solamente se usaba, como aporte energético, la llama de propano del precalentador) con sólo Ar (600 dπrVmin) a temperatura creciente hasta 800 °C; el período de precalenta¬ miento duró 15 min. Después, se encendió el control de energía eléctrica fijándose la temperatura de consigna en 1 065 °C, poniéndose el precalentador a 650 °C y cortándose la entrada del Ar, pasando a introducir hidrógeno solamente durante cinco minutos. A continuación de pasó a la etapa de operación propiamente dicha, durante 20 min, siendo la atmósfera 88 % de H2 y 12 % de CH4 . Se finalizó enfriando con Ar.
* Los resultados están indicados en la TABLA I. Como puede verse, en los cuatro substratos se obtiene similar densidad de fibras, pues la. cantidad de fibras obtenidas es proporcional a la longitud de las mismas. Si se hubiese prolongado más el tiempo de operación, se habría conseguido mayor longitud de fibras en los últimos substratos, con lo que la producción en gramos de fibras habría aumentado algo.
TABLA I
Figure imgf000022_0001
Total 0.191 g
Ejemplo n° 3
Igual que el ejemplo anterior, con el único cambio de utilizar como semilla una solución de sulfato ferroso amónico, que da lugar a fibras de mayor grosor aunque con igual estructura. Los resultados obtenidos se muestran en la TABLA II:
TABLA π
Figure imgf000022_0002
Total .... 0.361 g Ejemplo n° 4
El presente reactor puede ser utilizado para la obtención de fibras cerámicas distintas de las de carbono. Por ejemplo, utilizando la mezcla de gases y temperaturas descritas por Motojima y Hasegawa [Journal of Crystal Growth, 87, (1988), 311-317], pueden obtenerse fibras de SiC con las longitudes y grosores descritos en los ejemplos anteriores para fibras VGCF. Las condiciones operativas para este caso concreto son:
Se utilizan sales de metales como semillas.
La temperatura de deposición se mantiene entre 1 030 y 1 200 °C.
Se utiliza una atmósfera formada por Si2Cl6, CH4, H2 y Ar con una relación C/Si de 2 y un mínimo de un 10 % de H2 y un máximo de Ar de un 40 %.
Descripción de las figuras
Figura 1:
Esquema general del dispositivo de obtención de fibras.
[1] Depósito de hidrocarburo.
[2] Depósito de gases portador y/o activador. [3] Cámara de mezcla y precalentamiento.
[4] Horno.
[5] Salida donde se recoge o destruyen los gases inflamables.
[6] Rejilla a partir de cuya superficie, debidamente activada, crecen las fibras de carbono.
Figura 2:
Tipos fundamentales de substratos
[a] Malla de acero inoxidable 18/8
[b] Barras con ensanchamientos [c] Barras lisas
[d] Placa perforada Figura 3:
Esquema de la unidad básica de producción de fibra de carbono [1] Carcasa. [2] Máscara. [3] Substrato.
Figura 4:
Esquema de un conjunto de unidades en serie de igual longitud [1] Carcasa. [2] Máscara.
[3] Substrato. L, Longitud que marca la longitud máxima de la fibra.
Figura 5: Esquema de un conjunto de unidades en serie de longitud decreciente
[1] Carcasa.
[2] Máscara.
[3] Substrato.
L Lj, Lfc.!, __„, Longitudes que marcan la longitud máxima de la fibra en cada unidad (1^ > Lj > ... > Ln >LJ.
Figura 6:
Substrato en espiral.
En la parte inferior de la figura: Variante en doble espiral..
Figura 7:
Diversas formas de máscaras.
Figura 8: Disposición del reactor tipo
[1] Horno eléctrico [2] Salida de gases donde son quemados mediante un mechero Figura 9:
Montaje experimental multicámaras de compartimentos de tamaño decreciente. [1] Horno eléctrico.
[2] Salida de gases donde son quemados mediante un mechero [3] Tubo de cuarzo de entrada de gases precalentados
[4] Reactor de cuarzo transparente. [5] Carcasa de tela metálica. [6] Substratos. [7] Máscaras.

Claims

REIVINDICACIONES
1. Reactor para la mejora del rendimiento e incremento de la longitud de las fibras cortas cerámicas, especialmente de carbono, producidas a partir de gases, consistente en una unidad básica, donde una mezcla gaseosa conteniendo hidrocarburos o un gas apropiado, se descompone por calentamiento dando lugar a la formación de fibras cerámi¬ cas (de carbono u otro material tal como el carburo de silicio), que crecen sobre un subs¬ trato, caracterizado por estar situado éste frontalmente a la dirección de flujo de la mezcla gaseosa
2. Reactor para la mejora del rendimiento e incremento de la longitud de las fibras cortas cerámicas, especialmente de carbono, producidas a partir de gases, según la reivindicación 1, caracterizado porque, opcionalmente, a una determinada distancia en el sentido del desplazamiento de los gases, se colocan otra u otras unidades básicas o una máscara de salida, de modo que la distancia entre substratos sucesivos, o entre el substra¬ to último y la máscara, impone la longitud máxima de fibra obtenible sobre cada substra¬ to. Con la palabra máscara, abreviadamente se indica una máscara pasiva reguladora de flujo consistente en una pared delgada, con perforaciones realizadas al efecto, que por su sola colocación frontal a la corriente de gases reactantes, tiende a mejorar la regularidad y laminaridad del flujo de gases. _
3. Reactor para la mejora del rendimiento e incremento de la longitud de las fibras cortas cerámicas, especialmente de carbono, producidas a partir de gases, según las reivindicaciones 1 y 2, caracterizado porque el substrato es una superficie formada por un material, preferentemente metálico, resistente a las condiciones de trabajo (tal como la familia de aceros inoxidables 18/8), con una geometría tal que permite el paso del gas a su través. Sobre él se realiza un sembrado previo con sales metálicas, tales como el nitrato férrico, que facilitan y localizan puntualmente la iniciación de la formación de las fibras.
4. Reactor para la mejora del rendimiento e incremento de la longitud de las fibras cortas cerámicas, especialmente de carbono, producidas a partir de gases, según las reivindicaciones 1 a 3, caracterizado porque opcionalmente, a la entrada del gas y delante del substrato (o primer substrato si hay varios en serie), se encuentra una primera másca- ra de entrada o superficie perforada que, eliminando las posibles turbulencias del gas a la entrada permite obtener un flujo más laminar y regular al atravesar el primer substrato.
5. Reactor para la mejora del rendimiento e incremento de la longitud de las fibras cortas cerámicas, especialmente de carbono, producidas a partir de gases, según las reivindicaciones 1 a 4, caracterizado porque los substratos puede estar construidos bien por una placa perforada, bien por un tela metálica, bien por una espiral de alambre o cualquier otra forma que presentando una superficie para que sobre ella crezcan las fibras, permitan libremente el paso del gas.
6. Reactor para la mejora del rendimiento e incremento de la longitud de las fibras cortas cerámicas, especialmente de carbono, producidas a partir de gases, según las reivindicaciones 1 a 5, caracterizado porque las unidades fundamentales, ancladas directa¬ mente al horno o situadas en una carcasa que permitan su fácil introducción en el horno, pueden situarse en serie, siendo todas ellas iguales (cuando se desee obtener fibras de tamaño medio igual) o de longitud decreciente en la dirección del flujo, cuando interese tener un tiempo de operación mínimo.
PCT/ES1993/000012 1992-02-24 1993-02-24 Reactor para la produccion de fibras cortas ceramicas a partir de gases WO1993017159A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DK93905349T DK0604654T3 (da) 1992-02-24 1993-02-24 Reaktor til fremstilling af korte keramiske fibre ud fra gas
EP93905349A EP0604654B1 (en) 1992-02-24 1993-02-24 Reactor for the production of short ceramic fibers from gas
DE69324663T DE69324663T2 (de) 1992-02-24 1993-02-24 Reaktor zur herstellung von kurzen keramischen fasern aus gasen
GR990401849T GR3030764T3 (en) 1992-02-24 1999-07-14 Reactor for the production of short ceramic fibers from gas.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP9200402 1992-02-24
ES09200402A ES2041215B1 (es) 1992-02-24 1992-02-24 Reactor para la mejora del rendimiento e incremento de la longitud de las fibras cortas ceramicas, especialmente de carbono, producidas a partir de gases.

Publications (1)

Publication Number Publication Date
WO1993017159A1 true WO1993017159A1 (es) 1993-09-02

Family

ID=8276169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1993/000012 WO1993017159A1 (es) 1992-02-24 1993-02-24 Reactor para la produccion de fibras cortas ceramicas a partir de gases

Country Status (7)

Country Link
EP (1) EP0604654B1 (es)
AT (1) ATE179466T1 (es)
DE (1) DE69324663T2 (es)
DK (1) DK0604654T3 (es)
ES (2) ES2041215B1 (es)
GR (1) GR3030764T3 (es)
WO (1) WO1993017159A1 (es)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024818A (en) * 1990-10-09 1991-06-18 General Motors Corporation Apparatus for forming carbon fibers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4572813A (en) * 1983-09-06 1986-02-25 Nikkiso Co., Ltd. Process for preparing fine carbon fibers in a gaseous phase reaction
EP0222492A2 (en) * 1985-10-31 1987-05-20 General Motors Corporation Pressure pulse stimulation of graphite fibre growth
DE69119838T2 (de) * 1990-07-30 1996-10-02 Nikkiso Co Ltd Apparat und Verfahren zur Herstellung von dünnen Kohlenstoffasern durch Dampf-Phasen-Pyrolyse

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024818A (en) * 1990-10-09 1991-06-18 General Motors Corporation Apparatus for forming carbon fibers

Also Published As

Publication number Publication date
DK0604654T3 (da) 1999-11-08
GR3030764T3 (en) 1999-11-30
ATE179466T1 (de) 1999-05-15
EP0604654B1 (en) 1999-04-28
EP0604654A1 (en) 1994-07-06
ES2041215A1 (es) 1993-11-01
DE69324663D1 (de) 1999-06-02
DE69324663T2 (de) 1999-12-02
ES2135465T3 (es) 1999-11-01
ES2041215B1 (es) 1994-05-16

Similar Documents

Publication Publication Date Title
Boncel et al. En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays
Harris Carbon nanotube science: synthesis, properties and applications
Wang et al. Bamboo-like carbon nanotubes produced by pyrolysis of iron (II) phthalocyanine
CN101378988B (zh) 碳纳米管的制造方法和制造装置
KR101785593B1 (ko) 카본 나노튜브 및 수소의 동시 제조 방법, 및, 카본 나노튜브 및 수소의 동시 제조 장치
CN101959793A (zh) 碳纳米管的制造方法及碳纳米管的制造装置
BRPI0712509A2 (pt) produção de nanofibra de carbono
JP2007515364A (ja) カーボンナノファイバ基板上のカーボンナノチューブ
JP2005272277A (ja) ナノカーボン材料の製造方法
JP2009131843A (ja) 濾過構造体
JP2017019718A (ja) カーボンナノチューブの製造方法
Haanstra et al. Columnar growth of carbon
Shudin et al. The role of solid, liquid and gaseous hydrocarbon precursors on chemical vapor deposition grown carbon nanomaterials' growth temperature
Yang et al. High-yield production of quasi-aligned carbon nanotubes by catalytic decomposition of benzene
KR100376202B1 (ko) 탄소나노튜브 또는 탄소나노섬유 합성용 기상합성 장치 및이를 사용한 합성방법
CN102482097B (zh) 碳纳米管的制造装置及制造方法
WO2008119138A1 (en) Production of nanotube forests
WO1993017159A1 (es) Reactor para la produccion de fibras cortas ceramicas a partir de gases
JP2010037113A (ja) カーボンナノチューブの製造装置および製造方法
US5639429A (en) Reactor for the production of short ceramic fibers from gas
JP2005279624A (ja) カーボンナノチューブの製造用触媒、製造方法及び製造装置
Chen et al. Preparation, morphology and microstructure of segmented graphite nanofibers
TWI306834B (en) A method for manufacturing carbonaceous nanofiber
JPS58110493A (ja) 黒鉛ウイスカ−の製造法
NO173133B (no) Fremgangsmaate ved oksydasjon av et oksyderbart utgangsmateriale i gassfase, reaktor for utfoerelse av fremgangsmaaten, og anvendelse av reaktoren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1993905349

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1993905349

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1993905349

Country of ref document: EP