WO1993011410A1 - Dispositif de mesure de temperature et son utilisation - Google Patents
Dispositif de mesure de temperature et son utilisation Download PDFInfo
- Publication number
- WO1993011410A1 WO1993011410A1 PCT/FR1992/001150 FR9201150W WO9311410A1 WO 1993011410 A1 WO1993011410 A1 WO 1993011410A1 FR 9201150 W FR9201150 W FR 9201150W WO 9311410 A1 WO9311410 A1 WO 9311410A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pyrometers
- glass
- temperature
- luminances
- monochromatic
- Prior art date
Links
- 239000011521 glass Substances 0.000 claims abstract description 40
- 230000003287 optical effect Effects 0.000 claims abstract description 35
- 239000006060 molten glass Substances 0.000 claims abstract description 32
- 235000019557 luminance Nutrition 0.000 claims description 36
- 238000005259 measurement Methods 0.000 claims description 28
- 230000006870 function Effects 0.000 claims description 20
- 238000007527 glass casting Methods 0.000 claims description 17
- 238000010521 absorption reaction Methods 0.000 claims description 10
- 230000005855 radiation Effects 0.000 claims description 9
- 230000000007 visual effect Effects 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 8
- 230000003595 spectral effect Effects 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 4
- 230000001276 controlling effect Effects 0.000 claims description 3
- 239000000498 cooling water Substances 0.000 claims description 3
- 238000002329 infrared spectrum Methods 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 230000005679 Peltier effect Effects 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 3
- 239000012780 transparent material Substances 0.000 abstract description 3
- 238000005266 casting Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 9
- 238000009529 body temperature measurement Methods 0.000 description 7
- 210000003462 vein Anatomy 0.000 description 7
- 238000009434 installation Methods 0.000 description 5
- 230000005693 optoelectronics Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000005484 gravity Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 3
- 101100289797 Fusarium sp LUC1 gene Proteins 0.000 description 2
- 101100289798 Fusarium sp LUC2 gene Proteins 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 239000012809 cooling fluid Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- GGYFMLJDMAMTAB-UHFFFAOYSA-N selanylidenelead Chemical compound [Pb]=[Se] GGYFMLJDMAMTAB-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0801—Means for wavelength selection or discrimination
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/60—Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
- G01J5/602—Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature using selective, monochromatic or bandpass filtering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/0037—Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0806—Focusing or collimating elements, e.g. lenses or concave mirrors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0808—Convex mirrors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0813—Planar mirrors; Parallel phase plates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0859—Sighting arrangements, e.g. cameras
Definitions
- the present invention relates to a device for measuring the temperature in a semi-transparent material and the use of this device for determining a temperature profile inside this material, in particular inside molten flowing glass. vertical.
- the technical field of the invention is that of temperature measurement.
- the use of glass for the manufacture of glass articles generally uses an oven in which the glass is melted at a temperature of the order of 1400 ° C; the oven is connected to a channel (or "feeder") which allows the molten glass, or molten glass, to be conveyed to a supply tank provided with flow orifices through which the molten glass can s '' flow by gravity, so as to form a substantially vertical vein or flow, which vein or flow is "sectioned” by means generally called knives or scissors, which separate the vein of molten glass into samples or sections, called “gobs" or parisons, which are of predetermined mass and / or volume and which are then directed to a mold in which the glass cools and solidifies taking the form of the article to be manufactured.
- a channel or "feeder”
- thermocouple pyrometers for example, but which, as far as "gobs" are concerned, require a non-contact measurement which can for example be carried out by optical pyrometers which are generally used in the field of visible light or infrared radiation emitted by molten glass.
- Monochromatic pyrometers are already known which give the temperature of an opaque body at the measurement wavelength, when the emissivity of the sample for which the temperature measurement is carried out is known.
- Patent application FR 1 580 121 describes a pyrometer of this type.
- Dichromatic pyrometers are also known which make it possible to measure the radiation of an opaque body over two wavelengths close and which allow to deduce by calculation, the surface temperature of the opaque body without having to know the emissivity of this body, by application of the Planck formula of the radiation of a black body.
- Optical pyrometers are already used to measure the temperature of the glass, particularly in wavelengths greater than 5 10 "6 meters because between 0.5 10" ° meter and 10 ⁇ ° meter the molten glass being semi-transparent, its emissivity and its transparency depend on its temperature.
- Patent application FR 2 458093 describes an example of using optical pyrometers to adjust the width of a glass ribbon produced by floating.
- the present invention relates more particularly to the measurement of the temperature in a casting of molten glass flowing from a feed tank, upstream of scissors (or just after these) separating the casting into sections of glass in fusion.
- the problem not resolved by known devices for measuring the temperature of molten glass is to allow a measurement of the temperature of this molten glass, particularly of a flow of molten glass flowing by gravity, with very high precision, and very quickly allowing "real time” control of the surface temperature of the glass casting as well as of the temperature inside this glass casting, in order to detect possible asymmetries in the temperature profile likely to cause defects in the articles to be manufactured.
- the problem also consists in providing, at lower cost, a temperature measurement device in a glass casting which is capable of operating under particularly difficult conditions, in particular in terms of atmosphere; in fact, near said feed tank and said glass casting, the temperature is very high due to the presence of molten glass at a temperature close to 1150 ° and the radiation emitted by this glass casting, as well as high and variable humidity prevailing in these installations for processing molten glass.
- the problem also consists in providing a temperature measuring device and its use making it possible to measure the temperature inside a sample or a glass casting. melted, and more generally in semi-transparent materials.
- the solution to the problem posed is a device for measuring the temperature of at least one stream of molten glass flowing, for example by gravity, from a supply tank provided with at least one flow orifice, at proximity of scissors separating said molten glass stream or stream into sections - or gobs or gobs - of mass and / or predetermined volume, such that it comprises at least two optical pyrometers sensitive to infrared radiation, substantially regularly arranged around said casting, that is to say the optical axes of sight of a sample of said casting are substantially regularly arranged in a plane substantially perpendicular to the direction of flow of said casting, each provided with an infrared detector and a mobile support, for example a rotary disc-shaped support, of at least three narrow band interference filters centered on substantially equal wavelengths L1, L2, L3 (or a paired) between said pyrometers; at least one of said pyrometers (and / or said measuring device) comprises means for measuring the width of said glass casting, and comprises means for synchronizing (or controlling
- a device comprises means for measuring the hygrometry of the atmosphere surrounding the glass casting and / or said pyrometers and it comprises means making it possible to correct values for the coefficient of absorption of the atmosphere. as a function of the wavelength, as a function of hygrometry measurement.
- said casting width measurement means comprise at least one linear video sensor or CCD strip.
- each of said mobile supports comprises at least two interference filters centered on two wavelengths of different value each of said values being less than -4.5 10 ⁇ 6 meters, (preferably between 1.5 10 ⁇ 6 and 4 , 5 10 ⁇ 6 meters), so that one can measure with each of said pyrometers at least two internal monochromatic luminances.
- each of said mobile supports comprises three interference filters respectively centered on wavelengths close to 2.3 10 ⁇ 6 meters, 3.810 ⁇ 6 meters and 4.610 ⁇ 6 meters.
- said mobile support comprises an interference filter centered on a wavelength close to 4.6 to 5 10 ⁇ 6 meters, this makes it possible to measure a surface temperature of said casting.
- said infrared detector comprises at least one photoresistive infrared transducer, such as a lead selenide transducer, of very small size, for example with a surface area substantially close to 10 "8 m 2 , and very short response time (for example with a response time less than or equal to 10 "3 seconds), which infrared transducer can be cooled to a temperature in the region of -30 ° C. for example, by at least one module PELTIER cooling device, which transducer may be provided with at least one integrated thermistor electrically connected to rapid regulation and control means of said cooling module, which thermistor is preferably inserted into a heatstone bridge.
- a photoresistive infrared transducer such as a lead selenide transducer
- very short response time for example with a response time less than or equal to 10 "3 seconds
- a device comprises, upstream of said detector on the optical axis thereof, which is advantageously substantially coincident with the axis of symmetry of a substantially cylindrical housing, which constitutes the optical axis of said pyrometer, a lens for achromatic focusing of an infrared beam incident along said optical axis of said pyrometer on said transducer (or sensitive part of said infrared detector), which objective comprises at least one focusing lens; the space between said lens and said detector can be made substantially watertight (by O-rings for example) so as to allow a (relative) vacuum to be created in said space and therefore so as to avoid condensation of water vapor in said space, particularly on the window of said detector.
- each of said pyrometers may comprise inside a substantially cylindrical housing closed on a front end by a front bottom and provided with a rear bottom, a support (generally in the form of a thick disc) provided with first cooling water circulation channels which open into a first cavity surrounding at least part of a support of said infrared detector.
- each of said pyrometers may include means for circulating cooling air which open into the space (or volume) contained in (delimited by) said housing so as to put dry air overpressure said housing relative to the ambient atmosphere.
- said detector and said focusing objective are mounted on a substantially cylindrical support which is fixed on said support in the form of a thick disc.
- the device according to the invention comprises an input objective (with fixed or adjustable magnification) which transmits at least one incident light beam FI with substantially parallel rays, and said device comprises a separating or dichroic plate, substantially inclined at 45 ° with respect to the axis of said incident beam FI, which separates said incident beam into a visual beam (FV) and into a non-visual beam (FNV) which contains the infrared radiation emitted by a predetermined area of said flow whose rays are substantially parallel to said axis of symmetry of said housing, and said device comprises a viewing objective which focuses said visual beam (FV) on viewing means.
- an input objective with fixed or adjustable magnification
- said device comprises a separating or dichroic plate, substantially inclined at 45 ° with respect to the axis of said incident beam FI, which separates said incident beam into a visual beam (FV) and into a non-visual beam (FNV) which contains the infrared radiation emitted by a predetermined area of said flow
- said viewing objective is fixed to said thick disc and its optical axis is substantially parallel to the axis of symmetry of said housing of said pyrometer, and it is followed by a rectifier prism.
- said display means comprise an eyepiece provided with a reticle for adjusting the centering (or aiming) and optionally adjusting the magnification.
- said means for measuring said width of said glass casting comprise at least one CCD photosensitive element, such as a CCD strip.
- the device according to the invention comprises a means of partial reflection of said visual beam having passed through said viewing objective, such as a glass slide treated by example, to direct an image of the area of the sample analyzed on said CCD element (or strip) for measuring the width of the glass casting.
- said device comprises two substantially diametrically opposite pyrometers (which can be connected to said computer by connecting means 35) whose optical axes substantially coincide and intersect a substantially vertical axis ZZ along which flows said flow, and said device comprises means for recording in a memory of said calculator of absorption coefficients of the glass as a function of the wavelength.
