WO1992021775A1 - Highly sensitive determination of d-sorbitol or d-fructose and composition therefor - Google Patents

Highly sensitive determination of d-sorbitol or d-fructose and composition therefor Download PDF

Info

Publication number
WO1992021775A1
WO1992021775A1 PCT/JP1991/001788 JP9101788W WO9221775A1 WO 1992021775 A1 WO1992021775 A1 WO 1992021775A1 JP 9101788 W JP9101788 W JP 9101788W WO 9221775 A1 WO9221775 A1 WO 9221775A1
Authority
WO
WIPO (PCT)
Prior art keywords
sorbitol
nadps
nads
fructose
nad
Prior art date
Application number
PCT/JP1991/001788
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeru Ueda
Mamoru Takahashi
Hideo Misaki
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Publication of WO1992021775A1 publication Critical patent/WO1992021775A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase

Definitions

  • the present invention relates to a highly sensitive method and a composition for quantitatively determining D-sorbitol or D-fructose in the fields of clinical biochemical testing, food testing, and the like.
  • D-sorbitol in erythrocytes is converted to D-fructoses by sorbitol dehydrogenase in erythrocytes and released into serum, and therefore, as in the measurement of D-sorbitol in erythrocytes, Measurement of D-fructose may also be useful in assessing the pathology of diabetic complications.
  • D-sorbitol or D-fructose is also important in food analysis and is commercially available, for example, as a kit from Behringer Mannheim.
  • D-fructose is known to be involved in kinetic energy in sperm, and is also useful in diagnosing azoospermia.
  • Gas Chromatography (GLC), High Performance Liquid Chromatography (HPLC), Enzyme, etc. are used as methods for measuring D-sorbitol, but the enzymatic method is the most practical because the former two methods are complicated. ing.
  • the coenzyme NAD is converted to the reduced form using D sorbitol as a substrate and sorbitol dehydrogenase ⁇ -genase.
  • the amount to be measured is measured by absorbance or fluorescence intensity.
  • D-fructose is measured by glucose-6-phosphate dehydrogenase and coenzyme NAD (P) after converting it to glucose-6-phosphate using hexokinase and phosphoglucose isomerase.
  • P glucose-6-phosphate dehydrogenase
  • hexokinase also acts on Dr "dalcoses, a measurement method using fructokinase specific for D-fructose has been reported (Anal. Biochem., 54, P205, 1973). .
  • the substance to be measured is converted into hydrogen peroxide or reduced NAD (P) that can be detected spectroscopically.
  • P reduced NAD
  • the amount of the detectable substance is stoichiometrically equal to the target.
  • the most widely used method for measuring detectable substances uses spectroscopy instruments, but this method also has a limitation in sensitivity and has the drawback that it cannot be applied when the content of the measured substance is small. .
  • a so-called enzyme cycling method is known in which, when the substance can be converted into an equal amount of a coenzyme or the like, two kinds of enzymes are used to amplify the coenzyme or the like.
  • enzyme cycling method there are NAD cycling, CoA cycling, ATP cycling and the like, but these are hardly practical in routine analysis such as clinical tests due to complicated operations.
  • An object of the present invention is to provide a simple method for quantifying D-sorbitol or D-fructose with high sensitivity, high accuracy and high accuracy.
  • a second object of the present invention is to provide a composition which can be suitably used for the high-sensitivity quantification method of D-sorbitol or D-frug. .
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, one selected from the group consisting of zeo-NADs and zeo-NADPs (hereinafter, also referred to as chi-type NAD (P) s); Solpititol dehydrogenase and non-thio NAD (P), which act on one coenzyme selected from the group consisting of NADPs ( ⁇ , also referred to as non-thio NAD (P))
  • the absorption wavelengths of the reduced form of the thio-type NAD (P) and the reduced form of the non-thio-type NAD (P) are around 400 nm, respectively, when measuring the absorbance.
  • the present inventors have found that it is possible to carry out an enzyme cycling reaction capable of avoiding congestion at the absorption wavelength of another substance by utilizing the difference from the vicinity of 340 nm, and to perform measurement with high sensitivity, thereby completing the present invention.
  • an enzyme cycling reaction capable of avoiding congestion at the absorption wavelength of another substance by utilizing the difference from the vicinity of 340 nm, and to perform measurement with high sensitivity, thereby completing the present invention.
  • only the change amount of one of the two coenzymes may be separately quantified. Disclosure of the invention
  • the present invention relates to a subject having at least one test component selected from the group consisting of D-sorbitol and D-fructose, the following components (1) to (3):
  • a 2 represents a reduced product of, and represents reduced NADP when A, is a thio NADP or thio NAD. Or reduced NADs, and when A! Is NADPs or NADs, it indicates reduced-thio NADPs or reduced-thio NADs, and B 2 indicates the oxidized product of B,
  • the present invention relates to a method for quantifying D-sorbitol or D-fructose, which comprises forming a cycling reaction represented by the following formula, and measuring the amount of A 2 or A changed by the reaction.
  • the present invention relates to a composition for quantifying D-sorbitol or D-fructose, which comprises the components (1) to (3).
  • FIG. 1 is a drawing showing the results of the rate at 400 nm with respect to the amount of D-sorbitol in Example 1.
  • FIG. 2 is a drawing showing a result of a late access at 400 nm with respect to the amount of D-fructose in Example 2.
  • the enzyme EC1.1.1.1 U is mentioned, and Bacillus subtilis (Bacillus subtilis) and in liver and semen of humans, sheep and mice. As a substrate, it is said to act on polyols with D-xylo (D-xylo-) and D-lipo (D-ribobo-) 'structures (Enzyme Handbook, page 5, Asakura Shoten, 1983 C ) Regarding the enzyme derived from sheep liver marketed by Boehringer Mannheim, L-iditol has an activity of 100% against D-sorbitol.
  • Enzymes of other origins can also be used as appropriate. Specificity for coenzymes NAD (P) and thio NAD (P) is reactive with the substrate D-sorbitol and D-fructo. Anything that can produce toose can be used, and its specificity can be confirmed using these coenzymes and substrates.
  • coenzyme B 2 is Chio-NADP, Chio NAD, NADP compound, exhibits NAD, as the out Chio NADP or Chio NAD, e.g. Chio nicotinamidine de adenine dinucleotide Phosphate (thioNADP), chonicotinamide dohypoxanthine dinucleotide phosphate; and chonicotinamide-denine dinucleotide (thioNAD), chonicotinamide-hypoxanthine dinucleotide.
  • thioNADP Chio nicotinamidine de adenine dinucleotide Phosphate
  • thioNADP chonicotinamide dohypoxanthine dinucleotide phosphate
  • thioNAD chonicotinamide-denine dinucleotide
  • NADPs or NADs examples include nicotinamide adenine dinucleotide phosphate (NADP), acetylviridine adenine dinucleotide phosphate (acetyl NADP), acetylviridine hypoxanthine dinucleotide phosphate, and nicotinamide hypoxanthine dinucleotide.
  • NADP nicotinamide adenine dinucleotide phosphate
  • acetyl NADP acetylviridine adenine dinucleotide phosphate
  • hypoxanthine dinucleotide phosphate examples include nicotinamide hypoxanthine dinucleotide.
  • Leo Tide phosphate (damino NADP); and nicotinamide adodenine dinucleotide (NAD), acetylpyridin adenine dinucleotide (acetyl NAD), acetyl pyridine hypoxanthine dinucleotide, nicotinamide hypoxanthine dinucleotide (damino NAD) Is mentioned.
  • the reduced forms of these coenzymes are indicated as thio NADPHs, thio NADHs, MDPHs, and NADHs, respectively.
  • the sorbitol dehydrogenase used for the quantification uses only (thio) NADs as coenzymes
  • the sorbitol dehydrogenase used uses only (thio) MDPs as coenzymes.
  • Sorbitol dehydrogenase to be used may be (thio) NADs or
  • both NADPs When both NADPs are used as a coenzyme, they may be appropriately selected from the above-mentioned Cho-NADs and Cho-NADPs and the above-mentioned NADs and fiADPs.
  • D-sorbitol or D-fructose originally contained in the sample can be measured. Substrates and their enzyme activities can also be measured.
  • the enzyme system comprising a single or a plurality of steps capable of linking with the enzyme system that migrates and produces D-sorbitol or D-fructose is used. Substrates and their enzyme activities can also be measured.
  • These enzyme systems are not particularly limited, but include, for example, the following various reaction systems.
  • the amount of D-sorbitol produced and quantified can be used to determine the amount of D-glucose or to measure the activity of glucose reductase.
  • quantification of D-mannose or activity of mannose isomerase can be performed by quantifying the amount of D-fructose produced in the chicks.
  • -It can be used for the determination of fructose-6-phosphoric acid or the activity of calcium phosphatase.
  • the amount of free and formed D-fructose can be quantified to determine sucrose or inorganic phosphorus or sucrose phosphorylation
  • the activity of the enzyme can be measured.
  • sucrose is derived from an enzymatic reaction system with raffinose and one galactosidase (BC 3, 2.1.22).
  • the amount can be appropriately determined depending on the type of the subject and the like, and a larger amount can be used.
  • the amount of ⁇ used is D-sorbitol or D in the subject.
  • the above-mentioned quantification method of the present invention relates to the case where sorbitol dehydrogenase uses both (thio) NADs and (thio) NADPs as coenzymes.
  • a second dehydrogenase that does not act on D-sorbitol as the component (4) and forms the reaction of by exerting a substrate for said second dehydrogenase further, as described below reaction formula ([pi), and may allowed to form a cycling reaction by allowed to impart reaction system for reproduction of between B 2.
  • a sample having one or more test components selected from the group consisting of D-sorbitol and D-fructoses is added to the following components (1) to (4)
  • B represents reduced NADP when thio NADPs or thio NADs Or reduced NADs, or, when NADPs or NADs, indicates reduced thio NADPs or reduced thio NADs, B 2 indicates an oxidized product of, and indicates B 2 Shows the oxygen reaction that produces as a coenzyme
  • the second dehydrogenase it is preferable to set conditions that do not substantially act in this assay system.
  • a second dehydrogenase that does not essentially use A as a coenzyme the combination of selecting, more second dehydrogenase ⁇ Genaze the quantitative relationship of B 2 are combined, and the like to select the conditions that do not substantially act a, the.
  • quantitative measures the amount of A 2 generated by the reaction When quantitative measures the amount of A 2 generated by the reaction.
  • the concentration of is preferably from 0.02 to 100 mM, particularly preferably from 0.05 to 20 mM, and the concentration of B 2 or Z and ⁇ is preferably from 0.05 to 5000 juM, particularly Five ⁇
  • the concentration of sorbitol dehydrogenase is preferably 1 to 1000 u /? ⁇ , Particularly preferably 2 to 400 uA ⁇ , and the second dehydrogenase is 20 times the Km value (in mM) for B2 (u / mg).
  • the unit may be adjusted so as to be over £ 1, for example, preferably 1 to 100 u / mg, and the substrate of the second dehydrogenase is preferably in excess, for example, 0.05 to 20 mM.
  • £ 1 for example, preferably 1 to 100 u / mg
  • the substrate of the second dehydrogenase is preferably in excess, for example, 0.05 to 20 mM.
  • the second aldehyde ⁇ -genase is supplementarily added for the regeneration of, and this makes it possible to reduce the amount of, and is particularly effective when is expensive.
  • the reaction may be performed using B 2 or a mixture of and B 2 instead of.
  • the use amounts of Z and B 2 are not particularly limited, but are generally 1/10 mol £ 1 or less, preferably 1/100 or less.
  • the second dehydrogenase and its substrate for example, when B 2 is a NAD or a thio NAD, alcohol dehydrogenase (EC 1, 1.1.1) and ethanol, L-glycerol-3-phosphate dehydrogenase ( EC 1.1.1.8) (from heron muscle) and L-glycerol-3-phosphate, glycemic acid aldehyde dehydrogenase ( ⁇ C 1.1.1.12) ( ⁇ heron skeletal muscle, liver, yeast, E. coli) Origin) and D-glyceride aldehyde phosphate and phosphoric acid, glyceryl monohydrogenase (BC 1.1.1.6) (from E.
  • Coli and glycer D-le, lactate dehydrogenase (EC 1.1. 1.37) (porcine heart muscle, ⁇ shea myocardial origin) and L one malic acid, when B 2 is a NADP or the Chio-NADP, glucose - 6 - phosphate dehydrogenase one peptidase (BC 1.1.1.49) (from yeast) And glucose-6-phosphate, dehydrogenase isocnate (BC 1.1.1.42) (Derived from yeast and porcine myocardium), isogenic acid, glyoxylate dehydrogenase (EC 1.2.1.17) (derived from Pseudomonas oxalat icus_), CoA, dalioxylic acid, and phosphodalconate ⁇ -genase (BC 1.1.1.44) (Derived from rat liver, brewer's yeast, E.
  • coli and 6-phospho-D-dalconic acid
  • glyceraldehyde aldehyde phosphate dehydrogenase BC 1.2.1.13
  • D-glycerol examples thereof include aldehyde-3-phosphoric acid and phosphoric acid.
  • the quantification method of the present invention is characterized in that the sorbitol dehydrogenase is And both (co) NADPs as coenzymes, the combination of two coenzymes with the combination of thio NADs and NADs or NADPs, or the combination of thio NADPs with ⁇ ) or ⁇ DPs
  • a third dehydrogenase that does not act on D-sorbitol as the component (5) on the subject and forms an As-Ai reaction is used, and the third dehydrogenase is further used.
  • a cycling reaction can be formed by allowing a reaction system for the regeneration of A, as shown in the reaction formula (m) described below, to give a reaction system between A and 2 as shown in the following reaction formula (m).
  • a sample containing one or more test components selected from the group consisting of D-sorbitol and D-fructose is added to the following components (1) to (3) and (5)
  • a 2 represents a reduced product of, and represents reduced NADPs when A i is a thio NADP or thio NAD. Or reduced NADs, and when A! Is NADPs or NADs, it indicates reduced thio NADPs or reduced thio NADs, and B 2 indicates an oxidized product of B, -Ai is an enzyme reaction to produce the Ho ⁇ containing the a 2)
  • the third dehydrogenase it is preferable to set conditions that cannot substantially act in this measurement system. For example, a combination of selecting an enzyme that does not essentially use as a coenzyme, and A Due to the quantitative relationship of 2 , the third dehydrogenase is substantially B! And a combination for selecting a condition that does not affect. When quantifying, measure the consumption of B.
  • the concentration of is preferably from 0.02 to 100 mM, particularly preferably from 0.05 to 20 mM, and the concentration of A 2 or Z and is preferably from 0.05 to 5000 M
  • the concentration of sorbitol dehydrogenase is preferably 1 to 1000 u / m, particularly preferably 2 to 400 u / mg
  • the third dehydrogenase is 20 times the Km value (in mM) for A2. (U / mg unit) It may be adjusted so as to be more than the above. 0.05 to 20 ⁇ is preferred.
  • the tertiary dehydrogenase is supplementarily added for the regeneration of, and this makes it possible to reduce the amount of tertiary dehydrogenase used, and is particularly effective when is expensive. It may also be carried out reaction with a mixture of Alpha 2 or Alpha! And Alpha 2 instead of. In this case, although the amounts of ⁇ ⁇ ⁇ and ⁇ 2 are not particularly limited, they are generally 1/10 mol or less, preferably 1/100 ⁇ below.
  • alcohol dehydrogenase EC 1.1.1.1
  • glycerol dehydrogenase is referred to as alcohol dehydrogenase or glycerol dehydrogenase.
  • EC 1. 1.1.6 (derived from E. coli), dihydroxyacetone, L-glycerol-3-phosphate dehydrogenase (derived from rabbit heron) and dihydroxyacetonitrate, lingo Acid dehydrogenase (EC 1.1.1.17) (derived from porcine myocardium and oak myocardium) and ogiza ⁇ -acetic acid, glycealdehyde aldehyde phosphodehydrogenase (EC 1.1.1.1.12) When skeletal muscle, liver, yeast, and B.
  • Coli and 1,3-diphospho-D-glyceric acid are NADPs or thio-NADPs, glyceroaldehyde dehydrogenase (BC 1.2.1.13) ) (Derived from plant chloroplasts) and 1,3-diphospho-D-glyce Such as phosphate and the like.
  • two coenzymes are appropriately selected in consideration of the relative activities among the various enzymes of the sorbitol dehydrogenase used, and then the optimal PH conditions for the forward reaction and the reverse reaction are determined by enzyme cycling. What is necessary is just to set so that the ring reaction proceeds efficiently.
  • the enzymes used may be used alone or in combination of two or more.
  • the components (1) to (3), (1) to ( 4) In order to measure D-sorbitol or D-fructose in a subject by using the composition for quantification of the present invention thus prepared, the components (1) to (3), (1) to ( 4) Alternatively, 0.001 to 0.5 ml of the test sample is added to the composition containing (1) to (3) and (5), and the mixture is reacted at a temperature of about 37 t. few minutes to several tens of minutes between points, e.g., 3 minutes 1 minute after 4 minutes after, or the amount of amount or consumed in a 2 generated in 3 minutes and after 5 minutes after 8 minutes, The change in absorbance based on each absorption wavelength Measurement.
  • a 2 is chio NADH and is NADH
  • the production of A 2 is measured by increasing the absorbance around 400 nm or B! Is measured by the decrease in absorbance around 340 nm and compared with ⁇ when measured using known concentrations of D-sorbitol or D-fludatose, indicating that D-sorbitol or D-fructo in the sample solution
  • the quantity can be obtained in real time.
  • D-sorbitol and D-fructose coexist in the subject
  • the total amount of these is determined by the quantification method of the present invention.
  • the individual component amount in the case of a constant amount, after the pre-processing such as you erase the enzyme that acts only in advance either component of the subject, it Michibike the enzymatic cycling reaction.
  • pretreatment with hex 4: nase (EC 2.7.1.1.1) or fructokinase (EC 2.7.1.1.4) will result in D-fructoses being D-fructoses.
  • only D-sorbitol can be quantified by subsequently performing the enzyme silicing reaction according to the present invention.
  • a quantitative value of only D-fructose can be calculated.
  • the quantification method of the present invention guides D sorbitol or D-fructoses in a sample to an enzyme cycling reaction, and is not easily affected by coexisting substances in the liquid.
  • the blank measurement can be omitted, and a simple measurement by late access can be performed.
  • the quantification in the measurement of A 2 or, the quantification can be performed by using other known measurement methods instead of the absorbance measurement.
  • Reagent 1 was placed in a cuvette, and 0, 20, 40, 60, and 80 D fructoses solutions (manufactured by Wako Pure Chemical Industries, Ltd.) were added at 40 i ⁇ and the reaction was started at 37 t. .
  • the absorbance at 400 ⁇ was read at 2 minutes and 7 minutes after the start of the reaction, and the difference was determined.
  • concentration of 0 was used as a reagent blank, the value of the reagent blank was subtracted from each result, and the results are shown in FIG. As is evident from FIG. 2, the amount of change in absorbance with respect to the amount of D fructose showed good linearity.
  • the present invention uses coenzymes having different reduced absorption wavelengths, measurement errors do not occur, and the measurement sensitivity can be increased by combining enzyme cycling reactions. As a result, the use of a small amount of sample allows easy and accurate lb

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Determination of D-sorbitol or D-fructose by reacting a specimen solution with a reagent containing 1) sorbitol dehydrogenase, 2) A1, and 3) B1 to form the cycle (I) and determining the amount of A2 formed or the amount of B1 consumed; and a composition containing the ingredients 1), 2), and 3) for use in the above determination method. The method and the composition make it possible to determine a small amount of a specimen solution conveniently with high sensitivity and are useful in the field of clinical inspection and food testing.

Description

明 細 書  Specification
D ソルビトール又は D フルク トースの高感度定量法および定量用組成物 技術分野  Highly sensitive method and composition for the determination of D-sorbitol or D-fructose
本発明は、 臨床生化学検査、 食品検査等の分野における D ソルビトールまた は D フルク トースの高感度定量法および定量用組成物に関する。  The present invention relates to a highly sensitive method and a composition for quantitatively determining D-sorbitol or D-fructose in the fields of clinical biochemical testing, food testing, and the like.
背景技術 Background art
近年、 臨床的にポリオール代謝経路のアルド—スレダクターゼに対する阻害剤 が糖尿病性合併症を有する患者に投与され、 効果が得られている。 このとき、 赤 血球中の D ソルビトール濃度の低下度と臨床所見の改善度との間には有意な相 関が認められており、 また末梢神経細胞の D ソルビトール濃度も低下すること から、 赤血球中 D ソルビトールの測定が糖尿病性合併症に関連する組織中 D— ソルビトールの動態把握になる (日本臨床、 48巻、 糖尿病 上巻 426〜431頁、 1990年増刊号) o  In recent years, clinically inhibitors to the polyol metabolic pathway aldose reductase have been administered to patients with diabetic complications and have been effective. At this time, there was a significant correlation between the degree of decrease in the concentration of D-sorbitol in erythrocytes and the degree of improvement in clinical findings, and the concentration of D-sorbitol in peripheral neurons also decreased, indicating that Measurement of D-sorbitol helps to understand the dynamics of D-sorbitol in tissues related to diabetic complications (Japanese clinical study, 48, Diabetes, Vol. 426-431, 1990 extra edition) o
—方、 赤血球中の D ソルビトールは、 赤血球中のソルビトールデヒ ドロゲナ ーゼにより D フルク ト一スに転換され血清に放出されることから、 赤血球中の D ソルビトールの測定と同様に、 血清中の D フルク トースの測定も糖尿病性 合併症の病態把握に有用と思われる。  On the other hand, D-sorbitol in erythrocytes is converted to D-fructoses by sorbitol dehydrogenase in erythrocytes and released into serum, and therefore, as in the measurement of D-sorbitol in erythrocytes, Measurement of D-fructose may also be useful in assessing the pathology of diabetic complications.
実際、 血清中の D フルク トースは糖尿病により上昇するとの報告もある (曰 本臨床、 47巻、 468頁、 1989年増刊号) 。  In fact, it has been reported that serum D-fructose may be elevated due to diabetes (Clinical Studies, 47, 468, extra edition 1989).
D ソルビトールまたは D フルク トースの測定は、 食品分析においても重要 であり、 例えばべ一リンガー マンハイム社よりキッ トとして市販されている。 さらに、 D フルク トースは精子中の運動エネルギーに関係することが知られて おり、 無精子症の診断にも有用である。  The determination of D-sorbitol or D-fructose is also important in food analysis and is commercially available, for example, as a kit from Behringer Mannheim. In addition, D-fructose is known to be involved in kinetic energy in sperm, and is also useful in diagnosing azoospermia.
D ソルビトールの測定法としては、 ガスクロマ トグラフィ (GLC) 法、 高速 液体クロマトグラフィ (HPLC) 法、 酵素法等が使用されているが、 前 2者は操作 が煩雑なため、 酵素法が最も実用化されている。 この方法は、 D ソルビトール を基質とし、 ソルビトールデヒド πゲナ一ゼを用いて補酵素 NADが還元型に変化 される量を吸光度あるいは蛍光強度により測定するものである。 Gas Chromatography (GLC), High Performance Liquid Chromatography (HPLC), Enzyme, etc. are used as methods for measuring D-sorbitol, but the enzymatic method is the most practical because the former two methods are complicated. ing. In this method, the coenzyme NAD is converted to the reduced form using D sorbitol as a substrate and sorbitol dehydrogenase π-genase. The amount to be measured is measured by absorbance or fluorescence intensity.
また、 D—フルク トースは、 へキソキナーゼ、 ホスホグルコースイソメラーゼ を用いてグルコース - 6-リン酸とした後、 グルコース- 6-リン酸デヒドロゲナーゼ と補酵素 NAD (P)により測定されている。 しかし > へキソキナーゼは D r"ダルコ一 スにも作用するため、 D—フルク トースに特異的なフルク トキナ一ゼを用いる測 定法も報告されている (Anal. Biochem. , 54, P205, 1973) 。  D-fructose is measured by glucose-6-phosphate dehydrogenase and coenzyme NAD (P) after converting it to glucose-6-phosphate using hexokinase and phosphoglucose isomerase. However, since hexokinase also acts on Dr "dalcoses, a measurement method using fructokinase specific for D-fructose has been reported (Anal. Biochem., 54, P205, 1973). .
一般に、 酵素を用いて分析を行なう場合、 測定しょうとする物質を分光学的に 検出可能な過酸化水素や還元型 NAD (P)等に変換する。 このとき検出可能な物質の 量は化学量論的に対象物と等しくなる。 現在、 この検出可能物質の測定法として は、 分光分析機器を用いるものが最も普及しているが、 この方法も感度に限界が あり、測定物質含量が少ない場合には適用できないという欠点があつた。  In general, when performing an analysis using an enzyme, the substance to be measured is converted into hydrogen peroxide or reduced NAD (P) that can be detected spectroscopically. At this time, the amount of the detectable substance is stoichiometrically equal to the target. At present, the most widely used method for measuring detectable substances uses spectroscopy instruments, but this method also has a limitation in sensitivity and has the drawback that it cannot be applied when the content of the measured substance is small. .
そこで、 測定対象物含量が少ない場合や、 被検体が少ない場合などには、 前記 分光分析よりも高感度の蛍光分析、 発光分析等が行なわれている。 しかしながら、 これらの方法も臨床検査等の汎用検査においては、 機器の普及という点であまり 適したものではない。  Therefore, when the content of the object to be measured is small or when the number of analytes is small, fluorescence analysis, luminescence analysis, and the like with higher sensitivity than the above-described spectroscopic analysis are performed. However, these methods are not very suitable for general-purpose examinations such as clinical examinations in terms of dissemination of equipment.
微量物質を測定する他の方法としては、 該物質が等量の補酵素等に変換できる 場合、 2種の酵素を用い補酵素等を増幅する、 いわゆる酵素サイク リング法が知 られている。 たとえば、 NADサイクリング、 CoAサイクリング、 ATPサイクリング 等があるが、 これらは臨床検査等のルーチン分析においては、 操作が煩雑なため 殆んど実用されていない。  As another method for measuring a trace substance, a so-called enzyme cycling method is known in which, when the substance can be converted into an equal amount of a coenzyme or the like, two kinds of enzymes are used to amplify the coenzyme or the like. For example, there are NAD cycling, CoA cycling, ATP cycling and the like, but these are hardly practical in routine analysis such as clinical tests due to complicated operations.
前記の測定の感度を向上させることが可能ならば、 測定対象物の含量が少ない 場合はもとより、 測定に必要な検体量を減らすことができるため、 例えば血清の ように種々の成分を含むものを被検体に用いる場合には、 共存物質によるその測 定系に及ぼす影響を小さくすることができる。 また、 ある限られた被検体量で検 查できる項目数を増やすことも可能であり、 さらには検体が人血液である場合な どは、 採血量を減らすことができるため、 被採血者への心理的な負担を軽減する こともできる。 このように、 検出感度を高くすることは、 臨床検査においては血 液という貴重な検体を用いることや微量成分を測定する必要性から考えて、 必然 の要求である。 If it is possible to improve the sensitivity of the above measurement, it is possible to reduce the amount of the sample required for the measurement as well as when the content of the measurement target is small. When used for an analyte, the effect of a coexisting substance on the measurement system can be reduced. In addition, it is possible to increase the number of items that can be tested with a limited amount of sample, and if the sample is human blood, it is possible to reduce the amount of blood to be collected. It can also reduce the psychological burden. As described above, increasing the detection sensitivity requires blood testing in clinical tests. This is an indispensable requirement in view of the necessity of using valuable samples such as liquids and the need to measure trace components.
このように、 従来の D—ソルビトールまたは D—フルク トースの定量法はいま だ満足のいくものではなく、 簡便で、 かつ高感度の定量法の開発が望まれていた .従って、 本発明の第一の目的は、 高感度かつ精度良好で、 簡便な D—ソルビト —ルまたは D—フルク トースの定量法を提供することにある。  As described above, the conventional methods for quantifying D-sorbitol or D-fructose are not yet satisfactory, and it has been desired to develop a simple and highly sensitive quantification method. An object of the present invention is to provide a simple method for quantifying D-sorbitol or D-fructose with high sensitivity, high accuracy and high accuracy.
さらに、 本発明の第二の目的は、 前記 D—ソルビトールまたは D—フルグ.トー スの高感度定量法に好適に供せられる組成物.を提供することにある。 .  Further, a second object of the present invention is to provide a composition which can be suitably used for the high-sensitivity quantification method of D-sorbitol or D-frug. .
本発明者らは、 前記課題を解決すべく鋭意検討した結果、 チォ NAD類およびチ ォ NADP類からなる群 (以下、 チォ型 NAD (P)類ともいう) より選ばれる 1つと、 D類および NADP類からなる群 (^下、 非チォ型 NAD (P)ともいう) より選ばれる 1 つの補酵素に作用するソルピト一ルデヒドロゲナ一ゼおよびチォ型 NAD (P)類非チ ォ型 NAD (P)類との 2種類の補酵素を用いることにより、 吸光度測定の際、 チォ型 NAD (P)類の還元型と非チォ型 NAD (P)類の還元型との吸収波長がそれぞれ 400nm付 近、 340nm付近と異なることを利用して他物質吸収波長の混雑を回避可能な酵素 サイク リング反応を実施でき、 かつ高感度の測定が可能なことを見出し、 本発明 を完成するに至った。 ここで、 前記酵素サイク リング反応の実施にあたっては、 前記 2種の補酵素のうち、 どちらか一方の変化量のみを分別定量すればよい。 発明の開示  The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, one selected from the group consisting of zeo-NADs and zeo-NADPs (hereinafter, also referred to as chi-type NAD (P) s); Solpititol dehydrogenase and non-thio NAD (P), which act on one coenzyme selected from the group consisting of NADPs (^, also referred to as non-thio NAD (P)) By using two types of coenzymes, the absorption wavelengths of the reduced form of the thio-type NAD (P) and the reduced form of the non-thio-type NAD (P) are around 400 nm, respectively, when measuring the absorbance. The present inventors have found that it is possible to carry out an enzyme cycling reaction capable of avoiding congestion at the absorption wavelength of another substance by utilizing the difference from the vicinity of 340 nm, and to perform measurement with high sensitivity, thereby completing the present invention. Here, in carrying out the enzyme cycling reaction, only the change amount of one of the two coenzymes may be separately quantified. Disclosure of the invention
.本発明は、 D—ソルビトールおよび D—フルク トースからなる群より選ばれる 少なくとも 1種の被検成分を舍有する被検体に、 次の成分(1)〜(3)  The present invention relates to a subject having at least one test component selected from the group consisting of D-sorbitol and D-fructose, the following components (1) to (3):
(1)チォ NADP類およびチォ NAD類からなる群より選ばれる 1つと、 NADP類および D類からなる群より選ばれる 1つとを補酵素とし、 少なくとも D—ソルビトール を基質として D—フルク ト一スを生成する可逆反応をなすソルビトールデヒド o ゲナーゼ  (1) One selected from the group consisting of thio-NADPs and thio-NADs and one selected from the group consisting of NADPs and D's as coenzymes, and D-fructoses using at least D-sorbitol as a substrate Sorbitol dehydrogenase in a reversible reaction producing
(2) A, を舍有する試薬を作用せしめ、 下記反応式 (I ) (2) A, And reacting it with the following reaction formula (I)
Ai  Ai
Figure imgf000006_0001
Figure imgf000006_0001
(式中、 はチォ NADP類、 チォ NAD類、 NADP類または NAD類を示し、 A2 は の還 元型生成物を示し、 は A ,がチォ NADP類またはチォ NAD類のときは還元型 NADP類 または還元型 NAD類を、 また A!が NADP類または NAD類のときは還元型チォ NADP類ま たは還元型チォ NAD類を示し、 B2は B ,の酸化型生成物を示す) (Wherein represents thio NADPs, thio NADs, NADPs or NADs, A 2 represents a reduced product of, and represents reduced NADP when A, is a thio NADP or thio NAD. Or reduced NADs, and when A! Is NADPs or NADs, it indicates reduced-thio NADPs or reduced-thio NADs, and B 2 indicates the oxidized product of B,
で表わされるサイクリング反応を形成せしめ、 該反応によって変化する A2または の量を測定することを特徵とする D—ソルビト一ルまたは D—フルクトースの 定量法に係るものである。 The present invention relates to a method for quantifying D-sorbitol or D-fructose, which comprises forming a cycling reaction represented by the following formula, and measuring the amount of A 2 or A changed by the reaction.
また、 本発明は、 前記成分(1) ~ (3)を含有することを特徵とする D—ソルビト —ルまたは D—フルク トースの定量用組成物に係るものである。  Further, the present invention relates to a composition for quantifying D-sorbitol or D-fructose, which comprises the components (1) to (3).
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例 1における D—ソルビトール量に対する 400nmにおけるレイ ト アツセィの結果を示す図面である。  FIG. 1 is a drawing showing the results of the rate at 400 nm with respect to the amount of D-sorbitol in Example 1.
図 2は、 実施例 2における D—フルク トース量に对する 400nmにおけるレイ ト アツセィの結果を示す図面である。  FIG. 2 is a drawing showing a result of a late access at 400 nm with respect to the amount of D-fructose in Example 2.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明において使用されるソルビトールデヒドロゲナ一ゼは、 少なくとも D—ソルビトール + NAD (P) + = D—フルク ト―ス + NAD (P) H+ H+ The sorbitol dehydrogenase used in the present invention comprises at least D-sorbitol + NAD (P) + = D-fructoses + NAD (P) H + H +
なる反応を触媒するものであって、 チォ NADP類およびチォ NAD類からなる群より 選ばれた 1つと、 NADP類および NAD類からなる群より選ばれた 1つとを補酵素と するものならいずれをも用いることができる。 Which catalyzes a reaction selected from the group consisting of thioNADPs and thioNADs and one selected from the group consisting of NADPs and NADs Can also be used.
具体的には EC1. 1. 1. Uの酵素が挙げられ、 バチルス ズブチリス (Baci l l us subt i l is) 等の微生物、 ヒ ト、 ヒッジ、 ネズミ等の肝や精液に見出されている。 基質としては、 D—キシロ(D- xyl o- ) および D—リポ(D- r ibo- )'構造のポリオ ールに作用するといわれている (酵素ハンドブック、 5頁、 朝倉書店、' 1983年) c ベーリ ンガー マンハイム社より市販されている羊肝由来の酵素についてみれ ば、 D—ソルビトールに対する活性を 100%としたとき、 L—ィディ トールにはSpecifically, the enzyme EC1.1.1.1 U is mentioned, and Bacillus subtilis (Bacillus subtilis) and in liver and semen of humans, sheep and mice. As a substrate, it is said to act on polyols with D-xylo (D-xylo-) and D-lipo (D-ribobo-) 'structures (Enzyme Handbook, page 5, Asakura Shoten, 1983 C ) Regarding the enzyme derived from sheep liver marketed by Boehringer Mannheim, L-iditol has an activity of 100% against D-sorbitol.
96%、 キシリ トールには 85%、 リビトールには 49%、 了リ トールには 45% あり、 エリスリ トール、 D.—おょぴ Lーァラビトール、 D—ィディ トール、 D—マンニ トール、 イノ シトールには作用しない。 96%, 85% for xylitol, 49% for ribitol, and 45% for lysitol, erythritol, D.-L-ararabitol, D-iditol, D-mannitol, and inositol Does not work.
また、 補酵素に対する特異性は、 NADのみならず、 NADPにも 1/10〜1/100程度の 強さで働く (B iochemi ca I nformat ion, p79 Boenr inger Mannheim Biochemicals, In addition, the specificity for coenzymes works not only for NAD but also for NADP with a strength of about 1/10 to 1/100 (Biochomi ca Information, p79 Boenringer Mannheim Biochemicals,
1987) 。 1987).
バチルス ズブチリス由来の酵素については、 NADの他チォ NAD、 了セチル NAD、 デァミノ NADに対しても NADとほぼ同等に作用することが知られている (J. Bi ol. Chem. , 239, P830〜838, 1964) 。  It is known that enzymes derived from Bacillus subtilis act almost equally to NAD as well as to NAD, thiocetyl NAD, and deamino NAD (J. Biol. Chem., 239, P830- 838, 1964).
他の起源の酵素についても適宜使用可能であり、 補酵素 NAD (P)類、 チォ NAD (P) 類に対する特異性は、 基質である D—ソルビトールに対して反応性を有し、 D— フルク トースを生成するものであればよく、 その特異性はこれら補酵素と基質と を用いて確認できる。  Enzymes of other origins can also be used as appropriate. Specificity for coenzymes NAD (P) and thio NAD (P) is reactive with the substrate D-sorbitol and D-fructo. Anything that can produce toose can be used, and its specificity can be confirmed using these coenzymes and substrates.
また、 本発明において、 および B2の補酵素はチォ NADP類、 チォ NAD類、 NADP 類、 NAD類を示すが、 このうちチォ NADP類またはチォ NAD類としては、 例えばチォ ニコチンアミ ドアデニンジヌクレオチドホスフヱート (チォ NADP) 、 チォニコチ ンアミ ドヒポキサンチンジヌクレオチドホスフヱ一ト ;およびチォニコチンアミ ド了デニンジヌクレオチド (チォ NAD) 、 チォニコチン了ミ ドヒポキサンチンジ ヌクレオチドが挙げられる。 また、 NADP類または NAD類としては、 例えばニコチ ンアミ ドアデニンジヌクレオチドホスフェート (NADP) 、 ァセチルビリジンアデ ニンジヌクレオチドホスフェート (ァセチル NADP) 、 ァセチルビリジンヒポキサ ンチンジヌクレオチドホスフェート、 ニコチンアミ ドヒポキサンチンジヌクレオ チドホスフェート (デァミノ NADP) ;およびニコチンアミ ドアデニンジヌクレオ チド (NAD) 、 ァセチルピリジンアデニンジヌクレオチド (ァセチル NAD) 、 ァセ チルピリジンヒポキサンチンジヌクレオチド、 ニコチンアミ ドヒポキサンチンジ ヌクレオチド (デァミノ NAD) が挙げられる。 なお、 これら補酵素の還元型は、 各々チォ NADPH類、 チォ NADH類、 MDPH類、 NADH類として表示する。 Further, in the present invention, and coenzyme B 2 is Chio-NADP, Chio NAD, NADP compound, exhibits NAD, as the out Chio NADP or Chio NAD, e.g. Chio nicotinamidine de adenine dinucleotide Phosphate (thioNADP), chonicotinamide dohypoxanthine dinucleotide phosphate; and chonicotinamide-denine dinucleotide (thioNAD), chonicotinamide-hypoxanthine dinucleotide. Examples of NADPs or NADs include nicotinamide adenine dinucleotide phosphate (NADP), acetylviridine adenine dinucleotide phosphate (acetyl NADP), acetylviridine hypoxanthine dinucleotide phosphate, and nicotinamide hypoxanthine dinucleotide. Leo Tide phosphate (damino NADP); and nicotinamide adodenine dinucleotide (NAD), acetylpyridin adenine dinucleotide (acetyl NAD), acetyl pyridine hypoxanthine dinucleotide, nicotinamide hypoxanthine dinucleotide (damino NAD) Is mentioned. The reduced forms of these coenzymes are indicated as thio NADPHs, thio NADHs, MDPHs, and NADHs, respectively.
本発明において、 および については例えば がチォ NAD (P)類である場合、 は NAD (P) H類であることが必要であり、 および の関係において 1つのチォ 型補酵素を使用する。  In the present invention, for and, for example, when is a NAD (P), it is necessary that is a NAD (P) H, and one zeo-type coenzyme is used in relation to and.
定量に用いるソルビトールデヒドロゲナ一ゼが (チォ) NAD類のみを補酵素と する場合は、 上述のチォ NAD類と NAD類より、 また、 用いるソルビトールデヒドロ ゲナーゼが (チォ) MDP類のみを補酵素とする場合は、 上述のチォ NADP類および NADP類より、 更に用いるソルビトールデヒドロゲナーゼが (チォ) NAD類および When the sorbitol dehydrogenase used for the quantification uses only (thio) NADs as coenzymes, the sorbitol dehydrogenase used uses only (thio) MDPs as coenzymes. Sorbitol dehydrogenase to be used may be (thio) NADs or
(チォ) NADP類を共に補酵素にする場合は上述のチォ NAD類およびチォ NADP類と 上述の NAD類および fiADP類より適宜選択して用いればよい。 (Cho) When both NADPs are used as a coenzyme, they may be appropriately selected from the above-mentioned Cho-NADs and Cho-NADPs and the above-mentioned NADs and fiADPs.
本発明の定量法を用いれば、 被検体中にもともと含有されている D—ソルビト ールまたは D—フルク トースを測定することができるが、 又、 これらの物質を遊 錐、 生成する酵素系における基質やその酵素活性を測定することもできる。 さら に、 本発明の定量法を用いることにより、 前記の D—ソルビトールまたは D—フ ルク トースを遊雜、 生成する酵素系と連結し得る単一の、 もしくは複数の工程か らなる酵素系における基質やその酵素活性をも測定することができる。 これらの 酵素系は、 特に限定されるものではないが、 例えば以下に示す種々の反応系が挙 げられる。  By using the quantification method of the present invention, D-sorbitol or D-fructose originally contained in the sample can be measured. Substrates and their enzyme activities can also be measured. Furthermore, by using the quantification method of the present invention, the enzyme system comprising a single or a plurality of steps capable of linking with the enzyme system that migrates and produces D-sorbitol or D-fructose is used. Substrates and their enzyme activities can also be measured. These enzyme systems are not particularly limited, but include, for example, the following various reaction systems.
(1) D—グルコースと了ルド一スレダクターゼ (EC 1. 1. 1. 21) との酵素反応系。  (1) Enzymatic reaction system between D-glucose and glucose reductase (EC 1.1.2.11).
D—ダルコ一ス +NAD (P) H→D—ソルビトール + NAD (P)  D—Darcose + NAD (P) H → D—Sorbitol + NAD (P)
この系において、 遊離、 生成する D—ソルビトールを定量することにより、 D —グルコースの定量または了ルド一スレダクタ一ゼの活性測定をすることができ (2) D—マンノースとマンノ ースイ ソメ ラ一ゼ (BC 5.3.1.7) との酵素反 系0 D—マンノース→D—フルク ト―ス In this system, the amount of D-sorbitol produced and quantified can be used to determine the amount of D-glucose or to measure the activity of glucose reductase. (2) Enzyme reaction between D-mannose and mannose isomerase (BC 5.3.1.7) 0 D-mannose → D-fructoose
この系において、 遊雛、 生成する D—フルク トースを定量することにより、 D 一マンノースの定量またはマンノ一スイソメラーゼの活性測定をすることができ o  In this system, quantification of D-mannose or activity of mannose isomerase can be performed by quantifying the amount of D-fructose produced in the chicks.
(3) D—フルク トース- 6-リ ン酸と了ルカ リホスファターゼ (BC 3.1.3.1) との 酵素反応系。  (3) Enzyme reaction system of D-fructoth-6-phosphate and glucose phosphatase (BC 3.1.3.1).
D—フルク トース- 6-リ ン酸 + H20 →D—フルク トース +リ ン酸 D—Fructose-6-phosphoric acid + H 20 → D—Fructose + phosphoric acid
この系において、 遊離、 生成する D—フルク トースを定量することにより、 D In this system, the amount of D-fructose produced and released is determined,
—フルク トース- 6-リ ン酸の定量または了ルカ リ ホスファタ一ゼの活性測定をす ることができる。 -It can be used for the determination of fructose-6-phosphoric acid or the activity of calcium phosphatase.
. (4)スクロースと "一ダルコシダ一ゼ (BC 3.2.1.20) または ;5—フルク トシダ —ゼ (BC 3.2.1.26) との酵素反応系。  (4) Enzymatic reaction system between sucrose and "1-Darcosidase (BC 3.2.1.20) or; 5-fructosidase (BC 3.2.1.26).
スク —ス +H20 →D—フルク トース + D—グルコース Disk - scan + H 2 0 → D- Fourques toast + D- glucose
この系において、 遊離、 生成する D—フルク トースを定量することによりスク ■a—スの定量あるいは α—ダルコシダ一ゼまたは 一フルク トシダーゼの活性測 定をすることができる。  In this system, by determining the amount of D-fructose released and produced, it is possible to determine the amount of sucrose or the activity of α-darcosidase or monofructosidase.
(5)ラフィノースと ]9—フルク ト シダーゼ (BC 3.2.1.26) との酵素反応系。 ラフィ ノース +H20 →D—フルク トース +メ リ ビオ一ス (5) Enzymatic reaction system between raffinose and] 9-fructosidase (BC 3.2.1.26). Rafi North + H 2 0 → D- Fourques toast + menu Li Biot Ichisu
この系において、 遊離、 生成する D—フルク トースを定量することにより、 ラ フイノースの定量または フルク トシダーゼの活性測定をすることができる。  In this system, by determining the amount of D-fructose released and produced, it is possible to determine the amount of raffinose or the activity of fructosidase.
(6)スクロース、 無機リ ンとスクロースホスホ リ ラーゼ (BC 2.4.1.7) との酵 素反応系。  (6) Enzymatic reaction system of sucrose and inorganic phosphorus with sucrose phosphorylase (BC 2.4.1.7).
スクロース +無機リ ン—D—フルク トース + D—グルコース- 1-リ ン酸 この系において、 遊離、 生成する D—フルク トースを定量することにより、 ス クロースまたは無機リ ンの定量あるいはスクロースホスホ リ ラーゼの活性測定を することができる。 (?) )のスクロースがラフィノースとな一ガラク トシダーゼ (BC 3, 2. 1. 22) との酵素反応系に由来する場合。 Sucrose + Inorganic Lin-D-Fructose + D-Glucose-1-Linic Acid In this system, the amount of free and formed D-fructose can be quantified to determine sucrose or inorganic phosphorus or sucrose phosphorylation The activity of the enzyme can be measured. (?) When sucrose is derived from an enzymatic reaction system with raffinose and one galactosidase (BC 3, 2.1.22).
ラフィノース + H20 →ガラク ト—ス +スクロース Raffinose + H 2 0 → galactosyltransferase door - scan + sucrose
この系において最終的 生成する D—フルク .トースを定量することにより、 ラ フィノースの定量またはな一ガラク トシダ一ゼの活性測定をすることができる。 本発明の定量用組成物においては、 および の濃度は 0. 02~100mM、 特に 0. 05〜20mMが好ましく、 ソルビトールデヒド1□ゲナーゼの量は 1〜1000u/m£、 特 に 2〜400u/m£が好ましいが、 その量は被検体の種類等により適宜決定すること ができ、 これ以上の量を用いることもできる。 . 本発明における、 および ^の使用量は被検体中の D—ソルビトールまたは DBy quantifying the D-fructoses finally formed in this system, it is possible to quantify raffinose or measure the activity of galactosidase. In the composition for quantification of the present invention, the concentration of and is preferably from 0.02 to 100 mM, particularly preferably from 0.05 to 20 mM, and the amount of sorbitol dehydrogenase is 1 to 1000 u / m £, especially 2 to 400 u / m. Although m is preferred, the amount can be appropriately determined depending on the type of the subject and the like, and a larger amount can be used. In the present invention, and the amount of ^ used is D-sorbitol or D in the subject.
—フルク ト一スの合計量と比較して過剰量であること、 かつソルビトールデヒド ロゲナーゼの および Β ιそれぞれに対する Kra値と比較して過剰量であることが必 要であり、 特に被検成分の 20〜: L0000倍モルが好ましい。 -It is necessary that the amount is excessive compared to the total amount of fructoses and that the amount of sorbitol dehydrogenase is excessive compared to the Kra value for each of Β and ιι. 20 to: L0000-fold molar is preferred.
また、 本発明の前記定量法はソルビトールデヒドロゲナーゼが (チォ) NAD類 および (チォ) NADP類を共に補酵素とする場合において、 2つの補酵素にチォ NA D類と NAD類もしくは NADP類との組合せ、 またはチォ NADP類と NAD類もしくは NADP 類との組合せを選んだときには、 さらに被検体に成分(4)として D—ソルビトー ルに作用せず、 の反応を形成する第二のデヒドロゲナーゼを使用し、 さら に該第二のデヒドロゲナーゼの基質を作用せしめることにより、 後記反応式 (Π ) のごとく、 と B2の間に の再生のための反応系を付与せしめることによりサイ クリング反応を形成せしめ得る。 In addition, the above-mentioned quantification method of the present invention relates to the case where sorbitol dehydrogenase uses both (thio) NADs and (thio) NADPs as coenzymes. When a combination of thio-NADPs and NADs or NADPs is selected, a second dehydrogenase that does not act on D-sorbitol as the component (4) and forms the reaction of by exerting a substrate for said second dehydrogenase further, as described below reaction formula ([pi), and may allowed to form a cycling reaction by allowed to impart reaction system for reproduction of between B 2.
すなわち、 D—ソルビトールおよび D—フルク ト一スからなる群より選ばれる 一種以上の被検成分を舍有する被検体に、 次の成分(1) ~ (4)  That is, a sample having one or more test components selected from the group consisting of D-sorbitol and D-fructoses is added to the following components (1) to (4)
(1) チォ NADP類およびチォ NAD類からなる群より選ばれる 1つと、 NADP類および NAD類からなる群より選ばれる 1つとを補酵素とし、 少なくとも D—ソルビトー ルを基質として D—フルク トースを生成する可逆反応をなすソルビト一ルデヒド(1) One selected from the group consisting of thio NADPs and thio NADs and one selected from the group consisting of NADPs and NADs are used as coenzymes, and D-fructose is obtained using at least D-sorbitol as a substrate. Sorbitol aldehyde forming a reversible reaction
T3ゲナーゼ (2) A, T3 genease (2) A,
(3) または Zおよび B2 (3) or Z and B 2
(4) D—ソルビトールに作用せず B2→B ,の反応を形成する第二のデヒドロゲナ ゼおよび該デヒドロゲナ一ゼの基質 (4) A second dehydrogenase that does not act on D-sorbitol and forms a reaction of B 2 → B, and a substrate of the dehydrogenase
を舍有する試薬を作用せしめて、 次の反応式 (Π ) The following reaction formula (Π)
D—ソルビト フルク トース D—Sorbit Fructose
Figure imgf000011_0001
Figure imgf000011_0001
( Π ) (Π)
(式中、 はチォ NADP類、 チォ NAD類、 NADP類または NAD類を示し、 A2 は の還 元型生成物を示し、 B】は がチォ NADP類またはチォ NAD類のときは還元型 NADP類 または還元型 NAD類を、 また ,が NADP類または NAD類のときは還元型チォ NADP類ま たは還元型チォ NAD類を示し、 B2は の酸化型生成物を示し、 は B2を補 酵素として を生成する酸素反応を示す) (Wherein represents thio NADPs, thio NADs, NADPs or NADs, A 2 represents a reduced product of, and B) represents reduced NADP when thio NADPs or thio NADs Or reduced NADs, or, when NADPs or NADs, indicates reduced thio NADPs or reduced thio NADs, B 2 indicates an oxidized product of, and indicates B 2 Shows the oxygen reaction that produces as a coenzyme)
で表わされるサイク リング反応を形成せしめ得るものである。 Can form a cycling reaction represented by
この場合、 第二のデヒドロゲナ一ゼに関しては、 この測定系において実質的に に作用し得ない条件を設定することが好ましく、 例えば A,を本質的に補酵素と して利用しない第二のデヒドロゲナーゼを選択する組合せ、 と B2の量的関係に より第二のデヒド σゲナーゼが実質的に A ,に作用しない条件を選択する組合せ等 が例示される。 定量の際には反応により生成した A2の量を測定する。 In this case, with respect to the second dehydrogenase, it is preferable to set conditions that do not substantially act in this assay system. For example, a second dehydrogenase that does not essentially use A as a coenzyme the combination of selecting, more second dehydrogenase σ Genaze the quantitative relationship of B 2 are combined, and the like to select the conditions that do not substantially act a, the. When quantitative measures the amount of A 2 generated by the reaction.
上記の成分(4)を用いる定量用組成物において、 の濃度は 0. 02〜100mM、 特に 0. 05〜20mMが好ましく、 B2または Zおよぴ^の濃度は 0. 05~5000juM、 特に 5〜 500 xMが好ましく、 ソルビトールデヒドロゲナ一ゼの濃度は 1〜1000u/?^、 特に 2〜400uA ^が好ましく、 第二のデヒドロゲナーゼは B2に対する Km値 (mM単位) の 20倍量 (u/mg単位) £1上になるように調整すればよく、 例えば 1 ~100u/mgが 好ましく、 また第二のデヒドロゲナーゼの基質は過剰量、 例えば 0.05~20mMが好 ましい。 これらの量は被検体の種類等により適宜決定することができ、 これ以上 の量を用いることもできる。 In the composition for quantification using the above component (4), the concentration of is preferably from 0.02 to 100 mM, particularly preferably from 0.05 to 20 mM, and the concentration of B 2 or Z and ^ is preferably from 0.05 to 5000 juM, particularly Five~ The concentration of sorbitol dehydrogenase is preferably 1 to 1000 u /? ^, Particularly preferably 2 to 400 uA ^, and the second dehydrogenase is 20 times the Km value (in mM) for B2 (u / mg). The unit may be adjusted so as to be over £ 1, for example, preferably 1 to 100 u / mg, and the substrate of the second dehydrogenase is preferably in excess, for example, 0.05 to 20 mM. These amounts can be appropriately determined depending on the type of the subject and the like, and larger amounts can be used.
すなわち、 第二のデヒド σゲナ一ゼは の再生のために補助的に添加するもの であり、 これによつて の使用量を少なくすることが可能となり、 特に が高価 な場合は有効である。 また、 の代わりに B2あるいは と B2の混合物を用いて反 応を行ってもよい。 この場合、 または Zおよび B2の使用量は特に限定されるも のではないが、 一般的には の 1/10モル £1下、 好ましくは 1/100以下である。 第二のデヒドロゲナーゼおよびその基質としては、 例えば、 B2が NAD類または チォ NAD類のときは、 アルコールデヒドロゲナ一ゼ(EC 1, 1.1.1)とエタノール、 Lーグリセロール- 3-リン酸デヒドロゲナーゼ(EC 1.1.1.8) (ゥサギ筋肉由来) と Lーグリセ口一ル- 3 -リン酸、 グリセ口了ルデヒ ドリ ン酸デヒド ゲナーゼ(Ε C 1.1.1.12) (ゥサギ骨格筋、 肝、 酵母、 E. Coli由来) と D—グリセ口アルデヒ ドリン酸とリン酸、 グリセ口一ルデヒドロゲナ一ゼ(BC 1.1.1.6) (E.Coli由来) とグリセ D—ル、 リ ンゴ酸デヒ ド口ゲナーゼ(EC 1.1.1.37) (ブタ心筋、 ゥシ心 筋由来) と L一リンゴ酸、 B2が NADP類またはチォ NADP類のときは、 グルコース - 6 -リン酸デヒドロゲナ一ゼ(BC 1.1.1.49) (酵母由来) とグルコース- 6-リン酸、 イソクェン酸デヒドロゲナ一ゼ(BC 1.1.1.42) (酵母、 ブタ心筋由来) とイソク ェン酸、 グリオキシル酸デヒ ドロゲナーゼ(EC 1.2.1.17) (Pseudomonas oxalat icus_由来) と CoAとダリオキシル酸、 ホスホダルコン酸デヒド πゲナーゼ(BC 1. 1.1.44) (ラッ ト肝、 ビール酵母、 E. Coli由来) と 6-ホスホ一 D—ダルコン酸、 グリセ口アルデヒドリン酸デヒドロゲナ一ゼ(BC 1.2.1.13) (植物葉緑体由来) と D—グリセ口了ルデヒ ド -3- リ ン酸とリ ン酸等が挙げられる。 That is, the second aldehyde σ-genase is supplementarily added for the regeneration of, and this makes it possible to reduce the amount of, and is particularly effective when is expensive. Further, the reaction may be performed using B 2 or a mixture of and B 2 instead of. In this case, the use amounts of Z and B 2 are not particularly limited, but are generally 1/10 mol £ 1 or less, preferably 1/100 or less. As the second dehydrogenase and its substrate, for example, when B 2 is a NAD or a thio NAD, alcohol dehydrogenase (EC 1, 1.1.1) and ethanol, L-glycerol-3-phosphate dehydrogenase ( EC 1.1.1.8) (from heron muscle) and L-glycerol-3-phosphate, glycemic acid aldehyde dehydrogenase (Ε C 1.1.1.12) (ゥ heron skeletal muscle, liver, yeast, E. coli) Origin) and D-glyceride aldehyde phosphate and phosphoric acid, glyceryl monohydrogenase (BC 1.1.1.6) (from E. Coli) and glycer D-le, lactate dehydrogenase (EC 1.1. 1.37) (porcine heart muscle, © shea myocardial origin) and L one malic acid, when B 2 is a NADP or the Chio-NADP, glucose - 6 - phosphate dehydrogenase one peptidase (BC 1.1.1.49) (from yeast) And glucose-6-phosphate, dehydrogenase isocnate (BC 1.1.1.42) (Derived from yeast and porcine myocardium), isogenic acid, glyoxylate dehydrogenase (EC 1.2.1.17) (derived from Pseudomonas oxalat icus_), CoA, dalioxylic acid, and phosphodalconate π-genase (BC 1.1.1.44) (Derived from rat liver, brewer's yeast, E. coli) and 6-phospho-D-dalconic acid, glyceraldehyde aldehyde phosphate dehydrogenase (BC 1.2.1.13) (derived from plant chloroplasts) and D-glycerol Examples thereof include aldehyde-3-phosphoric acid and phosphoric acid.
さらに本発明の前記定量法は、 ソルビトールデヒドロゲナーゼが (チォ) MD 類および (チォ) NADP類を共に補酵素とする場合において、 2つの補酵素にチォ NAD類と NAD類もしくは NADP類との組合せ、 またはチォ NADP類と ΝΑΪ)類もしくは ΝΑ DP類との組合せを選んだときには、 更に被検体に成分(5)として D—ゾルビト― ルに作用せず、 As—Aiの反応を形成する第三のデヒドロゲナ一ゼを使用し、 さら に該第三のデヒドロゲナ一ゼの基質を作用せしめることにより、 後記反応式 (m) のごとく、 と A2の間に A,の再生の為の反応系を付与せしめることにより.サイク リ ング反応を形成し得る。 Further, the quantification method of the present invention is characterized in that the sorbitol dehydrogenase is And both (co) NADPs as coenzymes, the combination of two coenzymes with the combination of thio NADs and NADs or NADPs, or the combination of thio NADPs with ΝΑΪ) or ΝΑDPs When selected, a third dehydrogenase that does not act on D-sorbitol as the component (5) on the subject and forms an As-Ai reaction is used, and the third dehydrogenase is further used. A cycling reaction can be formed by allowing a reaction system for the regeneration of A, as shown in the reaction formula (m) described below, to give a reaction system between A and 2 as shown in the following reaction formula (m).
すなわち、 D—ソルビトールおよび D—フルク トースからなる群より選ばれる 一種以上の被検成分を含有する被検体に、 次の成分(1)〜(3)および(5)  That is, a sample containing one or more test components selected from the group consisting of D-sorbitol and D-fructose is added to the following components (1) to (3) and (5)
(1) チォ NADP類およびチォ NAD類からなる群より選ばれる 1つと、 NADP類および DNA類からなる群より選ばれる 1つとを補酵素とし、 少なくとも D—ソルビトー ルを基質として D—フルク トースを生成する可逆反応をなすソルビト一ルデヒド u ^j- i—セ  (1) One selected from the group consisting of thio-NADPs and thio-NADs and one selected from the group consisting of NADPs and DNAs are used as coenzymes, and D-fructose is obtained using at least D-sorbitol as a substrate. Sorbitol aldehyde u ^ j- i-se
(2) または および A2 (2) or and A 2
(3) B,  (3) B,
(5) D—ソルビトールに作用せず、 A2→A,の反応を形成する第三のデヒ ドロゲナ ーゼおよび該デヒドロゲナ一ゼの基質 (5) A third dehydrogenase which does not act on D-sorbitol and forms a reaction of A 2 → A, and a substrate of the dehydrogenase
を含有する試薬を作用せしめて、 次の反応式 (m) And reacting it with the following reaction formula (m)
第三のデヒドロゲナ一ゼ Third dehydrogenase
D—ソリレビト —フルク ト一ス
Figure imgf000014_0001
D—Solirebit—Fructose
Figure imgf000014_0001
( 1 )  (1)
(式中、 はチォ NADP類、 チォ■類、 NADP類または NAD類を示し、 A2は の還元 型生成物を示し、 は A iがチォ NADP類またはチォ NAD類のときは還元型 NADP類ま たは還元型 NAD類を、 また A!が NADP類または NAD類のときは還元型チォ NADP類また は還元型チォ NAD類を示し、 B2は B ,の酸化型生成物を示し、 Aa—Aiは A2を補酵 素として を生成する酵素反応を示す) (Wherein represents thio NADPs, thios, NADPs or NADs, A 2 represents a reduced product of, and represents reduced NADPs when A i is a thio NADP or thio NAD. Or reduced NADs, and when A! Is NADPs or NADs, it indicates reduced thio NADPs or reduced thio NADs, and B 2 indicates an oxidized product of B, -Ai is an enzyme reaction to produce the Ho酵containing the a 2)
で表わされるサイク リング反応を形成せしめ得るものである。 Can form a cycling reaction represented by
この場合、 第三のデヒドロゲナーゼに関しては、 この測定系において実質的に に作用し得ない条件を設定することが好ましく、 例えば を本質的に補酵素と して利用しない酵素を選択する組合せ、 と A2の量的関係により第三のデヒドロ ゲナ一ゼが実質的に B!に作用しない条件を選択する組合せ等が例示される。 定量 の際には B,の消費量を測定する。 In this case, with respect to the third dehydrogenase, it is preferable to set conditions that cannot substantially act in this measurement system. For example, a combination of selecting an enzyme that does not essentially use as a coenzyme, and A Due to the quantitative relationship of 2 , the third dehydrogenase is substantially B! And a combination for selecting a condition that does not affect. When quantifying, measure the consumption of B.
この成分(5)を用いる本発明の前記定量用組成物において、 の濃度は 0. 02〜 lOOmM、 特に 0. 05〜20mMが好ましく、 A2または Zおよび の濃度は 0. 05〜5000 M、 特に 5〜500 ;uMが好ましく、 ソルビトールデヒドロゲナ一ゼの濃度は 1〜 1000u/m、 特に 2〜400u/mgが好ましく、 第三のデヒドロゲナーゼは A2に対する Km値 (mM単位) の 20倍量 (u/mg単位) 以上になるように調整すればよく、 例えば 1〜: L00uAi£が好ましく、 また第三のデヒドロゲナーゼの基質は過剰量、 例えば 0. 05~20πιΜが好ましい。 これらの量は被検体の種類等により適宜決定することが でき、 これ以上の量を用いることもできる。 In the composition for quantification of the present invention using this component (5), the concentration of is preferably from 0.02 to 100 mM, particularly preferably from 0.05 to 20 mM, and the concentration of A 2 or Z and is preferably from 0.05 to 5000 M, The concentration of sorbitol dehydrogenase is preferably 1 to 1000 u / m, particularly preferably 2 to 400 u / mg, and the third dehydrogenase is 20 times the Km value (in mM) for A2. (U / mg unit) It may be adjusted so as to be more than the above. 0.05 to 20πιΜ is preferred. These amounts can be appropriately determined depending on the type of the subject and the like, and larger amounts can be used.
すなわち、 第三デヒドロゲナ ^ゼは の再生のために補助的に添加するもので あり、 これによつて の使用量を少なくすることが可能となり、 特に が高価な 場合には有効である。 また、 の代わりに Α2あるいは Α !と Α2の混合物を用いて反 応を行ってもよい。 この場合、 またはノおよび Α2の使用量は特に限定されるも のではないが、 一般的には の 1/10モル以下、 好ましくは 1/100 ^下である。 第三のデヒ ドロゲナーゼおよびその基質としては、 例えば、 が NAD類または チォ NAD類のときは、 アルコールデヒ ドロゲナーゼ (EC 1. 1. 1. 1) と了セトアル デヒ ド、 グリセロールデヒ ドロゲナーゼ (EC 1. 1. 1. 6) ( E. Co l i由来) とジヒ ド ロキシアセトン、 Lーグリセロール- 3-リ ン酸デヒ ドロゲナーゼ (ゥサギ筋肉由 来) とジヒ ドロキシアセ ト ンリ ン酸、 リ ンゴ酸デヒ ドロゲナーゼ (EC 1. 1. 1. 37) (ブタ心筋、 ゥシ心筋由来) とオギザ π酢酸、 グリセ口アルデヒドリン酸デヒド 口ゲナ一ゼ (EC 1. 1. 1. 12) (ゥサギ骨格筋、 肝、 酵母、 B. Col i由来) と 1, 3 -ジ ホスホー D—グリセリ ン酸、 が NADP類またはチォ NADP類のときは、 グリセロア ルデヒドリン酸デヒドロゲナーゼ (BC 1. 2. 1. 13) (植物葉緑体由来) と 1, 3-ジ ホスホー D—グリセリン酸等が挙げられる。 That is, the tertiary dehydrogenase is supplementarily added for the regeneration of, and this makes it possible to reduce the amount of tertiary dehydrogenase used, and is particularly effective when is expensive. It may also be carried out reaction with a mixture of Alpha 2 or Alpha! And Alpha 2 instead of. In this case, although the amounts of ま た は and Α 2 are not particularly limited, they are generally 1/10 mol or less, preferably 1/100 ^ below. As the third dehydrogenase and its substrate, for example, when is a NAD or a thio NAD, alcohol dehydrogenase (EC 1.1.1.1) is referred to as alcohol dehydrogenase or glycerol dehydrogenase. (EC 1. 1.1.6) (derived from E. coli), dihydroxyacetone, L-glycerol-3-phosphate dehydrogenase (derived from rabbit heron) and dihydroxyacetonitrate, lingo Acid dehydrogenase (EC 1.1.1.17) (derived from porcine myocardium and oak myocardium) and ogiza π-acetic acid, glycealdehyde aldehyde phosphodehydrogenase (EC 1.1.1.1.12) When skeletal muscle, liver, yeast, and B. Coli) and 1,3-diphospho-D-glyceric acid are NADPs or thio-NADPs, glyceroaldehyde dehydrogenase (BC 1.2.1.13) ) (Derived from plant chloroplasts) and 1,3-diphospho-D-glyce Such as phosphate and the like.
反応液組成については、 使用するソルビトールデヒ ドロゲナ一ゼの各種酵素間 の相対活性等を考慮して 2種の補酵素を適宜選択し、 その後正反応 Z逆反応の至 適 PH条件を酵素サイク リング反応が劲率的に進行するよう設定すればよい。 使用 する酵素は単独でも、 あるいは適宜 2種以上組合せて用いてもよい。  Regarding the composition of the reaction solution, two coenzymes are appropriately selected in consideration of the relative activities among the various enzymes of the sorbitol dehydrogenase used, and then the optimal PH conditions for the forward reaction and the reverse reaction are determined by enzyme cycling. What is necessary is just to set so that the ring reaction proceeds efficiently. The enzymes used may be used alone or in combination of two or more.
かく して調製された本発明の前記定量用組成物により被検体中の D—ソルビト —ルまたは D—フルク トースを測定するには、 上記成分(1)〜(3)、 (1)〜(4)また は(1)〜(3)および(5)を含有する組成物に被検体 0. 001~0. 5mlを加え、 約 37 tの 温度にて反応させ、 反応開始一定時間後の 2点間の数分ないし数十分間、 例えば 3分後の 4分後の 1分間、 または 3分後と 8分後の 5分間における生成された A 2 の量または消費された の量を、 それぞれの吸収波長に基づく吸光度の変化によ つて測定すればよい。 例えば、 A2がチォ NADH、 が NADHの場合、 A2の生成を 400 nm付近の吸光度の増加により測定するか、 あるいは B!の消費を 340nm付近の吸光 度の減少により測定し、 既知濃度の D—ソルビトールまたは D—フルダトースを 用いて測定したときの值と比較すれば、 被検体液中の D—ソルビトールまたは D —フルク ト一ス量をリアルタイムで求めることができる。 In order to measure D-sorbitol or D-fructose in a subject by using the composition for quantification of the present invention thus prepared, the components (1) to (3), (1) to ( 4) Alternatively, 0.001 to 0.5 ml of the test sample is added to the composition containing (1) to (3) and (5), and the mixture is reacted at a temperature of about 37 t. few minutes to several tens of minutes between points, e.g., 3 minutes 1 minute after 4 minutes after, or the amount of amount or consumed in a 2 generated in 3 minutes and after 5 minutes after 8 minutes, The change in absorbance based on each absorption wavelength Measurement. For example, if A 2 is chio NADH and is NADH, the production of A 2 is measured by increasing the absorbance around 400 nm or B! Is measured by the decrease in absorbance around 340 nm and compared with 值 when measured using known concentrations of D-sorbitol or D-fludatose, indicating that D-sorbitol or D-fructo in the sample solution The quantity can be obtained in real time.
また、 被検体中に D—ソルビートおよび D—フルク トースが共存している場合、 本発明の前記定量法によれば、 これらの合計量が定量される。 個々の成分量を定 量する場合には、 被検体を予めどちらかの成分のみに作用する酵素により消去す る等の前処理をした後、 酵素サイクリング反応に導けばよい。 例えば、 へキソ 4: ナーゼ (EC 2. 7. 1. 1) またはフルク トキナ一ゼ (EC 2. 7. 1. 4) により前処理を行 なえば D—フルク ト一スは D—フルク トース- 6-リン酸に転換されるため、 ひき 続き本発明による酵素サイ リング反応を実施することにより D—ソルビトールの みを定量することができる。 また、 D—ソルビトールと D—フルク トースの合計 量から前記 D—ソルビトール量を差引くことにより、 D—フルク ト一スのみの定 量値を算出することができる。  Further, when D-sorbitol and D-fructose coexist in the subject, the total amount of these is determined by the quantification method of the present invention. The individual component amount in the case of a constant amount, after the pre-processing such as you erase the enzyme that acts only in advance either component of the subject, it Michibike the enzymatic cycling reaction. For example, pretreatment with hex 4: nase (EC 2.7.1.1.1) or fructokinase (EC 2.7.1.1.4) will result in D-fructoses being D-fructoses. -Since it is converted to 6-phosphate, only D-sorbitol can be quantified by subsequently performing the enzyme silicing reaction according to the present invention. Further, by subtracting the amount of D-sorbitol from the total amount of D-sorbitol and D-fructose, a quantitative value of only D-fructose can be calculated.
また、 本発明の前記定量法は、 被検体中の D ソルビトールまたは D—フルク ト一スそのものを酵素サイクリング反応に導くものであり、 該液中の共存物質の 影響を受けにくいため、 被検体のブランク測定を省略できレイ トアツセィによる 簡便な測定をなしうる。  In addition, the quantification method of the present invention guides D sorbitol or D-fructoses in a sample to an enzyme cycling reaction, and is not easily affected by coexisting substances in the liquid. The blank measurement can be omitted, and a simple measurement by late access can be performed.
尚、 本発明においては A2または の測定に当たり、 吸光度測定の代わりに他の 公知の測定法を使用して定量を行なうこともできる。 In the present invention, in the measurement of A 2 or, the quantification can be performed by using other known measurement methods instead of the absorbance measurement.
実施例 Example
以下に本発明を実施例により具体的に説明するが、 本発明はこれらにより何等 限定されるものではない。  Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.
実施例 1 D—ソルビト一ルの定量 Example 1 Quantification of D-sorbitol
<試薬 >  <Reagent>
100 πιΜ ト リエタノールァミン緩衝液 (ρΗ8. 5) 4 mM チォ NAD (シグマ社製) 100 πιΜ Triethanolamine buffer (ρΗ8.5) 4 mM Chio NAD (Sigma)
0. 2 m 還元型 NAD (ォリェンタル酵母社製)  0.2 m reduced NAD (Oriental Yeast)
500 u/m£ ソルビト一ルデヒ ドロゲナーゼ (シグマ社製; ヒッジ肝臓由来〉 <操作 >  500 u / m £ sorbitol-ludelogenase (manufactured by Sigma; derived from hidge liver) <Operation>
上記試薬 をキュべッ 卜にとり、 0、 10、 20、 30、 40、 50 Μの D ソル ビトール溶液 (和光純薬製) をそれぞれ 20 i ^添加し、 37 tにて反応を開始した c 反応開始後の 3分目と 6分目の 400nmにおける吸光度を読み取りその差を求めた。 濃度 0を用いた'時を試薬ブランクとして、 それぞれの結果から試薬ブランクの値 を差引き、 その結果を図 1に示した。 図 1から明らかなように、 D ソルビトー ル量に对する吸光度変化量は良好な直線性を示した。 Take the reagent particulate base in Tsu Bok, 0, 10, 20, 30 , 40, 50 Μ of D Sol Bitoru solution (Wako Pure Chemical Industries, Ltd.) was 20 i ^ added respectively, c reactions the reaction was initiated at 37 t The absorbance at 400 nm at 3 minutes and 6 minutes after the start was read to determine the difference. When the time when the concentration was 0 was used as the reagent blank, the value of the reagent blank was subtracted from each result, and the results are shown in FIG. As is clear from FIG. 1, the amount of change in absorbance relative to the amount of D sorbitol showed good linearity.
実施例 2 D フルク トースの定量 Example 2 Quantification of D-Fructose
ぐ試薬 >  Reagent>
100 m ト リエタノール了ミ ン緩衝液 (pH8. 5)  100m triethanol buffer (pH 8.5)
4 m チォ NAD (シグマ社製)  4 m Chio NAD (Sigma)
0. 2 m 還元型 NADP (ォリェンタル酵母社製)  0.2 m reduced NADP (Oriental Yeast)
625 u/i ソルビトールデヒ ドロゲーゼ (シグマ社製; ヒッジ肝臓由来) <操作 >  625 u / i sorbitol dehydrogenase (manufactured by Sigma; derived from hidge liver)
上記試薬 1 をキュべッ トにとり、 0、 20、 40、 60、 80、 の D フル ク トース溶液 (和光純薬社製) をそれぞれ 40 i ^添加し、 37 tにて反応を開始し た。 反応開始後の 2分目と 7分目の 400ηπιにおける吸光度を読み取りその差を求 めた。 濃度 0を用いた時を試薬ブランクとして、 それぞれの結果から試薬ブラン クの値を差引き、 その結果を図 2に示した。 図 2から明らかなように、 D フル ク トース量に対する吸光度変化量は良好な直線性を示した。  Reagent 1 was placed in a cuvette, and 0, 20, 40, 60, and 80 D fructoses solutions (manufactured by Wako Pure Chemical Industries, Ltd.) were added at 40 i ^ and the reaction was started at 37 t. . The absorbance at 400 ηπι was read at 2 minutes and 7 minutes after the start of the reaction, and the difference was determined. When the concentration of 0 was used as a reagent blank, the value of the reagent blank was subtracted from each result, and the results are shown in FIG. As is evident from FIG. 2, the amount of change in absorbance with respect to the amount of D fructose showed good linearity.
産業上の利用可能性 Industrial applicability
本発明は還元型の吸収波長の異なる補酵素を用いるため測定誤差が生ずること なく、 また酵素サイク リング反応を組合せることにより測定感度を増大させるこ とができる。 その結果、 少量の検体の使用により、 簡便かつ精度よく被検体中の lb Since the present invention uses coenzymes having different reduced absorption wavelengths, measurement errors do not occur, and the measurement sensitivity can be increased by combining enzyme cycling reactions. As a result, the use of a small amount of sample allows easy and accurate lb
D—ソルビトールまたは D—フルク トースを髙感度に定量することができ、 臨床 生化学検査、 食品検査等の分野において有用である。 It can quantify D-sorbitol or D-fructose with high sensitivity, and is useful in fields such as clinical biochemical tests and food tests.

Claims

請求の範囲 The scope of the claims
1. D—ソルビトールおよび D—フルク ト一スからなる群より選'ばれる少なくと も一種の被検成分を含有する被検体に、 次の成分(1)〜(3)  1. For a sample containing at least one test component selected from the group consisting of D-sorbitol and D-fructos, the following components (1) to (3)
(1)チォニコチンアミ ドアデニンジヌクレオチ ドホスフユ一ト類 (^下チ NADP 類という) およびチォニコチンアミ ドアデニンジヌクレオチド類 (以下チォ NAD 類という) からなる群より選ばれる 1つと、 ニコチンァミ ドアデニンジヌクレオ チドホスフヱート類 (以下 NADP類という) およびニコチンアミ ドアデニンジヌク レオチド類 ( 下 NAD類という) からなる群より選ばれる 1つとを補酵素とし、 少なくとも D—ソルビトールを基質として D—フルク ト一スを生成する可逆反応 をなすソルビト一ルデヒドロゲナ一ゼ  (1) one selected from the group consisting of thionicotinamide adodenine dinucleotide phosphophosphates (hereinafter referred to as lower NADPs) and thionicotinamide adodenine dinucleotides (hereinafter referred to as thio NADs); and nicotinamide adodenine. A co-enzyme comprising one selected from the group consisting of dinucleotide phosphates (hereinafter referred to as NADPs) and nicotinamide adenine dinucleotides (hereinafter referred to as NADs), and at least D-fructoses using at least D-sorbitol as a substrate Sorbitol dehydrogenase forming a reversible reaction
(2) A, を含有する試薬を作用せしめて、 次の反応式 ( I )  (2) After reacting the reagent containing A, the following reaction formula (I)
D—ソルビトール D—フルク ト一ス
Figure imgf000019_0001
D—Sorbitol D—Fructose
Figure imgf000019_0001
( I ) (I)
(式中、 A,はチォ NADP類、 チォ■類、 NADP類または NAD類を示し、 A2は の還 元型生成物を示し、 B!は A!がチォ NADP類またはチォ NAD類のときは還元型 NADP類 または還元型 NAD類を、 また が NADP類または NAD類のときは還元型チォ NADP類ま たは還元型チォ NAD類を示し、 B2は B!の酸化型生成物を示す) (Where, A, represents a chio NADP, a chio, a NADP or a NAD, A 2 represents a reduced product of B, and B! Represents a case where A! Is a chio NADP or a chi NAD. Represents reduced NADPs or reduced NADs, or represents reduced NADPs or NADs when represents NADPs or NADs, and B 2 represents an oxidized product of B! )
で表わされるサイクリング反応を形成せしめ、 該反応によって変化する A2または の量を測定することを特徴とする D—ソルビトールまたは D—フルク トースの Forming a cycling reaction represented by the formula, and measuring the amount of A 2 or A changed by the reaction, characterized in that D-sorbitol or D-fructose
2. NADP類が、 ニコチンアミ ドアデニンジヌクレオチドホスフヱ一ト (NADP) 、 ァセチルビリジンアデニンジヌクレオチドホスフェート (ァセチル NADP) 、 ァセ チルピリジンヒポキサンチンジヌクレオチドホスフュートおよびニコチンァミ ド ヒポキサンチンジヌクレオチドホスフェート (デァミノ NADP) からなる群より選 ばれるものである請求項 1記載の D—ソルビトールまたは D—フルク トースの定 童法 0 2. NADPs are nicotinamide amide adenine dinucleotide phosphate (NADP), acetyl pyridine adenine dinucleotide phosphate (acetyl NADP), acetyl pyridine hypoxanthine dinucleotide phosphate and nicotinamide hypoxanthine dinucleotide 2. The method of claim 1, wherein the method is selected from the group consisting of phosphate (damino NADP).
3. NAD類が、 ニコチンアミ ドアデニンジヌクレオチド (NAD) 、 ァセチルピリジ ンァデニンジヌクレオチド (ァセチル NAD) 、 ァセチルビリジンヒポキサンチン ジヌクレオチドおよびニコチンァミ ドヒポキサンチンジヌクレ才チド (デァミノ NAD) からなる群より選ばれるものである請求項 1の記載の D—ソルビトールま たは D—フルク トースの定量法。  3. NADs are selected from the group consisting of nicotinamide adenine dinucleotide (NAD), acetyl pyridin adenine dinucleotide (acetyl NAD), acetyl viridine hypoxanthine dinucleotide and nicotinamide hypoxanthine dinucleotide (damino NAD). 2. The method for quantifying D-sorbitol or D-fructose according to claim 1, which is selected.
4. チォ NADP類が、 チォニコチンアミ ドアデニンジヌクレオチドホスフェート (チォ NADP) およびチォニコチンアミ ドヒポキサンチンジヌクレオチドホスフヱ ートからなる群より選ばれるものである請求項 1記載の D—ソルビトールまたは D—フルク トースの定量法。  4. The D-sorbitol according to claim 1, wherein the thioNADPs are selected from the group consisting of thionicotinamide amide adenine dinucleotide phosphate (thioNADP) and thionicotinamide hypoxanthine dinucleotide phosphate. D—Fructose quantitation method.
5. チォ NAD類が、 チォニコチンアミ ドアデニンジヌクレオチド (チォ NAD) およ びチォニコチン了ミ ドヒポキサンチンジヌクレオチドからなる群より選ばれるも のである請求項 1記載の D—ソルビトールまたは D—フルク ト一スの定量法。  5. The D-sorbitol or D-fruct according to claim 1, wherein the choNADs are selected from the group consisting of chonicotinamide amide adenine dinucleotide (choNAD) and chonicotinine-mide hypoxanthine dinucleotide. Tooth quantification method.
6. 下記成分(1)~ (3)  6. The following components (1) to (3)
(1)チォ NADP類およびチォ NAD類からなる群より選ばれる 1つと、 NADP類および NA D類からなる群より選ばれる 1つとを捕酵素とし、 少なくとも D—ソルビトール を基質として D—フルク トースを生成する可逆反応をなすソルビトールデヒドロ ゲナーゼ  (1) One selected from the group consisting of thio-NADPs and thio-NADs and one selected from the group consisting of NADPs and NADs are used as capture enzymes, and D-fructose is obtained using at least D-sorbitol as a substrate. Reversible sorbitol dehydrogenase formed
(2)  (2)
(3) B  (3) B
を舍有することを特徵とする D—ソルビトールまたは D—フルク ト一ス定量用組 成物。 A composition for the determination of D-sorbitol or D-fructoses, which comprises:
PCT/JP1991/001788 1991-05-29 1991-12-27 Highly sensitive determination of d-sorbitol or d-fructose and composition therefor WO1992021775A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3/125901 1991-05-29
JP3125901A JP3034986B2 (en) 1991-05-29 1991-05-29 Highly sensitive method for quantifying D-sorbitol or D-fructose and composition for quantification

Publications (1)

Publication Number Publication Date
WO1992021775A1 true WO1992021775A1 (en) 1992-12-10

Family

ID=14921715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/001788 WO1992021775A1 (en) 1991-05-29 1991-12-27 Highly sensitive determination of d-sorbitol or d-fructose and composition therefor

Country Status (2)

Country Link
JP (1) JP3034986B2 (en)
WO (1) WO1992021775A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012557A1 (en) * 2003-08-04 2005-02-10 Sanwa Kagaku Kenkyusho Co., Ltd. Method of collecting erythrocytes and method of assaying sorbitol
JP6487711B2 (en) * 2015-02-20 2019-03-20 旭化成ファーマ株式会社 Novel measurement method and composition for orthophosphate, alkaline phosphatase, pyrophosphate and the like using purine nucleoside phosphorylase

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHADAN HOJIN NIHON SEIKAGAKU-KAI (author), "Biochemical Experiment Lecture 5 Enzyme Research (upper)", 20 August 1975, TOKYO KAGAKU DOJIN, p. 121-135. *

Also Published As

Publication number Publication date
JP3034986B2 (en) 2000-04-17
JPH04349897A (en) 1992-12-04

Similar Documents

Publication Publication Date Title
US20090042279A1 (en) Method of detecting mild impaired glucose tolerance or insulin secretory defect
Kucherenko et al. Determination of total creatine kinase activity in blood serum using an amperometric biosensor based on glucose oxidase and hexokinase
JP3036708B2 (en) Highly sensitive method for quantifying D-glucose-6-phosphate and composition for quantification
WO2000055356A1 (en) ENZYMATIC FLUORIMETRIC ASSAY OF cAMP AND ADENYLATE CYCLASE
JPS60156400A (en) Enzymatic testing method of adenosine triphosphate and flavin mononucleotide
EP0632133B1 (en) Highly sensitive determination of d-3-hydroxybutyric acid or acetoacetic acid and composition therefor
WO1992021775A1 (en) Highly sensitive determination of d-sorbitol or d-fructose and composition therefor
JP3034987B2 (en) Highly sensitive quantification method and composition for D-glyceroaldehyde-3-phosphate, inorganic phosphorus, or 1,3-diphosphoglycerate
JP3036709B2 (en) Highly sensitive method for determining L-glycerol-3-phosphate or dihydroxyacetone phosphate and composition for determination
JP3034984B2 (en) Highly sensitive method and composition for quantification of D-galactose
JP3036711B2 (en) Highly sensitive lactic acid or pyruvic acid quantification method and composition for quantification
JP3034979B2 (en) Highly sensitive quantification method of glycerol, dihydroxyacetone or D-glyceraldehyde and composition for highly sensitive quantification
JP3034988B2 (en) Highly sensitive method for determination of isocitrate or α-ketoglutaric acid and composition for determination
JP3750955B2 (en) Dry analytical element for quantification of creatine kinase or its MB isozyme
IE47123B1 (en) Analytical device
Price et al. A rapid kinetic assay for glucose using glucose dehydrogenase
JPH0731498A (en) Determination kit for 1,5-anhydroglucitol and determination method using the kit
JP3023700B2 (en) Highly sensitive method and composition for determination of L-malic acid or oxaloacetic acid
Wieland et al. Automatic bioluminescent glucose determination using commercially available reagent kits coupled to the bacterial NAD (P) H-linked luciferase system
EP0071087A1 (en) Improved determination of creatine phosphokinase in body fluids
JP2885864B2 (en) Determination of sialic acid
JP2001149092A (en) Method for measuring homocysteine
JPH07108239B2 (en) Method for quantifying pyruvic acid and method for quantifying biological components using the method
JPH0673477B2 (en) D-3-Hydroxybutyric acid or acetoacetic acid with high sensitivity and quantitative composition
WO1992020819A1 (en) High precision determination of alcohol or aldehyde and composition therefor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: US, EUROPEAN PATENT(AT,BE,DE,DK,FR,GB,IT,LU,MC,NL,SE)

122 Ep: pct application non-entry in european phase