WO1993009081A1 - Process for producing 1,1,1,2,2,4,4,4-octafluorobutane - Google Patents

Process for producing 1,1,1,2,2,4,4,4-octafluorobutane Download PDF

Info

Publication number
WO1993009081A1
WO1993009081A1 PCT/JP1992/001399 JP9201399W WO9309081A1 WO 1993009081 A1 WO1993009081 A1 WO 1993009081A1 JP 9201399 W JP9201399 W JP 9201399W WO 9309081 A1 WO9309081 A1 WO 9309081A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
octafluorobutane
hydrogen
reduction
catalyst
Prior art date
Application number
PCT/JP1992/001399
Other languages
French (fr)
Japanese (ja)
Inventor
Hirokazu Aoyama
Souichi Ueda
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO1993009081A1 publication Critical patent/WO1993009081A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation

Definitions

  • the present invention relates to a method for producing 1,1,1,2,2,4,4,4-octafluorobutane (HFC-338mfc).
  • HFC-338mic is expected to be used for foaming agents, refrigerants, cleaning agents, etc., just like conventional fluorocarbons, and has the advantage of not destroying stratospheric ozone at all because it does not contain chlorine. I have.
  • the present invention seeks to provide a method for industrially and economically producing HF C 338mic in high yield.
  • the inventor of the present invention has proposed a 3,3-dichloro-mouth or dibromo-monomer obtained by adding 1,1-dichlorotetrafluoroethane or 1,1-dibromotetrafluoroethane to tetrafluoroethylene.
  • the method of reduction in the present invention is a method of performing under light irradiation, using zinc. , A method using hydrogen in the presence of a catalyst, a method using potassium acetate and an alcohol, and the like.
  • alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol and sec-butanol are preferably used as a proton source. More preferably, general alcohols such as isopropanol and sec-butanol are used.
  • the reaction proceeds smoothly by adding an alcohol into the reaction system to capture HCl or HBr generated as the reaction proceeds.
  • H C1 or H Br generated by heating may be driven out of the system.
  • the light source is not particularly limited as long as it generates light having a wavelength of 40 O nm or less.
  • a high-pressure mercury lamp and a low-pressure mercury lamp are preferable.
  • the reaction temperature in the reduction under light irradiation is usually in the range of 0 to 100 ° C, preferably in the range of 10 to 80 ° C, and the reaction pressure is not particularly limited, but is from atmospheric pressure to 2 KgZcm 2 G It is preferable to carry out within the range.
  • a solvent used when reducing with zinc a solvent that is a proton source for the reduction reaction is preferable, and alcohols such as methanol, ethanol, isopropanol, ethylene glycol, and propylene glycol are preferably used. Powder or granular zinc is preferred as zinc, and zinc powder is most preferred.
  • the amount of zinc used should be at least equimolar to the chlorine or bromine to be reduced, that is, at least 2 molar equivalents to the starting material.
  • the reaction is usually carried out in a temperature range from room temperature to 120 ° C, preferably 40 to 100 ° C.
  • the reaction pressure is not particularly limited, either, from atmospheric pressure to 8 KgZcm 2 It is preferably carried out in a pressure range of G.
  • the reduction can be performed in either a gas phase or a liquid phase reaction system.
  • a noble metal catalyst such as platinum, palladium, rhodium and ruthenium, and a hydrogenation catalyst such as Raney nickel can be used, but a noble metal catalyst is particularly preferable.
  • the carrier of the reduction catalyst for example, alumina, activated carbon, and the like are suitably used.
  • a conventional method for preparing a noble metal catalyst can be applied. It is preferable to reduce the catalyst before use in order to obtain stable catalytic activity, but it is not always necessary.
