WO1993016361A1 - Spectrographic device - Google Patents

Spectrographic device Download PDF

Info

Publication number
WO1993016361A1
WO1993016361A1 PCT/FR1993/000122 FR9300122W WO9316361A1 WO 1993016361 A1 WO1993016361 A1 WO 1993016361A1 FR 9300122 W FR9300122 W FR 9300122W WO 9316361 A1 WO9316361 A1 WO 9316361A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirrors
disperser
dispersion
collimator
plane
Prior art date
Application number
PCT/FR1993/000122
Other languages
French (fr)
Inventor
André BARANNE
Original Assignee
Centre National De La Recherche Scientifique (Cnrs)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique (Cnrs) filed Critical Centre National De La Recherche Scientifique (Cnrs)
Publication of WO1993016361A1 publication Critical patent/WO1993016361A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1208Prism and grating

Definitions

  • the present invention relates to a spectrography device which can be used as a monochromator, spectrograph, spectrometer, or colorimeter.
  • the technical field of the invention is that of the construction of optical devices used in spectrography in general.
  • Spectrography devices are used to decompose light into a spectrum from which spectral bands of light radiation are selected and isolated; these more or less wide spectral bands can then be either directly observed, or be photographed or analyzed by various types of apparatus.
  • assemblies called “EBERT-FASTIE” comprising a disperser and a mirror serving as a collimator
  • TURNER comprising a disperser and two mirrors serving as a collimator.
  • DOUBLE spectrography assemblies in which two monochromators or spectrographs are successively placed on the path of the analyzed light; in this type of arrangement the dispersions specific to each of the two dispersers can be added or combined with the aim of eliminating in the final spectrum obtained, unfortunate superpositions of radiation, while increasing the resolution of the device, this type of arrangement being generally called “DOUBLE ADDITIVE”; other types of assembly use two successive monochromators or spectrographs in which the proper dispersions of the two dispersers cancel each other out in order to eliminate an undesirable spectral band in the reconstituted white light, the latter type being generally called
  • a source a point or a slot
  • a disperser such as a network or a prism reflecting from its rear face, is disposed at the image focal point of the parabolic mirror and receives from it a parallel beam
  • the parallel beam dispersed by the disperser returns to the parabolic mirror which provides in its focal plane a spectrum, image of the source.
  • the intermediate spectrum is in a telecentric medium (the pupil is at infinity)
  • the aberrations at the center of the spectrum are zero but increase in the field as a function of the opening and of the field, which limits the use of this arrangement to the selection of a reduced spectral band in the center of the field, the spectral band being chosen by rotating the disperser,
  • the problem posed which is not resolved by known spectrography devices, consists in providing a device comprising a reduced number of components (so as to be compact and of low cost) which makes it possible to decompose a light beam for the purposes of analysis. certain wavelengths and / or certain spectral bands, with increased resolution.
  • the solution to the problem posed consists in providing an optical device, of the monochromator or spectrograph type, comprising at least one collimator, at least one first disperser, at least one second disperser ensuring a dispersion whose direction (direction) is substantially perpendicular to the direction dispersing said first disperser; one of the dispersers is constituted by a ladder network and said device comprises reflection means ensuring a double passage of the beams by said first and second dispersers and by said collimator.
  • said reflection means provide a spatial offset between the incident beams on said reflection means
  • said device comprises at least one means of selection (substantially situated in the intermediate focal plane) of at least one wavelength and / or at least one spectral band.
  • said reflection means comprise two substantially planar mirrors (forming a "roof") contained in " two" intersecting planes whose intersection (forming a straight line or edge) is perpendicular to the direction of dispersion of said scale network ; said edge may in certain cases be substantially parallel to the axis of rotation (or of pivoting) of said scale network, so that said device causes the addition of the dispersion caused, on each pass, by said scale network, thus constituting a double additive mounting relative to the dispersion of said scale network, and a subtractive double mounting relative to the dispersion of the other disperser and moreover causes the spatial shift between the image and the source.
  • said mirrors form a mobile assembly in two directions contained in a plane perpendicular to the axis of said incident beams and reflected by said mirrors, and said mirrors are of reduced size so as to constitute said means for selecting a spectral band; preferably said mirrors have a dimension (or height) substantially less than or equal to the distance separating in said intermediate focal plane, two orders successive, and said mirrors have a second dimension (or length) corresponding substantially to said spectral band to be selected.
  • said device comprises at least one window provided in a substantially planar cover located in the plane of symmetry of the assembly formed by said mirrors, and preferably said window and / or said cover is movable (preferably in said plane of symmetry ) so as to constitute said wavelength and / or spectral band selection means.
  • said reflection means comprise at least one assembly comprising three substantially planar mirrors which have a large dimension (or length) substantially parallel to the direction of dispersion of said scale network (of said first disperser).
  • said reflection means and / or said wavelength selection means and / or said spatial shifting means comprise at least one optical fiber.
  • one of the dispersers is a prism, for example a zero deflection prism, placed in front of said scale network.
  • said ladder network is pivotally mounted with respect to an axis parallel to the lines with which it is provided.
  • FIG. 1 schematically illustrates in perspective view a first embodiment of an optical spectrography device according to the invention.
  • FIG. 2 illustrates in plan view a second embodiment of a device according to the invention.
  • FIG. 3 is a view along III III of FIG. 2.
  • Figure 4 is a perspective view of an assembly comprising two mirrors and a cover provided in the device of Figures 2 and 3 ⁇
  • Figure 5 illustrates in schematic side view a third embodiment of a device according to the invention.
  • FIG. 6 illustrates in schematic perspective view an alternative embodiment of a reflection device, constituting an alternative to the embodiment illustrated in FIG.
  • FIG. 7 illustrates in longitudinal side view a fourth embodiment of an optical device according to the invention.
  • FIG. 8 illustrates in simplified perspective view a third embodiment of reflection means of a device according to the invention.
  • FIG. 10 illustrates in plan view a fifth embodiment of a device according to the invention.
  • Figures 11 and 12 are respectively partial views of Figure 10 along XI and XII.
  • a light beam Fi originating from a light source propagates towards a collimator 1 which may for example be constituted by a spherical mirror; said beam Fi is reflected by said collimator to constitute a parallel beam F2, which is dispersed by a first disperser 2 to form a beam F3; said first disperser 2 is advantageously a ladder network provided on its face 2a with lines 6 parallel to each other and parallel to an axis zzi around which said first disperser can optionally rotate as indicated by the arrow Ri.
  • Said dispersed beam F3 meets a second disperser 3 which in the example shown in FIG. 1 can be constituted by a network provided with lines 7 parallel to each other and parallel to an axis yyi around which said network 3 can possibly rotate as indicated by the arrow R2-
  • a parallel beam F- is produced by the dispersion of said beam F3 by said second disperser 3.
  • which beam F4 is reflected by a mirror " 8 to form a beam F5;
  • said beam F5 is reflected successively by two substantially planar mirrors ti and t2 arranged symmetrically with respect to the axis of said beam F5 so as to constitute a reflected beam (not shown);
  • light reflected by said mirrors ti and t2 follows a reverse optical path, that is to say substantially equivalent to said beams F5, F-4, F3, F2, Fi, so as to constitute an image in the focal plane of said collimator 1
  • Said mirrors t 1 and 2 are situated substantially in the intermediate focal plane of the device, that is to say in the focal plane of said mirror 8.
  • said intermediate focal plane due to the presence of said scale network 2, one can observe a spectrum represented schematically in the figure by a succession of lines L corresponding to different wavelengths of the analyzed light; said lines extend in a direction di which corresponds to the direction or direction of dispersion of said first disperser or scale network 2; due to the presence of said second disperser 3- we can observe in said intermediate focal plane a separation of order 0 ⁇ , 02, O3 ..., which orders are substantially superimposed, that is to say that the direction d2 ( or the direction) of the dispersion due to said second disperser 3 are substantially vertical.
  • the selection of the wavelengths which it is desired to obtain in the final image for analysis can be carried out, as regards the selection of a wavelength or a spectral band in a given order, either by displacement in the direction di of all of said mirrors i and t2, either by rotation along the arrow Ri of said first disperser; the selection can be made, as regards the choice of order, or by moving ent of all of said mirrors ti and t2 in the direction d2 of dispersion due to said second disperser, or by the rotation along arrow R2 of said second disperser.
  • Figure 1 there is shown schematically the light source of said device marked S and the image obtained marked I voluntarily very far from each other; said source S and image I located in the focal plane of said collimator 1 are in fact separated by means of said reflection means constituted by said mirrors ti and t2.
  • a light beam FI coming from a source S propagates towards a collimator 1, which can for example consist of a spherical mirror, said beam FI is reflected in a beam parallel F2 dispersed by a disperser 2 to form a beam F3.
  • Said disperser 2 is either a prism with a reflective rear face, or the network working in the first orders represented in FIG. 10, said network being provided with lines parallel to a yyl axis perpendicular to the plane of FIG. 10 and of a rotation by report to said yyl axis.
  • Said scattered beam F3 meets the scale network 3 provided with lines parallel to the plane of FIG. 10, with an axis of rotation zzi, in the plane of FIG. 10.
  • the beam F3 is then dispersed in the perpendicular direction and returns successively to said network 2, on the collimator 1 to form as previously in FIG. 1, the multispectra 0i, 02 ⁇ O3 at the source S.
  • a pair of mirrors Tl, T2 selects the spectral band chosen and by returning the light in a second passage in the device ensures the necessary spatial offset between the final image I and the source S.
  • the sum of the distance between said 'ispersers 2 and 3 and the distance between said disperser 2 and said collimator 1, can be equal to the radius of curvature of the mirror