- the solution to the problem also consists in using a device according to the invention by implementing the following operations: - said pyrometers are connected to a computer by connecting means, and / or, when said computer is contained in whole or in part in at least one of said pyrometers, said pyrometers are connected together,
- one calculates for each of said pyrometers, monochromatic luminances estimated as a function of temperatures estimated inside said sample, using said measured surface temperature and a mathematical model of temperature variation as a function of depth, which model is using said parameters or characteristics of the glass, differences between said estimated monochromatic luminances and said measured monochromatic luminances are calculated, and if said differences are greater than a threshold at least predetermined, said estimated temperatures (and / or parameters or coefficients) are corrected of said mathematical temperature profile model) and the previous operation is carried out again (using an inversion method).
- the hygrometry of the ambient atmosphere near said samples and / or said pyrometers is measured and the values measured by said infrared detectors of said pyrometers are corrected (for wavelengths sensitive to humidity).
- the measurement or acquisition of the signals delivered by said infrared detectors is done by digitizing or digitizing the level (of the intensity) of said signals, for each filter mounted on said disc; said acquisition can be carried out in each of said pyrometers or alternatively in said computer, by a sequential demultiplexing method; advantageously, a maximum number of measurement points is digitized, for each time interval corresponding to the passage of a filter, then an average is made, for each filter, of the digitized and recorded measurement points before recording average values of said signals corresponding to said measured monochromatic luminances.
- the device and method for measuring temperature according to the invention makes it possible to determine with great precision temperature curves or profiles within samples (or predetermined zones) of the casting of glass; thanks to a substantially symmetrical arrangement of said pyrometers, it is possible to highlight possible asymmetries in said temperature profiles which is particularly advantageous for checking the quality of the glass objects to be manufactured; moreover, the measurement method and device according to the invention make it possible to determine said temperature profiles with precision even if the knowledge of the parameters characteristic of the glass observed is not very precise.
- Figure 1 schematically illustrates in side view, an installation for producing articles of molten glass, in which a device according to the invention is used.
- FIG. 2 illustrates in plan view an installation for producing glass articles using a temperature measuring device according to the invention.
- FIG. 3 illustrates in section through a substantially horizontal plane a glass flow and the points (or zones) of temperature measurement according to the invention.
- FIG. 4 illustrates in partial longitudinal section a preferred embodiment of the front part of an optical pyrometer of a device according to the invention.
- FIG. 6a and 6b 6c schematically illustrate the main components of electronic circuits for processing signals from pyrometers according to the invention.
- FIG. 7 partially illustrates in longitudinal section a preferred embodiment of a pyrometer according to the invention.
- an installation for the production of glass articles comprises in a known manner an oven 27 in which is present a mass of molten glass 29 which is brought and maintained at a temperature for example close to 1400 ° C.
- the glass contained in said oven can be conveyed via an overflow provided in the wall of said oven, in a channel 2, which can be sloping so as to allow the flow by gravity of said molten glass, up to 'to a feed tank 1 " provided at the end of said channel and provided in its lower part with at least one orifice 3 through which said molten glass can flow so as to form a vein 28 flowing substantially according to a vertical axis ZZ.
- a molding machine comprising at least one mold 32, in which said gob can penetrate and cool and solidify therein in order to constitute said glass article to be manufactured, which mold 32 is disposed. on a support 33-
- the device according to the invention comprises in this embodiment three optical pyrometers 4 ⁇ , 42, 43 of respective optical axes XXi, XX2. XX3. which are coplanar and which are substantially contained in a plane perpendicular to the plane of Figure 1, which optical axes meet at a point located substantially at the center of a section through a substantially horizontal plane of said vein, that is to say in a predetermined area or predetermined sample 30.
- each of said optical pyrometers is of generally substantially cylindrical shape, each of said pyrometers being mounted on a support (not shown).
- LUC1 ... LUC2 are calculated as a function of estimated temperatures inside said sample, for each of said pyrometers (and each targeted sample), differences between said luminances are calculated estimated monochromatic and said measured monochromatic luminances, and if said differences are greater than at least a predetermined threshold, said estimated temperatures are corrected and the previous operation is carried out again.
- the spectral (or monochromatic) luminance of the radiation which emerges from the molten glass depends on the temperature profile prevailing in said molten glass sample, and depends on the spectral thermo-optical properties of said molten glass, on the thickness of said sample. and characteristics of the borders of said sample with the external medium.
- 0 is a transmission coefficient of the interface, between the glass and the ambient medium
- P is the Planck function, depending on the temperature T
- L ( ⁇ ) is the monochromatic luminance
- Bl and B2 being parameters depending on the material.
- T (x) F (Ti, T2, Cl, C2, C3, C4), with
- T (x) temperature at depth x in said sample
- Ti and T2 temperatures at the surface of said sample corresponding to the ends of the thickness of said sample along the measurement axis
- T (x) T ⁇ + Ci (l-exp (-x / C2)) - C 3 (exp ((xH) / C4) -exp (-H / C4)) - (Ti-T2 + Ci (l- exp (-H / C2)) - C3 (l-exp (-H / C4))) x / H, this equation leading to an asymmetric U-shaped temperature profile (inverted).
- said iterative calculation is stopped when said estimated monochromatic luminances have the same value to within 0.1% as said measured monochromatic luminances, which corresponds to a precision on the calculated temperature of the order of 0.5%; taking into account errors due to causes other than said calculations, the measurement accuracy is in fact 3 to 5 ° C.
- said installation for the production of glass articles comprises said oven 27 which communicates with said channel 2, which channel communicates with said tank.
- supply 1 which comprises at least one discharge orifice 3 through which said stream 28 of molten glass can flow, substantially perpendicular to the plane of FIG. 2.
- said temperature measuring device comprises said three optical pyrometers 4 ⁇ , 2, 43 with respective optical axes xxl, xx2, xx3, and said pyrometers are respectively provided with at least one infrared detector lt 52 ”3 qi which are respectively located at distances Dl, D2.D3 from the center of said glass casting 28, which corresponds substantially to the point of intersection of said sighting axes, which distances are advantageously equal and close to 1 to 5 meters.
- each of said pyrometers is provided in its front part with an input objective respectively 21 ⁇ , 212, I3 which can be adjustable so as to allow optical focusing on said area or sample to be studied.
- said axes xxl, xx2, xx3 are distributed at an angle A equal to 120 °.
- each of said pyrometers is advantageously connected by means of respective electrical connections 351 "3521 353 - a central or computing 3 which can process the signals transmitted by said optical pyrometers via said means of electrical connections, which calculation or control unit can also control the operation of said pyrometers and more particularly can allow synchronization (in speed and in phase) of all the drive motors of said disks supporting interference filters said pyrometers, relative to each other.
- the measurement of the luminances according to said three wavelengths by said first pyrometer allows the determination of the temperature at point P10 (at the surface) and up to points Pli, P12
- the measurement at said same wavelengths by said pyrometer marked 2 in FIG. 2 allows the determination of the temperature at point P20 and up to points P21, P22
- the measurement of the luminance by said third pyrometer allows the temperature to be determined at point P30 and up to points P31.
- said points P12, P22, P3 are substantially situated on a circle of radius RI and having for center C substantially the center of the section of said vein 28 for pouring glass, and said points Pli, P21, P31 are located on a second circle having the same center as said first circle and having a radius R2, said points P10, P20, P30 being located on the face external of said stream or stream of molten glass, that is to say substantially on the circumference of a circle of radius R3 equal to the radius (that is to say half the width) of said stream of glass.
- pyrometers there are three pyrometers, preferably regularly distributed (at 120 degrees) around said casting, three diametral temperature profiles can be determined; in order to determine one of these diametrical profiles, it is possible for example, with reference to FIG. 3t, to complete the luminances measured by said first pyrometer (reference 4 ⁇ in FIG. 2) by means, for each depth (or radius) considered , measurements of said second and third pyrometers, in using an interpolation principle.
- the front part of an optical pyrometer comprises a cylindrical housing 9 closed at the front by a front bottom which in the embodiment presented in this figure comprises two parts 14a and 14b in the general form of concentric flanges of axis xxl, said axis constituting said axis of symmetry of the pyrometer and the optical axis of said pyrometer.
- an input objective 21 which can comprise two optical groups 21a and 21b movable with respect to each other which make it possible to focus as a function of the distance between said pyrometer and the flows of glass on which the temperature measurement must be carried out (sequentially or simultaneously).
- said first optical group 21a comprises a lens 39 at the front of which is located a seal 41, which lens and which seal are carried by a support provided with air passage channels 40 , which channels allow the passage of air from the interior of said housing to the exterior of said housing according to the arrows F9-
- the second optical group 21b comprises at least one lens 42 and a seal 44, said seals 41 and 44 making it possible to ensure a relative seal in a space comprised between said lenses 39 on the one hand and 42 on the other hand, which space is swept by said air coming from inside said housing according to the arrows F ⁇ thanks to channels 43 provided in the support of said lens 42 and thus allow the scanning of said space located between said lenses by said air, preferably dry.
- the incident light rays FI in the apparatus are substantially parallel and meet a first semi-transparent plate 22 which separates said incident beams FI in a so-called visible beam FV whose axis is substantially inclined at 90 ° relative to the axis of said incident beam FI, and a second beam FNV or non-visible beam which passes through said semi-transparent plate 22; downstream of said semi-transparent plate 22 on the optical path of said non-visible beam FNV is located a disc 6 supporting narrow band interference filters 7, which disc 6 is rotated by a motor 4 fixed by a support 46 to said flanges of the front face of said pyrometer.
- said disc 6 is mounted on the shaft end 47 of said motor, for example by means of a fret, and its periphery passes between the branches of optoelectronic forks 48 rigidly fixed relative to said housing, which optoelectronic forks are likely to detect the passage of marks located on the periphery of the disc and are capable of emitting, in response to these passages of marks, corresponding signals or pulses (a first fork can emit one pulse per revolution when passing a filter predetermined and a second fork can emit several pulses per revolution for synchronizing the rotation of said discs of the different pyrometers).
- a focusing lens 10 is placed which can focus on the sensitive surface of a detector 5 said non-visual beam FNV having passed through one of said filters; it can be seen that said focusing objective 10 comprises a cylindrical support 11 on which said objective itself is mounted by means of a support 5 of lenses 12, which support 11 is provided in its rear part with a bore receiving the substantially cylindrical housing of said infrared detector 5-
- said lens support 5 can move inside said support 11 by screwing or unscrewing and can be locked in position by a nut 4 -
- Said support 11 for focusing lens and detector is mounted in bores of different diameters provided in a support 16 in the form of a thick disc, which support 16 receives said focusing lens and said infrared detector mounted on said support 11, and receives also a viewing objective 24 which is located on the path of said visual beam FV, which beam FV is reflected by a mirror 36.
- said thick disc 16 is provided with substantially radial water circulation channels 17 and closed at their peripheral end, for example by a plug 66, which channels 17 communicate with a water supply pipe 57, so that '' cooling water or an equivalent liquid can circulate according to arrows F2 in said pipes 57 and said channels 17, and circulate in a substantially toroidal cavity 18 delimited by said thick disc on the one hand, and said support 11 on the other hand , so as to cool said support 11 and said thick disc 16.
- Air circulation channels 20 can also be provided, which allow the admission of air according to an arrow FI, which channels 20 also extend substantially radially and are supplied by known means (not shown), which air is delivered in a second substantially annular chamber or cavity situated between said thick disc and said support 11, which annular cavity communicates with the rear face of the encapsulation housing of said infrared detector 5 "so that said air introduced into said chamber 19 can escape according to the arrows F4 towards the rear part of said pyrometer by licking the base of said housing of said detector __ and thus allowing to cool this one.
- said detector is connected by means of electrical connections such as lugs 4 to a first electronic card 55. mounted by supports 5 on said thick disc 16.
- said dry air which has been able to enter the rear part of said pyrometer can pass into the front part according to arrows F5 thanks to spaces left free on the periphery of said disc between it and said substantially cylindrical housing 9, so that said dry air scans the whole of said housing, maintains it in overpressure with respect to the atmosphere, which air can then move according to arrows F7 to penetrate said channels 43 and 40 provided in said objective entry, and exit according to said arrows F9 in order to protect said lens from said entry objective, from possible projections.
- said pyrometer comprises said support 16 in the form of a thick disc which carries said infrared detector 5 situated substantially on the axis of symmetry of said pyrometer and said thick disc 16, and supports said objective of ⁇ . -.sualisation 24 which comprises at least one lens 60 and a lens support 61; said viewing objective makes it possible to focus said beam FV with parallel rays, in a converging beam FVl which can converge in the plane of a reticle provided on an eyepiece 23 located at the rear of said pyrometer, and which can for example be embedded with sealingly relative to a rear bottom 15 of said housing of said pyrometer.
- a second semi-transparent blade 26 mounted on a support 63 can be advantageously provided, which blade can be for example a silica glass blade, and which can transmit at least part of said visual beam and make it focus on the sensitive part of a CCD detector 8, preferably a linear detector or CCD strip placed on a support 62 which is advantageously rigidly mounted relative to the housing and adjustable so as to adjust said focus of said beam FV2 returned by said semi-transparent plate 26.
- said CCD sensor thus makes it possible to measure the width of the area to be studied by signal processing of known type.
- said pyrometer comprises in said rear part located behind said thick disc 16, a first electronic card 55 which can advantageously include the signal processing circuits from said infrared detector, a second card electronics 64, which may for example include circuits for processing signals from said CCD sensor 8, and includes a connector 59 which is connected to said electrical connection means between said pyrometer and said computer (reference 351. 352, 353 in FIG. 2 ).
- said infrared detector constituted by a photoresist detector behaves like a resistor R5
- said means for processing electronic signals comprise a current-voltage conversion stage IU, which stage IU comprises a reference voltage source VREF connected to an operational amplifier Al, the output of said amplifier and the negative input of said amplifier being connected to a resistor RI and a capacitor C connected in parallel .
- the voltage obtained at the output of said amplifier Al is then applied via a filter (C2, R2) to a second differential amplifier A2 which supplies at its output the fluctuating component of said voltage delivered by said amplifier Al, which component fluctuating is amplified by the amplifier A3 connected to an offset voltage generator V2.
- the output of said amplifier A3 can be connected to said calculation means 34 by said connection means 35 between said pyrometer 4 and said computer 34, by virtue of a current loop little subject to electromagnetic disturbances.
- a thermistor Rth is provided in said housing of said infrared detector, which measures the temperature of the sensitive part of said detector, which thermistor Rth is placed in a bridge Wheatstone comprising three resistors R0 of high precision and of the same value, which Wheatstone bridge is supplied by a voltage VF, and the unbalance voltage of said bridge VM is applied to the terminals of an amplifier A4, the signal SI output from said amplifier A4 passing through an integral proportional module P, I, then through a power amplifier A5, in order to regulate the supply control of said PELTIER 64 affet module as a function of the temperature measured by said thermistor Rth.
- the time constants in open loop of the system comprising said amplifiers A4 and A5 and said modules P, I, are of the order of 100 milliseconds.
- each of said pyrometers 4l and 42 are each provided with said optoelectronic fork 48i and 482 respectively which delivers signals or pulses as a function rotation and passage between branches of said forks of said pins provided on the periphery of said disks (interference filter support) corresponding.
- one of said optical pyrometers 4 ⁇ , or master pyrometer comprises means for regulating the speed of said motor 45l for driving said filter holder disc, which regulation means include an Ml module which converts said pulses delivered by said 48 ⁇ fork in a voltage proportional to the speed, which voltage is compared to a reference voltage supplied by a module V3, by a differential amplifier A6, the output of said differential amplifier A6 being connected to a PID regulator (proportional integral derivative), which regulator controls the operation of a voltage source SI for supplying said motor 45l. so as to control the speed of rotation of said motor which can for example be a brushless direct current motor.
- Ml module which converts said pulses delivered by said 48 ⁇ fork in a voltage proportional to the speed, which voltage is compared to a reference voltage supplied by a module V3, by a differential amplifier A6, the output of said differential amplifier A6 being connected to a PID regulator (proportional integral derivative), which regulator controls the operation of a voltage source SI for supplying said motor 45l.
- the signal from said optoelectronic sensor or fork 48 ⁇ is transmitted by said connecting means 35 to said computer 34; in the same way, signals from said optoelectronic fork 482 from said second pyrometer 42 are transmitted to said computer 3 by said means 35.
- said computer 34 driving by means 35a an amplifier A7 provided in said pyrometer 42. which amplifier controls a voltage source S2 supplying the motor 42.
- said pyrometer comprises said generally cylindrical case which has an internal wall 92. an external wall 9l. which internal and external walls define channels 93 which can extend in a general shape of a helix, in which a cooling fluid such as water can circulate, which cooling fluid can penetrate according to arrow G2 in said channels via an inlet orifice 80, which fluid can exit from said channels according to arrow G3 via an outlet orifice 81.
- a cooling fluid such as water
- said front face 14c of said housing has a general form of flange, on which supports 14b, 7L are mounted in a substantially sealed manner, which support 71 can receive said dichroic entry blade 22, said input optics 2, said motor 4 driving said switch 6, as well as an additional optics 70, which is a converging infrared optics, which converges the substantially parallel beam having penetrated into said housing by said optics input, on a field diaphragm 72 situated in the image focal plane of said optic 70; in this embodiment, a second objective 73 (constituting a collimating optic) substantially identical and symmetrical to said objective 70 makes it possible to reconstruct a parallel light beam from said rays having passed through said diaphragm 72; this particular device makes it possible to attenuate still the optical noise liable to taint the measurements carried out by said detectors with errors.
- said second objective 73 is disposed between said switching disc 6 and said objective 10 focusing the infrared beam on said detector 5 mounted on said support 16.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Radiation Pyrometers (AREA)
Abstract
La présente invention est relative à un dispositif de mesure de la température dans un matériau semi-transparent et l'utilisation de ce dispositif pour déterminer un profil de temperature à l'intérieur de ce matériau, notamment à l'intérieur de verre fondu. Le dispositif comporte au moins deux pyromètres optiques (41, 42) sensiblement régulièrement disposés autour de ladite coulée, et munis chacun d'un détecteur infrarouge et d'un support mobile d'au moins trois filtres interférentiels à bandes étroites, centrés sur des longueurs d'ondes sensiblement égales ou appairées entre lesdits pyromètres, et l'un au moins desdits pyromètres comporte un moyen de mesure de la largeur de ladite coulée de verre, et le dispositif comporte des moyens de synchronisation du mouvement desdits supports mobiles desdits filtres de tous lesdits pyromètres.
Description
Dispositif de mesure de température et son utilisation
DESCRIPTION
La présente invention est relative à un dispositif de mesure de la température dans un matériau semi-transparent et l'utilisation de ce dispositif pour déterminer un profil de température à l'intérieur de ce matériau, notamment à l'intérieur de verre fondu en écoulement vertical.
Le domaine technique de 1'invention est celui de la mesure de la température.
La mise en oeuvre du verre pour la fabrication d'articles en verre met en oeuvre généralement un four dans lequel le verre est fondu à une température de l'ordre de 1400° C ; le four est raccordé à un chenal (ou "feeder") qui permet d'acheminer le verre fondu, ou verre en fusion, jusqu'à un bac d'alimentation muni d'orifices d'écoulements par lesquels le verre en fusion peut s'écouler par gravité, de manière à former une veine ou coulée sensiblement verticale, laquelle veine ou coulée est "tronçonnée" par des moyens généralement appelés couteaux ou ciseaux, qui séparent la veine de verre en fusion en échantillons ou tronçons, appelés "gobs" ou paraisons, qui sont de masse et/ou de volume prédéterminé et qui sont ensuite dirigés vers un moule dans lequel le verre se refroidit et se solidifie en prenant la forme de 1'article à fabriquer.
La mise en oeuvre de verre fondu nécessite d'effectuer des mesures de température du verre fondu, qui peuvent dans le chenal être effectuées à l'aide de pyromètres à thermocouple par exemple, mais qui, pour ce qui concerne les "gobs", nécessitent une mesure sans contact qui peut par exemple être réalisée par des pyromètres optiques qui sont généralement utilisés dans le domaine de la lumière visible ou du rayonnement infrarouge émis par le verre fondu.
On connaît déjà des pyromètres monochromatiques qui donnent la température d'un corps opaque à la longueur d'onde de mesure, lorsqu'on connaît l'émissivité de l'échantillon dont on effectue la mesure de température. La demande de brevet FR 1 580 121 décrit un pyromètre de ce type. On connaît également des pyromètres dichromatiques qui permettent de mesurer le rayonnement d'un corps opaque sur deux longueurs d'ondes
proches et qui permettent d'en déduire par calcul, la température de surface du corps opaque sans avoir à connaître l'émissivitê de ce corps, par application de la formule de Planck du rayonnement d'un corps noir. On utilise déjà des pyromêtres optiques pour mesurer la température du verre, particulièrement dans des longueurs d'ondes supérieures à 5 10"6 mètre car entre 0,5 10"° mètre et 10~° mètre le verre fondu étant semi-transparent, son émissivité et sa transparence dépendent de sa température. La demande de brevet FR 2 458093 décrit un exemple d'utilisation de pyromètres optiques pour régler la largeur d'un ruban de verre fabriqué par flottage.
La présente invention est plus particulièrement relative à la mesure de la température dans une coulée de verre en fusion s'écoulant d'un bac d'alimentation, en amont de ciseaux (ou juste après ceux-ci) séparant la coulée en tronçon de verre en fusion.
Le problème non résolu par les dispositifs connus de mesure de température du verre fondu, est de permettre une mesure de la température de ce verre fondu, particulièrement d'une coulée de verre fondu s'écoulant par gravité, avec une très grande précision, et de manière très rapide permettant le contrôle en "temps réel" de la température de surface de la coulée de verre ainsi que de la température à l'intérieur de cette coulée de verre, afin de détecter d'éventuelles dissymétries dans le profil de températures susceptibles d'entraîner des défauts dans les articles à fabriquer.
Le problème posé consiste également à procurer, à moindre coût, un dispositif de mesure de température dans une coulée de verre qui soit susceptible de fonctionner dans des conditions particulièrement difficiles, notamment en terme d'ambiance ; en effet, à proximité dudit bac d'alimentation et de ladite coulée de verre, la température est très élevée du fait de la présence du verre fondu à une température voisine de 1150° et du rayonnement émis par cette coulée de verre, ainsi que du fait de l'humidité importante et variable régnant dans ces installations de mise en oeuvre du verre fondu. Le problème posé consiste également à procurer un dispositif de mesure de température et son utilisation permettant de mesurer la température à l'intérieur d'un échantillon ou d'une coulée de verre
fondu, et plus généralement au sein de matériaux semi-transparents.
La solution au problème posé est un dispositif de mesure de température d'au moins une coulée de verre en fusion s'écoulant, par exemple par gravité, d'un bac d'alimentation muni d'au moins un orifice d'écoulement, à proximité de ciseaux séparant ladite coulée ou veine de verre en fusion en tronçons -ou gobs ou paraisons- de masse et/ou de volume prédéterminé, tel qu'il comporte au moins deux pyromètres optiques sensibles au rayonnement infrarouge, sensiblement régulièrement disposés autour de ladite coulée, c'est à dire dont les axes optiques de visée d'un échantillon de ladite coulée sont sensiblement régulièrement disposés dans un plan sensiblement perpendiculaire à la direction d'écoulement de ladite coulée, muni chacun d'un détecteur infrarouge et d'un support mobile, par exemple un support rotatif en forme de disque, d'au moins trois filtres interférentiels à bandes étroites centrés sur des longueurs d'ondes Ll, L2, L3 sensiblement égales (ou appairées) entre lesdits pyromètres ; l'un au moins desdits pyromètres (et/ou ledit dispositif de mesure) comporte un moyen de mesure de la largeur de ladite coulée de verre, et comporte des moyens de synchronisation (ou de contrôle ou asservissement)du mouvement (par exemple de la rotation) desdits supports mobiles desdits filtres de tous lesdits pyromètres, permettant la synchronisation des mesures de luminances effectuées par lesdits pyromètres.
Avantageusement, un dispositif selon l'invention comporte des moyens de mesure de l'hygrométrie de l'atmosphère entourant la coulée de verre et/ou lesdits pyromètres et il comporte des moyens permettant de corriger des valeurs de coefficient d'absorption de l'atmosphère en fonction de la longueur d'onde, en fonction de mesure d'hygrométrie.
De préférence lesdits moyens de mesure de largeur de coulée comportent au moins un capteur vidéo linéaire ou barrette CCD.
Avantageusement, chacun desdits supports mobiles comporte au moins deux filtres interférentiels centrés sur deux longueurs d'ondes de valeur différentes chacune desdites valeurs étant inférieure à -4,5 10~6 mètres, (de préférence comprises entre 1,5 10~6 et 4,5 10~6 mètres), de sorte que l'on peut mesurer à l'aide de chacun desdits pyromètres au moins deux luminances monochromatiques internes.
Dans un exemple de réalisation d'un dispositif selon l'invention,
chacun desdits supports mobiles comporte trois filtres interférentiels respectivement centrés sur des longueurs d'ondes voisines de 2,3 10~6 mètre, 3,810~6 mètre et 4,610~6 mètre.
Lorsque ledit support mobile comporte un filtre interférentiel centré sur une longueur d'onde voisine de 4,6 à 5 10~6 mètres, cela permet de mesurer une température de surface de ladite coulée.
Avantageusement, dans un dispositif selon l'invention, ledit détecteur infrarouge comporte au moins un transducteur infrarouge photorêsistif, tel qu'un transducteur au séléniure de plomb, de très faible dimension, par exemple de surface sensiblement voisine de 10" 8 m2, et de très faible temps de réponse (par exemple doté d'un temps de réponse inférieur ou égal à 10"3 seconde) , lequel transducteur infrarouge peut-être refroidi à une température voisine de -30° C par exemple, par au moins un module de refroidissement à effet PELTIER, lequel transducteur peut-être muni d'au moins une thermistance intégrée raccordée électriquement à des moyens de régulation rapide et de commande dudit module de refroidissement, laquelle thermistance est de préférence insérée dans un pont de heatstone.
Avantageusement, un dispositif selon l'invention comporte en amont dudit détecteur sur l'axe optique de celui-ci, qui est avantageusement sensiblement confondu avec l'axe de symétrie d'un boîtier sensiblement cylindrique, qui constitue l'axe optique dudit pyromètre, tin objectif de focalisation achromatique d'un faisceau infrarouge incident selon ledit axe optique dudit pyromètre sur ledit transducteur (ou partie sensible dudit détecteur infrarouge) , lequel objectif comporte au moins une lentille de focalisation ; l'espace compris entre ladite lentille et ledit détecteur peut être rendu sensiblement étanche (par des joints toriques par exemple) de manière à permettre de faire un vide (relatif) dans ledit espace et donc de manière à éviter la condensation de vapeur d'eau dans ledit espace, particulièrement sur la fenêtre dudit détecteur.
Dans un dispositif selon l'invention, chacun desdits pyromètres peut comporter à l'intérieur d'un boîtier sensiblement cylindrique fermé sur une extrémité avant par un fond avant et muni d'un fond arrière, un support (en forme générale de disque épais) muni de premiers canaux de circulation d'eau de refroidissement qui débouchent dans une première cavité entourant une partie au moins d'un support
dudit détecteur infrarouge.
Dans un dispositif selon l'invention, chacun desdits pyromètres peut comporter des moyens de circulation d'air de refroidissement qui débouchent dans l'espace (ou volume) contenu dans (délimité par) ledit boîtier de manière à mettre en surpression d'air sec ledit boîtier par rapport à l'atmosphère ambiante.
Avantageusement, dans un dispositif selon l'invention, ledit détecteur et ledit objectif de focalisation sont montés sur un support sensiblement cylindrique qui est fixé sur ledit support en forme de disque épais.
Avantageusement, le dispositif selon l'invention comporte un objectif d'entrée (à grossissement fixe ou réglable) qui transmet au moins un faisceau lumineux incident FI à rayons sensiblement parallèles, et ledit dispositif comporte une lame séparatrice ou dichroïque, sensiblement inclinée à 45° par rapport à l'axe dudit faisceau incident FI, qui sépare ledit faisceau incident en un faisceau visuel (FV) et en un faisceau non visuel (FNV) qui contient les radiations infrarouge émises par une zone prédéterminée de ladite coulée dont les rayons sont sensiblement parallèles avec ledit axe de symétrie dudit boîtier, et ledit dispositif comporte un objectif de visualisation qui focalise ledit faisceau visuel (FV) sur des moyens de visualisation.
Avantageusement, dans un dispositif selon l'invention, ledit objectif de visualisation est fixé sur ledit disque épais et son axe optique est sensiblement parallèle à l'axe de symétrie dudit boîtier dudit pyromètre, et il est suivi d'un prisme redresseur.
Avantageusement, dans le dispositif selon l'invention, lesdits moyens de visualisation comportent un oculaire muni d'un réticule de réglage du centrage (ou visée) et éventuellement du réglage du grossissement.
Avantageusement, dans un dispositif selon l'invention, lesdits moyens de mesure de ladite largeur de ladite coulée de verre comportent au moins un élément photosensible à CCD, telle qu'une barette CCD. Avantageusement, le dispositif selon l'invention comporte un moyen de réflexion partielle dudit faisceau visuel ayant traversé ledit objectif de visualisation, telle qu'une lame en verre traité par
exemple, pour diriger une image de la zone de l'échantillon analysé sur ledit élément (ou barrette) CCD de mesure de largeur de la coulée de verre.
Selon un mode préférentiel, ledit dispositif comporte deux pyromètres sensiblement diamétralement opposés (qui peuvent être raccordés audit calculateur par des moyens de liaison 35) dont les axes optiques coïncident sensiblement et coupent un axe ZZ sensiblement vertical selon lequel s'écoule ladite coulée, et ledit dispositif comporte des moyens d'enregistrement dans une mémoire dudit calculateur de coefficients d'absorbsion du verre en fonction de la longueur d'onde.
La solution au problème consiste également à utiliser un dispositif selon l'invention en mettant en oeuvre les opérations suivantes : - on raccorde lesdits pyromètres à un calculateur par des moyens de liaisons, et/ou, lorsque ledit calculateur est contenu en tout ou partie dans l'un au moins desdits pyromètres, on raccorde lesdits pyromètres entre eux,
- on enregistre dans ledit calculateur des caractéristiques physiques dudit verre, et de préférence on enregistre dans ledit calculateur des lois d'évolution du coefficient d'absorption spectrale dudit verre en fonction de la température, (et/ou des valeurs dudit coefficient d'absorbsion),
- on mesure simultanément avec lesdits pyromètres, grâce auxdits moyens de synchronisation (de mesure et/ou de support desdits filtres) , au moins trois luminances monochromatiques correspondant auxdites longueurs d'ondes (Lj, L2, L3) du spectre infra-rouge rayonné par un échantillon au moins dudit verre fondu, pour chacun desdits pyromètres, de manière à déterminer (pour chaque échantillon et) pour chaque pyromètre (donc chaque angle de visée) , une température de surface dudit échantillon ou zone prédéterminée de verre et au moins deux luminances internes audit échantillon de verre,
- on calcule pour chacun desdits pyromètres, des luminances monochromatiques estimées en fonction de températures estimées à l'intérieur dudit échantillon, à l'aide de ladite température de surface mesurée et d'un modèle mathématique de variation de température en fonction de la profondeur, lequel modèle utilise
lesdits paramètres ou caractéristiques du verre, on calcule des différences entre lesdites luminances monochromatiques estimées et lesdites luminances monochromatiques mesurées, et si lesdites différences sont supérieures à un seuil au moins prédéterminé, on corrige lesdites températures estimées (et/ou des paramètres -ou coefficients- dudit modèle mathématique de profil de température) et on effectue à nouveau l'opération précédente (en utilisant une méthode d'inversion).
Avantageusement, on mesure l'hygrométrie de l'atmosphère ambiante à proximité desdits échantillons et/ou desdits pyromètres et on corrige les valeurs mesurées par lesdits détecteurs infra-rouge desdits pyromètres (pour les longueurs d'ondes sensibles à l'humidité) .
La mesure ou acquisition des signaux délivrés par lesdits détecteurs infra-rouge se fait par la numérisation ou digitalisation du niveau (de l'intensité) desdits signaux, pour chaque filtre monté sur ledit disque ; ladite acquisition peut être effectuée dans chacun desdits pyromètres ou alternativement dans ledit calculateur, par une méthode de démultiplexage séquentiel ; avantageusement on numérise un nombre maximum de points de mesure, pour chaque intervalle de temps correspondant au passage d'un filtre, puis on effectue une moyenne, pour chaque filtre, des points de mesure numérisés et enregistrés avant d'enregistrer des valeurs moyennes desdits signaux correspondant auxdites luminances monochromatiques mesurées. Un des avantages procurés par les dispositif et procédé de mesure de température selon l'invention est qu'il permet de déterminer avec une grande précision des courbes ou profils de température à l'intérieur d'échantillons (ou zones prédéterminées) de la coulée de verre ; grâce à une disposition sensiblement symétrique desdits pyromètres, il est possible de mettre en évidence d'éventuelles dissymétries dans lesdits profils de température ce qui est particulièrement intéressant pour contrôler la qualité des objets en verre à fabriquer ; par ailleurs, les procédé et dispositif de mesure selon l'invention, permettent de déterminer lesdits profils de température avec précision même si la connaissance des paramètres caractéristique du verre observé n'est pas très précise. Les nombreux avantages procurés par 1'invention seront mieux
compris au travers de la description suivante qui se réfère aux dessins annexés qui illustrent sans aucun caractère limitatif des modes particuliers de réalisation de dispositifs selon l'invention et leur utilisation pour la mesure de profils internes de température d'une coulée de verre fondu.
La figure 1 illustre schématiquement en vue latérale, une installation de production d'articles en verre fondu, dans laquelle on utilise un dispositif selon l'invention.
La figure 2 illustre en vue en plan une installation de production d'articles en verre utilisant un dispositif de mesure de la température selon l'invention.
La figure 3 illustre en coupe par un plan sensiblement horizontal une coulée de verre et les points (ou zones) de mesure de température selon l'invention. La figure 4 illustre en coupe longitudinale partielle un mode préférentiel de réalisation de la partie avant d'un pyromètre optique d'un dispositif selon l'invention.
La figure illustre en vue en coupe longitudinale la partie arrière d'un pyromètre optique selon l'invention. Les figures 6a et 6b 6c illustrent schématiquement les principaux composants de circuits électroniques de traitement de signaux issus de pyromètres selon l'invention.
La figure 7 illustre partiellement en coupe longitudinale un mode préférentiel de réalisation d'un pyromètre selon l'invention. Par référence à la figure 1, on voit qu'une installation de production d'articles en verre comporte de façon connue un four 27 dans lequel est présente une masse de verre 29 fondue qui est amenée et maintenue à une température par exemple voisine de 1400° C.
Le verre contenu dans ledit four peut s'acheminer par l'intermédiaire d'un trop plein prévu dans la paroi dudit four, dans un chenal 2, qui peut être en pente de manière à permettre l'écoulement par gravité dudit verre fondu, jusqu'à un bac d'alimentation 1 "prévu à l'extrémité dudit chenal et muni dans sa partie inférieure d'au moins un orifice 3 par lequel ledit verre fondu peut s'écouler de manière à former une veine 28 s'écoulant sensiblement selon un axe vertical ZZ.
On voit que sous ledit bac d'alimentation est prévu un moyen de
séparation de ladite veine en tronçons ou gobs 65, lequel moyen de séparation schématiquement représenté est généralement appelé couteau ou ciseaux 31.
On voit que sous lesdits ciseaux est prévu une machine de moulage comportant au moins un moule 32, dans lequel ledit gob pourra pénétrer et s'y refroidir et s'y solidifier afin de constituer ledit article en verre à fabriquer, lequel moule 32 est disposé sur un support 33-
On voit sur cette figure que le dispositif selon l'invention comporte dans ce mode de réalisation trois pyromètres optiques 4ι, 42, 43 d'axes optiques respectifs XXi, XX2. XX3. qui sont coplanaires et qui sont sensiblement contenus dans un plan perpendiculaire au plan de la figure 1, lesquels axes optiques se rejoignent en un point situé sensiblement au centre d'une coupe par un plan sensiblement horizontal de ladite veine, c'est à dire dans un zone prédéterminée ou échantillon prédéterminé 30.
On voit que chacun desdits pyromètres optiques est de forme générale sensiblement cylindrique, chacun desdits pyromètres étant montés sur un support (non représenté).
Grâce aux moyens représentés sur la figure 1, on peut mettre en oeuvre un procédé de détermination de la température à l'intérieur desdits échantillons 30 de verre fondu qui comporte notamment les opérations suivantes :
- on enregistre dans ledit calculateur des caractéristiques physiques dudit verre, et de préférence on enregistre au moins des lois d'évolution du coefficient d'absorption spectrale dudit verre fondu,
- on mesure ensuite avec chacun desdits pyromètres, au moins trois luminances monochromatiques LUMi...LUM3, correspondant respectivement auxdites longueurs d'ondes Li,L2, 3 choisies dans le spectre infra-rouge rayonné par ledit échantillon, de manière à ce que lesdites luminances mesurées correspondent à au moins deux luminances internes et une luminance "de surface",
- on calcule au moins deux luminances monochromatiques estimées LUC1...LUC2 en fonction de températures estimées à l'intérieur dudit échantillon, pour chacun desdits pyromètres (et chaque échantillon visé) on calcule des différences entre lesdites luminances
monochromatiques estimées et lesdites luminances monochromatiques mesurées, et si lesdites différences sont supérieures à au moins un seuil prédéterminé, on corrige lesdites températures estimées et on effectue à nouveau l'opération précédente. On sait en effet que la luminance spectrale (ou monochromatique) du rayonnement qui émerge du verre fondu dépend du profil des températures régnant dans ledit échantillon de verre fondu, et dépend des propriétés thermo-optiques spectrales dudit verre fondu, de l'épaisseur dudit échantillon et des caractéristiques des frontières dudit échantillon avec le milieu extérieur.
On sait que les relations mathématiques qui expriment la luminance en fonction de la distribution de température sont du type intégral, et peuvent être notées :
L( λ )= P P( r*)eχp(τ-τ*)d-c*, OÙ r ( )» f K. (X*)dχ* où x est la profondeur courante, c'est-à-dire la distance, par rapport à la surface dudit échantillon, d'un point "courant", x* est une variable d'intégration, est la transmission à la longueur d'onde Λ de l'échantillon entre la surface et ladite profondeur x, " * est une variable d'intégration, K est un coefficient d'absorption du verre fondu,
0 est un coefficient de transmission de l'interface, entre le verre et le milieu ambiant, P est la fonction de Planck, dépendant de la température T, L(λ) est la luminance monochromatique, est la longueur d'onde.
On sait par ailleurs, que ledit coefficient d'absorption spectral K(Λ) eut varier pour les courtes longueurs d'onde en fonction de la température T selon une équation du type, K = exp (Bl (λ) + B2 (λ)/T),
Bl et B2 étant des paramètres dépendant du matériau.
Le calcul du profil de température à l'intérieur dudit échantillon à partir des luminances monochromatiques mesurées fait donc appel à des méthodes d'inversion qui consistent à déterminer les valeurs de la température à l'intérieur du verre "en connaissant la valeur d'une intégrale dépendant desdites températures ; moyennant certaines
hypothèses simplificatrices, on peut avantageusement supposer que ledit profil de température suit des évolutions en fonction de la profondeur dans le verre, du type parabolique, polynomiale, logarithmique, exponentielle, ou toute autre solution analytique paramétrée. Dans de nombreux cas, quatre paramètres Cl, C2, C3, C4 sont suffisants ; la forme générale de ce type d'équation peut alors s'écrire :
T(x) = F(Ti, T2, Cl, C2, C3, C4), avec
T(x) : température à la profondeur x dans ledit échantillon, Ti et T2 : températures à la surface dudit échantillon correspondant aux extrémités de l'épaisseur dudit échantillon selon l'axe de mesure,
Cl, C2, C3, Ci), étant lesdits paramètres.
Dans le cas d'application de la méthode à la détermination du profil (c'est-à-dire de la variation en fonction de la profondeur mesurée selon l'axe de mesure, c'est à dire selon ledit axe xxi) de la température dans un "gob", on utilise par exemple une équation du type
T (x) = Tι+Ci(l-exp(-x/C2))-C3(exp((x-H)/C4)-exp(-H/C4)) -(Ti-T2+Ci(l-exp(-H/C2))-C3(l-exp(-H/C4)))x/H, cette équation conduisant à un profil de température en forme de U (inversé) dissymétrique.
Dans un mode préférentiel d'utilisation d'un procédé selon l'invention, on va donc, dans la phase itérative : - calculer un profil de températures estimées à l'intérieur dudit échantillon à partir de valeur prédéterminées desdits coefficients Cl à C-i,
- calculer pour chaque pyromètre au moins deux luminances monochromatiques estimées LUC1...LUC2 correspondant à au moins deux longueurs d'ondes Lι,...L2 en fonction du profil desdites températures estimées, comparer pour chaque pyromètre lesdites luminances monochromatiques estimées avec les luminances mesurées (LUMi, ...LUM2) correspondant auxdites longueur d'ondes, et si lesdites différences sont supérieures à au moins un seuil prédéterminé, on calcule au moins un incrément à donner auxdits coefficients Ci à C4, et on recommence lesdites opérations de calcul itératif.
Préférentiellement, on arrête ledit calcul itératif lorsque lesdites luminances monochromatiques estimées ont la même valeur à 0,1 % près que lesdites luminances monochromatiques mesurées, ce qui correspond à une précision sur la température calculée de l'ordre de 0,5 % ; compte tenu des erreurs dues à d'autres causes que lesdits calculs, la précision de mesure est en fait de 3 à 5° C.
Par référence à la figure 2, on voit que de la même façon qu'illustré à la figure 1, ladite installation de production d'articles en verre comporte ledit four 27 qui communique avec ledit chenal 2, lequel chenal communique avec ledit bac d'alimentation 1 qui comporte au moins un orifice 3 d'évacuation par lequel peut s'écouler ladite veine 28 de verre fondu, sensiblement perpendiculairement par rapport au plan de la figure 2.
On voit que dans ce mode particulier de réalisation d'un dispositif selon l'invention, ledit dispositif de mesure de température comporte lesdits trois pyromètres optiques 4ι, 2, 43 d'axes optiques respectifs xxl, xx2, xx3, et lesdits pyromètres sont respectivement munis d'au moins un détecteur infrarouge lt 52» 3 q i sont respectivement situés à des distances Dl, D2.D3 du centre de ladite coulée de verre 28, qui correspond sensiblement au point d'intersection desdits axes de visées, lesquelles distances sont avantageusement égales et voisines de 1 à 5 mètres.
On voit que chacun desdits pyromètres est muni dans sa partie avant d'un objectif d'entrée respectivement 21ι, 212, I3 qui peut être réglable de manière à permettre la mise au point optique sur ladite zone ou échantillon à étudier.
Avantageusement, lesdits axes xxl, xx2, xx3 sont répartis selon un angle A égal à 120°.
On voit également sur cette figure que chacun desdits pyromètres est avantageusement relié par des moyens de liaisons électriques respectifs 35l» 3521 353 -- une itê centrale ou de calcul 3 qui peut traiter les signaux transmis par lesdits pyromètres optiques par l'intermédiaire desdits moyens de liaisons électriques, laquelle unité de calcul ou de commande peut également piloter le fonctionnement desdits pyromètres et plus particulièrement peut permettre la synchronisation (en vitesse et en phase) de tous les moteurs d'entraînement desdits disques supports de filtres interférentiels
desdits pyromètres, les uns par rapport aux autres.
Par référence à la figure 3. on voit que dans une section par un plan sensiblement horizontal de ladite coulée de verre 28, lequel plan contient lesdits axes optiques ou de visée xxl, xx2, xx3 desdits pyromètres par référence à la figure 2, on peut par la mesure du rayonnement selon trois longueurs d'ondes Li, L2, L3 identiques et/ou appairées pour tous lesdits pyromètres, déterminer la luminance pour des zones situées sur la surface externe de ladite coulée de verre et à l'intérieur de ladite coulée de verre, lesquelles zones sont sensiblement régulièrement réparties au sein dudit échantillon.
Plus précisément, la mesure des luminances selon lesdites trois longueurs d'ondes par ledit premier pyromètre (repère 4i de la figure 2) , permet la détermination de la température au point P10 (en surface) et jusqu'aux points Pli, P12, la mesure auxdites mêmes longueurs d'ondes par ledit pyromètre repéré 2 sur la figure 2 permet la détermination de la température au point P20 et jusqu'aux points P21, P22, et la mesure de la luminance par ledit troisième pyromètre (repère 43 de la figure 2) permet la détermination de la température au point P30 et jusqu'aux points P31. P3 ; compte tenu de l'appairage et/ou de l'égalité desdites longueurs d'ondes choisies pour tous lesdits pyromètres, lesdits points P12, P22, P3 sont sensiblement situés sur un cercle de rayon RI et ayant pour centre C sensiblement le centre de la section de ladite veine 28 de coulée de verre, et lesdits points Pli, P21, P31 sont situés sur un deuxième cercle ayant le même centre que ledit premier cercle et ayant un rayon R2, lesdits points P10, P20, P30 étant situés sur la face externe de ladite veine ou coulée de verre fondu, c'est à dire sensiblement sur la circonférence d'un cercle de rayon R3 égal au rayon (c'est-à-dire à la demi largeur) de ladite coulée de verre. Dans le cas où, comme illustré aux figures 2 et 3 on dispose de trois pyromètres, de préférence régulièrement répartis (à 120 degrés) autour de ladite coulée, on peut déterminer trois profils diamétraux de température ; afin de déterminer l'un de ces profils diamétraux, on peut par exemple, par référence à la figure 3t compléter les luminances mesurées par ledit premier pyromètre (repère 4ι de la figure 2) par des moyennes, pour chaque profondeur (ou rayon) considérée, des mesures desdits deuxième et troisième pyromètres, en
utilisant un principe d'interpolation.
Dans le cas où on utilise seulement deux pyromètres (repérés 3 et
4 sur la figure 2) sensiblement diamétralement opposées (en vue en plan) , on disposera ainsi d'au moins six mesures : deux mesures permettant de déterminer la température de surface de l'échantillon
(de la coulée) dans deux zones ou points (repérés P30 et P4θ sur la figure 3) diamétralement opposées, c'est-à-dire de part et d'autre de ladite coulée, et quatre mesures "internes" permettant de déterminer un profil (sensiblement diamétral) de température à l'intérieur de ladite coulée (lequel profil comporte les mesures effectuées aux points repérés P41, P42. P32. et P31 sur la figure 3).
Grâce à ce procédé, on peut ainsi établir un ou plusieurs profils de température à l'intérieur de ladite coulée de verre ou une cartographie dans le cas d'utilisation d'un nombre plus élevé desdits pyromètres optiques, ce qui permet notamment de contrôler l'homogénéité de la température de ladite coulée en ces différents points, ce qui permet de s'assurer de la qualité desdits articles produits avec ladite chaîne de fabrication d'articles en verre.
Par référence à la figure 4, on voit que la partie avant d'un pyromètre optique selon l'invention comporte un boîtier 9 cylindrique obturé à l'avant par un fond avant qui dans le mode de réalisation présenté dans cette figure comporte deux pièces 14a et l4b en forme générale de brides concentriques d'axe xxl, ledit axe constituant ledit axe de symétrie du pyromètre et l'axe optique dudit pyromètre. En avant de ladite face avant est situé un objectif d'entrée 21 qui peut comporter deux groupes optiques 21a et 21b mobiles l'un par rapport à l'autre qui permettent de mettre au point en fonction de la distance entre ledit pyromètre et les coulées de verre sur lesquelles doit être effectuée la mesure de la température (séquentiellement ou simultanément) .
Dans le mode de réalisation présenté sur cette figure, ledit premier groupe optique 21a comporte une lentille 39 à l'avant de laquelle est situé un joint 4l, laquelle lentille et lequel joint sont portés par un support muni de canaux 40 de passage d'air, lesquels canaux permettent le passage de l'air de l'intérieur dudit boîtier vers l'extérieur dudit boîtier selon les flèches F9-
Le deuxième groupe optique 21b comporte au moins une lentille 42
et un joint 44, lesdits joints 4l et 44 permettant d'assurer une étanchéité relative dans un espace compris entre lesdites lentilles 39 d'une part et 42 d'autre part, lequel espace est balayé par ledit air venant de l'intérieur dudit boîtier selon les flèches Fδ grâce à des canaux 43 prévus dans le support de ladite lentille 42 et permettent ainsi le balayage dudit espace situé entre lesdites lentilles par ledit air, de préférence sec.
On voit qu'en aval (sur le trajet optique de la lumière) dudit objectif d'entrée 21, les rayons lumineux incidents FI dans l'appareil sont sensiblement parallèles et rencontrent une première lame semi- transparente 22 qui sépare lesdits faisceaux incidents FI en un faisceau dit visible FV dont l'axe est sensiblement incliné à 90° par rapport à l'axe dudit faisceau incident FI, et un deuxième faisceau FNV ou faisceau non visible qui traverse ladite lame semi-transparente 22 ; en aval de ladite lame semi-transparente 22 sur le trajet optique dudit faisceau non visible FNV est situé un disque 6 support de filtres interférentiels à bandes étroites 7 , lequel disque 6 est entraîné en rotation par un moteur 4 fixé par un support 46 auxdites brides de la face avant dudit pyromètre. On voit que ledit disque 6 est monté sur le bout d'arbre 47 dudit moteur, par exemple par l'intermédiaire d'une frète, et sa périphérie passe entre les branches de fourches optoélectroniques 48 fixées rigidement par rapport audit boîtier, lesquelles fourches optoélectroniques sont susceptibles de détecter le passage de repères situés sur la périphérie du disque et sont susceptibles d'émettre, en réponse à ces passages de repères, des signaux ou impulsions correspondantes (une première fourche peut émettre une impulsion par tour au passage d'un filtre prédéterminé et une deuxième fourche peut émettre plusieurs impulsions par tour pour la synchronisation de la rotation desdits disques des différents pyromètres) .
On voit qu'en aval desdits filtres interférentiels 7, est placé un objectif de focalisation 10 qui peut focaliser sur la surface sensible d'un détecteur 5 ledit faisceau non visuel FNV ayant traversé un desdits filtres ; on voit que ledit objectif de focalisation 10 comporte un support cylindrique 11 sur lequel est monté ledit objectif proprement dit par l'intermédiaire d'un support 5 de lentilles 12, lequel support 11 est muni dans sa partie arrière d'un alésage
recevant le boîtier sensiblement cylindrique dudit détecteur infrarouge 5-
Avantageusement, ledit support 5 de lentille peut se déplacer à l'intérieur dudit support 11 par vissage ou dévissage et peut être bloquée en position par un écrou 4 -
On voit qu'avantageusement en avant de ladite lentille 12 (par rapport au trajet dudit faisceau optique FNV) est disposé au moins un joint 51» et un autre joint 50 est prévu entre la paroi extérieure dudit support 2 et la paroi interne d'un alésage prévu dans ledit support 11, de manière à rendre étanche l'espace 13 laissé libre entre lesdites lentilles 12 et ledit détecteur infrarouge 5. de sorte que l'on peut faire un vide partiel au moins dans ledit espace 13 (par des moyens non représentés), ce qui permet d'éviter la condensation de vapeur d'eau dans ledit espace 13 et plus particulièrement sur lesdites lentilles 12 et ledit détecteur 5.
Ledit support 11 d'objectif de focalisation et de détecteur est monté dans des alésages de différents diamètres prévus dans un support 16 en forme de disque épais, lequel support 16 reçoit ledit objectif de focalisation et ledit détecteur infrarouge montés sur ledit support 11, et reçoit également un objectif de visualisation 24 qui est situé sur le trajet dudit faisceau visuel FV, lequel faisceau FV est réfléchi par un miroir 36.
On voit que ledit disque épais 16 est muni de canaux 17 de circulation d'eau sensiblement radiaux et obturés à leur extrémité périphérique par exemple par un bouchon 66, lesquels canaux 17 communiquent avec une canalisation 57 d'arrivée d'eau, de sorte qu'une eau de refroidissement ou un liquide équivalent peut circuler selon les flèches F2 dans lesdites canalisations 57 et lesdits canaux 17, et circuler dans une cavité 18 sensiblement torique délimitée par ledit disque épais d'une part, et ledit support 11 d'autre part, de manière à refroidir ledit support 11 et ledit disque épais 16.
Des canaux 20 de circulation d'air peuvent être également prévus, qui permettent l'admission d'air selon une flèche FI, lesquels canaux 20 s'étendent également sensiblement radialement et sont alimentés par des moyens connus (non représentés) , lequel air est délivré dans une deuxième chambre ou cavité sensiblement annulaire située entre ledit disque épais et ledit support 11, laquelle cavité annulaire communique
avec la face arrière du boîtier d'encapsulation dudit détecteur infrarouge 5» de sorte que ledit air introduit dans ladite chambre 19 peut s'échapper selon les flèches F4 vers la partie arrière dudit pyromètre en léchant la base dudit boîtier dudit détecteur __ et permettant ainsi de refroidir celui-ci.
On voit que ledit détecteur est relié par des moyens de liaisons électriques tels que des pattes 4 à une première carte électronique 55. montée par des supports 5 sur ledit disque épais 16.
On voit également que ledit air sec qui a pu entrer dans la partie arrière dudit pyromètre, peut passer dans la partie avant selon les flèches F5 grâce à des espaces laissés libres sur la périphérie dudit disque entre celu-ci et ledit boîtier 9 sensiblement cylindrique, de sorte que ledit air sec balaye l'ensemble dudit boîtier, maintient en surpression celui-ci par rapport à l'ambiance, lequel air peut ensuite se déplacer selon les flèches F7 pour pénétrer dans lesdits canaux 43 et 40 prévus dans ledit objectif d'entrée, et sortir selon lesdites flèches F9 afin de protéger ladite lentille dudit objectif d'entrée, de projections éventuelles.
Par référence à la figure 5. on voit que ledit pyromètre comporte ledit support 16 en forme de disque épais qui porte ledit détecteur infrarouge 5 situé sensiblement sur l'axe de symétrie dudit pyromètre et dudit disque épais 16, et supporte ledit objectif de \ .-.sualisation 24 qui comporte au moins une lentille 60 et un support de lentille 61 ; ledit objectif de visualisation permet de focaliser ledit faisceau FV à rayons parallèles, en un faisceau convergent FVl qui peut converger dans le plan d'un réticule prévu sur un oculaire 23 situé à l'arrière dudit pyromètre, et qui peut être par exemple encastré de façon étanche par rapport à un fond arrière 15 dudit boîtier dudit pyromètre. On voit que sur ledit trajet convergent desdits rayons en aval dudit objectif de visualisation 24, peut être avantageusement prévue une deuxième lame semi-transparente 26 montée sur un support 63, laquelle lame peut être par exemple une lame en verre de silice, et qui peut transmettre une partie au moins dudit faisceau visuel et le faire focaliser sur la partie sensible d'un détecteur CCD 8, de préférence un détecteur linéaire ou barrette CCD placé sur un support 62 qui est avantageusement monté rigidement par rapport au boîtier et
de façon réglable afin d'ajuster ladite focalisation dudit faisceau FV2 renvoyé par ladite lame semi-transparente 26.
Ledit capteur CCD permet ainsi de mesurer la largeur de la zone à étudier par des traitements de signaux de type connu. On voit également que dans ce mode de réalisation, ledit pyromètre comporte dans ladite partie arrière située à l'arrière dudit disque épais 16, une première carte électronique 55 q i peut avantageusement comporter les circuits de traitements de signaux issus dudit détecteur infrarouge, une deuxième carte électronique 64, qui peut par exemple comporter des circuits de traitements de signaux issus dudit capteur CCD 8, et comporte un connecteur 59 qui est relié audit moyen de liaison électrique entre ledit pyromètre et ledit calculateur (repère 351. 352, 353 de la figure 2).
Par référence à la figure 6a, on voit que dans un mode préférentiel de réalisation d'un pyromètre selon l'invention, ledit détecteur infrarouge constitué par un détecteur photorésistif se comporte comme une résistance R5, et lesdits moyens de traitements de signaux électroniques comportent un étage de conversion courant- tension IU, lequel étage IU comporte une source de tension de référence VREF connectée à un amplificateur Al opérationnel, la sortie dudit amplificateur et l'entrée négative dudit amplificateur étant reliée à une résistance RI et un condensateur C montés en parallèle.
La tension obtenue à la sortie dudit amplificateur Al est alors appliquée par l'intermédiaire d'un filtre (C2, R2) à un deuxième amplificateur A2 différentiel qui fournit à sa sortie la composante fluctuante de ladite tension délivrée par ledit amplificateur Al, laquelle composante fluctuante est amplifiée par l'amplificateur A3 relié à un générateur de tension d'offset V2.
De la sorte, la sortie dudit amplificateur A3 peut être reliée audit moyen de calcul 34 par desdits moyens de liaisons 35 entre ledit pyromètre 4 et ledit calculateur 34, grâce à boucle de courant peu soumise aux perturbations électromagnétiques.
Par référence à la figure 6b, on voit que dans un mode préférentiel de réalisation d'un pyromètre selon l'invention, une thermistance Rth est prévue dans ledit boîtier dudit détecteur infrarouge, qui mesure la température de la partie sensible dudit détecteur, laquelle thermistance Rth est placée dans un pont de
Wheatstone comportant trois résistances R0 de grande précision et de même valeur, lequel pont de Wheatstone est alimenté par une tension VF, et la .tension de déséquilibre dudit pont VM est appliquée aux bornes d'un amplificateur A4, le signal SI de sortie dudit amplificateur A4 passant dans un module proportionnel intégral P, I, puis dans un amplificateur de puissance A5, afin de réguler la commande d'alimentation dudit module à affet PELTIER 64 en fonction de la température mesurée par ladite thermistance Rth.
Avantageusement, les constantes de temps en boucle ouverte du système comportant lesdits amplificateurs A4 et A5 et lesdits modules P, I, sont de l'ordre de 100 millisecondes.
Par référence à la figure 6C, on voit qu'avantageusement, chacun desdits pyromètres 4l et 42 (dans le cas où seuls deux pyromètres sont utilisés) , sont chacun muni de ladite fourche optoélectronique respectivement 48i et 482 Qui délivre des signaux ou impulsions en fonction de la rotation et du passage entre des branches desdites fourches desdits repères prévus sur la périphérie desdits disques (support de filtre interférentiel) correspondants.
On voit qu'avantageusement, un desdits pyromètres optiques 4ι, ou pyromètre maitre, comporte des moyens de régulation de la vitesse dudit moteur 45l d'entraînement dudit disque porte filtre, lesquels moyens de régulations comportent un module Ml qui convertit lesdites impulsions délivrées par ladite fourche 48ι en une tension proportionnelle à la vitesse, laquelle tension est comparée à une tension de référence fournie par un module V3, par un amplificateur différentiel A6, la sortie dudit amplificateur différentiel A6 étant connecté à un régulateur PID (proportionnel intégral dérivé) , lequel régulateur pilote le fonctionnement d'une source de tension SI d'alimentation dudit moteur 45l. de manière à asservir la vitesse de rotation dudit moteur qui peut être par exemple un moteur à courant continu sans balais.
On voit qu'avantageusement le signal issu dudit capteur ou fourche optoélectronique 48ι est transmis par lesdits moyens de liaisons 35 audit calculateur 34 ; de la même manière, des signaux issus de ladite fourche optoélectronique 482 dudit deuxième pyromètre 42 sont transmis audit calculateur 3 par lesdits moyens 35. ledit calculateur 34 pilotant par des moyens 35a un amplificateur A7 prévu dans ledit
pyromètre 42. lequel amplificateur pilote une source de tension S2 d'alimentation du moteur 42 . cette disposition permet dans ledit pyromètre maitre 4ι de maintenir à une valeur prédéterminée la vitesse dudit moteur 45l. et le signal issu de ladite fourche 48ι est utilisé par ledit calculateur 34 en comparaison avec le signal issu dudit capteur 482 dudit deuxième pyromètre ou pyromètre esclave, afin de synchroniser la rotation desdits moteurs 45l et 452 ; cette disposition est en effet importante dans le cas où les mesures de luminance par ledit détecteur infrarouge sont effectuées à haute cadence, et nécessitent donc une synchronisation entre les instants de mesure des différents pyromètres d'un dispositif de mesure de température selon l'invention.
Par référence à la figure 7 on voit que dans un mode préférentiel de réalisation d'un pyromètre selon l'invention, ledit pyromètre comporte ledit boîtier de forme générale cylindrique qui comporte une paroi interne 92. une paroi externe 9l. lesquels parois internes et externes définissent des canaux 93 q i peuvent s'étendre selon une forme générale d'hélice, dans lesquels peut circuler un fluide de refroidissement tel que de l'eau, lequel fluide de refroidissement peut pénétrer selon la flèche G2 dans lesdits canaux par l'intermédiaire d'un orifice d'entrée 80, lequel fluide peut sortir desdits canaux selon la flèche G3 par l'intermédiaire d'un orifice de sortie 81.
Dans ce mode de réalisation illustré figure 7 , ladite face avant l4c dudit boîtier a une forme générale de bride, sur laquelle sont montés des supports l4b, 7L de manière sensiblement étanche, lesquel support 71 peut recevoir ladite lame dichroïque d'entrée 22, ladite optique d'entrée 2, ledit moteur 4 d'entraînement dudit commutateur 6, ainsi qu'une optique supplémentaire 70, qui est une optique infra- rouge convergente, qui fait converger le faisceau sensiblement parallèle ayant pénétré dans ledit boîtier par ladite optique d'entrée, sur un diaphragme de champ 72 situé dans le plan focal image de ladite optique 70 ; dans ce mode de réalisation, un deuxième objectif 73 (constituant une optique de collimation) sensiblement identique et symétrique audit objectif 70 permet de reconstituer un faisceau lumineux parallèle à partir desdits rayons ayant traversé ledit diaphragme 72 ; ce dispositif particulier permet d'atténuer
encore le bruit optique susceptible d'entacher d'erreurs les mesures effectuées par lesdits détecteurs.
On voit que ledit deuxième objectif 73 est disposé entre ledit disque comutateur 6 et ledit objectif 10 focalisant le faisceau infra- rouge sur ledit détecteur 5 monté sur ledit support 16.
Claims
REVENDICATIONS 1. Dispositif de mesure de température d'au moins une coulée de verre s'écoulant d'un bac d'alimentation (1), caractérisé en ce qu'il comporte au moins deux pyromètres optiques (4ι, 42) sensiblement régulièrement disposés autour de ladite coulée, et munis chacun d'un détecteur (5) infrarouge, d'un support (6) mobile d'au moins trois filtres (7) interférentiels à bandes étroites centrées sur des longueurs d'ondes (Li, L2, L3) appairées entre lesdits pyromètres, lequel dispositif comporte un moyen (8) de mesure de la largeur de ladite coulée de verre, lequel dispositif comporte des moyens de synchronisation de mesures desdits pyromètres et comporte un calculateur (34) permettant le calcul de luminances monochromatiques estimées et de profils de températures estimées.
2. Dispositif selon la revendication 1 caractérisé en ce que chacun desdits supports mobiles comporte au moins deux filtres interférentiels centrés sur deux longueurs d'ondes de valeur différentes, chacune desdites valeurs étant inférieure à 4,5 10~6 mètres, de sorte que l'on peut mesurer à l'aide de chacun desdits pyromètres au moins deux luminances monochromatiques internes.
3. Dispositif selon l'une quelconque des revendications 1 à 2 caractérisé en ce que ledit détecteur infrarouge comporte au moins un transducteur infrarouge photorésistif refroidi par au moins un module à effet Peltier, lequel transducteur est muni d'au moins une thermistance raccordée à des moyens de régulation et de commande dudit module de refroidissement.
4. Dispositif selon l'une quelconque des revendications 1 à 3 caractérisé en ce qu'il comporte un boîtier (9) sensiblement cylindrique, un objectif de focalisation (10) d'un faisceau infrarouge sensiblement parallèle sur ledit transducteur, lequel objectif comporte au moins une lentille (12) de focalisation.
5. Dispositif selon l'une quelconque des revendications 1 à 4 caractérisé en ce que chacun desdits pyromètres comporte à l'intérieur d'un boîtier (9) sensiblement cylindrique fermé sur une extrémité avant (9a) par un fond avant (14) et muni d'un fond arrière (15), un support (16) en forme générale de disque épais muni de premiers canaux (17) de circulation d'eau de refroidissement qui débouchent dans une première cavité (18) entourant une partie au moins d'un support (11) dudit détecteur infrarouge.
6. Dispositif selon l'une quelconque des revendications 1 à 5 caractérisé en ce qu'il comporte deux pyromètres sensiblement diamétralement opposés dont les axes optiques coïncident sensiblement et coupent un axe ZZ sensiblement vertical selon lequel s'écoule ladite coulée, et ledit dispositif comporte des moyens d'enregistrement dans une mémoire dudit calculateur de coefficients d'absorbsion du verre en fonction de la longueur d'onde.
7. Dispositif selon l'une quelconque des revendications 1 à 6 caractérisé en ce qu'il comporte des moyens de mesure de l'hygrométrie de l'atmosphère entourant la coulée de verre et/ou lesdits pyromètres et il comporte des moyens permettant de corriger des valeurs de coefficient d'absorption de l'atmosphère en fonction de la longueur d'onde, en fonction de ladite mesure d'hygrométrie.
8. Dispositif selon l'une quelconque des revendications 1 à 7 caractérisé en ce qu'il comporte un objectif d'entrée (21) qui transmet un faisceau lumineux incident (FI) à rayons sensiblement parallèles, et ledit dispositif comporte une lame séparatrice qui sépare ledit faisceau incident en un faisceau visuel (FV) et en un faisceau non visuel (FNV) qui contient les radiations infrarouge émises par une zone prédéterminée de ladite coulée.
9. Dispositif selon l'une quelconque des revendications 1 à 8 caractérisé en ce que lesdits moyens de mesure de largeur de ladite coulée de verre comportent au moins un élément photosensible à CCD.
10. Utilisation d'un dispositif de mesure de température d'au moins une coulée de verre selon l'une quelconque des revendications 1 à 9. caractérisé en ce que :
- on raccorde lesdits pyromètres à un calculateur (34) par des moyens de liaison (35). - on enregistre dans ledit calculateur des caractéristiques physiques dudit verre, et de préférence on enregistre dans ledit calculateur au moins des lois d'évolution du coefficient d'absorption spectrale dudit verre, on mesure, simultanément grâce auxdits moyens de synchronisation de mesures, au moins trois luminances monochromatiques correspondant auxdites longueurs d'ondes (L1.L2.L3) du spectre infra¬ rouge rayonné par un échantillon au moins dudit verre fondu, correspondant à au moins deux luminances internes et une température de surface, pour chacun desdits pyromètres,
- on calcule, pour chacun desdits pyromètres, des luminances monochromatiques estimées en fonction de températures estimées à l'intérieur dudit échantillon, on calcule les différences entre lesdites luminances monochromatiques estimées avec lesdites luminances monochromatiques mesurées, et si lesdites différences sont supérieures à un seuil au moins prédéterminé, on corrige lesdites températures estimées et on effectue à nouveau l'opération précédente.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9115472A FR2684762A1 (fr) | 1991-12-06 | 1991-12-06 | Dispositif de mesure de temperature et son utilisation. |
FR91/15472 | 1991-12-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1993011410A1 true WO1993011410A1 (fr) | 1993-06-10 |
Family
ID=9420002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR1992/001150 WO1993011410A1 (fr) | 1991-12-06 | 1992-12-04 | Dispositif de mesure de temperature et son utilisation |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU3355893A (fr) |
FR (1) | FR2684762A1 (fr) |
WO (1) | WO1993011410A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0643297A1 (fr) * | 1993-09-09 | 1995-03-15 | TCE CONSULTANCY & ENGINEERING | Système analytique pour analyser, contrôler, diagnostiquer et/ou réguler un procédé pour la fabrication de produits d'emballage en verre, dans laquelle l'analyse à lien directement après le procédé du formage du verre |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3426968A (en) * | 1966-11-29 | 1969-02-11 | Ppg Industries Inc | Pyrometer and control of manufacturing processes therewith |
FR1599636A (fr) * | 1968-05-18 | 1970-07-15 | ||
FR2365532A1 (fr) * | 1976-09-28 | 1978-04-21 | Nitto Boseki Co Ltd | Procede de detection des ruptures de filaments de fibre de verre en cours d'etirage |
GB2068109A (en) * | 1980-01-21 | 1981-08-05 | Europ Electronic Syst Ltd | Monitoring strip temperature |
EP0058806A1 (fr) * | 1981-01-16 | 1982-09-01 | Mecilec | Procédé de mesure du rayonnement infrarouge pour déterminer la température de fils et barres en déplacement |
US4365307A (en) * | 1981-02-25 | 1982-12-21 | Sumitomo Kinzoku Kogyo Kabushiki Gaisha | Temperature pattern measuring device |
DE3433584A1 (de) * | 1984-09-13 | 1986-03-20 | Ingenieurbüro D.-Ing. Manfred Markworth, 6074 Rödermark | Strahlungspyrometrisches verfahren zur erfassung von objektiven oberflaechentemperaturen mit reflektometern |
DE3821476A1 (de) * | 1987-09-07 | 1989-03-16 | Weinert E Messgeraetewerk | Verfahren zur beruehrungslosen emissionsgradunabhaengigen temperaturmessung an materialien mit ausgepraegten absorptionsbanden |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6355426A (ja) * | 1986-08-26 | 1988-03-09 | Chino Corp | 放射温度計 |
-
1991
- 1991-12-06 FR FR9115472A patent/FR2684762A1/fr not_active Withdrawn
-
1992
- 1992-12-04 WO PCT/FR1992/001150 patent/WO1993011410A1/fr active Application Filing
- 1992-12-04 AU AU33558/93A patent/AU3355893A/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3426968A (en) * | 1966-11-29 | 1969-02-11 | Ppg Industries Inc | Pyrometer and control of manufacturing processes therewith |
FR1599636A (fr) * | 1968-05-18 | 1970-07-15 | ||
FR2365532A1 (fr) * | 1976-09-28 | 1978-04-21 | Nitto Boseki Co Ltd | Procede de detection des ruptures de filaments de fibre de verre en cours d'etirage |
GB2068109A (en) * | 1980-01-21 | 1981-08-05 | Europ Electronic Syst Ltd | Monitoring strip temperature |
EP0058806A1 (fr) * | 1981-01-16 | 1982-09-01 | Mecilec | Procédé de mesure du rayonnement infrarouge pour déterminer la température de fils et barres en déplacement |
US4365307A (en) * | 1981-02-25 | 1982-12-21 | Sumitomo Kinzoku Kogyo Kabushiki Gaisha | Temperature pattern measuring device |
DE3433584A1 (de) * | 1984-09-13 | 1986-03-20 | Ingenieurbüro D.-Ing. Manfred Markworth, 6074 Rödermark | Strahlungspyrometrisches verfahren zur erfassung von objektiven oberflaechentemperaturen mit reflektometern |
DE3821476A1 (de) * | 1987-09-07 | 1989-03-16 | Weinert E Messgeraetewerk | Verfahren zur beruehrungslosen emissionsgradunabhaengigen temperaturmessung an materialien mit ausgepraegten absorptionsbanden |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 12, no. 276 (P-737)(3123) 30 Juillet 1988 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0643297A1 (fr) * | 1993-09-09 | 1995-03-15 | TCE CONSULTANCY & ENGINEERING | Système analytique pour analyser, contrôler, diagnostiquer et/ou réguler un procédé pour la fabrication de produits d'emballage en verre, dans laquelle l'analyse à lien directement après le procédé du formage du verre |
NL9301568A (nl) * | 1993-09-09 | 1995-04-03 | Tce Consultancy & Eng | Analyse-systeem voor het analyseren, bewaken, diagnostiseren en/of sturen van een produktieproces waarin produkten worden gevormd die een temperatuurbehandeling ondergaan, produktieproces met een analysesysteem en een werkwijze daarvoor. |
Also Published As
Publication number | Publication date |
---|---|
AU3355893A (en) | 1993-06-28 |
FR2684762A1 (fr) | 1993-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2831541B1 (fr) | Procede et installation de mesure de la repartition de verre dans des recipients | |
FR2766923A1 (fr) | Instrument de mesure de l'indice de refraction d'un fluide | |
FR2569864A1 (fr) | Equipement d'emission et de distribution de lumiere par fibres optiques, notamment pour le controle spectrophotometrique en ligne a l'aide d'un spectrophotometre double faisceau | |
WO2021009456A1 (fr) | Installation et procede pour mesurer l'epaisseur des parois de recipients en verre | |
FR3035152A1 (fr) | Agencement de tete de cylindre | |
FR2703455A1 (fr) | Pyromètre bichromatique. | |
FR2488689A1 (fr) | Procede et appareil pour controler le diametre des fibres de verre en cours de fabrication | |
EP2861970B1 (fr) | Dispositif de focalisation d'un faisceau laser par caméra | |
WO2014082957A1 (fr) | Sonde pour mesures optiques en milieu turbide, et systeme de mesure optique mettant en oeuvre cette sonde | |
EP0971203B1 (fr) | Procédé et dispositif pour la mesure de l'épaisseur d'un matériau transparent | |
WO2014068003A1 (fr) | Dispositif d'acquisition d'une image d'un échantillon, comportant un organe de régulation du chauffage d'un support de réception de l'échantillon, et système d'imagerie associé | |
CA2503833C (fr) | Procede de determination du point de disparition des cristaux de produits petroliers ainsi que dispositif permettant la mise en oeuvre de ce procede | |
WO1993011410A1 (fr) | Dispositif de mesure de temperature et son utilisation | |
FR2766922A1 (fr) | Instrument de mesure de l'indice de refraction d'un fluide | |
EP0479676A1 (fr) | Mesure du débit d'un filet de matériau fondu | |
FR2583164A1 (fr) | Procede et dispositif pour determiner la couleur et la turbidite d'un fluide | |
EP0064110B1 (fr) | Appareil de photométrie par diffusion | |
EP0605297A1 (fr) | Appareil de mesure de profil d'indice d'une préforme de fibre optique comportant une enveloppe externe et un coeur | |
WO1992009869A1 (fr) | Dispositif et procede de mesure de la temperature a l'interieur de materiaux semi-transparents | |
EP0111441A1 (fr) | Appareil de mesure de l'indice de réfraction d'une fibre optique | |
FR2752056A1 (fr) | Dispositif de mesure des proprietes radiatives de produits metalliques, et procede de mise en oeuvre de ce dispositif | |
EP3781902B1 (fr) | Dispositif de mesure pour déterminer l'épaisseur d'une couche d'un matériau | |
WO1988006727A1 (fr) | Appareil portatif et autonome pour l'analyse d'une composition gazeuse par spectrophotometrie de flamme | |
WO2023073296A1 (fr) | Dispositif de mesure des performances d'un detecteur optique et procede de mesure associe | |
FR2518745A1 (fr) | Dispositif pour mesurer la temperature d'un objet a partir du rayonnement infrarouge qu'emet celui-ci |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |