WO1993007979A1 - Method of making sintered metallic body and said body obtained through said method - Google Patents

Method of making sintered metallic body and said body obtained through said method Download PDF

Info

Publication number
WO1993007979A1
WO1993007979A1 PCT/JP1992/001362 JP9201362W WO9307979A1 WO 1993007979 A1 WO1993007979 A1 WO 1993007979A1 JP 9201362 W JP9201362 W JP 9201362W WO 9307979 A1 WO9307979 A1 WO 9307979A1
Authority
WO
WIPO (PCT)
Prior art keywords
unsintered
metal
impeller
metal powder
sintered
Prior art date
Application number
PCT/JP1992/001362
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Kimura
Yoshiyuki Katoh
Shigeru Wakoh
Original Assignee
Pacific Metals Co., Ltd.
Thk Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Metals Co., Ltd., Thk Co., Ltd. filed Critical Pacific Metals Co., Ltd.
Publication of WO1993007979A1 publication Critical patent/WO1993007979A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • a metal powder and a thermoplastic binder are mixed at a predetermined ratio to prepare a compound, and a plurality of unsintered divided parts are formed by injection molding using the compound.
  • the present invention relates to a method for manufacturing a metal sintered body in which a molded product is formed by using these unsintered divided parts to form a metal sintered body integrated on a metal structure, and such a method is used.
  • the present invention relates to a side lid of a carriage used for a linear guide manufactured by the above method, and further relates to a method of manufacturing a liquid circulation impeller by such a method. Background technology
  • a thermoplastic binder such as a plex is added to a metal powder at a predetermined ratio, and the mixture is kneaded while heating to form a pellet.
  • a compound is prepared, and a green compact of a predetermined shape is formed by press compression molding, injection molding, or the like using the compound, and the obtained green compact is formed.
  • a method is employed in which the material is heated to perform a degreasing treatment for removing the binder, and then heated to a high temperature and sintered to obtain a metal sintered body having a desired shape.
  • a ball endless track is formed on a carriage that reciprocates on the rail, and the load acting between the rail and the carriage is reciprocated by the ball rolling in the ball endless track.
  • the load is movably loaded.
  • the side lids located on both end surfaces of the carriage change the rolling direction of the ball that has rolled linearly in the carriage body into approximately half.
  • a circular ball turning path is formed to form an endless trajectory of the ball rolling in the carriage.
  • the side lid of the carriage is provided with a synthetic resin end plate having a semicircular groove.
  • a semi-disc-shaped synthetic resin round piece having a circumferential groove, the round piece is incorporated into the groove of the end plate, and the circumferential edge of the groove of the end plate and the circumferential groove of the round piece are formed.
  • a substantially semi-circular ball-redirecting passage is formed with the side cover, and a substantially semi-circular ball-redirecting passage formed on the side cover and the carriage are formed.
  • a ball endless trajectory is formed by a linear load ball guide path and a no-load ball guide path formed on the body side.
  • the side lid which is composed of the end plate and the earpiece, is used to construct the carriage using this.
  • the work of assembling the round piece in the slot of the end bracket is required, and the work of assembling these balls and the round piece is complicated, which complicates the work of assembling the carriage.
  • the present inventors have attempted to manufacture a side lid of a carriage used for a linear guide from a metal sintered body.
  • press compression molding requires pressurization from the upper and lower surfaces during molding, and is limited when the die is used. It is unsuitable when targeting a shaped product.
  • injection molding it is relatively easy to mold a three-dimensionally complex product. Since it is necessary to release the product, it is not easy to mold any shape, and the shape of the product that can be manufactured is naturally limited.
  • the side lid of the carriage used for the above linear guide also has a tunnel-like substantially semi-circular ball turning direction passage which forms a part of the ball endless track. Even if technology is applied, it is not possible to form the side lid in one injection molding.
  • U.S. Pat. No. 4,722,824 Japanese Patent Application Laid-Open No. 62-289,3708 discloses a first compound made of a conductive and sinterable metal powder and a binder. And a second green body are formed, and the first and second green bodies are placed in close contact with each other, and an electric current is applied between the first and second green bodies to form a green body.
  • a method for producing a metal sintered body is disclosed, which comprises mixing the metal powders of both green bodies, joining the two together, removing a binder from the bonded green body, and then sintering. ing.
  • the first green body and the second green body which are separately molded are integrated in the sintering process, but the first green body and the second green body which are closely adhered to each other are combined.
  • an electric current is generated due to a contact state between the first and second unsintered bodies.
  • the joint surfaces of these unsintered bodies are not uniform on the metallographic structure.
  • Japanese Patent Application Laid-Open No. 3-39,405 discloses that injection molding is performed by dividing a metal powder and a binder into a plurality of pieces using a compound composed of a binder and forming the same on the joining surfaces of these divided molded bodies.
  • Production of a metal sintered body that consists of slurrying the metal powder of the composition with a liquid binder and attaching it, bonding each divided molded body by pressure bonding, removing the binder, and then sintering in vacuum.
  • a method is disclosed. However, according to this method, even if the metal powder adhered to the joint surface of the divided molded body has the same composition, it is necessary to slurry this metal powder and adhere it.
  • the present inventors have overcome such a problem, and have applied a manufacturing technology of a metal sintered body to a product having a complicated shape and high dimensional accuracy.
  • a manufacturing technology of a metal sintered body to a product having a complicated shape and high dimensional accuracy.
  • the joining surfaces of the divided parts formed by injection molding were directly joined.
  • the accuracy of the joint surface of the unsintered divided part formed by this injection molding is reflected as it is on the finished metal sintered body, and the metal structure is also joined.
  • the present inventors have found that it is possible to obtain an integrated product that is the same as other parts except for the surface, and completed the present invention.
  • a metal powder and a thermoplastic binder are mixed at a predetermined ratio to prepare a compound, and a plurality of unsintered divided parts are formed by injection molding using the compound. It is molded, and the plurality of unsintered divided parts are combined as they are to assemble the unsintered assembly in the shape of the finished product. At this time, before or after assembling into the shape of the finished product, degreasing is performed.
  • This is a method for manufacturing a metal sintered body that sinters a sintered assembly at a predetermined temperature while maintaining the shape of the completed product, and manufactures a finished product composed of a metal sintered body integrated on a metal structure.
  • the present invention includes an end plate which is located on both end surfaces of a carriage constituting a linear guide, and an endpiece which is incorporated in the end plate.
  • a side lid in which a substantially semicircular ball turning path of the ball endless track formed in the carriage is formed between the ball and the round piece, and is made of metal powder and a thermoplastic binder.
  • the unsintered end plate formed by injection molding of the compound is combined with a round piece to form a side cover-shaped unsintered assembly having a substantially semicircular ball direction changing passage.
  • the unsintered assembly thus assembled is degreased while maintaining its side lid shape, then sintered and manufactured, and the entire structure is formed of a single metal sintered body on a metallographic structure.Key is an arrow Li Tsu side lid di for the struggling de.
  • a stainless steel powder obtained by a water atomization method and a thermoplastic binder are mixed at a predetermined ratio to prepare a compound, and the compound is used.
  • the impeller body of the liquid circulation impeller and the trapping impeller are formed by injection molding, and the impeller-shaped green sintered assembly is assembled by combining the impeller body and the trapping impeller.
  • degreasing is performed, and then the assembled unsintered assembly is sintered at a predetermined temperature while maintaining the impeller shape, and an integrated metal structure is formed.
  • the metal powder used in the present invention can be sintered Any suitable metal can be used.
  • Any suitable metal can be used.
  • suc any suitable metal can be used.
  • suc any suitable metal can be used.
  • suc any suitable metal can be used.
  • Stainless steel powder such as S304L, SUS316L, SUS410L, SUS430L, SUS & 30 and high-speed steel powder such as SKH & 1, SKH57 , PB47, NO. — Magnetic alloy powders such as mendules, and non-ferrous metal powders composed of metals such as nickel, cobalt ', tungsten, titanium, etc. or alloys thereof.
  • metal powders are usually pulverized by applying mechanical energy to the molten metal directly by, for example, centrifugal force or indirectly through a fluid such as water, oil, gas, or the like, and cooling the metal. It can be produced by the atomizing method, which solidifies to obtain a metal powder, the method of making metal powder from a metal lump by mechanical crushing, the crushing method, or the carbonyl method using a chemical reaction. Can be used, but various metal powders can be produced industrially at low cost, and the particle size is stable. More preferably, the shape of the produced metal powder is irregular, the bonding force between the metal powders is strong, and the strength of the produced molded body is high. The water atomization method using water is good.
  • this metal powder usually, those having an average particle diameter of 1 to 30 am and a maximum particle diameter of 70 // m or less are used, but injection molding is applied. After sintering, the joining surfaces of the plurality of divided parts need to be integrated on the metallographic structure, so the average grain size is preferably 1 to 30 ⁇ m and A large particle size of 20 ⁇ m or less is preferred. It is difficult to produce metal powder with an average particle size smaller than 1 m.
  • thermoplastic binder used in the present invention only needs to be excellent in moldability and degreasing properties, and may be any of those conventionally used in this type of technology, such as wax, Polyvinyl butyral using ethyl alcohol as a solvent, acrylic resin and vinyl chloride resin using toluene as a solvent, vinyl chloride resin using butyl acetate as a solvent, and JP-A-1-301,805 And the like.
  • the polyoxyethylene polyoxyl-opened pyrene condensate-based polyester described in (1) above as a main component is exemplified, and it is not particularly limited. Polyoxyethylene-polyoxypropylene condensate-based polyether is contained as a main component.
  • the compound used for the injection molding for molding the unsintered divided part is prepared by mixing the above metal powder and a thermoplastic binder at a predetermined ratio and kneading them.
  • the obtained kneaded material is pelletized by an extruder or the like before use.
  • the mixing ratio of the metal powder and the thermoplastic binder in preparing this compound varies depending on the product manufactured by this method, but generally the metal powder is 87 to 90%. 94% by weight, preferably 89-92% by weight, with the thermoplastic binder being 6-13% by weight, preferably 8-11% by weight. If the proportion of the thermoplastic binder is too small, there is a problem of molding failure, and if it is too large, there is another problem of poor binder removal.
  • a plurality of unsintered divided parts are formed by injection molding.
  • the side guide of the linear guide carriage which is one object of the present invention, is divided into an end plate and a round piece incorporated in the end plate, and these are divided. It is better to mold it as a part. Also for other purposes
  • One of the liquid circulation impellers is preferably divided into an impeller main body having a main impeller and a catching impeller attached to the impeller main body, and these are formed as divided parts. .
  • the injection pressure is lower than 5 0 0 kg f / cnf ⁇ G occur problems that Takashi ⁇ failure, also, 1, 0 0 0 kg f Z cm 2 ⁇ exceeds G multi Problems such as heavy burrs and poor mold release occur.
  • the unsintered divided parts formed in this way are assembled as follows to be assembled into a green body-shaped unsintered assembly.
  • each divided part is subjected to a degreasing process.
  • the timing of the degreasing treatment may be before or after assembling the divided parts into one finished product, but may be performed after each divided part formed by injection molding. Since it is necessary to assemble into one finished product shape while maintaining the dimensional accuracy, it is preferable to perform a degreasing process after assembling the finished shape unsintered assembly.
  • the method of the degreasing treatment is particularly limited as long as the thermoplastic binder in each divided part can be removed and the joining surface of each divided part can be eliminated at that time.
  • thermoplastic binder in each divided part is efficiently removed, and at this time, the joint surface of each divided part is eliminated as much as possible to ensure uniformity.
  • the temperature must be under normal pressure 100 ⁇ 600 ° C, preferably 300 ⁇ 400 ° C, more preferably 300 ⁇ 40 Air at 0 ° C is allowed to flow for 1 to 200 hours, preferably 40 to 70 hours.
  • the unsintered braid of the finished product shape assembled in this way is sintered at a predetermined temperature while maintaining the finished product shape, and the joining surface of each divided part disappears and the whole is made of gold.
  • It is a finished product consisting of a metal sintered body that is integral with the metal structure.
  • the sintering conditions at this time vary depending on the type of metal powder used, etc., but when an iron-based metal powder is used, it is usually from 1,100 to 1,450 °. C, preferably sintered at a temperature of 1,200 to 1,350 ° C for 2 to 6 hours. By this sintering, the joint surfaces of the divided parts completely disappear, and the whole is integrated in a metallic structure.
  • each high-precision unsintered divided part obtained by injection-molding a compound composed of a metal powder and a thermoplastic binder is directly joined at its joint surface.
  • the high dimensional accuracy of each divided part formed by injection molding can be used as it is, and as a result, the gap at the joint surface between each divided part generated at this joint surface can be
  • the average particle size of the powder can be reduced to the average particle size or less, and after sintering, it is possible to obtain a finished product made of a metal sintered body in which the joint surfaces between the divided parts have completely disappeared.
  • FIG. 1 shows a linear guide provided with the side lid of the carriage manufactured in Example 1 of the present invention along the line I-I of FIG. 1 G
  • FIG. 1 A first figure.
  • FIG. 2 is a partial cross-sectional view showing the linear guide having the side cover of Example 1 along the line ⁇ — ⁇ of FIG.
  • F.3 is a partial cross-sectional view showing the linear guide having the side lid of Example 1 along the line HI-m of FIG.
  • FIG. 4 is a flowchart showing a manufacturing process for manufacturing a side lid of a linear guide carriage according to the first embodiment of the present invention.
  • Fig. 5 is a perspective view showing the unsintered end plate of the side cover prepared in Example 1.
  • FIG. 6 is a perspective view showing the green earth piece of the side cover manufactured in Example 1.
  • FIG. 7 shows the results when the unsintered assembly shown in Fig. 6 was set in the slot of the unsintered end plate shown in Fig. 5, and the unsintered assembly was assembled.
  • FIG. 3 is a partial cross-sectional view showing a joined state between the end plate and the round piece in FIG.
  • Fig. 8 is an electron micrograph (magnification: ⁇ 1000) showing the distribution of metal particles inside the green end plate (or green RTP) obtained in Example 1. .
  • Fig. 9 is an electron micrograph (magnification: ⁇ 1000) showing the distribution of metal particles on the joint surface between the end plate and the round piece in the unsintered assembly obtained in Example 1. It is.
  • FIG. 4 is an electron micrograph ( ⁇ 1,000) showing the distribution of metal particles after degreasing.
  • Fig. 11 is an electron micrograph (magnification: ⁇ 1000) showing the metallographic structure at the joint surface between the end plate after sintering obtained in Example 1 and the round piece.
  • FIG. 12 is a front view showing the green impeller body obtained in Example 2 of the present invention.
  • Fig.13 is a perspective view of Fig.12.
  • FIG. 14 is a perspective view showing the green sintering trapping blade obtained in Example 2 of the present invention.
  • Fig.15 is a front view showing the impeller after sintering by attaching the trapping impeller of Fig.14 to the impeller body of Fig.12. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention will be specifically described based on embodiments shown in the accompanying drawings.
  • FIGS. 1 to 3 show a linear guide L having a side lid 1 of a carriage C according to a first embodiment of the present invention.
  • the linear guide L is used for a linear motion slide section under a machine tool or an industrial robot.
  • the linear guide L is formed in the carriage C, the rail R, and the carriage C. It is composed of a number of balls B circulating in the ball endless track 2 and applying a load between the carriage C and the rail.
  • the carriage C has a load ball groove 3a for the ball B and a corresponding no-load ball hole 3b. 1 _
  • It comprises a carriage body 3 and a pair of side lids 1 attached to both ends of the carriage body 3 and having a substantially semicircular ball direction changing passage 4.
  • the linear load ball groove 3a and the no-load ball hole 3b of the carriage body 3 are formed.
  • reference numeral 5 denotes a rolling groove of the ball B formed on the rail R side
  • reference numeral 6 denotes a grease nipple
  • reference numeral 7 denotes a side seal
  • Reference numeral 8 is an end seal.
  • the side cover 1 was integrally formed of a metal sintered body according to the method of the present invention, and was manufactured according to the following procedure.
  • Metal powder is prepared by a water atomization method in which high-pressure water is applied as mechanical energy to pulverize molten SUS304L stainless steel, and this is cooled and solidified to obtain metal powder. I went. The composition, particle size distribution, average particle size and maximum particle size of the obtained metal powder were measured. Table 1 shows the results. table 1
  • an unsintered end plate 1a having the shape shown in Fig. 5 and a round piece 1b shown in Fig. 6 were formed by a metal injection molding machine.
  • the distribution state of the metal particles in the inside was observed with an electron microscope.
  • Figure 8 shows the results.
  • the unsintered assembly in the shape of the side lid obtained in this way is charged into a degreasing furnace, where it is heated to 400 ° C under normal pressure and kept at this temperature for 48 hours. Degreased, and in the unsintered assembly ⁇ The l-binder has been removed. By this degreasing treatment, more than 99% by weight of the binder in the unsintered assembly was removed. The distribution of the metal particles on the joint surface of the unsintered assembly after the degreasing treatment was observed with an electron microscope. The results are shown in FIG. As is clear from the micrograph shown in Fig. 10, the joint surface between end plate 1a and R-piece 1b observed in Fig. 9 disappeared completely, and the metal powder was observed to be uniformly distributed throughout.
  • the unsintered assembly with the side lid removed from the degreasing furnace was placed in a vacuum furnace, where it was heated at 1,250 ° C for 2 hours and vacuum-sintered.
  • the side cover 1 formed entirely of a metal sintered body was taken out of the vacuum path.
  • the metal structure of the unsintered solid body at the joint surface between the end plate 1a and the round piece 1b was observed with an electron microscope. The results are shown in FIG. As is evident from the micrograph shown in Fig. 11, the joining surface between the end plate 1a and the Rp 1b has completely disappeared, and the entire metal sintered body is integrated with the metal structure. It turned out that.
  • the side cover 1 made of a sintered metal body manufactured in this manner is then attached to both ends of the carriage body 3, and a large number of balls are placed in the ball endless track 2 formed at that time.
  • Carrier C is assembled by incorporating B.
  • the side cover 1 has an end plate 1a and a round piece 1b integrally formed on a metal structure by a metal sintered body. _
  • the excellent dimensional accuracy when the piece 1b is manufactured by injection molding is directly reflected on the side cover 1 made of a sintered metal product, and the round piece 1b is used in the assembly process of the carriage C. Does not fall off the end plate 1a, so that its workability is greatly improved and it has excellent durability.
  • Figs. 12 to 15 show impellers for circulating a liquid for circulating a refrigerant used for cooling in an engine for an automobile or the like, and are manufactured by the method of the present invention.
  • L stainless steel powder was prepared, and 90 weight parts of the stainless steel powder was prepared from 5 weight% of a polyoxyalkylene-based polyether, 3 weight% of a natural wax and 2 weight% of a fatty acid. Then, 10 parts by weight of a binder was mixed, kneaded under the same conditions as in Example 1, and pelletized with a pelletizer to prepare a pellet-shaped compound.
  • a blade having three main blades 13 as shown in Figs. 12 and 13 was formed using a metal injection molding machine in the same manner as in Example 1.
  • the car body 12 c then Let's were molded Do three catching the aid vanes 14 shown in Fig.14, three auxiliary vanes 14 molded in the earthenware pots this good, shown in Fig.15 Thus, it is installed between the main blades 13 of the impeller body 12 and inserted into the degreasing furnace, and heated at a rate of 10 ° CZ for 4 minutes.
  • the temperature was raised to 00 ° C, and the temperature was maintained for 2 hours to perform a degreasing process, thereby forming a green sintered assembly having the same impeller shape as the finished product.
  • the obtained unsintered assembly was placed in a vacuum sintering furnace, heated to 1,350 ° C at a heating rate of 80 ° CZ, and then kept at this temperature for 2 hours. And vacuum sintering.
  • the impeller body 12 and the three trapping blades 14 are a metal sintered body integrated on a metal structure, and the impeller body 12 and the three trapping blades 14 It had excellent strength at the joint surface.
  • a product having a complicated shape and a high dimensional accuracy is required by applying the manufacturing technology of the metal sintered body.
  • the side lid of a carriage for linear guides, an impeller for liquid circulation, etc. can be easily manufactured, and the joining surface of each divided part formed by injection molding can be easily manufactured.
  • the accuracy of the joint surface of the unsintered divided part formed by this injection molding is reflected on the finished product of the metal sintered body as it is, a product with excellent dimensional accuracy
  • the carrier for a linear guide manufactured by the method of the present invention has accurate dimensional accuracy, and the substantially semi-circular ball direction changing passage formed in the side lid is also accurately formed, so that the ball rolls smoothly and Is integrally formed of a metal sintered body, so that it is extremely easy to assemble it into a carriage.
  • the entire structure is uniform in terms of metallography, and its durability, especially resistance to heat history Has excellent durability.
  • the impeller body and the catching blade can be firmly connected to each other, and there is an auxiliary blade which was conventionally difficult to manufacture. As a result, an efficient and efficient liquid circulation impeller can be easily manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

A method of making a sintered metallic body, which comprises such processes that: metal powder and thermoplastic binder are mixed together at a determined rate into a compound to be subjected to injection molding through which a plurality of un-sintered segmentary parts are molded; said un-sintered segmentary parts thus obtained are assembled into an un-sintered assemblage in the shape of the final product and, prior to or subsequently to the assembling operation, subjected to degreasing treatment; the un-sintered assemblage is sintered with the shape of the final product kept unchanged; and a complete product composed of a metallurgically integrated sintered metallic body is obtained. The invention also consists in a side lid for the carriage of linear guide made by the above-described method and, further, in a method of making an impeller for liquid circulation.

Description

tt
一 1 — 明 細 書  One 1 — Description
金属焼結体の製造方法及びこの  Method for producing metal sintered body and this
方法によ り得られた金属焼結体 技 術 分 野  Technology obtained by the method
本発明は、 金属粉末と熱可塑性バイ ンダーとを所定の 割合で混合してコ ンパウ ン ドを調製し、 この コ ンパゥ ン ドを用いて射出成形によ り複数の未焼結分割部分品を成 形し、 これら未焼結分割部分品を用いて金属組織上一体 の金属焼結体からなる完成品を製造する金属焼結体の製 造方法に関する ものであ り、 また、 このよ うな方法によ り製造された リ ニアガイ ドに用いるキヤ リ ッ ジの側蓋で あり、 更に、 このよ う な方法によ り液体循環用羽根車を 製造する方法に関する。 背 景 技 術  In the present invention, a metal powder and a thermoplastic binder are mixed at a predetermined ratio to prepare a compound, and a plurality of unsintered divided parts are formed by injection molding using the compound. The present invention relates to a method for manufacturing a metal sintered body in which a molded product is formed by using these unsintered divided parts to form a metal sintered body integrated on a metal structure, and such a method is used. The present invention relates to a side lid of a carriage used for a linear guide manufactured by the above method, and further relates to a method of manufacturing a liquid circulation impeller by such a method. Background technology
金属焼結体を製造する方法と しては、 一般的には、 金 属粉末にヮ ッ ク ス等の熱可塑性バイ ンダーを所定の割合 で添加し、 加熱しながら混練してペレ ツ ト状等のコ ンパ ゥ ン ドを調製し、 この コ ンパゥ ン ドを用いてプレス圧縮 成形や射出成形等によ り所定の形状の未焼結成形体を成 形し、 得られた未焼結成形体についてこれを加熱してバ イ ンダーを除去する脱脂処理を行い、 次いで高温に加熱 して焼結し、 所望の形状を有する金属焼結体を得る、 と いう方法が採用されている。  As a method of manufacturing a metal sintered body, generally, a thermoplastic binder such as a plex is added to a metal powder at a predetermined ratio, and the mixture is kneaded while heating to form a pellet. Such a compound is prepared, and a green compact of a predetermined shape is formed by press compression molding, injection molding, or the like using the compound, and the obtained green compact is formed. A method is employed in which the material is heated to perform a degreasing treatment for removing the binder, and then heated to a high temperature and sintered to obtain a metal sintered body having a desired shape.
と ころで、 近年、 金属が有する種々の優れた物性、 例 えば剛性、 靱性、 強度、 弾性、 耐油性、 耐熱性等を生か すために、 複雑な形状を有する種々の製品についても、 これを金属で製造する こ とが要請されるよ う になり、 プ レス圧縮成形や射出成形等の成形技術を用いて所望の形 状を造り出すことができる金属焼結体の製造方法が着目 されている。 In recent years, various excellent physical properties of metals, such as For example, in order to take advantage of stiffness, toughness, strength, elasticity, oil resistance, heat resistance, etc., it is required to manufacture various products with complicated shapes using metal. Attention has been focused on a method for producing a metal sintered body that can produce a desired shape using molding techniques such as compression molding and injection molding.
例えば、 N C マシ ン等の工作機械や工業用ロ ボッ ト、 更には複写機やプリ ンタ 一等の 0 A機器等において、 移 動すべき可動体を直線的に案内する リニアガイ ドにおい ては、 その レール上を往復運動するキヤ リ ッ ジにボール 無限軌道を形成し、 このボール無限軌道内を転走するボ ールによ り レール上とキヤ リ ッ ジとの間に作用す 荷重 を往復動可能に負荷するよ う に している。 このため、 こ のよ うなリニアガイ ドにおいては、 キヤ リ ッ ジの両端面 に位置する側蓋にキヤ リ ッ ジ本体内を直線的に転走して きたボールの転走方向を転換する略半円形のボール方向 転換通路を形成し、 これによつてキャ リ ッ ジ内を転走す るボールの無限軌道を構成するよう にしている。 そ して、 キヤ リ ッ ジ内にこのようなボール無限軌道を構成するた め、 従来においては、 キヤ リ ッ ジの側蓋を半円形状の溝 穴を有する合成樹脂製ェン ドプレー ト と円周溝を有する 半円盤形状の合成樹脂製アールピースとで構成し、 ェン ドブレー 卜の溝穴内にアールピースを組み込んで上記ェ ン ドブレー 卜の溝穴周縁部とアールピースの円周溝とで 略半円形のボール方向転換通路を形成し、 この側蓋に形 成される略半円形のボール方向転換通路とキ ヤ リ ッ ジ本 体側に形成される直線状の負荷ボール案内通路及び無負 荷ボール案内通路とでボール無限軌道を構成する こ とが 行われている。 For example, in a linear guide that guides a movable body to be moved linearly in a machine tool such as an NC machine, an industrial robot, or a 0A device such as a copying machine or a printer, A ball endless track is formed on a carriage that reciprocates on the rail, and the load acting between the rail and the carriage is reciprocated by the ball rolling in the ball endless track. The load is movably loaded. For this reason, in such a linear guide, the side lids located on both end surfaces of the carriage change the rolling direction of the ball that has rolled linearly in the carriage body into approximately half. A circular ball turning path is formed to form an endless trajectory of the ball rolling in the carriage. In order to form such a ball endless track in the carriage, conventionally, the side lid of the carriage is provided with a synthetic resin end plate having a semicircular groove. A semi-disc-shaped synthetic resin round piece having a circumferential groove, the round piece is incorporated into the groove of the end plate, and the circumferential edge of the groove of the end plate and the circumferential groove of the round piece are formed. A substantially semi-circular ball-redirecting passage is formed with the side cover, and a substantially semi-circular ball-redirecting passage formed on the side cover and the carriage are formed. A ball endless trajectory is formed by a linear load ball guide path and a no-load ball guide path formed on the body side.
し力、しな力くら、 このよ う にエン ドプレー ト とアールピ ースとで構成される側蓋は、 これを使用 してキャ リ ッ ジ を構成する際に、 このキャ リ ッ ジ内にボールを組み込む 作業と共にェ ン ドブレ一 卜 の溝穴内にア ールピースを組 み込む作業が必要になり、 これらボールとァールピース の組み込み作業が錯綜してキ ヤ リ ッ ジの組み立て作業を 複雑化する とい う問題があった。 そこで、 こ の側蓋につ いては、 予めェン ドプレー 卜の溝穴内にアールピースを 組み込んでおく こ と も考え られるが、 この場合にはボー ルを組み込む作業の際にェ ン ドブレー トの溝穴内からァ ールピースが脱落しないよ う に、 これらェン ドブレ一 ト とアールピースとの間を予め接着剤等の手段で固着する 必要が生じ、 極めて煩雑な別の固着作業が必要になる と いう問題があった。  The side lid, which is composed of the end plate and the earpiece, is used to construct the carriage using this. In addition to the work of installing the ball, the work of assembling the round piece in the slot of the end bracket is required, and the work of assembling these balls and the round piece is complicated, which complicates the work of assembling the carriage. There was a problem. For this reason, it is conceivable to install a round piece in advance in the slot of the end plate for this side cover, but in this case, it is necessary to use the end plate when installing the ball. In order to prevent the arc pieces from dropping out of the slots, it is necessary to fix the end pieces and the round pieces in advance by means of an adhesive or the like. There was a problem.
そこで、 本発明者らは、 この問題を解決するための手 段と して、 リ ニアガイ ドに用いるキヤ リ ッ ジの側蓋を金 属焼結体で製造する こ とを試みた。  Therefore, as a means for solving this problem, the present inventors have attempted to manufacture a side lid of a carriage used for a linear guide from a metal sintered body.
しかしながら、 プレス圧縮成形では、 成形時に上下面 からの加圧が必要にな り、 金型に制約があって、 比較的 簡単な形状の製品を対象とする場合は可能であるが、 複 雑な形状の製品を対象とする場合には不向きである。 ま た、 射出成形の場合には、 三次元的に複雑な製品の成形 も比較的容易であるが、 金型の製作やこの金型から成形 品を離型する必要がある こ とから、 どのような形状のも のも容易に成形できる という ものではなく 、 製造できる 製品の形状には自ずとその限界がある。 例えば、 上記リ ニァガイ ドに用いるキヤ リ ッ ジの側蓋も、 それがボ一ル 無限軌道の一部を構成する ト ンネル状の略半円形ボール 方向転換通路を有する ことから、 たとえ射出成形の技術 を応用しても 1 回の射出成形で側蓋を成形する ことはで きない。 However, press compression molding requires pressurization from the upper and lower surfaces during molding, and is limited when the die is used. It is unsuitable when targeting a shaped product. In addition, in the case of injection molding, it is relatively easy to mold a three-dimensionally complex product. Since it is necessary to release the product, it is not easy to mold any shape, and the shape of the product that can be manufactured is naturally limited. For example, the side lid of the carriage used for the above linear guide also has a tunnel-like substantially semi-circular ball turning direction passage which forms a part of the ball endless track. Even if technology is applied, it is not possible to form the side lid in one injection molding.
このような問題を克服する手段と して、 従来よ り幾つ かの方法が提案されている。  Several methods have been proposed as means for overcoming such problems.
すなわち、 米国特許第 4, 722, 8 24号明細書 (特開昭 62 - 289 , 378号公報) には、 導電性で焼結可能な金属粉末と バイ ンダーからなる コ ンパウ ン ドにより第 1 と第 2 の未 焼結体を成形し、 これら第 1 と第 2 の未焼結体を相互に 密着させて設置し、 これら第 1 と第 2 の未焼結体の間に 電流を流して両未焼結体の金属粉末の混合を行う と共に 両者を結合せしめ、 この接合した未焼結体からバイ ンダ 一を除去し、 次いで焼結することからなる金属焼結体の 製造方法が開示されている。 しかしながら、 この方法で は、 互いに個別に成形した第 1 の未焼結体と第—2 の未焼 結体とが焼結工程で一体化されるが、 互いに密着させた 第 1 と第 2 の未焼結体の間に電流を流して両未焼結体の 金属粉末の混合と結合を行う通電工程で、 これら第 1 と 第 2 の未焼結体の間の接触状態に起因して電流の流れに むらが生じ、 結果と して、 焼結後においてこれら両未焼 結体の接合面が金属組織上均一にならず、 また、 たとえ r That is, U.S. Pat. No. 4,722,824 (Japanese Patent Application Laid-Open No. 62-289,378) discloses a first compound made of a conductive and sinterable metal powder and a binder. And a second green body are formed, and the first and second green bodies are placed in close contact with each other, and an electric current is applied between the first and second green bodies to form a green body. A method for producing a metal sintered body is disclosed, which comprises mixing the metal powders of both green bodies, joining the two together, removing a binder from the bonded green body, and then sintering. ing. However, in this method, the first green body and the second green body which are separately molded are integrated in the sintering process, but the first green body and the second green body which are closely adhered to each other are combined. In the energizing step of flowing a current between the unsintered bodies to mix and bond the metal powders of both unsintered bodies, an electric current is generated due to a contact state between the first and second unsintered bodies. As a result, after sintering, the joint surfaces of these unsintered bodies are not uniform on the metallographic structure. r