  • the collimator can be parabolic. if the opening is important.
  • the device is therefore perfectly suited to large sources with large apertures, allows the use of input grids and / or optical fibers.
  • Said source S and image I are strictly equal and fixed one in relation to the other; the wavelengths scrolling is advantageously obtained by means of two rotations RI and R2 of said dispersers 3 and 2 along said axes zzl and yyl respectively.
  • FIGS. 10 to 12 is double additive with respect to the scale dispersion and double subtractive with respect to the secondary dispersion.
  • said device comprises said collimator 1 constituted for example by a spherical mirror, a first disperser 2 constituted by a ladder network the front face 2a of which has parallel lines 6 between them and perpendicular to the plane of Figure 2; said device also comprises a second disperser 3 constituted by a prism located in front of said first disperser 2.
  • Said device also comprises two plane mirrors ti, t2 symmetrical with respect to a plane perpendicular to the plane of FIG. 2 and containing an axis yyi which can advantageously be perpendicular to the general optical axis xxi of the device.
  • Said device also comprises two small deflection mirrors Ni and N2 which are plane mirrors, perpendicular to the plane of FIG. 2 and superimposed along an axis (not shown) perpendicular to the plane of FIG. 2; said return mirrors Ni and N2 are advantageously positioned at ⁇ 5 ° relative to said optical axis xxi; a mirror Ni is provided for reflecting a light beam Fi coming from a source S to form a beam F2 which is reflected by a collimator 1 to form a parallel beam F3; said beam F3 is dispersed successively by said second disperser 3 and first disperser 2, in two crossed or perpendicular directions.
  • the parallel F-beam scattered and returned by said dispersers returns to said mirror 1 to be reflected and form a beam F5 which strikes a second return mirror n, so as to form a beam F6; said beam F6 is reflected successively by the front faces of said mirrors ti and t2, passes through a window provided in a cover 5 and traverses an optical path opposite to the path described above therefore corresponding substantially and in opposite directions to said beams F5, Fi
  • said window is larger than the monochromatic image of said source S, and the height of said window is less than the interorder interval so as to isolate the desired order; in the final image plane, a monochromatic I image of said source S is collected with a magnification equal to 1
  • Figure 3 partially illustrates and according to III III Figure 2; in this figure 3 we see that said deflection mirrors Ni, N2 are superimposed along an axis zzi corresponding substantially to the direction of dispersion of said prism constituting said second disperser 3 ⁇ which prism is placed in front of said first disperser 2 provided with said lines 6, which first disperser 2 to a direction of dispersion substantially perpendicular to the direction of dispersion of said second disperser 3-
  • said beam F6 incident on said reflection means constituted by said mirrors ti and t2 is reflected successively by said mirrors ti and t2 "so as to successively form a beam Fy passing through a window provided in a cover 5, to constitute a beam Fg 1 which will follow the equivalent optical path (inverse) to said beams F6,
  • the spectra formed by lines corresponding to the dispersion of said light beam by said first disperser are formed; we also see that the different orders 0 ⁇ , O2, O3 have been separated by the action of said second disperser; thanks to said cover 5 provided with said window 4, only part of said beam F6 corresponding to a spectral band BS (constituting a part of said spectrum corresponding to order 02), can pass through said cover by said window to constitute " the reflected beam F6
  • the reflecting faces of said substantially flat mirrors tl and t2 form a roof whose edge is perpendicular to the direction di of dispersion corresponding to said scale network; to select said spectral band to be analyzed, it is possible to advantageously move said mask provided with said window 4 (or an assembly comprising said mirrors Tl, T2 and said mask) in said direction di in order to select in a given order said spectral band and in a direction d
  • FIGS. 2, 3 and 4 being a double subtractive with respect to the dispersion given by said prism, during the movement of said cover (and possibly of said mirrors) said image I does not move; . on the other hand, this assembly being a double additive with respect to the dispersion due to said first disperser (ladder network), the dispersion obtained in image I is twice the dispersion obtained in the intermediate space, and the length scrolling wave in I is obtained by turning the scale network.
  • FIG. 5 illustrates an alternative embodiment of a device of FIG.
  • said reflection and selection means constituted by said roof mirrors tl, t2 and said cover 5 on the other hand, are located on either side of an assembly comprising said first disperser 2 in front of which is located said second disperser 3 advantageously constituted by a zero deflection prism, which first and second dispersers are located on the optical axis xxi of said collimator 1; said source, said image and said reflection and selection means are located in the focal plane of said collimator 1 and are used and operate as explained in FIGS. 2, 3 and 4.
  • FIG. 5 makes it possible to separate the source S and image I assembly from the intermediate spectrum, so as to free the pupillary space occupied by said dispersers; in order to obtain a good central image of the intermediate spectrum, the concave mirror forming the collimator 1 of an "EBERT-FASTIE" type assembly is a torus whose meridians are parabolic.
  • a cover 5 provided with a window 4 which can advantageously move in said directions or directions di and d2 corresponding to the direction of the dispersions of said first and second dispersers respectively (said roofs and rhombus-mirrors being marked 81, 82, 83, 84, 85, 86).
  • an optical device comprises said collimator 1, said first disperser constituted by a ladder network, said second disperser 3 constituted by a prism with zero deviation and comprises a second mirror 8 in the focal plane of which are located three mirrors Mi, M2, 3, a cover 5 provided with a window being provided in front of said mirror M2 in order to allow said spectral band or wavelength to be analyzed to be selected.
  • this type of arrangement means that only radiation in the vicinity of the axis can be used; in order to analyze more distant radiations or wider spectral bands with a high resolution, one can use the assembly of the type "CZERNY-TURNER” as represented in figure 7, which makes it possible to operate in a larger image field ; advantageously, in this type of assembly, said collimator constituted by a mirror 1 is a torus with parabolic meridians, said second mirror 8 being spherical, so that the spectrum obtained in the sagittal image plane of the mirrors is devoid of aberration.
  • said mirrors Mi, M2, M3 are such that all the orders dispersed by said dispersers are drawn on said second mirror M2 which is covered with said cover provided with holes isolating the desired spectral bands; thanks to the use of a zero deviation prism, the orders obtained in the intermediate field are as curved as possible and the mechanical implantation of the components of the device is facilitated.
  • the minimum width of a spectral band to be analyzed is limited only by the resolution of the scale network (which can be very important) and only by the dimension of the hole (source); said prism being composed of very transparent materials at all wavelengths, the spectral range in which the device is usable is very wide; this makes it possible to use a single scale network and to avoid the need for interchangeability of the dispersing means which would provide additional mechanical complications. It is interesting to note that in this case of use of the invention, a small photometric cell (or at least one optical fiber) can be provided in order to analyze the image of the source obtained by the device.
  • said second mirror M2 (and possibly said other mirrors M1 and M3) can be of a height reduced to an interorder interval and of a length equal to that of the order to be observed; said cover can in this case be provided in a slightly orientable manner, in order to compensate for the slopes of orders distant from the order corresponding to a zero deviation.
  • said device can comprise two sets of said three mirrors Mi, M2 and M3 in order to compare parts of an order; it is thus possible, thanks to the device according to the invention, to shift symmetrically on either side of the source the white images corresponding to each of said parts of said order, which images remain stationary when the two sets of said three mirrors move perpendicular to said direction of dispersion of said scale network.
  • a spherical mirror can be provided in the assembly of the type of FIG. 7 •
  • FIGS. 1, 2, 5 constituted assemblies making it possible to add the dispersion due (to each passage) to said first disperser (ladder network) and to subtract or cancel the dispersion caused by said second disperser
  • the assembly of Figure 7 allows to subtract or cancel the dispersions caused by said first and second dispersers.
  • FIG. 8 which represents a schematic perspective view of said mirrors Mi, M2, M3, of a device such as that of FIG. 7.
  • an incident beam F6 is reflected successively by said mirrors M3, M2 , M1 to form a reflected beam F6 'parallel to said beam F6;
  • said mirrors Mi, M2, M3 have a large dimension corresponding to the direction di (or direction) of dispersion due to said first disperser (scale array);
  • a mask 5 is advantageously provided in front of said mirror 2 provided with a window 4 making it possible to select an order from 0 ⁇ .-. 0i ... 0n orders separated by said second disperser and superimposed in said direction d2, and to select in one of said orders a spectral band or a length wave, which selections can be made by moving said cover provided with said window.
  • said means for reflecting, for selecting the wavelength, and for shifting said incident and reflected beams F6 and F6 '. use optical fibers.
  • An equivalent M'i of said mirror Ml in FIG. 8 can be constituted by a plurality of optical fibers 10 provided at their end with an emission optic 10a and connected at their second end to selection and connection means 13, which means 13 receive the light transmitted by receiving optical fibers 12 provided at one end with a receiving optic 12a and connected at their second end to said means 13, said ends 12a of said optical fibers 12 constituting an equivalent M * 3 of the mirror marked M3 in Figure 8; by processing the light transmitted by each of said optical fibers 12 for the purpose of delivering light into the corresponding optical fibers 10, it is possible to constitute means ensuring both the emission of said beam F6 ′ offset from said beam Fg, thus that means for selecting said wavelength to be analyzed, and means for shifting said incident and reflected beams.
  • said means 13 for transmitting light information between said receiving optical fibers and said emitting optical fibers 12 and 10 respectively can make it possible to control the light information passing between said optical fibers and thus easily make it possible to perform the function of selection of at least one wavelength; it is in fact possible to provide a high density of transmitting and receiving optical fibers so that a wavelength can be associated with each of said pairs of optical fibers.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

A spectrographic device which may be used as a monochromator, a spectrograph, a spectrometer or a colorimeter. A monochromator or spectrograph type optical device comprising at least one collimator (1), at least a first scatterer (2), and a second scatterer (3) performing scattering in a substantially perpendicular direction relative to the scattering direction of the first scatterer, one of said scatterers consisting of an échelle network. Said device comprises reflectors so that the beams pass twice through said first and second scatterers and said collimator. The device may be used in the field of optical devices for general use in spectrography.

Description

Dispositif de spectrographie. Spectrography device.
DESCRIPTION La présente invention est relative à un dispositif de spectrographie qui peut être utilisé comme monochromateur, spectrographe, spectromètre, ou colorimètre.DESCRIPTION The present invention relates to a spectrography device which can be used as a monochromator, spectrograph, spectrometer, or colorimeter.
Le domaine technique de l'invention est celui de la construction de dispositifs optiques utilisés en spectrographie en général.The technical field of the invention is that of the construction of optical devices used in spectrography in general.
Les dispositifs de spectrographie sont utilisés pour décomposer la lumière en un spectre dans lequel des bandes spectrales de radiations lumineuses sont sélectionnées et isolées ; ces bandes spectrales plus ou moins larges peuvent alors être soit directement observées, soit être photographiées ou analysées par divers types d'appareillage.Spectrography devices are used to decompose light into a spectrum from which spectral bands of light radiation are selected and isolated; these more or less wide spectral bands can then be either directly observed, or be photographed or analyzed by various types of apparatus.
Parmi les dispositifs connus de spectrographie on peut distinguer notamment des montages appelés "EBERT-FASTIE" comportant un disperseur et un miroir servant de collimateur, et des montages appelés "CZERNY-Among the known devices for spectrography, one can distinguish in particular assemblies called "EBERT-FASTIE" comprising a disperser and a mirror serving as a collimator, and assemblies called "CZERNY-
TURNER" comportant un disperseur et deux miroirs servant de collimateur.TURNER "comprising a disperser and two mirrors serving as a collimator.
On connaît également des montages de spectrographie dits "DOUBLES" dans lesquels on dispose successivement sur le trajet de la lumière analysée deux monochromateurs ou spectrographes ; dans ce type de montage les dispersions propres à chacun des deux disperseurs peuvent s'ajouter ou se combiner dans le but d'éliminer dans le spectre final obtenu, des superpositions malencontreuses de radiations, tout en augmentant la résolution du dispositif, ce type de montage étant généralement appelé "DOUBLE ADDITIF" ; d'autres types de montage utilisent deux monochromateurs ou spectrographes successifs dans lesquels les dispersions propres des deux disperseurs s'annulent dans le but d'éliminer dans la lumière blanche reconstituée une bande spectrale non désirable, ce dernier type étant généralement appeléThere are also known so-called "DOUBLE" spectrography assemblies in which two monochromators or spectrographs are successively placed on the path of the analyzed light; in this type of arrangement the dispersions specific to each of the two dispersers can be added or combined with the aim of eliminating in the final spectrum obtained, unfortunate superpositions of radiation, while increasing the resolution of the device, this type of arrangement being generally called "DOUBLE ADDITIVE"; other types of assembly use two successive monochromators or spectrographs in which the proper dispersions of the two dispersers cancel each other out in order to eliminate an undesirable spectral band in the reconstituted white light, the latter type being generally called
"DOUBLE SOUSTRACTIF" ."DOUBLE SUBTRACTIVE".
On connaît par ailleurs des montages dits à "double passage" dans lesquels les faisceaux parallèles monochromatiques issus du disperseur sont renvoyés sur eux-mêmes au moyen d'un miroir plan ; le disperseur étant traversé deux fois par la lumière, le spectre obtenu est deux fois plus dispersé.There are also known so-called "double pass" arrangements in which the parallel monochromatic beams coming from the disperser are returned on themselves by means of a plane mirror; the disperser being crossed twice by light, the spectrum obtained is twice as dispersed.
Des montages de ce type sont par exemple décrits dans le brevet FR 2 655 731 (FISONS) .Mounts of this type are for example described in the patent FR 2,655,731 (FISONS).
Il est également connu des dispositifs combinant des caractéristiques des montages de base précédents : on dispose une source (un point ou une fente) au foyer objet d'un miroir par exemple parabolique formant collimateur ; un disperseur tel qu'un réseau ou un prisme réfléchissant par sa face arrière, est disposé au foyer image du miroir parabolique et reçoit de celui-ci un faisceau parallèle ; le faisceau parallèle dispersé par le disperseur revient sur le miroir parabolique qui fourni dans son plan focal un spectre, image de la source.It is also known devices combining characteristics of the previous basic arrangements: there is a source (a point or a slot) at the focus object of a mirror for example parabolic collimator; a disperser such as a network or a prism reflecting from its rear face, is disposed at the image focal point of the parabolic mirror and receives from it a parallel beam; the parallel beam dispersed by the disperser returns to the parabolic mirror which provides in its focal plane a spectrum, image of the source.
Si l'on dispose dans ce spectre un miroir plan (perpendiculaire à l'axe) la lumière blanche est recomposée par le principe du retour inverse de la lumière et on obtient une image blanche superposée à la source. Ce type de montage essentiellement double soustractif possède les caractéristiques suivantes :If we have in this spectrum a plane mirror (perpendicular to the axis) the white light is recomposed by the principle of the reverse return of the light and we obtain a white image superimposed on the source. This type of essentially double subtractive assembly has the following characteristics:
- le spectre intermédiaire est dans un milieu télécentrique (la pupille est à l'infini),- the intermediate spectrum is in a telecentric medium (the pupil is at infinity),
- les aberrations au centre du spectre sont nulles mais croissent dans le champ en fonction de l'ouverture et du champ, ce qui limite l'usage de ce montage à la sélection d'une bande spectrale réduite au centre du champ, la bande spectrale étant choisie en faisant tourner le disperseur,- the aberrations at the center of the spectrum are zero but increase in the field as a function of the opening and of the field, which limits the use of this arrangement to the selection of a reduced spectral band in the center of the field, the spectral band being chosen by rotating the disperser,
- la source, le réseau disperseur, le spectre intermédiaire et l'image sont physiquement superposés.- the source, the dispersing network, the intermediate spectrum and the image are physically superimposed.
Des perfectionnements à de tels systèmes sont par exemple décrits dans le document MULTIELEMENT DETECTIONS SYSTEMS FOR SPECTROCHEMICAL ANALYSIS, BUCH et Al., CHEMICAL ANALYSIS Volume 107, pages 187. 199. dans lequel est prévu dans le plan focal intermédiaire, en lieu et place du miroir plan, deux miroirs disposés en toit dont l'arête est parallèle à la direction de dispersion du disperseur.Improvements to such systems are for example described in the document MULTILEMENT DETECTIONS SYSTEMS FOR SPECTROCHEMICAL ANALYSIS, BUCH et al., CHEMICAL ANALYSIS Volume 107, pages 187. 199. in which is provided in the intermediate focal plane, instead of the plane mirror, two mirrors arranged on the roof, the edge of which is parallel to the direction of dispersion of the disperser.
Le problème posé qui n'est pas résolu par les dispositifs de spectrographie connus, consiste à procurer un dispositif comportant un nombre réduit de composants (de manière à être compact et de faible coût) qui permet de décomposer un faisceau lumineux aux fins d'analyse de certaines longueurs d'ondes et/ou de certaines bandes spectrales, avec une résolution accrue. La solution au problème posé consiste à procurer un dispositif optique, de type monochromateur ou spectrographe, comportant au moins un collimateur, au moins un premier disperseur, au moins un deuxième disperseur assurant une dispersion dont le sens (la direction) est sensiblement perpendiculaire au sens de dispersion dudit premier disperseur ; l'un des disperseurs est constitué par un réseau échelle et ledit dispositif comporte des moyens de réflexion assurant un double passage des faisceaux par lesdits premier et deuxième disperseurs et par ledit collimateur. Avantageusement, lesdits moyens de réflexion assurent un décalage spatial entre les faisceaux incidents sur lesdits moyens de réflexionThe problem posed, which is not resolved by known spectrography devices, consists in providing a device comprising a reduced number of components (so as to be compact and of low cost) which makes it possible to decompose a light beam for the purposes of analysis. certain wavelengths and / or certain spectral bands, with increased resolution. The solution to the problem posed consists in providing an optical device, of the monochromator or spectrograph type, comprising at least one collimator, at least one first disperser, at least one second disperser ensuring a dispersion whose direction (direction) is substantially perpendicular to the direction dispersing said first disperser; one of the dispersers is constituted by a ladder network and said device comprises reflection means ensuring a double passage of the beams by said first and second dispersers and by said collimator. Advantageously, said reflection means provide a spatial offset between the incident beams on said reflection means
•et les faisceaux réfléchis par lesdits moyens de réflexion, et assurent ainsi un décalage correspondant entre l'image et la source dudit dispositif, qui sont situées à proximité l'une de l'autre dans le plan focal dudit collimateur.• and the beams reflected by said reflection means, and thus ensure a corresponding offset between the image and the source of said device, which are located close to one another in the focal plane of said collimator.
Avantageusement, ledit dispositif comporte au moins un moyen de sélection (sensiblement situé dans le plan focal intermédiaire) d'au moins une longueur d'onde et/ou d'au moins une bande spectrale.Advantageously, said device comprises at least one means of selection (substantially situated in the intermediate focal plane) of at least one wavelength and / or at least one spectral band.
Dans un premier mode de réalisation, lesdits moyens de réflexion comportent deux miroirs sensiblement plans (formant un "toit") contenus dans "deux" plans sécants dont l'intersection (formant une droite ou arête) est perpendiculaire au sens de dispersion dudit réseau échelle ; ladite arête peut dans certains cas être sensiblement parallèle à l'axe de rotation (ou de pivotement) dudit réseau échelle, de sorte que ledit dispositif provoque l'addition de la dispersion provoquée, à chaque passage, par ledit réseau échelle, constituant ainsi un montage double additif par rapport à la dispersion dudit réseau échelle, et un montage double soustractif par rapport à la dispersion de 1'autre disperseur et provoque de plus le décalage spatial entre l'image et la source.In a first embodiment, said reflection means comprise two substantially planar mirrors (forming a "roof") contained in " two" intersecting planes whose intersection (forming a straight line or edge) is perpendicular to the direction of dispersion of said scale network ; said edge may in certain cases be substantially parallel to the axis of rotation (or of pivoting) of said scale network, so that said device causes the addition of the dispersion caused, on each pass, by said scale network, thus constituting a double additive mounting relative to the dispersion of said scale network, and a subtractive double mounting relative to the dispersion of the other disperser and moreover causes the spatial shift between the image and the source.
Avantageusement, lesdits miroirs forment un ensemble mobile selon deux directions contenues dans un plan perpendiculaire à 1'axe desdits faisceaux incidents et réfléchis par lesdits miroirs, et lesdits miroirs sont de taille réduite de manière à constituer lesdits moyens de sélection d'une bande spectrale ; de préférence lesdits miroirs ont une dimension (ou hauteur) sensiblement inférieure ou égale à la distance séparant dans ledit plan focal intermédiaire, deux ordres successifs, et lesdits miroirs ont une deuxième dimension (ou longueur) correspondant sensiblement à ladite bande spectrale à sélectionner.Advantageously, said mirrors form a mobile assembly in two directions contained in a plane perpendicular to the axis of said incident beams and reflected by said mirrors, and said mirrors are of reduced size so as to constitute said means for selecting a spectral band; preferably said mirrors have a dimension (or height) substantially less than or equal to the distance separating in said intermediate focal plane, two orders successive, and said mirrors have a second dimension (or length) corresponding substantially to said spectral band to be selected.
Avantageusement, ledit dispositif comporte au moins une fenêtre prévue dans un cache sensiblement plan situé dans le plan de symétrie de l'ensemble constitué par lesdits miroirs, et de préférence ladite fenêtre et/ou ledit cache est mobile (de préférence dans ledit plan de symétrie) de manière à constituer lesdits moyens de sélection de longueur d'onde et/ou de bande spectrale. Dans un autre mode de réalisation, lesdits moyens de réflexion comportent au moins un ensemble comportant trois miroirs sensiblement plans qui ont une grande dimension (ou longueur) sensiblement parallèle au sens de dispersion dudit réseau échelle (dudit premier disperseur) . Selon un mode particulier de réalisation, lesdits moyens de réflexion et/ou lesdits moyens de sélection d'une longueur d'onde et/ou lesdits moyens de décalage spatial, comportent au moins une fibre optique.Advantageously, said device comprises at least one window provided in a substantially planar cover located in the plane of symmetry of the assembly formed by said mirrors, and preferably said window and / or said cover is movable (preferably in said plane of symmetry ) so as to constitute said wavelength and / or spectral band selection means. In another embodiment, said reflection means comprise at least one assembly comprising three substantially planar mirrors which have a large dimension (or length) substantially parallel to the direction of dispersion of said scale network (of said first disperser). According to a particular embodiment, said reflection means and / or said wavelength selection means and / or said spatial shifting means comprise at least one optical fiber.
Avantageusement, l'un des disperseurs est un prisme, par exemple un prisme à déviation nulle, placé devant ledit réseau échelle.Advantageously, one of the dispersers is a prism, for example a zero deflection prism, placed in front of said scale network.
Avantageusement, ledit réseau échelle est monté pivotant par rapport à un axe parallèle aux traits dont il est muni.Advantageously, said ladder network is pivotally mounted with respect to an axis parallel to the lines with which it is provided.
Grâce à l'invention, on peut disposer d'un montage assurant une double dispersion qui peut être utilisé en "double passage" , ce qui peut permettre, dans certains cas la suppression d'un prédisperseur; grâce au dispositif assurant une double dispersion selon des directions perpendiculaires, on peut sélectionner des longueurs d'ondes ou des bandes spectrales avec une très grande résolution.Thanks to the invention, one can have an assembly ensuring a double dispersion which can be used in "double passage", which can allow, in certain cases the elimination of a pre-disperser; thanks to the device ensuring double dispersion in perpendicular directions, it is possible to select wavelengths or spectral bands with very high resolution.
Les nombreux avantages procurés par l'invention, seront mieux compris au travers de la description suivante qui se réfère aux dessins annexés, qui illustrent sans aucun caractère limitatif, des modes particuliers de réalisation de dispositif selon l'invention.The numerous advantages provided by the invention will be better understood through the following description which refers to the appended drawings, which illustrate without any limiting character, particular embodiments of device according to the invention.
La figure 1 illustre schématiquement en vue en perspective un premier mode de réalisation d'un dispositif optique de spectrographie selon l'invention.FIG. 1 schematically illustrates in perspective view a first embodiment of an optical spectrography device according to the invention.
La figure 2 illustre en vue en plan un deuxième mode de réalisation d'un dispositif selon l'invention. La figure 3 est une vue selon III III de la figure 2.FIG. 2 illustrates in plan view a second embodiment of a device according to the invention. FIG. 3 is a view along III III of FIG. 2.
La figure 4 est une vue en perspective d'un ensemble comportant deux miroirs et un cache prévus dans le dispositif des figures 2 et 3<Figure 4 is a perspective view of an assembly comprising two mirrors and a cover provided in the device of Figures 2 and 3 <
La figure 5 illustre en vue latérale schématique un troisième mode de réalisation d'un dispositif selon l'invention.Figure 5 illustrates in schematic side view a third embodiment of a device according to the invention.
La figure 6 illustre en vue schématique en perspective une variante de réalisation d'un dispositif de réflexion, constituant une variante au mode de réalisation illustré figure k .FIG. 6 illustrates in schematic perspective view an alternative embodiment of a reflection device, constituting an alternative to the embodiment illustrated in FIG.
La figure 7 illustre en vue latérale longitudinale un quatrième mode de réalisation d'un dispositif optique selon l'invention.FIG. 7 illustrates in longitudinal side view a fourth embodiment of an optical device according to the invention.
La figure 8 illustre en vue en perspective simplifiée un troisième mode de réalisation de moyens de réflexion d'un dispositif selon l'invention.FIG. 8 illustrates in simplified perspective view a third embodiment of reflection means of a device according to the invention.
La figure 10 illustre en vue en plan un cinquième mode de réalisation d'un dispositif selon l'invention.FIG. 10 illustrates in plan view a fifth embodiment of a device according to the invention.
Les figures 11 et 12 sont respectivement des vues partielles de la figure 10 selon XI et XII.Figures 11 and 12 are respectively partial views of Figure 10 along XI and XII.
Par référence à la figure 1, on voit qu'un faisceau lumineux Fi issu d'une source de lumière se propage vers un collimateur 1 qui peut être par exemple constitué par un miroir sphérique ; ledit faisceau Fi est réfléchi par ledit collimateur pour constituer un faisceau F2 parallèle, qui est dispersé par un premier disperseur 2 pour former un faisceau F3 ; ledit premier disperseur 2 est avantageusement un réseau échelle muni sur sa face 2a de traits 6 parallèles entre eux et parallèles à un axe zzi autour duquel ledit premier disperseur peut éventuellement tourner comme indiqué par la flèche Ri.With reference to FIG. 1, it can be seen that a light beam Fi originating from a light source propagates towards a collimator 1 which may for example be constituted by a spherical mirror; said beam Fi is reflected by said collimator to constitute a parallel beam F2, which is dispersed by a first disperser 2 to form a beam F3; said first disperser 2 is advantageously a ladder network provided on its face 2a with lines 6 parallel to each other and parallel to an axis zzi around which said first disperser can optionally rotate as indicated by the arrow Ri.
Ledit faisceau dispersé F3 rencontre un deuxième disperseur 3 Qui dans l'exemple représenté sur la figure 1 peut être constitué par un réseau muni de traits 7 parallèles entre eux et parallèles à un axe yyi autour duquel ledit réseau 3 peut éventuellement tourner comme indiqué par la flèche R2-Said dispersed beam F3 meets a second disperser 3 Which in the example shown in FIG. 1 can be constituted by a network provided with lines 7 parallel to each other and parallel to an axis yyi around which said network 3 can possibly rotate as indicated by the arrow R2-
Un faisceau parallèle F- est produit par la dispersion dudit faisceau F3 par ledit deuxième disperseur 3. lequel faisceau F4 est réfléchi par un miroir" 8 pour former un faisceau F5 ; ledit faisceau F5 est réfléchi successivement par deux miroirs ti et t2 sensiblement plans disposés symétriquement par rapport à l'axe dudit faisceau F5 de manière à constituer un faisceau réfléchi (non représenté) ; la lumière réfléchie par lesdits miroirs ti et t2 emprunte un chemin optique inverse, c'est-à-dire sensiblement équivalent auxdits faisceaux F5, F-4, F3, F2, Fi, de manière à constituer une image dans le plan focal dudit collimateur 1. Lesdits miroirs ti et 2 sont situés sensiblement dans le plan focal intermédiaire du dispositif c'est-à-dire dans le plan focal dudit miroir 8.A parallel beam F- is produced by the dispersion of said beam F3 by said second disperser 3. which beam F4 is reflected by a mirror " 8 to form a beam F5; said beam F5 is reflected successively by two substantially planar mirrors ti and t2 arranged symmetrically with respect to the axis of said beam F5 so as to constitute a reflected beam (not shown); light reflected by said mirrors ti and t2 follows a reverse optical path, that is to say substantially equivalent to said beams F5, F-4, F3, F2, Fi, so as to constitute an image in the focal plane of said collimator 1 Said mirrors t 1 and 2 are situated substantially in the intermediate focal plane of the device, that is to say in the focal plane of said mirror 8.
Dans ledit plan focal intermédiaire, du fait de la présence dudit réseau échelle 2, on peut observer un spectre représenté schêmatiquement sur la figure par une succession de raies L correspondant à différentes longueurs d'ondes de la lumière analysée ; lesdites raies s'étendent selon une direction di qui correspond à la direction ou au sens de dispersion dudit premier disperseur ou réseau échelle 2 ; du fait de la présence dudit deuxième disperseur 3- on peut observer dans ledit plan focal intermédiaire une séparation d'ordre 0χ , 02, O3..., lesquels ordres sont sensiblement superposés, c'est-à-dire que la direction d2 (ou le sens) de la dispersion due audit deuxième disperseur 3 es sensiblement verticale.In said intermediate focal plane, due to the presence of said scale network 2, one can observe a spectrum represented schematically in the figure by a succession of lines L corresponding to different wavelengths of the analyzed light; said lines extend in a direction di which corresponds to the direction or direction of dispersion of said first disperser or scale network 2; due to the presence of said second disperser 3- we can observe in said intermediate focal plane a separation of order 0χ, 02, O3 ..., which orders are substantially superimposed, that is to say that the direction d2 ( or the direction) of the dispersion due to said second disperser 3 are substantially vertical.
Grâce à la position de l'arête 11 de l'ensemble constitué par lesdits miroirs ti et t2. laquelle arête correspond sensiblement à 1' intersection "des"" faces sensiblement planes desdits miroirs, laquelle arête est située perpendiculairement à ladite direction di de dispersion relative audit premier disperseur 2, on obtient avec le montage de la figure 1 un dispositif pouvant être utilisé en monochromateur assurant bien sûr un double passage de la lumière dans ledit dispositif, et assurant une addition de la dispersion provoquée à chaque passage par ledit premier disperseur 2 ; dans ce type de dispositif, la sélection des longueurs d'ondes que l'on souhaite obtenir dans l'image finale pour analyse, peut s'effectuer, pour ce qui concerne la sélection d'une longueur d'onde ou d'une bande spectrale dans un ordre donné, soit par le déplacement selon le sens di de l'ensemble desdits miroirs i et t2, soit par une rotation selon la flèche Ri dudit premier disperseur ; la sélection peut s'effectuer, pour ce qui concerne le choix de l'ordre, soit par le déplacement de l'ensemble desdits miroirs ti et t2 selon la direction d2 de dispersion due audit deuxième disperseur, soit par la rotation selon la flèche R2 dudit deuxième disperseur. Sur la figure 1, on a représenté schêmatiquement la source de lumière dudit dispositif repérée S et l'image obtenue repérée I volontairement très éloignées l'une de l'autre ; lesdites source S et image I situées dans le plan focal dudit collimateur 1 sont en effet séparées grâce auxdits moyens de réflexion constitués par lesdits miroirs ti et t2.Thanks to the position of the edge 11 of the assembly formed by said mirrors ti and t2. which edge corresponds substantially to the intersection " of " the substantially planar faces of said mirrors, which edge is located perpendicular to said direction of dispersion relative to said first disperser 2, a device can be used with the assembly of FIG. 1 monochromator ensuring of course a double passage of the light in said device, and ensuring an addition of the dispersion caused on each passage by said first disperser 2; in this type of device, the selection of the wavelengths which it is desired to obtain in the final image for analysis, can be carried out, as regards the selection of a wavelength or a spectral band in a given order, either by displacement in the direction di of all of said mirrors i and t2, either by rotation along the arrow Ri of said first disperser; the selection can be made, as regards the choice of order, or by moving ent of all of said mirrors ti and t2 in the direction d2 of dispersion due to said second disperser, or by the rotation along arrow R2 of said second disperser. In Figure 1, there is shown schematically the light source of said device marked S and the image obtained marked I voluntarily very far from each other; said source S and image I located in the focal plane of said collimator 1 are in fact separated by means of said reflection means constituted by said mirrors ti and t2.
Par référence aux figures 10, 11 et 12, on voit qu'un faisceau lumineux FI issu d'une source S se propage vers un collimateur 1, qui peut être par exemple constitué par un miroir sphérique, ledit faisceau FI est réfléchi en un faisceau parallèle F2 dispersé par un disperseur 2 pour former un faisceau F3.With reference to FIGS. 10, 11 and 12, it can be seen that a light beam FI coming from a source S propagates towards a collimator 1, which can for example consist of a spherical mirror, said beam FI is reflected in a beam parallel F2 dispersed by a disperser 2 to form a beam F3.
Ledit disperseur 2 est soit un prisme à face arrière réfléchissante, soit le réseau travaillant dans les premiers ordres représenté sur la figure 10, ledit réseau étant muni de traits parallèles à un axe yyl perpendiculaire au plan de la figure 10 et d'une rotation par rapport audit axe yyl.Said disperser 2 is either a prism with a reflective rear face, or the network working in the first orders represented in FIG. 10, said network being provided with lines parallel to a yyl axis perpendicular to the plane of FIG. 10 and of a rotation by report to said yyl axis.
Ledit faisceau F3 dispersé rencontre le réseau échelle 3 muni de traits parallèles au plan de la figure 10, d'un axe de rotation zzi, dans le plan de la figure 10. Le faisceau F3 est alors dispersé dans le sens perpendiculaire et revient successivement sur ledit réseau 2, sur le collimateur 1 pour former comme précédemment sur la figure 1, les multispectres 0i, 02ι O3 au niveau de la source S.Said scattered beam F3 meets the scale network 3 provided with lines parallel to the plane of FIG. 10, with an axis of rotation zzi, in the plane of FIG. 10. The beam F3 is then dispersed in the perpendicular direction and returns successively to said network 2, on the collimator 1 to form as previously in FIG. 1, the multispectra 0i, 02ι O3 at the source S.
De la même façon que précédemment, un couple de miroirs Tl, T2 sélectionne la bande spectrale choisie et en renvoyant la lumière dans un deuxième passage dans le dispositif assure le décalage spatial nécessaire entre l'image finale I et la source S.In the same way as before, a pair of mirrors Tl, T2 selects the spectral band chosen and by returning the light in a second passage in the device ensures the necessary spatial offset between the final image I and the source S.
Avantageusement, on notera que la somme de la distance entre lesdits' isperseurs 2 et 3 et de la distance entre ledit disperseur 2 et ledit collimateur 1, peut être égale au rayon de courbure du miroirAdvantageously, it will be noted that the sum of the distance between said 'ispersers 2 and 3 and the distance between said disperser 2 and said collimator 1, can be equal to the radius of curvature of the mirror
(collimateur 1), l'image I n'est affectée que d'aberration sphérique et d'une faible courbure.(collimator 1), image I is only affected by spherical aberration and a small curvature.
Avantageusement le collimateur peut être parabolique. si l'ouverture est importante. Le dispositif est donc parfaitement adapté aux sources de grandes dimensions à grande ouverture, permet 1'utilis-ation de grilles d'entrée et/ou de fibres optiques.Advantageously, the collimator can be parabolic. if the opening is important. The device is therefore perfectly suited to large sources with large apertures, allows the use of input grids and / or optical fibers.
Lesdites source S et image I sont rigoureusement égales et fixes l'une par rapport à l'autre; le défilement des longueurs d'onde s'obtient avantageusement à l'aide de deux rotations RI et R2 desdits disperseurs 3 et 2 selon lesdits axes zzl et yyl respectivement.Said source S and image I are strictly equal and fixed one in relation to the other; the wavelengths scrolling is advantageously obtained by means of two rotations RI and R2 of said dispersers 3 and 2 along said axes zzl and yyl respectively.
On remarquera que le dispositif représenté aux figures 10 à 12 est double additif vis à vis de la dispersion échelle et double soustractif vis à vis de la dispersion secondaire.It will be noted that the device represented in FIGS. 10 to 12 is double additive with respect to the scale dispersion and double subtractive with respect to the secondary dispersion.
Par référence à la figure 2, on voit que dans un deuxième mode de réalisation, ledit dispositif comporte ledit collimateur 1 constitué par exemple par un miroir sphérique, un premier disperseur 2 constitué par un réseau échelle dont la face avant 2a comporte des traits 6 parallèles entre eux et perpendiculaires au plan de la figure 2 ; ledit dispositif comporte également un deuxième disperseur 3 constitué par un prisme situé devant ledit premier disperseur 2.With reference to FIG. 2, it can be seen that in a second embodiment, said device comprises said collimator 1 constituted for example by a spherical mirror, a first disperser 2 constituted by a ladder network the front face 2a of which has parallel lines 6 between them and perpendicular to the plane of Figure 2; said device also comprises a second disperser 3 constituted by a prism located in front of said first disperser 2.
Ledit dispositif comporte également deux miroirs plans ti , t2 symétriques par rapport à un plan perpendiculaire au plan de la figure 2 et contenant un axe yyi qui peut être avantageusement perpendiculaire à l'axe optique xxi général du dispositif.Said device also comprises two plane mirrors ti, t2 symmetrical with respect to a plane perpendicular to the plane of FIG. 2 and containing an axis yyi which can advantageously be perpendicular to the general optical axis xxi of the device.
Ledit dispositif comporte également deux petits miroirs de renvoi Ni et N2 qui sont des miroirs plans, perpendiculaires au plan de la figure 2 et superposés selon un axe (non représenté) perpendiculaire au plan de la figure 2 ; lesdits miroirs Ni et N2 de renvoi sont avantageusement positionnés à ^5° par rapport audit axe optique xxi ; un miroir Ni est prévu pour réfléchir un faisceau lumineux Fi issu d'une source S pour former un faisceau F2 qui est réfléchi par un collimateur 1 pour former un faisceau parallèle F3 ; ledit faisceau F3 est dispersé successivement par lesdits deuxième disperseur 3 et premier disperseur 2, selon deux directions croisées ou perpendiculaires.Said device also comprises two small deflection mirrors Ni and N2 which are plane mirrors, perpendicular to the plane of FIG. 2 and superimposed along an axis (not shown) perpendicular to the plane of FIG. 2; said return mirrors Ni and N2 are advantageously positioned at ^ 5 ° relative to said optical axis xxi; a mirror Ni is provided for reflecting a light beam Fi coming from a source S to form a beam F2 which is reflected by a collimator 1 to form a parallel beam F3; said beam F3 is dispersed successively by said second disperser 3 and first disperser 2, in two crossed or perpendicular directions.
Le faisceau F- parallèle dispersé et renvoyé par lesdits disperseurs revient vers ledit miroir 1 pour être réfléchi et former un faisceau F5 qui frappe un deuxième miroir de renvoi n , de manière à former un faisceau F6 ; ledit faisceau F6 est réfléchi successivement par les faces avant desdits miroirs ti et t2, passe au travers d'une fenêtre prévue dans un cache 5 et parcoure un trajet optique inverse au trajet précédemment décrit donc correspondant sensiblement et selon des sens inverses auxdits faisceaux F5, Fi|, F3, F2, Fi pour former une image I dans un plan focal dudit collimateur 1. Avantageusement, ladite fenêtre est plus grande que l'image monochromatique de ladite source S, et la hauteur de ladite fenêtre est inférieure à l'intervalle interordre de manière à isoler l'ordre désiré ; dans le plan image final, on recueille avec un grandissement égal à 1, une image I monochromatique de ladite source S.The parallel F-beam scattered and returned by said dispersers returns to said mirror 1 to be reflected and form a beam F5 which strikes a second return mirror n, so as to form a beam F6; said beam F6 is reflected successively by the front faces of said mirrors ti and t2, passes through a window provided in a cover 5 and traverses an optical path opposite to the path described above therefore corresponding substantially and in opposite directions to said beams F5, Fi |, F3, F2, Fi to form an image I in a focal plane of said collimator 1. Advantageously, said window is larger than the monochromatic image of said source S, and the height of said window is less than the interorder interval so as to isolate the desired order; in the final image plane, a monochromatic I image of said source S is collected with a magnification equal to 1
La figure 3 illustre partiellement et selon III III la figure 2 ; sur cette figure 3 on voit que lesdits miroirs de renvoi Ni, N2 sont superposés selon un axe zzi correspondant sensiblement à la direction de dispersion dudit prisme constituant ledit deuxième disperseur 3ι lequel prisme est placé devant ledit premier disperseur 2 muni desdits traits 6, lequel premier disperseur 2 à une direction _de dispersion sensiblement perpendiculaire à la direction de dispersion dudit deuxième disperseur 3-Figure 3 partially illustrates and according to III III Figure 2; in this figure 3 we see that said deflection mirrors Ni, N2 are superimposed along an axis zzi corresponding substantially to the direction of dispersion of said prism constituting said second disperser 3ι which prism is placed in front of said first disperser 2 provided with said lines 6, which first disperser 2 to a direction of dispersion substantially perpendicular to the direction of dispersion of said second disperser 3-
Par référence à la figure 4, on voit que ledit faisceau F6 incident sur lesdits moyens de réflexion constitués par lesdits miroirs ti et t2 est réfléchi successivement par lesdits miroirs ti et t2» de manière à former successivement un faisceau Fy traversant une fenêtre prévue dans un cache 5, pour constituer un faisceau Fg1 qui suivra le trajet optique équivalent (inverse) auxdits faisceaux F6,
Figure imgf000011_0001
With reference to FIG. 4, it can be seen that said beam F6 incident on said reflection means constituted by said mirrors ti and t2 is reflected successively by said mirrors ti and t2 "so as to successively form a beam Fy passing through a window provided in a cover 5, to constitute a beam Fg 1 which will follow the equivalent optical path (inverse) to said beams F6,
Figure imgf000011_0001
On voit que sur la face avant dudit miroir tl se forment les spectres constitués de raies correspondant à la dispersion dudit faisceau de lumière par ledit premier disperseur ; on voit également que les différents ordres 0ι, O2, O3 ont été séparés par l'action dudit deuxième disperseur ; grâce audit cache 5 muni de ladite fenêtre 4, seule une partie dudit faisceau F6 correspondant à une bande spectrale BS (constituant une partie dudit spectre correspondant à l'ordre 02) , peut traverser ledit cache par ladite fenêtre pour constituer" le faisceau réfléchi F6' . On voit que selon l'invention, les faces réfléchissantes desdits miroirs tl et t2 sensiblement planes forment un toit dont l'arête est perpendiculaire à la direction di de dispersion correspondant audit réseau échelle ; pour sélectionner ladite bande spectrale à analyser, on peut avantageusement déplacer ledit cache muni de ladite fenêtre 4 (ou un ensemble comportant lesdits miroirs Tl, T2 et ledit cache) selon ladite direction di afin de sélectionner dans un ordre donné ladite bande spectrale et selon une direction d2 (perpendiculaire à ladite direction di) afin de sélectionner l'ordre désiré.It can be seen that on the front face of said mirror t 1, the spectra formed by lines corresponding to the dispersion of said light beam by said first disperser are formed; we also see that the different orders 0ι, O2, O3 have been separated by the action of said second disperser; thanks to said cover 5 provided with said window 4, only part of said beam F6 corresponding to a spectral band BS (constituting a part of said spectrum corresponding to order 02), can pass through said cover by said window to constitute " the reflected beam F6 It can be seen that according to the invention, the reflecting faces of said substantially flat mirrors tl and t2 form a roof whose edge is perpendicular to the direction di of dispersion corresponding to said scale network; to select said spectral band to be analyzed, it is possible to advantageously move said mask provided with said window 4 (or an assembly comprising said mirrors Tl, T2 and said mask) in said direction di in order to select in a given order said spectral band and in a direction d2 (perpendicular to said direction di) in order to select the desired order.
Le montage illustré aux figures 2, 3 et 4 étant double soustractif vis à vis de la dispersion donnée par ledit prisme, lors du déplacement dudit cache (et éventuellement desdits miroirs) ladite image I ne se déplace pas ; .par contre, ce montage étant double additif vis à vis de la dispersion due audit premier disperseur (réseau échelle), la dispersion obtenue dans l'image I est le double de la dispersion obtenue dans l'espace intermédiaire, et le défilement de longueur d'onde en I s'obtient en tournant le réseau échelle. La figure 5 illustre une variante de réalisation d'un dispositif de la figure 2 dans lequel ladite source S et l'image I obtenue d'une part, lesdits moyens de réflexion et de sélection constitués par lesdits miroirs en toit tl , t2 et ledit cache 5 d'autre part, sont situés de part et d'autre d'un ensemble comportant ledit premier disperseur 2 devant lequel est situé ledit deuxième disperseur 3 constitué avantageusement par un prisme à déviation nulle, lesquels premier et deuxième disperseurs sont situés sur l'axe optique xxi dudit collimateur 1 ; ladite source, ladite image et lesdits moyens de réflexion et de sélection sont situés dans le plan focal dudit collimateur 1 et sont utilisés et fonctionnent comme explicité aux figures 2, 3 et 4.The assembly illustrated in FIGS. 2, 3 and 4 being a double subtractive with respect to the dispersion given by said prism, during the movement of said cover (and possibly of said mirrors) said image I does not move; . on the other hand, this assembly being a double additive with respect to the dispersion due to said first disperser (ladder network), the dispersion obtained in image I is twice the dispersion obtained in the intermediate space, and the length scrolling wave in I is obtained by turning the scale network. FIG. 5 illustrates an alternative embodiment of a device of FIG. 2 in which said source S and the image I obtained on the one hand, said reflection and selection means constituted by said roof mirrors tl, t2 and said cover 5 on the other hand, are located on either side of an assembly comprising said first disperser 2 in front of which is located said second disperser 3 advantageously constituted by a zero deflection prism, which first and second dispersers are located on the optical axis xxi of said collimator 1; said source, said image and said reflection and selection means are located in the focal plane of said collimator 1 and are used and operate as explained in FIGS. 2, 3 and 4.
Le montage de la figure 5 permet d'écarter l'ensemble source S et image I du spectre intermédiaire, de façon à libérer l'espace pupillaire occupé par lesdits disperseurs ; afin d'obtenir une bonne image centrale du spectre intermédiaire, le miroir concave formant le collimateur 1 d'un montage de type "EBERT-FASTIE" est un tore dont les méridiennes sont paraboliques.The arrangement of FIG. 5 makes it possible to separate the source S and image I assembly from the intermediate spectrum, so as to free the pupillary space occupied by said dispersers; in order to obtain a good central image of the intermediate spectrum, the concave mirror forming the collimator 1 of an "EBERT-FASTIE" type assembly is a torus whose meridians are parabolic.
Par référence à la figure 6, on voit que dans une variante de réalisation dudit moyen de réflexion et de sélection de longueur d'onde ou de bande spectrale, on peut utiliser au lieu desdits deux miroirs en toit un ensemble de toits et- de rhombes (qui sont représentés par les portions circulaires de leur face réfléchissante) afin de décaler ledit faisceau réfléchi Fg' par rapport audit faisceau incident F6, selon deux directions dudit plan focal intermédiaire. De la même façon que pour le dispositif des figures 2 à -4, un cache 5 rrmni d'une fenêtre 4 est prévu qui peut avantageusement se déplacer selon lesdites directions ou sens di et d2 correspondant au sens des dispersions respectivement desdits premier et deuxième disperseurs (lesdits toits et rhombes-miroirs étant repérés 8l, 82. 83, 84, 85, 86).With reference to FIG. 6, it can be seen that in a variant embodiment of said means of reflection and of selection of wavelength or spectral band, it is possible to use, instead of said two roof mirrors, a set of roofs and rhombes. (which are represented by the circular portions of their reflecting face) in order to offset said reflected beam Fg 'relative to said incident beam F6, in two directions of said intermediate focal plane. In the same way as for the device in FIGS. 2 to -4, a cover 5 provided with a window 4 is provided which can advantageously move in said directions or directions di and d2 corresponding to the direction of the dispersions of said first and second dispersers respectively (said roofs and rhombus-mirrors being marked 81, 82, 83, 84, 85, 86).
Par référence à la figure 7. un dispositif optique selon l'invention comporte ledit collimateur 1, ledit premier disperseur constitué par un réseau échelle, ledit deuxième disperseur 3 constitué par un prisme à déviation nulle et comporte un deuxième miroir 8 dans le plan focal duquel sont situés trois miroirs Mi, M2, 3, un cache 5 muni d'une fenêtre étant prévu devant ledit miroir M2 afin de permettre de sélectionner ladite bande spectrale ou longueur d'onde à analyser.With reference to FIG. 7. an optical device according to the invention comprises said collimator 1, said first disperser constituted by a ladder network, said second disperser 3 constituted by a prism with zero deviation and comprises a second mirror 8 in the focal plane of which are located three mirrors Mi, M2, 3, a cover 5 provided with a window being provided in front of said mirror M2 in order to allow said spectral band or wavelength to be analyzed to be selected.
Dans les montages décrits aux figures 2 et 5, qui utilisent un montage de base de type "EBERT-FASTIE", ce type de montage fait que seules les radiations au voisinage de 1'axe sont utilisables ; afin d'analyser des radiations plus éloignées ou des bandes spectrales plus larges avec une résolution élevée, on peut utiliser le montage de type "CZERNY-TURNER" tel que représenté à la figure 7, qui permet d'opérer dans un champ image plus grand ; avantageusement, dans ce type de montage, ledit collimateur constitué par un miroir 1 est un tore à méridiennes paraboliques, ledit deuxième miroir 8 étant sphérique, de sorte que le spectre obtenu dans le plan sagittal image des miroirs est dénué d'aberration.In the arrangements described in FIGS. 2 and 5, which use a basic arrangement of the "EBERT-FASTIE" type, this type of arrangement means that only radiation in the vicinity of the axis can be used; in order to analyze more distant radiations or wider spectral bands with a high resolution, one can use the assembly of the type "CZERNY-TURNER" as represented in figure 7, which makes it possible to operate in a larger image field ; advantageously, in this type of assembly, said collimator constituted by a mirror 1 is a torus with parabolic meridians, said second mirror 8 being spherical, so that the spectrum obtained in the sagittal image plane of the mirrors is devoid of aberration.
Avantageusement, lesdits miroirs Mi, M2, M3 sont tels que tous les ordres dispersés par lesdits disperseurs se dessinent sur ledit deuxième miroir M2 qui est couvert dudit cache muni de trous isolant les bandes spectrales désirées ; grâce à l'utilisation d'un prisme à déviation nulle, les ordres obtenus dans le champ intermédiaire sont le moins courbes possible et 1'implantation mécanique des composants du dispositif est facilitée. La largeur minimale d'une bande spectrale à analyser n'est limitée que par la résolution du réseau échelle (qui peut être très importante) et que par la dimension du trou (source) ; ledit prisme étant composé de matériaux très transparents à toutes les longueurs d'ondes, le domaine spectral dans lequel le dispositif est utilisable est très large ; ceci permet d'utiliser un seul réseau échelle et d'éviter la nécessité d'interchangeabilité des moyens de dispersion qui procureraient des complications mécaniques supplémentaires. Il est intéressant de noter que dans ce cas d'utilisation de l'invention, une cellule photométrique de faible dimension (ou au moins une fibre optique) peut être prévue afin d'analyser l'image de la source obtenue par le dispositif. Alternativement, ledit deuxième miroir M2 (et éventuellement lesdits autres miroirs Ml et M3) peut être d'une hauteur réduite à un intervalle interordre et d'une longueur égale à celle de l'ordre à observer ; ledit cache peut dans ce cas être prévu de manière légèrement orientable, afin de compenser les pentes des ordres éloignés de l'ordre correspondant à une déviation nulle.Advantageously, said mirrors Mi, M2, M3 are such that all the orders dispersed by said dispersers are drawn on said second mirror M2 which is covered with said cover provided with holes isolating the desired spectral bands; thanks to the use of a zero deviation prism, the orders obtained in the intermediate field are as curved as possible and the mechanical implantation of the components of the device is facilitated. The minimum width of a spectral band to be analyzed is limited only by the resolution of the scale network (which can be very important) and only by the dimension of the hole (source); said prism being composed of very transparent materials at all wavelengths, the spectral range in which the device is usable is very wide; this makes it possible to use a single scale network and to avoid the need for interchangeability of the dispersing means which would provide additional mechanical complications. It is interesting to note that in this case of use of the invention, a small photometric cell (or at least one optical fiber) can be provided in order to analyze the image of the source obtained by the device. Alternatively, said second mirror M2 (and possibly said other mirrors M1 and M3) can be of a height reduced to an interorder interval and of a length equal to that of the order to be observed; said cover can in this case be provided in a slightly orientable manner, in order to compensate for the slopes of orders distant from the order corresponding to a zero deviation.
Dans le cas d'utilisation d'un dispositif de ce type pour une utilisation astronomique telle que la tavélographie qui nécessite la comparaison de bandes spectrales éloignées avec une grande résolution, ledit dispositif peut comporter deux ensembles desdits trois miroirs Mi, M2 et M3 afin de comparer des parties d'un ordre ; on peut ainsi, grâce au dispositif selon l'invention, décaler symétriquement de part et d'autre de la source les images blanches correspondant à chacune desdites parties dudit ordre, lesquelles images restent immobiles lorsque les deux ensembles desdits trois miroirs se déplacent perpendiculairement audit sens de dispersion dudit réseau échelle.In the case of using a device of this type for astronomical use such as tavelography which requires the comparison of distant spectral bands with a high resolution, said device can comprise two sets of said three mirrors Mi, M2 and M3 in order to compare parts of an order; it is thus possible, thanks to the device according to the invention, to shift symmetrically on either side of the source the white images corresponding to each of said parts of said order, which images remain stationary when the two sets of said three mirrors move perpendicular to said direction of dispersion of said scale network.
Alternativement audit miroir en forme de tore parabolique servant de collimateur, un miroir sphérique peut être prévu dans le montage du type de la figure 7•As an alternative to said mirror in the form of a parabolic torus serving as a collimator, a spherical mirror can be provided in the assembly of the type of FIG. 7 •
Alors que les montages des figures 1, 2, 5 constituaient des montages permettant d'additionner la dispersion due (à chaque passage) audit premier disperseur (réseau échelle) et de soustraire ou d'annuler la dispersion provoquée par ledit deuxième disperseur, le montage de la figure 7 permet de soustraire ou d'annuler les dispersions provoquées par lesdits premier et deuxième disperseurs. Par référence à la figure 8 qui représente en vue schématique en perspective lesdits miroirs Mi , M2, M3, d'un dispositif tel que celui de la figure 7. on voit qu'un faisceau incident F6 est réfléchi successivement par lesdits miroirs M3, M2, Ml pour former un faisceau réfléchi F6' parallèle audit faisceau F6 ; lesdits miroirs Mi, M2, M3 ont une grande dimension correspondant à la direction di (ou au sens) de dispersion dû audit premier disperseur (réseau échelle) ; devant ledit miroir 2 est avantageusement prévu un cache 5 muni d'une fenêtre 4 permettant de sélectionner un ordre parmi des ordres 0ι.-.0i...0n séparés par ledit deuxième disperseur et superposés selon ladite direction d2, et de sélectionner dans l'un desdits ordres une bande spectrale ou une longueur d'onde, lesquelles sélections peuvent être effectuées par un déplacement dudit cache muni de ladite fenêtre.While the assemblies of FIGS. 1, 2, 5 constituted assemblies making it possible to add the dispersion due (to each passage) to said first disperser (ladder network) and to subtract or cancel the dispersion caused by said second disperser, the assembly of Figure 7 allows to subtract or cancel the dispersions caused by said first and second dispersers. With reference to FIG. 8 which represents a schematic perspective view of said mirrors Mi, M2, M3, of a device such as that of FIG. 7. it can be seen that an incident beam F6 is reflected successively by said mirrors M3, M2 , M1 to form a reflected beam F6 'parallel to said beam F6; said mirrors Mi, M2, M3 have a large dimension corresponding to the direction di (or direction) of dispersion due to said first disperser (scale array); a mask 5 is advantageously provided in front of said mirror 2 provided with a window 4 making it possible to select an order from 0ι .-. 0i ... 0n orders separated by said second disperser and superimposed in said direction d2, and to select in one of said orders a spectral band or a length wave, which selections can be made by moving said cover provided with said window.
Dans une variante de réalisation illustrée figure 9, lesdits moyens de réflexion, de sélection de longueur d'onde, et de décalage desdits faisceaux incidents et réfléchis F6 et F6' . utilisent des fibres optiques. Un équivalent M'i dudit miroir Ml de la figure 8 peut être constitué par une pluralité de fibres optiques 10 munies à leur extrémité d'une optique d'émission 10a et reliées à leur deuxième extrémité à des moyens de sélection et de connexion 13, lesquels moyens 13 reçoivent la lumière transmise par des fibres optiques réceptrices 12 munies à une extrémité d'une optique réceptrice 12a et reliée à leur deuxième extrémité audit moyen 13, lesdites extrémités 12a desdites fibres optiques 12 constituant un équivalent M*3 du miroir repéré M3 à la figure 8 ; par un traitement de la lumière transmise par chacune desdites fibres optiques 12 aux fins de délivrance de lumière dans les fibres optiques 10 correspondantes, on peut constituer des moyens assurant à la fois l'émission dudit faisceau F6' décalé par rapport audit faisceau Fg, ainsi que des moyens de sélection de ladite longueur d'onde à analyser, et des moyens de décalage desdits faisceaux incidents et réfléchis. On peut noter que lesdits moyens 13 de transmission des informations lumineuses entre lesdites fibres optiques réceptrices et lesdites fibres optiques émettrices 12 et 10 respectivement, peuvent permettre de contrôler l'information lumineuse transitant entre lesdites fibres optiques et permettent ainsi aisément d'effectuer la fonction de sélection d'au moins une longueur d'onde ; on peut en effet prévoir une forte densité de fibres optiques émettrices et réceptrices de manière à ce qu'une longueur d'onde puisse être associée à chacun desdits couples de fibres optiques. In an alternative embodiment illustrated in FIG. 9, said means for reflecting, for selecting the wavelength, and for shifting said incident and reflected beams F6 and F6 '. use optical fibers. An equivalent M'i of said mirror Ml in FIG. 8 can be constituted by a plurality of optical fibers 10 provided at their end with an emission optic 10a and connected at their second end to selection and connection means 13, which means 13 receive the light transmitted by receiving optical fibers 12 provided at one end with a receiving optic 12a and connected at their second end to said means 13, said ends 12a of said optical fibers 12 constituting an equivalent M * 3 of the mirror marked M3 in Figure 8; by processing the light transmitted by each of said optical fibers 12 for the purpose of delivering light into the corresponding optical fibers 10, it is possible to constitute means ensuring both the emission of said beam F6 ′ offset from said beam Fg, thus that means for selecting said wavelength to be analyzed, and means for shifting said incident and reflected beams. It may be noted that said means 13 for transmitting light information between said receiving optical fibers and said emitting optical fibers 12 and 10 respectively, can make it possible to control the light information passing between said optical fibers and thus easily make it possible to perform the function of selection of at least one wavelength; it is in fact possible to provide a high density of transmitting and receiving optical fibers so that a wavelength can be associated with each of said pairs of optical fibers.

Claims

REVENDICATIONS
1. Dispositif optique de type monochromateur ou spectrographe comportant au moins un collimateur (1) et au moins un premier disperseur (2) caractérisé en ce qu'il comporte un deuxième disperseur (3) assurant une dispersion dont le sens est sensiblement perpendiculaire au sens de dispersion dudit premier disperseur, et en ce que l'un desdits disperseurs est constitué par un réseau échelle et en ce que ledit dispositif comporte des moyens de réflexion assurant un double passage des faisceaux par lesdits premier et deuxième disperseurs et par ledit collimateur.1. Monochromator or spectrograph type optical device comprising at least one collimator (1) and at least one first disperser (2) characterized in that it comprises a second disperser (3) ensuring a dispersion whose direction is substantially perpendicular to the direction of dispersing said first disperser, and in that one of said dispersers is constituted by a ladder network and in that said device comprises reflection means ensuring a double passage of the beams by said first and second dispersers and by said collimator.
2. Dispositif selon la revendication 1 caractérisé en ce que lesdits moyens de réflexion assurent un décalage „ spatial entre l'image et la source dudit dispositif, qui sont situées à proximité l'une de l'autre dans le plan focal dudit collimateur. 2. Device according to claim 1 characterized in that said reflection means provide a spatial offset between the image and the source of said device, which are located close to each other in the focal plane of said collimator.
3- Dispositif selon l'une quelconque des revendications 1 à 2 caractérisé en ce qu'il comporte au moins un moyen de sélection d'au moins une longueur d'onde.3- Device according to any one of claims 1 to 2 characterized in that it comprises at least one means for selecting at least one wavelength.
4. Dispositif selon l'une quelconque des revendications 1 à 3 caractérisé en ce que lesdits moyens de réflexion comportent deux miroirs (tl, t2) sensiblement plans contenus dans deux plans sécants dont l'intersection est perpendiculaire au sens de dispersion dudit réseau échelle.4. Device according to any one of claims 1 to 3 characterized in that said reflection means comprise two mirrors (tl, t2) substantially planes contained in two intersecting planes whose intersection is perpendicular to the direction of dispersion of said scale network.
5- Dispositif selon la revendication 4 caractérisé en ce que lesdits miroirs (tl, t2) forment un ensemble mobile selon deux directions (di, d2) contenues dans un plan perpendiculaire à l'axe de faisceaux incident (F6) et réfléchi (F6') par lesdits miroirs, et en ce que lesdits miroirs sont de taille réduite de manière à constituer lesdits moyens de sélection d'une bande spectrale.5- Device according to claim 4 characterized in that said mirrors (tl, t2) form a movable assembly in two directions (di, d2) contained in a plane perpendicular to the axis of incident beams (F6) and reflected (F6 ' ) by said mirrors, and in that said mirrors are of reduced size so as to constitute said means for selecting a spectral band.
6. Dispositif selon la revendication 4 caractérisé en ce qu'il comporte au moins une fenêtre (4) prévue dans un cache (5) sensiblement plan situé dans le plan de symétrie de l'ensemble constitué par lesdits miroirs (ti, t2) , et ladite fenêtre et/ou ledit cache est mobile de manière à constituer lesdits moyens de sélection de longueur d'onde et/ou de bandes spectrale. 6. Device according to claim 4 characterized in that it comprises at least one window (4) provided in a cover (5) substantially planar located in the plane of symmetry of the assembly formed by said mirrors (ti, t2), and said window and / or said mask is movable so as to constitute said means for selecting wavelength and / or spectral bands.
7- Dispositif selon l'une quelconque des revendications 1 à 3 caractérisé en ce que lesdits moyens de réflexion comportent au moins un ensemble comportant trois miroirs (Ml. M2> N ) sensiblement plans qui ont une grande dimension sensiblement parallèle au sens de dispersion dudit réseau échelle.7- Device according to any one of claims 1 to 3 characterized in that said reflection means comprise at least one assembly comprising three mirrors (Ml. M2 > N) substantially planar which have a large dimension substantially parallel to the direction of dispersion of said scale network.
8. Dispositif selon l'une quelconque des revendications 1 à 7 caractérisé en ce que lesdits moyens de réflexion et/ou lesdits moyens de sélection d'une longueur d'onde et/ou lesdits moyens de décalage spatial comportent au moins une fibre optique.8. Device according to any one of claims 1 to 7 characterized in that said reflection means and / or said means for selecting a wavelength and / or said spatial shifting means comprise at least one optical fiber.
9. Dispositif selon l'une quelconque des revendications 1 à 8 caractérisé en ce que ledit deuxième disperseur est un prisme placé devant ledit premier disperseur. 9. Device according to any one of claims 1 to 8 characterized in that said second disperser is a prism placed in front of said first disperser.
10. Dispositif selon l'une quelconque des revendications 1 à 9 caractérisé en ce que l'un au moins des deux disperseurs est monté pivotant par rapport à un axe perpendiculaire à la dispersion qu'il provoque. 10. Device according to any one of claims 1 to 9 characterized in that at least one of the two dispersers is pivotally mounted relative to an axis perpendicular to the dispersion it causes.
PCT/FR1993/000122 1992-02-18 1993-02-05 Spectrographic device WO1993016361A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9202124A FR2687471B1 (en) 1992-02-18 1992-02-18 SPECTROGRAPHY DEVICE.
FR92/02124 1992-02-18

Publications (1)

Publication Number Publication Date
WO1993016361A1 true WO1993016361A1 (en) 1993-08-19

Family

ID=9426976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1993/000122 WO1993016361A1 (en) 1992-02-18 1993-02-05 Spectrographic device

Country Status (2)

Country Link
FR (1) FR2687471B1 (en)
WO (1) WO1993016361A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6151112A (en) * 1997-11-17 2000-11-21 Innovative Lasers Corp. High-resolution, compact intracavity laser spectrometer
US6583874B1 (en) * 1999-10-18 2003-06-24 Komatsu, Ltd. Spectrometer with holographic and echelle gratings

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6952260B2 (en) * 2001-09-07 2005-10-04 Jian Ming Xiao Double grating three dimensional spectrograph

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2566902A1 (en) * 1984-07-02 1986-01-03 Zeiss Jena Veb Carl OPTICAL SYSTEM FOR SPECTROSCOPE
EP0403228A1 (en) * 1989-06-16 1990-12-19 FISONS plc Optical system for spectral analysis
US4995721A (en) * 1990-03-05 1991-02-26 Imo Industries, Inc. Two-dimensional spectrometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2566902A1 (en) * 1984-07-02 1986-01-03 Zeiss Jena Veb Carl OPTICAL SYSTEM FOR SPECTROSCOPE
EP0403228A1 (en) * 1989-06-16 1990-12-19 FISONS plc Optical system for spectral analysis
US4995721A (en) * 1990-03-05 1991-02-26 Imo Industries, Inc. Two-dimensional spectrometer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHEELINE A., ET AL.: "DESIGN AND CHARACTERIZATION OF AN ECHELLE SPECTROMETER FOR FUNDAMENTAL AND APPLIED EMISSION SPECTROCHEMICAL ANALYSIS.", APPLIED SPECTROSCOPY., THE SOCIETY FOR APPLIED SPECTROSCOPY. BALTIMORE., US, vol. 45., no. 03., 1 March 1991 (1991-03-01), US, pages 334 - 346., XP000200998, ISSN: 0003-7028, DOI: 10.1366/0003702914337083 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6151112A (en) * 1997-11-17 2000-11-21 Innovative Lasers Corp. High-resolution, compact intracavity laser spectrometer
US6583874B1 (en) * 1999-10-18 2003-06-24 Komatsu, Ltd. Spectrometer with holographic and echelle gratings

Also Published As

Publication number Publication date
FR2687471B1 (en) 1994-07-01
FR2687471A1 (en) 1993-08-20

Similar Documents

Publication Publication Date Title
CA2742493C (en) Dyson-type imaging spectrometer having improved image quality and low distortion
US5559597A (en) Spectrograph with multiplexing of different wavelength regions onto a single opto-electric detector array
EP0083573B1 (en) Spectrometry device
FR2493998A1 (en) OPTICAL ENERGY TRANSFER DEVICE THAT DOES NOT FORM IMAGE
US8355125B2 (en) All reflective apparatus for injecting excitation light and collecting in-elastically scattered light from a sample
FR2566902A1 (en) OPTICAL SYSTEM FOR SPECTROSCOPE
EP1965183A1 (en) Spectrograph with tilted detector window
EP3030867B1 (en) Spectrometer comprising a plurality of diffraction gratings
EP0535753A2 (en) Device for spectrometry with spectral band filtering
FR2847978A1 (en) Compact spectrometer has transparent monolithic body which integrates the means of diffraction and reflection, front and rear faces and light input and output surfaces both located on the front face
WO1993016361A1 (en) Spectrographic device
KR102638484B1 (en) Optical reformatters, spectrometers, and methods for generating the output beam.
FR2726365A1 (en) SPECTRAL ANALYSIS DEVICE WITH COMBINED COMPLEMENTARY FILTERS, ESPECIALLY RAMAN SPECTROMETRY
EP0353138A1 (en) Multispectral mirror device
EP1030195A1 (en) Auto-aligned retroreflecting optical system for wavelength filtering, monochromator and laser using the same
EP0416996A1 (en) Spectroscopical analytical device
EP2869046A1 (en) Spectrometer with large telecentric field, in particular with a mems matrix
FR2857746A1 (en) Optical spectrometer for e.g. space craft, has linear variable filter with surface on which beam is applied for being split into wavelength components, and spectrum detection surface on which split beam is applied in two directions
FR2762402A1 (en) INTERFEROMETRIC TELESCOPE SYSTEM
US11821791B1 (en) Techniques for reducing optical ghosts in a gratings-based optical spectrum analyzer (OSA)
EP1793212B1 (en) Spectrophotometer with a wide entrance slit
EP1141668B1 (en) Device with spectral rejection for forming an image on an optical sensor
FR2585468A1 (en) Monochromators with aberration-free flat gratings
FR2754341A1 (en) SPECTRAL ANALYSIS APPARATUS CAPABLE OF WORKING IN MULTIPLE SPECTRAL AREAS OF DIFFERENT WAVELENGTHS
FR2754102A1 (en) Generating micro beam of X=rays for use in EXAFS

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

122 Ep: pct application non-entry in european phase