  • the ratio of hydrogen to starting material can vary widely. Normally, stoichiometric amounts of hydrogen are used to hydrogenate chlorine or bromine atoms, but in order to increase the conversion of the starting material and the selectivity of the target compound, a considerably large amount, based on the number of moles of the starting material, For example, 4 times or more hydrogen may be used.
  • the reaction temperature is suitably from 80 to 350 ° C., particularly preferably from 100 to 200 ° C. in a gas phase reaction.
  • the contact time is from 0, 1 to 200 seconds, particularly preferably from 1 to 60 seconds. .
  • the reduction reaction When the reduction reaction is performed in the liquid phase, it is possible to use a solvent without solvent, but alcohols such as methanol, ethanol, and isopropanol; ethers such as tetrahydrofuran, dioxane, and ethylene glycol dimethyl ether; and solvents such as acetic acid and pyridine.
  • the reaction may be performed in the reaction.
  • the reaction system may contain an alkaline solvent, such as sodium hydroxide, potassium hydroxide, or calcium hydroxide.
  • the generated acid may be captured by adding water, soda glyme, ammonia water, or the like.
  • the reaction temperature in the liquid phase reaction is preferably room temperature to 150 ° C., and the reaction pressure is preferably atmospheric pressure to 50 cm 2 G.
  • a solvent used in the reduction with acetic acid and alcohol a solvent that is a proton source for the reduction reaction is preferable, and alcohols such as methanol, ethanol, isopropanol, ethylene glycol and propylene glycol are preferable, and isopropanol is preferable. Is particularly preferred.
  • the amount of potassium persulfate should be at least one equivalent to the chlorine or bromine atom to be reduced, that is, at least 2 molar equivalents to the starting material.
  • the reaction is usually carried out at a temperature in the range of room temperature to 120, preferably 40 to 100 ° C.
  • the reaction pressure is not particularly limited, it is preferable to carry out the reaction in a pressure range from atmospheric pressure to 8 kgZcm 2 G.
  • the present invention reduces 1,3,3-dichro- or jib-mouth 1,1,1,2,2,4,4,4 one-year-old kutafluorobutane to provide a high yield of 1 , 1,1,2,2,4,4,4 can produce otatafnoroleolobutane.
  • Example 2 3,3-dichloro-1,1,1,2,2,4,4 instead of 3,3-dibromo-1,1,1,2,2,4,4,4-octafluorobutane
  • the reaction was carried out in the same manner except that 15 g of 4-octafluorobutane was used.
  • the conversion of the raw material was 100%, and 1,1,1,2,2,4,4,4-octafuronole Lobutane was formed with a selectivity of 80%.
  • a reaction tube made of Hastelloy C with an inner diameter of 20 was filled with 40 ml of activated carbon-supported palladium catalyst (supporting rate: 0.5% by weight). After flowing hydrogen at 120 ° C at a flow rate of 8 OccZmin. For 2 hours, gasified at a reaction temperature of 120 ° C was 3,3-dichloro-1,1,1,2,2,4,4,4. —Octafluorobutane was passed through the reaction tube at a flow rate of 4 Occ min. And hydrogen at a flow rate of 10 OccZmin. After removing the acid content from the reactor outlet gas, it was collected in a cold trap at 178 ° C and analyzed by gas chromatography. The conversion of the raw material was 95%, and the target 1, 1, 1, 2 , 2,4,4,4 One-year-old kutafluorobutane was produced with a selectivity of 85%.
  • Example 6 instead of 3,3-dibromo-1,1,1,2,2,4,4,4-octafluorobutane, 3,3-dichloro-1,1,1,2,2,4 The reaction was carried out in the same manner except that 15 g of 1,4-octafluorobutane was used. The reaction mixture was cooled and analyzed by gas chromatography. The conversion of the raw materials was 100%. , 1, 2, 2, 4, 4, and 4-octafluorobutane were produced with a selectivity of 94%. -

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A process for producing 1,1,1,2,2,4,4,4-octafluorobutane in a high yield by reducing 3,3-dichloro- or 3,3-dibromo-1,1,1,2,2,4,4,4-octafluorobutane.

Description

明 細 書  Specification
1, 1, 1, 2, 2, 4, 4, 4—ォクタフルォロブタンの製造方法 産業上の利用分野  Process for producing 1,1,1,2,2,4,4,4-octafluorobutane
本発明は、 1, 1, 1, 2, 2, 4, 4, 4—ォクタフルォロブタン(HFC— 338mfc)の製造方法に関する。 HFC— 338micは、 従来から用いら れてきたフロン類と同様に発泡剤、 冷媒、 洗浄剤などの用途が期待され、 さらに塩素を含んでいないため成層圏オゾンをまったく破壊しないという 利点を有している。  The present invention relates to a method for producing 1,1,1,2,2,4,4,4-octafluorobutane (HFC-338mfc). HFC-338mic is expected to be used for foaming agents, refrigerants, cleaning agents, etc., just like conventional fluorocarbons, and has the advantage of not destroying stratospheric ozone at all because it does not contain chlorine. I have.
従来の技術  Conventional technology
従来、 HF C 338mfcを得る方法としては、 ジャーナル ·ォブ ·ケミ カル · ソサエティ(J. Chem. Soc. )1955年、 3005頁に見られ るように、 1, 1, 1, 2, 2, 4, 4一ヘプタフルォ口一 4—ョ一ドブタンを フッ化銀(Hg2F2)を用いて、 フッ素化し、 48%の収率で得る方法が知 られている。 しかしながらこの場合には、 収率も低く、 また Hg2F2を使 用している点で工業的、 経済的な合成法とはいいがたい。 Conventionally, as a method for obtaining HF C 338mfc, as described in Journal of Chemical Society (J. Chem. Soc.) 1955, p. 3005, 1, 1, 1, 2, 2, It is known to fluorinate 4,4-heptafluoro-1-butodobutane using silver fluoride (Hg 2 F 2 ) to obtain a 48% yield. However, in this case, the yield is low, and Hg 2 F 2 is used, which is not an industrial and economical synthesis method.
発明の要約 Summary of the Invention
本発明は、 HF C 338micを高収率で、 しかも工業的かつ経済的に製 造する方法を提供しょうとするものである。  The present invention seeks to provide a method for industrially and economically producing HF C 338mic in high yield.
すなわち本発明者は、 たとえばテトラフルォロエチレンに 1, 1—ジク ロロテトラフルォロェタンまたは 1, 1一ジブロモテトラフルォロェタン を付加させて得られる 3, 3—ジクロ口またはジブロモ一 1, 1, 1, 2, 2, That is, the inventor of the present invention has proposed a 3,3-dichloro-mouth or dibromo-monomer obtained by adding 1,1-dichlorotetrafluoroethane or 1,1-dibromotetrafluoroethane to tetrafluoroethylene. 1, 1, 1, 2, 2,
4, 4, 4一才クタフルォロブタンを還元することを特徵とする 1, 1, 1,4, 4, 4 specializing in reducing one-year-old kutafluorobutane 1, 1, 1,
2, 2, 4, 4, 4一才クタフルォロブタンの製造方法を提供する。 2, 2, 4, 4, 4 Provide a method for producing one-year-old kutafluorobutane.
発明の詳細な説明 Detailed description of the invention
本発明における還元の方法としては、 光照射下に行う方法、 亜鉛を用い て行う方法、 触媒の存在下水素を用いて行う方法、 酢酸カリとアルコール を用いて行う方法など種々の還元方法を採用することができる。 The method of reduction in the present invention is a method of performing under light irradiation, using zinc. , A method using hydrogen in the presence of a catalyst, a method using potassium acetate and an alcohol, and the like.
還元を光照射下に行う場合には、 プロトン源としてメタノール、 ェタノ —ル、 n—プロパノール、 イソプロパノール、 n—ブタノール、 sec—ブタ ノールなどのアルコール類が好ましく用いられる。 さらに好ましくは、 ィ ソプロバノール、 sec—ブタノールなどの一般アルコールが用いられる。 反応の進行に伴って生成してくる H C1又は H Brを捕捉するためにアル力 リを反応系内に加えることにより、 反応は順調に進行する。  When the reduction is performed under light irradiation, alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol and sec-butanol are preferably used as a proton source. More preferably, general alcohols such as isopropanol and sec-butanol are used. The reaction proceeds smoothly by adding an alcohol into the reaction system to capture HCl or HBr generated as the reaction proceeds.
アル力リの種類としては、 炭酸力リゥム、 炭酸ナトリウム、 炭酸カルシ ゥム、重炭酸カリウム、 重炭酸ナトリウムなどの塩基性の弱いものが好ま しい。 また、 このような酸の捕捉剤を用いないで、 加熱することにより発 生した H C1又は H Brを系外に追い出してもよい。  As the type of alkaline liquor, those having weak basicity such as carbonated lime, sodium carbonate, calcium carbonate, potassium bicarbonate and sodium bicarbonate are preferred. Further, without using such an acid scavenger, H C1 or H Br generated by heating may be driven out of the system.
光源としては、 4 0 O nm以下の波長の光を発生するものであれば特に限 定されず、例えば高圧水銀灯、 低圧水銀灯が好ましい。 この光照射下での 還元における反応温度は通常 0〜1 0 0 °C、 好ましくは 1 0〜8 0 °Cの範 囲であり、 反応圧力は特に限定されないが、 大気圧から 2 KgZcm2Gの範 囲で行うのが好ましい。 The light source is not particularly limited as long as it generates light having a wavelength of 40 O nm or less. For example, a high-pressure mercury lamp and a low-pressure mercury lamp are preferable. The reaction temperature in the reduction under light irradiation is usually in the range of 0 to 100 ° C, preferably in the range of 10 to 80 ° C, and the reaction pressure is not particularly limited, but is from atmospheric pressure to 2 KgZcm 2 G It is preferable to carry out within the range.
亜鉛を用いて還元するときに用いる溶媒としては、 還元反応のプロトン 源となるものが好ましく、 メタノール、 エタノール、 イソプロパノール、 ェチレングリコール、プロピレングリコールなどのアルコール類が好まし く用いられる。 亜鉛としては粉末、 粒状のものが好ましく、亜鉛粉末を用 いるのが最も好ましい。 使用する亜鉛の量は、還元されるべき塩素又は臭 素に対して当モル以上、 すなわち、 出発原料に対し 2モル当量以上用いれ ばよい。 反応は通常、 室温から 1 2 0 °C、 好ましくは 4 0〜1 0 0 °Cの温 度範囲で行われる。 反応圧力も特に限定されないが、 大気圧〜 8 KgZcm2 Gの圧力範囲で行うのが好ましい。 As a solvent used when reducing with zinc, a solvent that is a proton source for the reduction reaction is preferable, and alcohols such as methanol, ethanol, isopropanol, ethylene glycol, and propylene glycol are preferably used. Powder or granular zinc is preferred as zinc, and zinc powder is most preferred. The amount of zinc used should be at least equimolar to the chlorine or bromine to be reduced, that is, at least 2 molar equivalents to the starting material. The reaction is usually carried out in a temperature range from room temperature to 120 ° C, preferably 40 to 100 ° C. The reaction pressure is not particularly limited, either, from atmospheric pressure to 8 KgZcm 2 It is preferably carried out in a pressure range of G.
還元を触媒存在下に水素を用いて行う場合、 気相、 液相のいずれの反応 系で行うことも可能である。 還元触媒としては、 白金、 パラジウム、 ロジ ゥム、 ルテニウムなどの貴金属触媒、 ラネーニッケルなどの水素化触媒の いずれも使用可能であるが、 貴金属触媒を用いるのが特に好ましい。 還元 触媒の担体としては、 例えば、 アルミナ、 活性炭などが好適に用いられる。 担持方法としては、 従来の貴金属触媒の調製方法が適用可能である。 なお、 使用に際して予め触媒を還元処理しておくことが安定した触媒活性を得る ために好ましいが、 必ずしも必要ではない。  When the reduction is performed using hydrogen in the presence of a catalyst, the reduction can be performed in either a gas phase or a liquid phase reaction system. As the reduction catalyst, any of a noble metal catalyst such as platinum, palladium, rhodium and ruthenium, and a hydrogenation catalyst such as Raney nickel can be used, but a noble metal catalyst is particularly preferable. As the carrier of the reduction catalyst, for example, alumina, activated carbon, and the like are suitably used. As a supporting method, a conventional method for preparing a noble metal catalyst can be applied. It is preferable to reduce the catalyst before use in order to obtain stable catalytic activity, but it is not always necessary.
水素と出発原料の割合は大幅に変動させ得る。 通常、 化学量論量の水素 を用いて塩素または臭素原子を水素化するが、 出発原料の転化率および目 的化合物の選択率をあげるために、 出発原料のモル数に対してかなり多い 量、 例えば 4倍モルまたはそれ以上の水素を使用してもよい。 反応温度は、 気相反応においては 8 0〜3 5 0 °Cが適当であり、 1 0 0〜2 0 0 °Cが特 に好ましい。 接触時間は 0 , 1〜2 0 0秒、 特に好ましくは 1〜6 0秒で ある。.  The ratio of hydrogen to starting material can vary widely. Normally, stoichiometric amounts of hydrogen are used to hydrogenate chlorine or bromine atoms, but in order to increase the conversion of the starting material and the selectivity of the target compound, a considerably large amount, based on the number of moles of the starting material, For example, 4 times or more hydrogen may be used. The reaction temperature is suitably from 80 to 350 ° C., particularly preferably from 100 to 200 ° C. in a gas phase reaction. The contact time is from 0, 1 to 200 seconds, particularly preferably from 1 to 60 seconds. .
液相で還元反応を行う場合は、 無溶媒でも可能であるが、 メタノール、 エタノール、 イソプロパノールなどのアルコール類、 テトラヒ ドロフラン、 ジォキサン、 エチレングリコ一ルジメチルエーテルなどのエーテル類、 酢 酸、 ピリジンなどの溶媒中で反応を行ってもよい。 また、 還元の進行にし たがって生成してくる H C 1又は H B rはしばしば触媒の活性を低下させる ことがあるので、 反応系内にアル力リ、 例えば水酸化ナトリウム、 水酸化 カリ、 水酸化カルシウム、 ソーダグライム、 アンモニア水などを加えて発 生した酸を捕捉してもよい。 液相反応における反応温度は、 常温〜 1 5 0 °Cが好ましく、 反応圧力は大気圧〜 5 0 cm2 Gが好ましい。 酢酸力リとアルコールによる還元の際に用いられる溶媒としては、 還元 反応のプロトン源となるものが好ましく、 メタノール、 エタノール、 イソ プロパノール、 ェチレングリコ一ル、 プロピレングリコールなどのアルコ ール類が好ましく、 イソプロパノールが特に好ましい。 酔酸カリの量は還 元される塩素または臭素原子に対し当モノレ以上、 すなわち、 出発原料に対 し 2モル当量以上用いればよい。 反応は通常、 室温から 120で、 好まし くは 40〜100°Cの温度範囲で行われる。 反応圧力も特に限定されない が、 大気圧〜 8KgZcm2Gの圧力範囲で行うのが好ましい。 When the reduction reaction is performed in the liquid phase, it is possible to use a solvent without solvent, but alcohols such as methanol, ethanol, and isopropanol; ethers such as tetrahydrofuran, dioxane, and ethylene glycol dimethyl ether; and solvents such as acetic acid and pyridine. The reaction may be performed in the reaction. In addition, since HC 1 or HBr generated as the reduction progresses often reduces the activity of the catalyst, the reaction system may contain an alkaline solvent, such as sodium hydroxide, potassium hydroxide, or calcium hydroxide. The generated acid may be captured by adding water, soda glyme, ammonia water, or the like. The reaction temperature in the liquid phase reaction is preferably room temperature to 150 ° C., and the reaction pressure is preferably atmospheric pressure to 50 cm 2 G. As a solvent used in the reduction with acetic acid and alcohol, a solvent that is a proton source for the reduction reaction is preferable, and alcohols such as methanol, ethanol, isopropanol, ethylene glycol and propylene glycol are preferable, and isopropanol is preferable. Is particularly preferred. The amount of potassium persulfate should be at least one equivalent to the chlorine or bromine atom to be reduced, that is, at least 2 molar equivalents to the starting material. The reaction is usually carried out at a temperature in the range of room temperature to 120, preferably 40 to 100 ° C. Although the reaction pressure is not particularly limited, it is preferable to carry out the reaction in a pressure range from atmospheric pressure to 8 kgZcm 2 G.
発明の効果  The invention's effect