第 1 と第 2 の未焼結体をそれぞれ精度良く 成形しても、 上記電流の流れのむらに起因してこ の接合面における寸 法精度を厳密に規制する こ とができない。 Even if the first and second unsintered bodies are formed with high precision, it is not possible to strictly control the dimensional accuracy at the joint surface due to the uneven current flow.
また、 特開平 3 - 3 9, 405号公報には、 金属粉末とバイ ン ダ一からなる コ ンパゥ ン ドによ り複数個に分割して射出 成形し、 これら分割成形体の接合面に同じ組成の金属粉 末を液体バイ ンダーでスラ リ ー化して付着させ、 各分割 成形体を圧着接合し、 次いでバイ ンダーを除去した後に 真空中で焼結する こ とからなる金属焼結体の製造方法が 開示されている。 しかしながら、 この方法では、 分割成 形体の接合面に付着される金属粉末がたとえ同じ組成の ものであっても、 この金属粉末をスラ リ ー化して付着さ せる必要がある こ とから、 この金属粉末を付着させる金 属粉末塗布工程で接合面に付着される金属粉末の密度を 分割成形体内部と同じでしかも均一にする ことは極めて 困難であ り、 結果と して、 接合面の厚さ寸法を均一でか つ一定の値に制御する こ とが難し く 、 また、 焼結後にお いてこれら両未焼結体の接合面が金属組織上均一にな ら ない。  Also, Japanese Patent Application Laid-Open No. 3-39,405 discloses that injection molding is performed by dividing a metal powder and a binder into a plurality of pieces using a compound composed of a binder and forming the same on the joining surfaces of these divided molded bodies. Production of a metal sintered body that consists of slurrying the metal powder of the composition with a liquid binder and attaching it, bonding each divided molded body by pressure bonding, removing the binder, and then sintering in vacuum. A method is disclosed. However, according to this method, even if the metal powder adhered to the joint surface of the divided molded body has the same composition, it is necessary to slurry this metal powder and adhere it. It is extremely difficult to make the density of the metal powder adhered to the joint surface in the metal powder application process to adhere the powder the same as the inside of the divided molded article and to make it uniform, and as a result, the thickness of the joint surface It is difficult to control the dimensions to a uniform and constant value, and after sintering, the joining surface of the two green bodies is not uniform on the metallographic structure.
このため、 特に厳密な寸法精度が要求される精密機械 で使用される製品や、 その使用中その摩擦熱等の熱が作 用するよ う な製品、 例えば上述した リニアガイ ド用キヤ リ ッ ジの側蓋の製造においては、 通電工程や金属粉末塗 布工程で生じる寸法誤差によ り 、 製造される金属焼結体 の寸法精度を正確に規制できないこ とや、 接合面が金属 組織上均一にな らないこ とが致命的になり 、 製品の歩留 ― b ― りや耐久性が問題になってこれら米国特許第 4 , 722 , 824 号明細書 (特開昭 62 - 289, 378号公報) ゃ特開平 3 - 39 , 405 号公報に記載の方法をそのまま適用する こ とができないで 発 明 の 開 示 For this reason, products used in precision machines that require particularly strict dimensional accuracy, and products that use heat such as frictional heat during use, such as the linear guide carriage described above, In the manufacture of the side lid, the dimensional accuracy of the manufactured metal sintered body cannot be accurately regulated due to dimensional errors generated in the energization process and the metal powder coating process, and the joint surface has a uniform metal structure. The failure to do so is fatal, and product yield Due to the problem of resilience and durability, US Pat. No. 4,722,824 (JP-A-62-289,378) discloses a method described in JP-A-3-39,405. Disclosure of the invention that cannot be applied as it is
そ こで、 本発明者らは、 このよ う な問題を克服し、 金 属焼結体の製造技術を応用 して複雑な形状を有する と共 に高い寸法精度が要求されるよ うな製品、 例えばリニア ガイ ド用キヤ リ ッ ジの側蓋や液体循環用羽根車等を製造 する ことについて鋭意研究を重ねた結果、 射出成形によ り成形された各分割部分品の接合面をそのまま接合して 焼結する こ とによ り 、 この射出成形によ り成形された未 焼結分割部分品の接合面における精度がそのまま金属焼 結体の完成品に反映され、 また、 金属組織上も接合面以 外の他の部分と変わりない一体の完成品を得る こ とがで きる こ とを見出し、 本発明を完成した。  Therefore, the present inventors have overcome such a problem, and have applied a manufacturing technology of a metal sintered body to a product having a complicated shape and high dimensional accuracy. For example, as a result of intensive research on manufacturing the side lids of carriages for linear guides and impellers for liquid circulation, etc., the joining surfaces of the divided parts formed by injection molding were directly joined. By sintering, the accuracy of the joint surface of the unsintered divided part formed by this injection molding is reflected as it is on the finished metal sintered body, and the metal structure is also joined. The present inventors have found that it is possible to obtain an integrated product that is the same as other parts except for the surface, and completed the present invention.
すなわち、 本発明は、 金属粉末と熱可塑性バイ ンダー とを所定の割合で混合してコ ンパウ ン ドを調製し、 この コ ンパゥ ン ドを用いて射出成形により複数の未焼結分割 部分品を成形し、 これら複数の未焼結分割部分品をその まま組み合わせて完成品形状の未焼結組立体を組み立て、 この際に完成品形状に組み立てる前又は後に脱脂処理し、 次いでこの組み立てられた未焼結組立体についてその完 成品形状を保持したまま所定の温度で焼結し、 金属組織 上一体の金属焼結体からなる完成品を製造する金属焼結 体の製造方法である。 — 一 That is, according to the present invention, a metal powder and a thermoplastic binder are mixed at a predetermined ratio to prepare a compound, and a plurality of unsintered divided parts are formed by injection molding using the compound. It is molded, and the plurality of unsintered divided parts are combined as they are to assemble the unsintered assembly in the shape of the finished product. At this time, before or after assembling into the shape of the finished product, degreasing is performed. This is a method for manufacturing a metal sintered body that sinters a sintered assembly at a predetermined temperature while maintaining the shape of the completed product, and manufactures a finished product composed of a metal sintered body integrated on a metal structure. — One
また、 本発明は、 リ ニアガイ ドを構成するキャ リ ッ ジ の両端面に位置する と共にェ ン ドブ レー ト と このェ ン ド プレー トに組み込まれるアールピースとからなり、 これ らェン ドブレー 卜 とアールピースとの間にキヤ リ ッ ジ内 に形成されるボール無限軌道のう ちの略半円形のボール 方向転換通路が形成される側蓋であって、 金属粉末と熱 可塑性バイ ンダーとからなる コ ンパゥ ン ドの射出成形に よ り成形された未焼結のェ ン ドブレー 卜 とアールピース とを組み合わせて略半円形のボール方向転換通路を有す る側蓋形状の未焼結組立体を組み立て、 この組み立てら れた未焼結組立体についてその側蓋形状を保持したまま 脱脂し、 次いで焼結して製造され、 全体が金属組織上一 体の金属焼結体で形成されている リ ニアガイ ド用キ ヤ リ ッ ジの側蓋である。 Further, the present invention includes an end plate which is located on both end surfaces of a carriage constituting a linear guide, and an endpiece which is incorporated in the end plate. A side lid in which a substantially semicircular ball turning path of the ball endless track formed in the carriage is formed between the ball and the round piece, and is made of metal powder and a thermoplastic binder. The unsintered end plate formed by injection molding of the compound is combined with a round piece to form a side cover-shaped unsintered assembly having a substantially semicircular ball direction changing passage. The unsintered assembly thus assembled is degreased while maintaining its side lid shape, then sintered and manufactured, and the entire structure is formed of a single metal sintered body on a metallographic structure.Key is an arrow Li Tsu side lid di for the struggling de.
更に、 本発明は、 水ア トマイズ法で得られたステ ンレ ス鋼粉末と熱可塑性バイ ンダ一とを所定の割合で混合し てコ ンパウ ン ドを調製し、 こ の コ ンパウ ン ドを用いて射 出成形によ り液体循環用羽根車の羽根車本体と捕助羽根 とを成形し、 これら羽根車本体と捕助羽根とを組み合わ せて羽根車形状の未焼結組立体を組み立て、 こ の際に羽 根車形状に組み立てる前又は後に脱脂処理し、 次いでこ の組み立てられた未焼結組立体についてその羽根車形状 を保持したまま所定の温度で焼結し、 金属組織上一体の 金属焼結体からなる完成品を製造する液体循環用羽根車 の製造方法である。  Further, in the present invention, a stainless steel powder obtained by a water atomization method and a thermoplastic binder are mixed at a predetermined ratio to prepare a compound, and the compound is used. The impeller body of the liquid circulation impeller and the trapping impeller are formed by injection molding, and the impeller-shaped green sintered assembly is assembled by combining the impeller body and the trapping impeller. At this time, before or after assembling into an impeller shape, degreasing is performed, and then the assembled unsintered assembly is sintered at a predetermined temperature while maintaining the impeller shape, and an integrated metal structure is formed. This is a method for manufacturing a liquid circulation impeller for manufacturing a finished product made of a metal sintered body.
本発明で使用する金属粉末と しては、 それが焼結可能 な金属であれば如何なる ものでもよいが、 例えば、 s uThe metal powder used in the present invention can be sintered Any suitable metal can be used. For example, su
S 3 0 4 L . S U S 3 1 6 L . S U S 4 1 0 L . S U S 4 3 0 L、 S U S & 3 0等のステン レス鋼粉末や、 S K H & 1 、 S K H 5 7等の高速度鋼粉末や、 P B 4 7 、 ノヽ。 —メ ンジュール等の磁性合金粉末や、 ニ ッ ケル、 コバル ト'、 タ ングステ ン、 チタ ン等の金属あるいはその合金か らなる非鉄金属粉末等を挙げる こ とができる。 Stainless steel powder such as S304L, SUS316L, SUS410L, SUS430L, SUS & 30 and high-speed steel powder such as SKH & 1, SKH57 , PB47, NO. — Magnetic alloy powders such as mendules, and non-ferrous metal powders composed of metals such as nickel, cobalt ', tungsten, titanium, etc. or alloys thereof.
これらの金属粉末は、 通常、 溶湯金属に例えば遠心力 により直接的に、 あるいは、 水、 油、 ガス等の流体を介 して間接的に機械的エネルギーを作用させて粉砕し、 こ れを冷却凝固させて金属粉末を得るァ トマイズ法、 機械 的破砕により金属塊から金属粉末を作る と う (搗) 碎法、 化学反応を利用 したカルボニル法等によ り製造する こ と ができ、 その何れの方法によって製造されたものも使用 できるが、 工業的に種々の金属粉末を安価に製造でき、 しかも、 その粒度が安定している という点から、 好ま し く はア トマイズ法で製造されたものであり、 製造された 金属粉末の形状が不規則で金属粉末間の結合力が強く 、 製造される成形体の強度が高く なる という点から、 よ り 好ま し く は機械的エネルギーの付与方法と して水を使用 する水ア トマイズ法がよい。 一  These metal powders are usually pulverized by applying mechanical energy to the molten metal directly by, for example, centrifugal force or indirectly through a fluid such as water, oil, gas, or the like, and cooling the metal. It can be produced by the atomizing method, which solidifies to obtain a metal powder, the method of making metal powder from a metal lump by mechanical crushing, the crushing method, or the carbonyl method using a chemical reaction. Can be used, but various metal powders can be produced industrially at low cost, and the particle size is stable. More preferably, the shape of the produced metal powder is irregular, the bonding force between the metal powders is strong, and the strength of the produced molded body is high. The water atomization method using water is good. One
そして、 この金属粉末については、 通常、 その平均粒 径が 1 〜 3 0 a mであつて最大粒径が 7 0 // m以下のも のが使用されるが、 射出成形が適用され、 また、 焼結後 に複数の分割部分品の接合面を金属組織上一体にする必 要から、 好ま し く は平均粒径が 1 〜 3 0 ^ mであって最 大粒径が 2 0 μ m以下の ものがよい。 平均粒径が 1 m よ り小さい金属粉末はその製造が困難である。 And, as for this metal powder, usually, those having an average particle diameter of 1 to 30 am and a maximum particle diameter of 70 // m or less are used, but injection molding is applied. After sintering, the joining surfaces of the plurality of divided parts need to be integrated on the metallographic structure, so the average grain size is preferably 1 to 30 ^ m and A large particle size of 20 μm or less is preferred. It is difficult to produce metal powder with an average particle size smaller than 1 m.
また、 本発明で使用する熱可塑性バイ ンダーは、 それ が成形性や脱脂性に優れたものであればよ く 、 従来よ り この種の技術で使用されている もの、 例えばワ ッ ク ス、 エチルアルコ ールを溶媒と したポ リ ビニルプチラ ール、 ト ルエ ンを溶媒と したァク リ ル樹脂や塩化ビニル樹脂、 酢酸ブチルを溶媒と した塩化ビニル樹脂、 特開平 1 - 30 1, 805 号公報に記載のポ リ オキ シエチ レ ン一 ポ リ オキシプ 口 ピレ ン縮合物系ポ リ エ一テルを主成分と して含むもの 等が挙げられ、 特に限定される ものではないが、 好ま し く はポ リ オキ シエチ レ ン一 ポ リ オキ シプロ ピ レ ン縮合物 系ポ リ エーテルを主成分と して含むものである。  The thermoplastic binder used in the present invention only needs to be excellent in moldability and degreasing properties, and may be any of those conventionally used in this type of technology, such as wax, Polyvinyl butyral using ethyl alcohol as a solvent, acrylic resin and vinyl chloride resin using toluene as a solvent, vinyl chloride resin using butyl acetate as a solvent, and JP-A-1-301,805 And the like.The polyoxyethylene polyoxyl-opened pyrene condensate-based polyester described in (1) above as a main component is exemplified, and it is not particularly limited. Polyoxyethylene-polyoxypropylene condensate-based polyether is contained as a main component.
本発明において、 未焼結分割部分品を成形するための 射出成形に使用する コ ンパウ ン ドは、 上記金属粉末と熱 可塑性バイ ンダーとを所定の割合で配合し、 混練して調 製されるが、 好ま し く は得られた混練物を押出機等でぺ レ ツ ト状に してから使用するのがよい。 この コ ン ノくゥ ン ドを調製する際の金属粉末と熱可塑性バイ ンダ一との配 合割合は、 この方法で製造される製品によっても異なる が、 一般的には金属粉末が 8 7 〜 9 4 重量%、 好ま し く は 8 9 〜 9 2重量%であ っ て、 熱可塑性バイ ンダーが 6 〜 1 3 重量%、 好ま し く は 8 〜 1 1 重量%である。 熱可 塑性バイ ンダ一の配合割合が少なすぎる と成形不良とい う問題を生じ、 また、 多過ぎる と脱バイ ンダー不良とい う別の問題を生じる。 このよ う に して調製されたコ ンパウ ン ドを用いて、 複 数の未焼結分割部分品が射出成形により成形される。 In the present invention, the compound used for the injection molding for molding the unsintered divided part is prepared by mixing the above metal powder and a thermoplastic binder at a predetermined ratio and kneading them. However, it is preferred that the obtained kneaded material is pelletized by an extruder or the like before use. The mixing ratio of the metal powder and the thermoplastic binder in preparing this compound varies depending on the product manufactured by this method, but generally the metal powder is 87 to 90%. 94% by weight, preferably 89-92% by weight, with the thermoplastic binder being 6-13% by weight, preferably 8-11% by weight. If the proportion of the thermoplastic binder is too small, there is a problem of molding failure, and if it is too large, there is another problem of poor binder removal. Using the compound thus prepared, a plurality of unsintered divided parts are formed by injection molding.
完成品たる製品をどのよ う に分割して幾つの分割部分 品とするかは、 対象とする製品によって適宜設計される ものであるが、 各分割部分品が射出成形により成形され る ものであるから、 射出成形可能な形状であってできる だけ少ない数の分割部分品とするのがよい。 このこ とか ら、 本発明の 1つの目的である リニアガイ ド用キヤ リ ッ ジの側蓋については、 エン ドプレー ト と このエン ドプ レ 一 卜に組み込まれるアールピースとに分割し、 これらを 分割部分品と して成形するのがよい。 また、 他の目的の How to divide a finished product into a number of divided parts is appropriately designed depending on the target product, but each divided part is molded by injection molding. Therefore, it is preferable that the number of divided parts be as small as possible and have a shape that can be injection molded. For this reason, the side guide of the linear guide carriage, which is one object of the present invention, is divided into an end plate and a round piece incorporated in the end plate, and these are divided. It is better to mold it as a part. Also for other purposes
1 つである液体循環用羽根車については、 主羽根を備え た羽根車本体と この羽根車本体に取りつけられる捕助羽 根とに分割し、 これらを分割部分品と して成形するのが よい。 One of the liquid circulation impellers is preferably divided into an impeller main body having a main impeller and a catching impeller attached to the impeller main body, and these are formed as divided parts. .
このよ うな未焼結分割部分品を射出成形する際の成形 条件については、 各分割部分品に高い寸法精度が要求さ れる ことから、 比較的低い温度でかつ比較的高い圧力で 成形するのがよ く 、 通常、 5 0〜 2 0 0 °C、 好ま し く は 8 0〜 1 5 0 °Cの温度で 5 0 0 〜 : L, 0 0 0 kg f / cm · G、 好ま しく は 6 0 ひ〜 9 0 0 kg f / cm2 · Gである。 射 出温度が 5 0 °Cより低いと成形機内での可塑化不良とい う問題が生じ、 また、 2 ひ 0 °Cを越える とバイ ンダ一と 金属粉末とが分離する という問題が生じる。 また、 射出 圧力が 5 0 0 kg f / cnf · Gより低いと充塡不良という問 題が生じ、 また、 1, 0 0 0 kg f Z cm2 · Gを越える と多 重のバリ の発生や離型不良という問題が生じる。 Regarding the molding conditions for injection molding of such unsintered divided parts, since high dimensional accuracy is required for each divided part, it is necessary to mold at relatively low temperature and relatively high pressure. Typically, 50 to 200 ° C, preferably 500 to 150 ° C, at 500 to: L, 00 kg f / cmG, preferably 6 0 Tuesday to 9, which is a 0 0 kg f / cm 2 · G. If the injection temperature is lower than 50 ° C, there is a problem of poor plasticization in the molding machine, and if the temperature exceeds 220 ° C, there is a problem that the binder and the metal powder are separated. Further, the injection pressure is lower than 5 0 0 kg f / cnf · G occur problems that Takashi塡failure, also, 1, 0 0 0 kg f Z cm 2 · exceeds G multi Problems such as heavy burrs and poor mold release occur.
このよ う に して成形された各未焼結分割部分品は、 次 に組み合わされて完成品形状の未焼結組立体に組み立て られるが、 こ の際に各分割部分品は脱脂処理に付され、 熱可塑性バイ ンダーが除去される。 この脱脂処理のタイ ミ ングは、 各分割部分品を組み合わせて 1 つの完成品形 状に組み立てる前であっても、 その後であってもよいが 射出成形によ り成形された各分割部分品の寸法精度を維 持したまま 1 つの完成品形状に組み立てる必要がある こ とから、 好ま し く は完成品形状の未焼結組立体を組み立 てた後に脱脂処理に付するのがよい。 そ して、 この脱脂 処理の方法については、 各分割部分品中の熱可塑性バイ ンダーを除去し、 かつ、 その際に各分割部分品の接合面 を消失させる こ とができれば、 特に限定される ものでは ないが、 通常、 所定の時間高温空気を流通させる方法や 水等の溶媒を使用 して溶媒抽出する方法等が採用され、 好ま し く は高温空気を流通させる方法ある。 この高温空 気を流通させる方法における処理条件は、 各分割部分 中の熱可塑性バイ ンダーを効率良く 除去し、 かつ、 その 際に各分割部分品の接合面を可及的に消失させて均一に する必要がある こ と力、ら、 常圧下に温度 1 0 0 〜 6 0 0 °C、 好ま し く は 3 0 0 〜 4 0 0 °C , よ り好ま し く は 3 0 0 〜 4 0 0 °Cの空気を 1 〜 2 0 0 時間、 好ま し く は 4 0 〜 7 0 時間流通させるのがよい。 脱脂処理の際の圧力が 高かったり あるいは低いと、 脱脂不良とい う問題が生じ また、 温度が 1 0 0 °Cよ り低いとバイ ンダーが残存する —— 丄 —— という問題が生じ、 更に、 温度が 6 0 ひ °Cを越える と脱 脂炉自体の構造が大型化して経済的に不利である という 問題が生じる。 The unsintered divided parts formed in this way are assembled as follows to be assembled into a green body-shaped unsintered assembly. At this time, each divided part is subjected to a degreasing process. To remove the thermoplastic binder. The timing of the degreasing treatment may be before or after assembling the divided parts into one finished product, but may be performed after each divided part formed by injection molding. Since it is necessary to assemble into one finished product shape while maintaining the dimensional accuracy, it is preferable to perform a degreasing process after assembling the finished shape unsintered assembly. The method of the degreasing treatment is particularly limited as long as the thermoplastic binder in each divided part can be removed and the joining surface of each divided part can be eliminated at that time. Although not always, a method of circulating high-temperature air for a predetermined time or a method of extracting a solvent using a solvent such as water is employed, and a method of circulating high-temperature air is preferable. The processing conditions in this method of flowing high-temperature air are as follows: the thermoplastic binder in each divided part is efficiently removed, and at this time, the joint surface of each divided part is eliminated as much as possible to ensure uniformity. The temperature must be under normal pressure 100 ~ 600 ° C, preferably 300 ~ 400 ° C, more preferably 300 ~ 40 Air at 0 ° C is allowed to flow for 1 to 200 hours, preferably 40 to 70 hours. If the pressure during degreasing is too high or too low, problems such as poor degreasing will occur.If the temperature is lower than 100 ° C, the binder will remain. —— 丄 —— The problem arises. Furthermore, if the temperature exceeds 60 ° C., the structure of the degreasing furnace itself becomes large, which is economically disadvantageous.
このよ う にして組み立てられた完成品形状の未焼結組 立体は、 その完成品形状を維持したまま所定の温度で焼 結され、 各分割部分品の接合面が消失してその全体が金 属組織上一体の金属焼結体からなる完成品とされる。 こ の際の焼結条件については、 使用される金属粉末の種類 等によ り異なるが、 鉄系の金属粉末を使用した場合には, 通常、 1, 1 0 0〜 1, 4 5 0 °C、 好ま し く は 1, 2 0 0〜 1, 3 5 0 °Cの温度で 2〜 6 時間焼結される。 この 焼結により、 分割部分品の接合面は完全に消失し、 金属 組織的に全体が一体化する。  The unsintered braid of the finished product shape assembled in this way is sintered at a predetermined temperature while maintaining the finished product shape, and the joining surface of each divided part disappears and the whole is made of gold. It is a finished product consisting of a metal sintered body that is integral with the metal structure. The sintering conditions at this time vary depending on the type of metal powder used, etc., but when an iron-based metal powder is used, it is usually from 1,100 to 1,450 °. C, preferably sintered at a temperature of 1,200 to 1,350 ° C for 2 to 6 hours. By this sintering, the joint surfaces of the divided parts completely disappear, and the whole is integrated in a metallic structure.
本発明によれば、 金属粉末と熱可塑性バイ ンダーとか らなる コ ンパゥ ン ドを射出成形する こ とによりえられた 高精度の各未焼結分割部分品をそのままその接合面で接 合しているので、 射出成形によ り成形される各分割部分 品の高い寸法精度をそのまま生かすこ とができ、 これに よ ってこの接合面で生じる各分割部分品間の接合面の隙 間を金属粉末の平均粒径以下にする ことができ、 焼結後 には各分割部分品間の接合面が完全に消失した金属焼結 体からなる完成品を得る ことができる。 図面の簡単な説明  According to the present invention, each high-precision unsintered divided part obtained by injection-molding a compound composed of a metal powder and a thermoplastic binder is directly joined at its joint surface. As a result, the high dimensional accuracy of each divided part formed by injection molding can be used as it is, and as a result, the gap at the joint surface between each divided part generated at this joint surface can be The average particle size of the powder can be reduced to the average particle size or less, and after sintering, it is possible to obtain a finished product made of a metal sintered body in which the joint surfaces between the divided parts have completely disappeared. BRIEF DESCRIPTION OF THE FIGURES
F i g. 1 は、 本発明の実施例 1 で製造したキヤ リ ッ ジの 側蓋を備えた リニァガイ ドを F i g. 2 の I 一 I 線に沿つて 1 G FIG. 1 shows a linear guide provided with the side lid of the carriage manufactured in Example 1 of the present invention along the line I-I of FIG. 1 G
— 13— 示す部分断面図である。  FIG.
F i g. 2 は、 実施例 1 の側蓋を備えた リ ニアガイ ドを F i g. 1 の Π — Π線に沿って示す部分断面図である。  FIG. 2 is a partial cross-sectional view showing the linear guide having the side cover of Example 1 along the line Π—Π of FIG.
F . 3 は、 実施例 1 の側蓋を備えた リニアガイ ドを F i g. 1 の HI— m線に沿って示す部分断面図である。  F.3 is a partial cross-sectional view showing the linear guide having the side lid of Example 1 along the line HI-m of FIG.
Fig. 4 は、 本発明の実施例 1 に係る リ ニアガイ ド用キ ャ リ ッ ジの側蓋を製造する製造工程を示すフ ローチヤ一 トである。  FIG. 4 is a flowchart showing a manufacturing process for manufacturing a side lid of a linear guide carriage according to the first embodiment of the present invention.
Fig. 5 は、 実施例 1 で作製した側蓋の未焼結エ ン ドプ レー トを示す斜視図である。  Fig. 5 is a perspective view showing the unsintered end plate of the side cover prepared in Example 1.
Fig. 6 は、 実施例 1 で作製した側蓋の未焼結ァ一ルピ ースを示す斜視図である。  FIG. 6 is a perspective view showing the green earth piece of the side cover manufactured in Example 1.
Fig. 7 は、 Fig. 5 に示す未焼結ェン ドブ レー 卜 の溝穴 内に F i g. 6 に示す未焼結アールピー スをセ ッ ト して未焼 結組立体を組み立てた際における、 これらエ ン ドプレー ト とアールピースとの間の接合状態を示す部分断面図で ある。  Fig. 7 shows the results when the unsintered assembly shown in Fig. 6 was set in the slot of the unsintered end plate shown in Fig. 5, and the unsintered assembly was assembled. FIG. 3 is a partial cross-sectional view showing a joined state between the end plate and the round piece in FIG.
Fig. 8 は、 実施例 1 で得られた未焼結ェ ン ドブレー ト (又は未焼結アールピー ス) 内部における金属粒子の分 布状態を示す電子顕微鏡写真 ( 1 , 0 0 0 倍) である。  Fig. 8 is an electron micrograph (magnification: × 1000) showing the distribution of metal particles inside the green end plate (or green RTP) obtained in Example 1. .
Fig. 9 は、 実施例 1 で得られた未焼結組立体において そのェン ドブレ一 卜 とアールピースとの接合面における 金属粒子の分布状態を示す電子顕微鏡写真 ( 1 , 0 0 0 倍) である。  Fig. 9 is an electron micrograph (magnification: × 1000) showing the distribution of metal particles on the joint surface between the end plate and the round piece in the unsintered assembly obtained in Example 1. It is.
Fig.10は、 実施例 1 で得られた未焼結組立体において そのェン ドブレ一 卜 とアールピースとの接合面における 脱脂処理後の金属粒子の分布状態を示す電子顕微鏡写真 ( 1, 0 0 0倍). である。 Figure 10 shows the unsintered assembly obtained in Example 1 at the joint surface between the endpiece and the round piece. FIG. 4 is an electron micrograph (× 1,000) showing the distribution of metal particles after degreasing.
Fig.11は、 実施例 1 で得られた焼結後のエン ドプレー トとアールピースとの接合面における金属組織を示す電 子顕微鏡写真 ( 1, 0 0 0倍) である。  Fig. 11 is an electron micrograph (magnification: × 1000) showing the metallographic structure at the joint surface between the end plate after sintering obtained in Example 1 and the round piece.
Fig.12は、 本発明の実施例 2で得られた未焼結羽根車 本体を示す正面図である。  FIG. 12 is a front view showing the green impeller body obtained in Example 2 of the present invention.
Fig.13は、 Fig.12の斜視図である。  Fig.13 is a perspective view of Fig.12.
Fig.14は、 本発明の実施例 2で得られた未焼結捕助羽 根を示す斜視図である。  FIG. 14 is a perspective view showing the green sintering trapping blade obtained in Example 2 of the present invention.
Fig.15は、 Fig.12の羽根車本体に Fig.14の捕助羽根を 取り付けて焼結した後の羽根車を示す正面図である。 発明を実施するための最良の形態 以下、 添付図面に示す実施例に基づいて、 本発明を具 体的に説明する。  Fig.15 is a front view showing the impeller after sintering by attaching the trapping impeller of Fig.14 to the impeller body of Fig.12. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be specifically described based on embodiments shown in the accompanying drawings.
実施例 1  Example 1
Figs. 1〜 3 に、 本発明の実施例 1 に係るキヤ リ ッ ジ Cの側蓋 1 を備えたリニアガイ ド Lが示されている。 こ の リニアガイ ド Lは、 工作機械や工業用ロボッ 下の直線 運動用スライ ド部に使用される ものであり、 キャ リ ッ ジ Cと、 レール Rと、 上記キャ リ ッ ジ C内に形成されたボ ール無限軌道 2 内を循環し、 キャ リ ッ ジ Cと レール と の間で荷重を負荷する多数のボール B とで構成されてい る。 そして、 上記キャ リ ッ ジ Cは、 ボール Bの負荷ボー ル溝 3 a と これに対応する無負荷ボール孔 3 b とを有す 1 _ FIGS. 1 to 3 show a linear guide L having a side lid 1 of a carriage C according to a first embodiment of the present invention. The linear guide L is used for a linear motion slide section under a machine tool or an industrial robot. The linear guide L is formed in the carriage C, the rail R, and the carriage C. It is composed of a number of balls B circulating in the ball endless track 2 and applying a load between the carriage C and the rail. The carriage C has a load ball groove 3a for the ball B and a corresponding no-load ball hole 3b. 1 _
一 1 5— るキ ヤ リ ッ ジ本体 3 と、 このキ ヤ リ ッ ジ本体 3 の両端に 取り付けられ、 略半円形のボール方向転換通路 4 を有す る一対の側蓋 1 とで構成されており、 これら一対の側蓋 1 をキャ リ ッ ジ本体 3 の両端に取り付けた際に、 このキ ャ リ ッ ジ本体 3 の直線状の負荷ボール溝 3 a と無負荷ボ ール孔 3 bの各一端がそれぞれ各側蓋 1 の略半円形のボ —ル方向転換通路 4 の両端部にそれぞれ接続され、 これ によってボール無限軌道 2 が形成されている。  It comprises a carriage body 3 and a pair of side lids 1 attached to both ends of the carriage body 3 and having a substantially semicircular ball direction changing passage 4. When these paired side covers 1 are attached to both ends of the carriage body 3, the linear load ball groove 3a and the no-load ball hole 3b of the carriage body 3 are formed. Are connected to both ends of a substantially semicircular ball direction changing passage 4 of each side cover 1, thereby forming a ball endless track 2.
なお、 F i g s . 1 〜 3 において、 符号 5 はレール R側に 形成されたボール B の転走溝であり、 符号 6 はグリ ース ニ ップルであ り 、 符号 7 はサイ ドシールであ り 、 また、 符号 8 はェン ドシールである。  In FIGS. 1 to 3, reference numeral 5 denotes a rolling groove of the ball B formed on the rail R side, reference numeral 6 denotes a grease nipple, reference numeral 7 denotes a side seal, Reference numeral 8 is an end seal.
そ して、 上記側蓋 1 は、 本発明の方法に従って金属焼 結体でその全体が一体に形成されており 、 以下の手順に 従って製造された。  The side cover 1 was integrally formed of a metal sintered body according to the method of the present invention, and was manufactured according to the following procedure.
〔金属粉末の調製〕  (Preparation of metal powder)
金属粉末の調製は、 S U S 3 0 4 L のステ ン レス鋼の 溶湯に機械的エネルギー と して高圧水を作用させて粉砕 し、 これを冷却凝固させて金属粉末を得る水ア トマイズ 法によ り行った。 得られた金属粉末について、 その成分 組成、 粒度分布、 平均粒径及び最大粒径を測定した。 結 果を表 1 に示す。 表 1 Metal powder is prepared by a water atomization method in which high-pressure water is applied as mechanical energy to pulverize molten SUS304L stainless steel, and this is cooled and solidified to obtain metal powder. I went. The composition, particle size distribution, average particle size and maximum particle size of the obtained metal powder were measured. Table 1 shows the results. table 1
Figure imgf000018_0001
Figure imgf000018_0001
〔コ ンパウ ン ドの調製〕 (Preparation of compound)
このよ う にして調製された水ァ トマイズ法による S U S 3 0 4 L粉末 9 0. 5重量%に表 2 に示す組成を有す るバイ ンダー 9 . 5重量%を添加し、 ニーダ一中で温度 1 0 0 〜 1 2 0 °C、 4 0分間の条件で混練し、 次いでべ レタイザ一でペレツ ト化し、 冷風で冷却してペレツ ト状 コ ンパゥ ン ドを調製した。  9.5% by weight of a binder having the composition shown in Table 2 was added to 90.5% by weight of the SUS 304 L powder prepared by the water atomization method prepared in this manner, and the mixture was kneaded. The mixture was kneaded at a temperature of 100 to 120 ° C. for 40 minutes, then pelletized by a pelletizer, and cooled with cold air to prepare a pellet-like compound.
表 2  Table 2
Figure imgf000018_0002
Figure imgf000018_0002
〔側蓋の製造〕 [Manufacture of side cover]
以上のよう に して調製したペ レ ツ ト状コ ンパウ ン ドを 使用 し、 Pig. 4 に示すフ ローチヤ一 卜に従って側蓋 1 の , _ Using the pellet-shaped compound prepared as described above, follow the flow chart shown in Pig. , _
— 17— 製造を行った。  — 17— Manufactured.
すなわち、 先ず上記コ ンパウ ン ドを用い、 金属射出成 形機によ り Fig. 5 に示す形状の未焼結のェン ドブレー ト 1 a と Fig. 6 に示すアールピース 1 b とを成形した。 こ の未焼結のエン ドプレー ト 1 a とアールピース 1 b とに ついて、 その内部の金属粒子の分布状態を電子顕微鏡で 観察した。 結果を Fig. 8 に示す。  That is, first, using the above-mentioned compound, an unsintered end plate 1a having the shape shown in Fig. 5 and a round piece 1b shown in Fig. 6 were formed by a metal injection molding machine. . With respect to the unsintered end plate 1a and the round piece 1b, the distribution state of the metal particles in the inside was observed with an electron microscope. Figure 8 shows the results.
次に、 これらエ ン ドプ レー ト l a と アールピース l b とについて射出成形の際に形成されたケー ト部分を力 ッ 卜 して除去し、 Fig. 7 に示すよ う に、 アールピース l b をエ ン ドプレー ト 1 a に形成された溝穴 9 内に嵌め込ん でセ ッ 卜 し、 これらエ ン ドプレー ト 1 a と アールピース 1 b とが組み合わされた側蓋形状の未焼結組立体を形成 した。 この際に、 エン ドプレー ト l aの溝穴 9の周縁部 10と この溝穴 9 内にセッ 卜 されたアールピース 1 bの円 周溝 11とによ り組み立てられた側蓋形状の未焼結組立体 中に略半円形のボール方向転換通路 4が構成された。 ま た、 この未焼結組立体における接合面の部分について、 その金属粒子の分布状態を電子顕微鏡で観察した。 結果 を Fig. 9 に示す。 この Fig. 9 に示す顕微鏡写真から明ら かなよ う に、 未焼結組立体のェ ン ドブレー ト 1 a とァー ルピース 1 b との接合面には金属粉末の平均粒径とほぼ 同じ大きさのギヤ ップが生じているのが判明した。  Next, the end plate la and the round piece lb were removed by forcibly removing the casing formed during the injection molding, and the round piece lb was removed as shown in Fig. 7. It is fitted into the slot 9 formed in the end plate 1a and set, and the side cover-shaped unsintered assembly in which the end plate 1a and the round piece 1b are combined is assembled. Formed. At this time, the unsintered shape of the side lid assembled by the peripheral edge 10 of the slot 9 of the end plate la and the circumferential groove 11 of the round piece 1 b set in the slot 9 A substantially semicircular ball turning path 4 was formed in the assembly. In addition, the distribution state of the metal particles in the joint surface portion of the unsintered assembly was observed with an electron microscope. Figure 9 shows the results. As is clear from the micrograph shown in Fig. 9, the joint surface between the end plate 1a and the ball piece 1b of the unsintered assembly has almost the same size as the average particle size of the metal powder. It turned out that a gap had occurred.
こ のよ う に して得られた側蓋形状の未焼結組立体を脱 脂炉に装入し、 そこで常圧下に 4 0 0 °Cまで昇温し、 こ の温度に 4 8時間保持して脱脂処理し、 未焼結組立体中 ― l — のバイ ンダーを除去した。 この脱脂処理で、 未焼結組立 体中のバイ ンダーはその 9 9重量%以上が除去された。 この脱脂処理後の未焼結組立体における接合面の部分に ついて、 その金属粒子の分布状態を電子顕微鏡で観察し た。 結果を F i g. 10に示す。 この F i g. 10に示す顕微鏡写真 か 'ら明らかなよう に、 F i g. 9 で観察されたェン ドブレー ト 1 a とアールピース 1 b との接合面は完全に消失し、 金属粉末が全体に均一に分布しているのが観察された。 The unsintered assembly in the shape of the side lid obtained in this way is charged into a degreasing furnace, where it is heated to 400 ° C under normal pressure and kept at this temperature for 48 hours. Degreased, and in the unsintered assembly ― The l-binder has been removed. By this degreasing treatment, more than 99% by weight of the binder in the unsintered assembly was removed. The distribution of the metal particles on the joint surface of the unsintered assembly after the degreasing treatment was observed with an electron microscope. The results are shown in FIG. As is clear from the micrograph shown in Fig. 10, the joint surface between end plate 1a and R-piece 1b observed in Fig. 9 disappeared completely, and the metal powder Was observed to be uniformly distributed throughout.
次に、 脱脂炉から取り出した側蓋形状の未焼結組立体 は、 真空炉に装入され、 そ こで 1, 2 5 0 °Cで 2 時間加 熱されて真空焼結された。 この真空焼結の処理が終了後, 金属焼結体で全体が一体に形成された側蓋 1 は、 この真 空路から取り出された。 この側蓋 1 について、 未焼結組 立体におけるエン ドプレー ト 1 a とアールピース 1 b と の接合面の部分における金属組織を電子顕微鏡で観察し た。 結果を F i g. 11に示す。 この F i g. 11に示す顕微鏡写真 から明らかなよう に、 エン ドプレー ト 1 a とアールピー ス 1 b との接合面は完全に消失しており、 全体が金属組 織上一体の金属焼結体である ことが判明した。  Next, the unsintered assembly with the side lid removed from the degreasing furnace was placed in a vacuum furnace, where it was heated at 1,250 ° C for 2 hours and vacuum-sintered. After the completion of the vacuum sintering process, the side cover 1 formed entirely of a metal sintered body was taken out of the vacuum path. With respect to the side cover 1, the metal structure of the unsintered solid body at the joint surface between the end plate 1a and the round piece 1b was observed with an electron microscope. The results are shown in FIG. As is evident from the micrograph shown in Fig. 11, the joining surface between the end plate 1a and the Rp 1b has completely disappeared, and the entire metal sintered body is integrated with the metal structure. It turned out that.
このよ う にして製造された金属焼結体製の側蓋 1 は、 次いでキ ャ リ ッ ジ本体 3 の両端に取り付けられ、 また、 その際に形成されたボール無限軌道 2 内に多数のボール Bが組み込まれてキヤ リ ッ ジ Cが組み立てられる。  The side cover 1 made of a sintered metal body manufactured in this manner is then attached to both ends of the carriage body 3, and a large number of balls are placed in the ball endless track 2 formed at that time. Carrier C is assembled by incorporating B.
この実施例 1 において、 側蓋 1 は、 そのエン ドプレー ト 1 a とアールピース 1 b とが金属焼結体で金属組織上 一体に形成されており、 各ェン ドブレ一 ト 1 aやアール _ In the first embodiment, the side cover 1 has an end plate 1a and a round piece 1b integrally formed on a metal structure by a metal sintered body. _
ピース 1 bを射出成形で製造した際の優れた寸法精度が そのまま製品の金属焼結体からなる側蓋 1 に反映されて おり 、 しかも、 キ ャ リ ッ ジ Cの組立工程でアールピース 1 bがエン ドプレー ト 1 a から脱落するよ う なこ とがな く 、 極めてその作業性が改善される と共に、 優れた耐久 性を有する。 The excellent dimensional accuracy when the piece 1b is manufactured by injection molding is directly reflected on the side cover 1 made of a sintered metal product, and the round piece 1b is used in the assembly process of the carriage C. Does not fall off the end plate 1a, so that its workability is greatly improved and it has excellent durability.
実施例 2  Example 2
次に、 Figs. 12〜15は、 自動車用エンジ ン等でその冷 却に使用される冷媒を循環させるための液体循環用羽根 車を示すもので、 本発明方法によ り製造されたものであ o  Next, Figs. 12 to 15 show impellers for circulating a liquid for circulating a refrigerant used for cooling in an engine for an automobile or the like, and are manufactured by the method of the present invention. Oh
すなわち、 上記実施例 1 と同様に、 水ァ トマイズ法で 平均粒径 9 . 、 最大粒径 3 0 z mの S U S 3 1 6 That is, in the same manner as in Example 1 above, SUS 3 16 having an average particle size of 9. and a maximum particle size of 30 zm by the water atomizing method was used.
Lからなるステ ン レス鋼粉末を調製し、 このステ ン レス 鋼粉末 9 0 重量部にポ リ オキシアルキ レ ン系ポ リエーテ ル 5重量%、 天然ワ ッ ク ス 3 重量%及び脂肪酸 2 重量% からなるバイ ンダー 1 0 重量部を配合し、 実施例 1 と同 様の条件で混練してペレタイザ一でペレツ ト化し、 ペレ ッ ト状のコ ンパウ ン ドを調製した。 L stainless steel powder was prepared, and 90 weight parts of the stainless steel powder was prepared from 5 weight% of a polyoxyalkylene-based polyether, 3 weight% of a natural wax and 2 weight% of a fatty acid. Then, 10 parts by weight of a binder was mixed, kneaded under the same conditions as in Example 1, and pelletized with a pelletizer to prepare a pellet-shaped compound.
このよ う に して得られたコ ンパウ ン ドを用いて、 実施 例 1 と同様に金属射出成形機を用いて Figs.12 及び 13で 示されたよ う な 3 枚の主羽根 13を有する羽根車本体 12と, Fig.14で示されたよ う な 3 個の捕助羽根 14とを成形した c 次に、 このよ う に して成形した 3 個の補助羽根 14を、 Fig.15に示すよ う に、 羽根車本体 12の各主羽根 13の間に 取り付け、 脱脂炉に装入して 1 0 °C Z分の昇温速度で 4 U Using the compound thus obtained, a blade having three main blades 13 as shown in Figs. 12 and 13 was formed using a metal injection molding machine in the same manner as in Example 1. the car body 12, c then Let's were molded Do three catching the aid vanes 14 shown in Fig.14, three auxiliary vanes 14 molded in the earthenware pots this good, shown in Fig.15 Thus, it is installed between the main blades 13 of the impeller body 12 and inserted into the degreasing furnace, and heated at a rate of 10 ° CZ for 4 minutes. U
0 0 °Cまで昇温させ、 この温度に 2 時間保持して脱脂処 理し、 完成品と同じ羽根車形状を有する未焼結組立体を 形成した。 The temperature was raised to 00 ° C, and the temperature was maintained for 2 hours to perform a degreasing process, thereby forming a green sintered assembly having the same impeller shape as the finished product.
次いで、 得られた未焼結組立体を真空焼結炉に装入し 8 0 °C Z分の昇温速度で 1, 3 5 0 °Cまで昇温し、 その 後 2 時間この温度に保持して真空焼結した。  Next, the obtained unsintered assembly was placed in a vacuum sintering furnace, heated to 1,350 ° C at a heating rate of 80 ° CZ, and then kept at this temperature for 2 hours. And vacuum sintering.
製造された羽根車は、 その羽根車本体 12と 3 個の捕助 羽根 14とが金属組織上一体の金属焼結体となっており、 これら羽根車本体 12と 3個の捕助羽根 14との接合面で優 れた強度を有していた。 産業上の利用可能性  In the manufactured impeller, the impeller body 12 and the three trapping blades 14 are a metal sintered body integrated on a metal structure, and the impeller body 12 and the three trapping blades 14 It had excellent strength at the joint surface. Industrial applicability
以上の実施例の結果からも明らかなよう に、 本発明方 法によれば、 金属焼結体の製造技術を応用 して複雑な形 状を有する と共に高い寸法精度が要求されるよ うな製品、 例えばリニアガイ ド用キヤ リ ッ ジの側蓋や液体循環用羽 根車等を容易に製造する こ とができる ものであり、 しか も、 射出成形によ り成形された各分割部分品の接合面を そのまま接合して焼結する ことにより、 この射出成形に より成形された未焼結分割部分品の'接合面における精度 がそのまま金属焼結体の完成品に反映され、 優れた寸法 精度の製品を製造する こ とができるほか、 金属組織上も 接合面以外の他の部分と変わりない一体の完成品を得る こ とができ、 たとえ熱履歴を受けるような製品であって もその耐久性の向上を図る こ とができる。  As is apparent from the results of the above examples, according to the method of the present invention, a product having a complicated shape and a high dimensional accuracy is required by applying the manufacturing technology of the metal sintered body. For example, the side lid of a carriage for linear guides, an impeller for liquid circulation, etc. can be easily manufactured, and the joining surface of each divided part formed by injection molding can be easily manufactured. By joining and sintering as it is, the accuracy of the joint surface of the unsintered divided part formed by this injection molding is reflected on the finished product of the metal sintered body as it is, a product with excellent dimensional accuracy In addition to the metallographic structure, it is possible to obtain an integrated product that is the same as other parts other than the joint surface. It can be improved.
特に、 本発明方法で製造されたリニアガイ ド用キ ヤ リ ッ ジの側蓋は、 その寸法精度が正確であり、 この側蓋に 形成される略半円形状のボール方向転換通路も正確に形 成されてボールの転走が円滑になるほか、 その全体が金 属焼結体で一体に形成されていてキヤ リ ッ ジへの組立て が極めて容易であり、 しかも、 金属組織学的にみてその 全体が均一であってその耐久性、 特に熱履歴に対する耐 久性に優れている。 また、 本発明の液体循環用羽根車の 製造方法によれば、 その羽根車本体と捕助羽根とが強固 に結合せしめる こ とができ、 従来においてはその製造が 困難であった補助羽根を有して効率の良い複雑な形状の 液体循環用羽根車を容易に製造する こ とができ る。 In particular, the carrier for a linear guide manufactured by the method of the present invention. The side lid of the ridge has accurate dimensional accuracy, and the substantially semi-circular ball direction changing passage formed in the side lid is also accurately formed, so that the ball rolls smoothly and Is integrally formed of a metal sintered body, so that it is extremely easy to assemble it into a carriage.In addition, the entire structure is uniform in terms of metallography, and its durability, especially resistance to heat history Has excellent durability. Further, according to the method of manufacturing the impeller for liquid circulation of the present invention, the impeller body and the catching blade can be firmly connected to each other, and there is an auxiliary blade which was conventionally difficult to manufacture. As a result, an efficient and efficient liquid circulation impeller can be easily manufactured.

Claims

請 求 の 範 囲 The scope of the claims
(1) 金属粉末と熱可塑性バイ ンダーとを所定の割合で 混合してコ ンパウ ン ドを調製し、 このコ ンパウ ン ドを用 いて射出成形により複数の未焼結分割部分品を成形し、 これら複数の未焼結分割部分品をそのまま組み合わせて  (1) A metal powder and a thermoplastic binder are mixed at a predetermined ratio to prepare a compound, and a plurality of unsintered divided parts are formed by injection molding using the compound. Combining these multiple unsintered split parts as they are
1 つの完成品形状の未焼結組立体を組み立て、 この際に 完成品形状に組み立てる前又は後に脱脂処理し、 次いで この組み立てられた未焼結組立体についてその完成品形 状を保持したまま所定の温度で焼結し、 金属組織上一体 の金属焼結体からなる完成品を製造する ことを特徵とす る金属焼結体の製造方法。  Assembling one finished product-shaped unsintered assembly, degreasing before or after assembling it into a finished product shape, and then maintaining the finished product shape for this assembled unsintered assembly. A method for manufacturing a metal sintered body characterized in that it is sintered at a predetermined temperature to manufacture a finished product composed of a metal sintered body integrated on a metal structure.
(2) 金属粉末が水ァ トマイズ法で製造されたものであ る請求項 1記載の金属焼結体の製造方法。  (2) The method for producing a metal sintered body according to claim 1, wherein the metal powder is produced by a water atomizing method.
(3) 金属粉末は、 その平均粒径が 1 〜 3 0 mであつ て最大粒径が 7 0 a m以下である請求項 1記載の金属焼  (3) The metal powder according to claim 1, wherein the metal powder has an average particle diameter of 1 to 30 m and a maximum particle diameter of 70 am or less.
結体の製造方法。 The method of manufacturing the aggregate.
(4) 複数の未焼結分割部分品を組み合わせて 1 つの完  (4) Combine multiple unsintered split parts into one complete
成品形状の未焼結組立体を組み立てた後に脱脂処理を行 After assembling the unsintered assembly of the finished product, degreasing is performed.
う請求項 1 記載の金属焼結体の製造方法。  A method for producing a metal sintered body according to claim 1.
(5) 各未焼結分割部分品を組み合わせて完成品形状の  (5) Combine each unsintered divided part to make the finished product
未焼結組立体を組み立てた際における未焼結分割部分品 Unsintered split parts when assembling the unsintered assembly
間の接合面の隙間が金属粉末の平均粒径以下である請求 The gap between the joining surfaces is less than the average particle size of the metal powder
項 1記載の金属焼結体の製造方法。 Item 1. The method for producing a metal sintered body according to Item 1.
(6) リニァガイ ドを構成する ' キヤ リ ッ ジの両端面に位  (6) Make up the linear guides.
置すると共にエン ドプレー ト とこのェン ドブレ一 卜に組 As well as the end plate and the end plate.
み込まれるアールピースとからなり、 これらエン ドプレ 一 卜 とアールピースとの間にキヤ リ ッ ジ内に形成される ボール無限軌道のう ちの略半円形のボール方向転換通路 が形成される側蓋であって、 金属粉末と熱可塑性バイ ン ダ一とからなる コ ンパゥ ン ドの射出成形によ り成形され た未焼結のェン ドブレー 卜 とアールピースとを組み合わ せて略半円形のボール方向転換通路を有する側蓋形状の 未焼結組立体を組み立て、 この組み立てられた未焼結組 立体についてその側蓋形状を保持したまま脱脂し、 次い で焼結して製造され、 全体が金属組織上一体の金属焼結 体で形成されている こ とを特徴とする リ ニアガイ ド用キ ャ リ ッ ジの側蓋。 These pieces are composed of A side lid in which a substantially semicircular ball redirection path of a ball endless track formed in a carriage between a unit and a round piece is formed by a metal powder and a thermoplastic binder. Combination of unsintered end plate formed by injection molding of a compound consisting of one and a round piece, and a side cover-shaped unsintered having a substantially semicircular ball direction changing passage The assembled body is assembled, degreased while maintaining the shape of the side lid of the assembled unsintered solid body, then sintered and manufactured, and the entire body is formed of an integrated metal sintered body on the metallographic structure. A side lid of a linear guide carriage that is characterized by
(7) 金属粉末が水ア トマイズ法で製造された ものであ る請求項 6記載の リ ニアガイ ド用キヤ リ ッ ジの側蓋。  (7) The side lid of a carriage for a linear guide according to claim 6, wherein the metal powder is produced by a water atomization method.
(8) 金属粉末は、 その平均粒径が 1 〜 3 0 mであつ て最大粒径が 7 0 / m以下である請求項 6 記載の リ ニア ガイ ド用キ ャ リ ッ ジの側蓋。  (8) The side lid of a linear guide carriage according to claim 6, wherein the metal powder has an average particle diameter of 1 to 30 m and a maximum particle diameter of 70 / m or less.
(9) 射出成形によ り成形された未焼結のエ ン ドプレー ト とアールピースとを組み合わせて側蓋形状の未焼結組 立体を組み立てた際における これらェ ン ドブレー ト とァ ールピースとの間の接合面の隙間が金属粉末の苹均粒径 以下である請求項 6記載の リニアガイ ド用キ ヤ リ ッ ジの 側蓋。  (9) When the unsintered end plate formed by injection molding and the round piece are combined to assemble the side cover-shaped unsintered solid body, the end plate and the round piece are combined with each other. 7. The side lid of a linear guide carriage according to claim 6, wherein a gap between bonding surfaces between the guides is equal to or less than an average particle diameter of the metal powder.
(10) 水ア トマイズ法で得られたステ ン レス鋼粉末と熱 可塑性バイ ンダ一とを所定の割合で混合してコ ンパゥ ン ドを調製し、 このコ ンパウ ン ドを用いて射出成形によ り 液体循環用羽根車の羽根車本体と補助羽根とを成形し、 これら羽根車本体と捕助羽根とを組み合わせて羽根車形 状の未焼結組立体を組み立て、 この際に羽根車形状に組 み立てる前又は後に脱脂処理し、 次いでこの組み立てら れた未焼結組立体についてその羽根車形状を保持したま ま所定の温度で焼結し、 金属組織上一体の金属焼結体か らなる羽根車を製造する ことを特徴とする液体循環用羽 根車の製造方法。 (10) A stainless steel powder obtained by the water atomization method and a thermoplastic binder are mixed at a predetermined ratio to prepare a compound, and the compound is used for injection molding. By forming the impeller body and auxiliary blade of the impeller for liquid circulation, The impeller body and the auxiliary impeller are combined to assemble an impeller-shaped unsintered assembly, and before or after assembling into an impeller shape, a degreasing process is performed. The sintering assembly is sintered at a predetermined temperature while maintaining the shape of the impeller, thereby producing an impeller made of a metal sintered body integrated on a metal structure. Production method.
PCT/JP1992/001362 1991-10-21 1992-10-20 Method of making sintered metallic body and said body obtained through said method WO1993007979A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP29951791A JPH0649511A (en) 1991-10-21 1991-10-21 Production of metal powder sintered compact of intricate shape
JP3/299517 1991-10-21

Publications (1)

Publication Number Publication Date
WO1993007979A1 true WO1993007979A1 (en) 1993-04-29

Family

ID=17873617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/001362 WO1993007979A1 (en) 1991-10-21 1992-10-20 Method of making sintered metallic body and said body obtained through said method

Country Status (2)

Country Link
JP (1) JPH0649511A (en)
WO (1) WO1993007979A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4614908B2 (en) * 2005-05-11 2011-01-19 日立粉末冶金株式会社 Cold cathode fluorescent lamp electrode
CN106735170B (en) * 2016-12-20 2019-01-25 佛山铂利镁特金属科技有限公司 A kind of injection moulding method of big part metalwork

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564601B2 (en) * 1974-06-11 1981-01-31
JPS5789412A (en) * 1980-11-26 1982-06-03 Toshiba Corp Preparation of iron-containing sintered product
JPS60187604A (en) * 1985-01-21 1985-09-25 Ricoh Co Ltd Production of sintered parts
JPS6127441B2 (en) * 1977-10-06 1986-06-25 Ricoh Kk
JPS6257682B2 (en) * 1982-07-13 1987-12-02 Hitachi Funmatsu Yakin Kk
JPH0244056A (en) * 1988-08-04 1990-02-14 Tokin Corp Production of sintered article
JPH0254703A (en) * 1988-08-17 1990-02-23 Mitsubishi Heavy Ind Ltd Production of sintered metal body by injection molding
JPH0339405A (en) * 1989-07-06 1991-02-20 Mitsubishi Heavy Ind Ltd Manufacture of metal powder sintered body
JPH03130306A (en) * 1989-07-13 1991-06-04 Seiko Epson Corp Constituting parts in printing head for wire impact type dot printer and compacting method thereof
JPH0474807A (en) * 1990-07-12 1992-03-10 Sumitomo Electric Ind Ltd Manufacture of aluminum powder forging product

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564601B2 (en) * 1974-06-11 1981-01-31
JPS6127441B2 (en) * 1977-10-06 1986-06-25 Ricoh Kk
JPS5789412A (en) * 1980-11-26 1982-06-03 Toshiba Corp Preparation of iron-containing sintered product
JPS6257682B2 (en) * 1982-07-13 1987-12-02 Hitachi Funmatsu Yakin Kk
JPS60187604A (en) * 1985-01-21 1985-09-25 Ricoh Co Ltd Production of sintered parts
JPH0244056A (en) * 1988-08-04 1990-02-14 Tokin Corp Production of sintered article
JPH0254703A (en) * 1988-08-17 1990-02-23 Mitsubishi Heavy Ind Ltd Production of sintered metal body by injection molding
JPH0339405A (en) * 1989-07-06 1991-02-20 Mitsubishi Heavy Ind Ltd Manufacture of metal powder sintered body
JPH03130306A (en) * 1989-07-13 1991-06-04 Seiko Epson Corp Constituting parts in printing head for wire impact type dot printer and compacting method thereof
JPH0474807A (en) * 1990-07-12 1992-03-10 Sumitomo Electric Ind Ltd Manufacture of aluminum powder forging product

Also Published As

Publication number Publication date
JPH0649511A (en) 1994-02-22

Similar Documents

Publication Publication Date Title
EP3441161B1 (en) Method for manufacturing sintered compact, and sintered compact
KR100886112B1 (en) Powder metal scrolls
US7387763B2 (en) Preparation of sheet by injection molding of powder, consolidation, and heat treating
WO2019200733A1 (en) 3d printing material, preparation method therefor and use thereof
KR20170040059A (en) Three dimensional printing method using metal powder-containing composition
US8021604B2 (en) Preparation of filler-metal weld rod by injection molding of powder
CA2716989A1 (en) Tools having compacted powder metal work surfaces, and method
US6761852B2 (en) Forming complex-shaped aluminum components
EP1040887B1 (en) Method of producing sintered body
JP2010084165A (en) Method for producing composite sintered compact, composite sintered compact, and fuel injection valve
WO2020200426A1 (en) Sinterable feedstock for use in 3d printing devices
JP2009299106A (en) Method for producing composite sintered compact, and composite sintered compact
CN113500205B (en) 3D printing method of bimetallic material
CN103056369A (en) Process for producing part by powder metallurgy
WO1993007979A1 (en) Method of making sintered metallic body and said body obtained through said method
Zlatkov et al. Recent advances in PIM technology I
US6355207B1 (en) Enhanced flow in agglomerated and bound materials and process therefor
EP2420594B1 (en) Discharge surface treatment electrode and method for manufacturing the same
Bose Introduction to Metal Powder Injection Molding
US20210283685A1 (en) Method for collecting iron-based powder and method for manufacturing sintered body
JPH08260005A (en) Metal-powder sintered compact
Cooper Producing net-shape products by powder metallurgy
JP2002363609A (en) Method for manufacturing sintered body, and sintered body
CN116493591A (en) One-time sintering preparation process for metal injection molding of golf club head with bimetal assembly
JPH04247808A (en) Production of composite sintered article

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

122 Ep: pct application non-entry in european phase