以上のごとく、 本発明は 3, 3—ジクロ口またはジブ口モー 1, 1, 1, 2, 2, 4, 4, 4一才クタフルォロブタンを還元することにより、 高収率で 1, 1, 1, 2, 2, 4, 4, 4一オタタフノレォロブタンを製造できる。  As described above, the present invention reduces 1,3,3-dichro- or jib-mouth 1,1,1,2,2,4,4,4 one-year-old kutafluorobutane to provide a high yield of 1 , 1,1,2,2,4,4,4 can produce otatafnoroleolobutane.
実施例  Example
実施例 1 (光還元)  Example 1 (photoreduction)
冷却器^備えた 500 mlの石英製光反応容器に 3,3—ジクロロ一 1, 1; 1, 2, 2, 4, 4, 4—ォクタフルォロブタン 27. lg、炭酸ナトリウム 2 1. 2g及びイソプロパノール 30 Oinlを仕込んだ。 系内を窒素置換した 後、 撹拌しながら高圧水銀灯により照射した。 反応温度を 25〜30°Cに 保ち約 4時間反応を続けた。 反応混合物をガスクロマトグラフィーにより 分析したところ、原料の転化率は 100%であり、 1, 1, 1, 2, 2, 4, 4, 4ーォクタフルォロブタンが選択率 95 %で生成していた。  3,3-Dichloro-1,1,1; 1,2,2,4,4,4-octafluorobutane 27.lg, sodium carbonate 2 1 in a 500 ml quartz photoreaction vessel equipped with a condenser .2 g and isopropanol 30 Oinl were charged. After purging with nitrogen, the system was irradiated with a high-pressure mercury lamp while stirring. The reaction temperature was kept at 25 to 30 ° C and the reaction was continued for about 4 hours. When the reaction mixture was analyzed by gas chromatography, the conversion of the raw material was 100% and 1,1,1,2,2,4,4,4-octafluorobutane was formed with a selectivity of 95%. Was.
実施例 2 (亜鉛)  Example 2 (zinc)
冷却器と滴下ロートを備えた 30 Omlのガラス製反応容器に亜鉛粉末 1 4. 5gとエタノール 10 Οπιΐを仕込んだ。 撹拌しながら加熱還流し、 滴 下ロートカヽら 2, 2—ジブ口モー 1, 1, 1, 3, 3, 4, 4, 4ーォクタフルォ ロブタン 2 Ogを 1時間かけて仕込み、 さらに反応を 1時間加熱還流しな がら続けた。 反応混合物を冷却後、 ガスクロマトグラフィーにより分析し たところ、 原料の転化率は 100%であり、 1, 1, 1, 2, 2, 4, 4, 4— ォクタフルォロブタンが選択率 85%で生成していた。 A 30 Oml glass reactor equipped with a condenser and a dropping funnel was charged with zinc powder (14.5 g) and ethanol (10Οπιΐ). Heat to reflux while stirring, and add the dripping funnel 2,2--jib-mouth 1,1,1,3,3,4,4,4 Lobutane 2 Og was charged over 1 hour, and the reaction was further heated to reflux for 1 hour and continued. After the reaction mixture was cooled and analyzed by gas chromatography, the conversion of the raw material was 100%, and 1,1,1,2,2,4,4,4-octafluorobutane was selected. It was produced at 85%.
実施例 3 (亜鉛)  Example 3 (zinc)
実施例 2において、 3, 3—ジブロモ一 1, 1, 1, 2, 2, 4, 4, 4ーォク タフルォロブタンにかえて 3, 3—ジクロロー 1, 1, 1, 2, 2, 4, 4, 4— ォクタフルォロブタン 15gを用いた他は同様に反応を行ったところ、 原 料の転化率は 100%であり、 1, 1, 1, 2, 2, 4, 4, 4—ォクタフノレオ ロブタンが選択率 80%で生成していた。  In Example 2, 3,3-dichloro-1,1,1,2,2,4,4 instead of 3,3-dibromo-1,1,1,2,2,4,4,4-octafluorobutane The reaction was carried out in the same manner except that 15 g of 4-octafluorobutane was used. The conversion of the raw material was 100%, and 1,1,1,2,2,4,4,4-octafuronole Lobutane was formed with a selectivity of 80%.
実施例 4 (水素気相反応)  Example 4 (Hydrogen gas phase reaction)
内径 20匪のハステロィ C製の反応管に活性炭担持パラジゥム触媒(担 持率 0. 5重量%) 40 mlを充填した。 120°Cで水素を 8 OccZmin. の 流速で 2時間流通させた後、 120°Cの反応温度でガス化した 3, 3—ジ クロロー 1, 1, 1, 2, 2, 4, 4, 4—ォクタフルォロブタンを 4 Occ min. 、 水素を 10 OccZmin. の流速で反応管に流通させ、 反応させた。 反応 器の出口ガスを酸分除去後一 78°Cのコールドトラップに回収し、 ガスク 口マトグラフィ一により分析したところ、 原料の転化率は 95%であり、 目的とする 1, 1, 1, 2, 2, 4, 4, 4一才クタフルォロブタンが選択率 8 5%で生成していた。  A reaction tube made of Hastelloy C with an inner diameter of 20 was filled with 40 ml of activated carbon-supported palladium catalyst (supporting rate: 0.5% by weight). After flowing hydrogen at 120 ° C at a flow rate of 8 OccZmin. For 2 hours, gasified at a reaction temperature of 120 ° C was 3,3-dichloro-1,1,1,2,2,4,4,4. —Octafluorobutane was passed through the reaction tube at a flow rate of 4 Occ min. And hydrogen at a flow rate of 10 OccZmin. After removing the acid content from the reactor outlet gas, it was collected in a cold trap at 178 ° C and analyzed by gas chromatography. The conversion of the raw material was 95%, and the target 1, 1, 1, 2 , 2,4,4,4 One-year-old kutafluorobutane was produced with a selectivity of 85%.
実施例 5 (水素液相反応)  Example 5 (hydrogen liquid phase reaction)
内容積 300mlの SUS 316製ォ一トクレーブにエチレングリコール ジメチルエーテル 150ml、 水酸化力リ 16. 8g及び 3, 3—ジブ口モー 1, 1, 1, 2, 2, 4, 4, 4—ォクタフルォロブタン 36 gを仕込んだ。  In a SUS 316 autoclave with an internal volume of 300 ml, ethylene glycol dimethyl ether 150 ml, hydroxylation capacity 16.8 g and 3,3-jib mouth 1,1,1,2,2,4,4,4-octaful 36 g of orobutane was charged.
系内を減圧にした後、 水素を 20Kg/cm2Gまで圧入し、 撹拌しながら 100°Cまで加熱し、 反応により消費された水素を連続的に加え、水素が 消費されなくなるまで反応を続けた。 冷却後、 反応混合物をガスクロマト グラフィ一により分析したところ、 原料の転化率は 10 o°cであり、 目的 とする 1, 1, 1, 2, 2, 4, 4, 4ーォクタフルォロブタンが選択率 80% で生成していた。 After reducing the pressure inside the system, pressurize hydrogen to 20 kg / cm 2 G and stir Heated to 100 ° C, the hydrogen consumed by the reaction was added continuously and the reaction continued until no more hydrogen was consumed. After cooling, the reaction mixture was analyzed by gas chromatography. The conversion of the raw materials was 10 o ° c, and the desired 1,1,1,2,2,4,4,4-octafluo was obtained. Lobutane was formed with a selectivity of 80%.
実施例 6 (酢酸カリウム)  Example 6 (potassium acetate)
冷却器と滴下ロートを備え付けた 30 Omlのガラス製反応容器に齚酸カ リウ厶 21. 8gとイソプロパノール 100mlを仕込んだ。 撹拌しながら 加熱還流し、 滴下ロートカヽら 3, 3—ジブ、口モー 1, 1, 1, 2, 2, 4, 4, 4 ーォクタフルォロブタン 20gを 1時間かけて仕込み、 さらに反応を 1時 間加熱還流しながら続けた。 反応混合物を冷却後、 ガスクロマトグラフィ 一により分析したところ、 原料の転化率は 100%であり、 1, 1,: U2, 2, 4, 4, 4ーォクタフルォロブタンが選枳率 86%で生成していた。  In a 30 Oml glass reaction vessel equipped with a condenser and a dropping funnel, 21.8 g of potassium diacid and 100 ml of isopropanol were charged. The mixture was heated to reflux with stirring, and the dropping funnel 3,3-jib and mouth 1,1,1,2,2,4,4,4-octafluorobutane 20 g were charged over 1 hour. The reaction was continued while heating at reflux for 1 hour. After the reaction mixture was cooled and analyzed by gas chromatography, the conversion of the raw material was 100%, and the 1,1,: U2,2,4,4,4-octafluorobutane was selected at a conversion rate of 86%. % Was generated.
実施例 7 (酢酸カリウム)  Example 7 (potassium acetate)
実施例 6において、 3, 3—ジブロモ一 1, 1, 1, 2, 2, 4, 4, 4—ォク タフルォロブタンにかえて 3, 3—ジクロロ一 1, 1, 1, 2, 2, 4, 4, 4一 ォクタフルォロブタン 15gを用いた他は同様に反応を行い、 反応混合物 を冷却後、 ガスクロマトグラフィーにより分析したところ、 原料の転化率 は 100%であり、 1, 1, 1, 2, 2, 4, 4, 4ーォクタフルォロブタンが 選択率 94%で生成していた。 -  In Example 6, instead of 3,3-dibromo-1,1,1,2,2,4,4,4-octafluorobutane, 3,3-dichloro-1,1,1,2,2,4 The reaction was carried out in the same manner except that 15 g of 1,4-octafluorobutane was used. The reaction mixture was cooled and analyzed by gas chromatography. The conversion of the raw materials was 100%. , 1, 2, 2, 4, 4, and 4-octafluorobutane were produced with a selectivity of 94%. -

Claims

請求の範囲 The scope of the claims
1. 3, 3—ジクロ口またはジブ口モー 1, 1, 1, 2, 2, 4, 4, 4—ォク タフルォロブタンを還元することを特徴とする 1, 1, 1, 2, 2, 4, 4, 4 一才クタフルォロブタンの製造方法。  1. 3,3-Dichro or jib mouth 1,1,1,2,2,4,4,4-reducing 1,1,1,2,2,4 characterized by reducing octafluorobutane , 4, 4 One-year production method of kutafluorobutane.
PCT/JP1992/001399 1991-11-01 1992-10-29 Process for producing 1,1,1,2,2,4,4,4-octafluorobutane WO1993009081A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3/287494 1991-11-01
JP28749491A JPH05124987A (en) 1991-11-01 1991-11-01 Method for producing 1,1,1,2,2,4,4,4-octafluorobutane

Publications (1)

Publication Number Publication Date
WO1993009081A1 true WO1993009081A1 (en) 1993-05-13

Family

ID=17718071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/001399 WO1993009081A1 (en) 1991-11-01 1992-10-29 Process for producing 1,1,1,2,2,4,4,4-octafluorobutane

Country Status (2)

Country Link
JP (1) JPH05124987A (en)
WO (1) WO1993009081A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488189A (en) * 1993-12-14 1996-01-30 E. I. Du Pont De Nemours And Company Process for fluorinated propanes and pentanes
US6066768A (en) * 1993-12-14 2000-05-23 E. I. Du Pont De Nemours And Company Perhalofluorinated butanes and hexanes

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557019A (en) * 1992-02-28 1996-09-17 Daikin Industries Ltd. Method for preparing dichlorodecafluoropentane and decafluoropentane
JP3500617B2 (en) * 1993-08-27 2004-02-23 ダイキン工業株式会社 Method for producing hexafluorocyclobutane
JP7208542B2 (en) * 2020-12-02 2023-01-19 ダイキン工業株式会社 Method for producing fluoroalkane compound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129130A (en) * 1988-11-08 1990-05-17 Asahi Glass Co Ltd Production of r-134a
JPH02204435A (en) * 1989-02-02 1990-08-14 Asahi Glass Co Ltd Production of hydrogen-containing difluoropropanes
JPH02204443A (en) * 1989-02-03 1990-08-14 Asahi Glass Co Ltd Production of hydrogen-containing pentafluoropropanes and hydrogen-containing tetrafluoropropanes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129130A (en) * 1988-11-08 1990-05-17 Asahi Glass Co Ltd Production of r-134a
JPH02204435A (en) * 1989-02-02 1990-08-14 Asahi Glass Co Ltd Production of hydrogen-containing difluoropropanes
JPH02204443A (en) * 1989-02-03 1990-08-14 Asahi Glass Co Ltd Production of hydrogen-containing pentafluoropropanes and hydrogen-containing tetrafluoropropanes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488189A (en) * 1993-12-14 1996-01-30 E. I. Du Pont De Nemours And Company Process for fluorinated propanes and pentanes
US6066768A (en) * 1993-12-14 2000-05-23 E. I. Du Pont De Nemours And Company Perhalofluorinated butanes and hexanes
US6229058B1 (en) 1993-12-14 2001-05-08 E. I. Du Pont De Nemours And Company Preparation of fluorinated propanes and pentanes

Also Published As

Publication number Publication date
JPH05124987A (en) 1993-05-21

Similar Documents

Publication Publication Date Title
EP0644173A1 (en) Processes for producing 1,1,1,2,3-pentafluoropropene and producing 1,1,1,2,3-pentafluoropropane
US5523501A (en) Catalytic hydrogenolysis
WO1993009081A1 (en) Process for producing 1,1,1,2,2,4,4,4-octafluorobutane
JP4538953B2 (en) Process for producing compound having -CH2-CHF- group
JP3134312B2 (en) Method for producing 1,1,1,2,2,4,4,5,5,5-decafluoropentane and intermediate for producing the same
WO2007094468A1 (en) Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
JP3994123B2 (en) Method for producing porous calcium fluoride, catalyst for hydrogenation reaction, and method for producing trihydrofluorocarbon
JPH0967280A (en) Production of 1,1,1,3,3-pentafluoropropene and production of 1,1,1,3,3-pentafluoropropane
WO1994005612A1 (en) Process for producing 1,1,1,2,3-pentafluoropropane
JP2712476B2 (en) Method for producing propane having difluoromethylene group
JPH02204442A (en) Production of hydrogen-containing hexafluoropropanes and hydrogen-containing pentafluoropropanes
JP4306081B2 (en) Method for producing 1,1,2,2,3,3,4-heptafluorocyclopentane and apparatus for producing the same
JPH06279328A (en) Production of hexafluoropropane
WO2018139654A1 (en) Method for producing 1,1,2,2-tetrafluoropropane
JPH05140009A (en) Production of 1,1,1,2,2,3,4,5,5,5-decafluoropentane
JP2001240567A (en) Preparation method of heptafluorocyclopentane
JPH02131437A (en) Production of chlorotetrafluoropropanes
JPH05194286A (en) Production of 1,1,1,4,4,4-hexafluorobutane
JP2002114509A (en) Method for producing carbon monoxide
JPH05148171A (en) Production of 1,1,1,2,2,3,4,5,5,5-decafluoropentane
JP2004091368A (en) Halogen-containing alcohol and its production method
JPH11322644A (en) Production of hydrofluorocarbon
JPH06345672A (en) Purification of 1,1,2,2-tetrafluoro-1-jodoethane and 1,2,2,3,3,4,4-octafluorobutane
JPH0987233A (en) Production of glycolic ester
CN116583493A (en) Process for producing fluoroalkane compound

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: US

Ref document number: 1994 211837

Date of ref document: 19940613

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase