WO1992015779A1 - Einrichtung zur erfassung des einspritzbeginnzeitpunks bei einem einspritzventil - Google Patents

Einrichtung zur erfassung des einspritzbeginnzeitpunks bei einem einspritzventil Download PDF

Info

Publication number
WO1992015779A1
WO1992015779A1 PCT/EP1992/000254 EP9200254W WO9215779A1 WO 1992015779 A1 WO1992015779 A1 WO 1992015779A1 EP 9200254 W EP9200254 W EP 9200254W WO 9215779 A1 WO9215779 A1 WO 9215779A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
time
current
injection valve
valve
Prior art date
Application number
PCT/EP1992/000254
Other languages
English (en)
French (fr)
Inventor
Anton Mayer-Dick
Manfred Weigl
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP92903606A priority Critical patent/EP0573437B1/de
Priority to DE59200861T priority patent/DE59200861D1/de
Publication of WO1992015779A1 publication Critical patent/WO1992015779A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2017Output circuits, e.g. for controlling currents in command coils using means for creating a boost current or using reference switching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a device for detecting the start of injection at an injection valve for an internal combustion engine according to the preamble of claim 1
  • Such a device is known, for example, from German patent specification 28 05 175.
  • a mechanical-electrical motion sensor is provided, which generates an electrical signal corresponding to the stroke movement of the injection valve. 15 This signal is fed differentially to a threshold switch, the response of which marks the start of spraying.
  • the time at which the injection begins can be recognized more quickly and more accurately than when considering the undifferentiated sensor signal.
  • the device requires such a motion sensor for each injector under consideration. Due to the trend towards ever smaller injection valves, it is becoming increasingly difficult and expensive to provide such sensors.
  • the object of the invention is to simplify such a device and nevertheless to detect the start of injection very precisely.
  • an injection valve represents a series connection of an inductance and an ohmic resistor. After switching on, the current rises uniformly and is then only limited by the ohmic resistor. Finally, if the valve moves out of the rest position (start of movement), there is a change in inductance and thus a change in the current rise (change in the 1st derivative of the control current dJ / dt). A further significant change in the inductance results when the end position (end of movement) is reached.
  • these points in time are recognized by differentiating the current flowing through the injection valve twice.
  • This second derivative of the current only gives a positive value if the slope of the current - that is to say the first derivative - increases.
  • valve tolerances are irrelevant.
  • the device can be used equally well for any type of injection valve.
  • the influence of fluctuating supply Tension is irrelevant since the change in the rate of rise is considered in the evaluation.
  • Another advantage is the possibility of diagnosis by considering the period between valve actuation and valve movement. Extends e.g. this time period over a certain amount, either the valve properties have changed or the supply voltage is outside the specified tolerance. Short circuits or interruptions can also be detected.
  • FIG. 1 shows a simplified block diagram of the control of an injection valve and a device for detecting the start of injection
  • FIG. 2 shows the current profile at various points in the block diagram from FIG. 1.
  • an injection valve 2 is connected to a voltage U via a switch 1.
  • the injection valve il 2 is used for fuel injection into an internal combustion engine. Only one such injection valve 2 can be provided for a single-point injection or, in the case of multi-point injections, one injection valve 2 per cylinder. In the following exemplary embodiment, an injection valve 2 is assumed, and in the case of several injection valves, the same applies analogously to the others.
  • the current curve f shown in FIG. 2 is typical for low-resistance valves (Ri ⁇ 2 JU.
  • the switch 1 is an arbitrarily suitable switch, in particular a semiconductor switch such as a MOSFET.
  • the control of the switch 1 takes place from a motor control, not shown, which controls the switch via a measuring point A.
  • This signal at measuring point A is shown in FIG. 2 over time t.
  • the switch 1 is closed at a control time ta.
  • This current profile is shown for a measuring point B from FIG. 1 in FIG.
  • the actual movement of the valve only begins when the current has risen to such an extent that the force generated by it becomes greater than the counterforces (spring preload, fuel pressure, etc., friction of the injection valve 2).
  • this time of the beginning movement of the injection valve 2 is an injection start time tb, since only then can the fuel pass the injection valve 2.
  • the current is limited to a holding current at a changeover time th in order to reduce the power loss, ie the thermal load (the valve only needs to be held in the end position).
  • switch 1 is finally opened again, thus interrupting the current flow.
  • the injection valve 2 then returns to its closed rest position by spring force.
  • the device according to the invention for detecting the injection start time tb takes advantage of the effect already described that the slope of the current through the injection valve 2 changes at the injection start time tb.
  • the current through the injection valve 2 is fed via the measuring point B to a processing circuit 3.
  • the processing circuit 3 contains two differentiating stages 31, 32 and a threshold value stage 33 connected in series.
  • the differentiating stages 31, 32 are appropriately wired operational amplifiers and the threshold value stage 33 is a Schmitt trigger.
  • the output signal at a measuring point C from FIG. 1 therefore corresponds to the twice differentiated current through the injection valve 2.
  • the threshold value step means that minimal slope changes before the start of injection tb or interference do not take effect as long as the set threshold value is not reached.
  • the level of this threshold is application-specific. Since the second derivative corresponds to the change in the first derivative, that is to say the change in the slope of the current profile, as can be seen in FIG.
  • next threshold signal occurs at the start of injection tb. Further threshold signals follow at the switchover time th and at the switch-off time te.
  • the threshold signals are fed to a logic device 4.
  • the logic device 4 is a microcomputer with a corresponding input circuit. It recognizes the start of injection tb with the arrival of the second threshold signal after the activation time ta. A signal for the activation time ta is fed to the logic device 4 via the measurement point A or directly from the motor control unit which controls the switch 1. According to a preferred embodiment, the functions of the logic device 4 are integrated in the already existing engine control, in which case such a signal transmission is then omitted.
  • the device according to the invention also enables gentle and energy-saving operation of the injection valve 2.
  • the control current in injection valves is known to be large in order to ensure rapid opening.
  • this is associated with a strong bounce and a late switchover from the control current to a lower holding current results in an increased current requirement.
  • control current is extended by a certain factor of the time between valve actuation and valve movement and then switched over to holding current.
  • the factor is determined by tests, where values of 1/4 - 1/2 have proven to be particularly favorable.
  • the maximum control current is limited to approximately 4 amperes, so that an overload of the injection valve 2 is avoided in the event of any errors in connection with the switchover.
  • the logic device 4 also carries out a diagnostic function. On the one hand, it is checked whether the corresponding threshold signals occur in each activation cycle, i.e. from the activation time ta. To the switch-off time te. On the other hand, the period between the activation time ta and the injection start time tb is considered. For this purpose, a reference value is stored for this period of time, which may not be exceeded with a functional injection valve 2 and correct voltage U. By comparing the currently determined time period with this reference value, a defective injection valve 2 and / or an impermissible voltage U can be recognized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Der Strom durch ein Einspritzventil (2) wird zweimal differenziert. Der Zeitpunkt, an dem das zweimalig differenzierte Signal zum zweitenmal nach einem Ansteuerzeitpunk (ta) auftritt ist der Einspritzbeginnzeitpunkt (tb).

Description

Einrichtung zur Erfassung des Einspritzbeginnzeitpunkts bei
5 einem Einspritzventil c
•^ Die Erfindung betrifft eine Einrichtung zur Erfassung des Ein¬ spritzbeginnzeitpunkts bei einem Einspritzventil für eine Brennkraftmaschine gemäß Oberbegriff von Anspruch 1. 10
Eine solche Einrichtung ist zum Beispiel aus der deutschen Pa¬ tentschrift 28 05 175 bekannt. Dabei ist ein mechanisch-elek¬ trischer Bewegungsgeber vorgesehen, der ein der Hubbewegung des Einspritzventils entsprechendes elektrisches Signal erzeugt. 15 Dieses Signal wird differenziert einem Schwellwertschalter zu¬ geführt, dessen Ansprechen den Spritzbeginn kennzeichnet.
Durch die Differentiation des Gebersignals kann dabei der Ein¬ spritzbeginnzeitpunkt schneller und genauer erkannt werden als 20 bei Betrachtung des nicht differenzierten Gebersignals.
Die Einrichtung erfordert einen solchen Bewegungsgeber für je¬ des betrachtete Einspritzventil. Bedingt durch den Trend zu immer kleiner werdenden Einspritzventilen wird es aber zuπeh- 25 mend schwieriger und teurer solche Geber vorzusehen.
Der Erfindung liegt demgegenüber die Aufgabe zugrunde eine solche Einrichtung zu vereinfachen und trotzdem den Ein¬ spritzbeginnzeitpunkt sehr genau zu erfassen. 30
Die erfindungsgemäße Lösung ist im Anspruch 1 gekennzeichnet. Vorteilhafte Weiterbildungen der Erfindung finden sich in den Unteransprüchen. Gemäß der Erfindung wird kein spezieller Be- t wegungsgeber verwendet, sondern der Einspritzbeginnzeitpunkt
35 also die Bewegung des Ventils, wird aus dem Ansteuersignal für
'♦ das Einspritzventil selbst erkannt. Im Ruhezustand stellt ein Einspritzventil in erster Näherung eine Reihenschaltung aus einer Induktivität und einem Ohmschen Widerstand dar. Nach dem Einschalten steigt daher der Strom gleichförmig an und wird danach nur durch den Ohmschen Wider- stand begrenzt. Bewegt sich schließlich das Ventil aus der Ruhe¬ lage (Bewegungsbeginn) ergibt sich eine Induktivitätsänderung und damit eine Änderung des Stromanstiegs (Änderung der 1. Ab¬ leitung des Ansteuerstromes dJ/dt). Eine weitere deutliche Än¬ derung der Induktivität ergibt sich bei Erreichen der Endstellun (Bewegungsende).
Erfindungsgemäß werden diese Zeitpunkte erkannt, indem der durch das Einspritzventil fließende Strom zweimal differenziert wird. Diese zweite Ableitung des Stroms gibt nur dann einen positiven Wert, wenn die Steigung des Stroms - also die erste Ableitung - zunimmt.
Dies ist zum erstenmal der Fall zum Ansteuerzeitpunkt und dann beim Auftreten der zuvor genannten Induktivitätsänderungen beim Bewegungsbegiπn und Bewegungsende. Bei niederohmigen Ventilen ergibt sich beim Bewegungsbeginn eine größere zweite Ableitung und bei hδherohmigen Ventilen beim Bewegungsende. Daher empfiehlt es sich bei niederohmigen Ventilen den Bewegungsbegiπn und bei höherohmigen Ventilen das Bewegungsende als Einspritz- beginnzeitpunkt zu detektieren. Diese Auswahl erfolgt durch die Wahl der Höhe eines Schwellwerts einer Schwellwertstufe, der das der zweiten Ableitung entsprechende Signal zugeführt wird. Auch Störeinflüsse und Nichtlinearitäten kommen durch diese Schwellwertstufe nicht zur Wirkung. Dementsprechend ist dann immer der Zeitpunkt nach dem Ansteuerzeitpunkt, an dem die Schwellwertstufe zum zweitenmal anspricht gleichbedeutend mit dem Einspritzbeginnzeitpunkt.
Durch die direkte Betrachtung des Stroms durch das Einspritz- ventil spielen Ventiltoleranzen keine Rolle. Die Einrichtung ist gleichermaßen gut für jede Art von Einspritzventil anzu¬ wenden. Auch der Einfluß durch schwankende Versorgungs- Spannungen spielt keine Rolle, da bei der Auswertung difj Änderung der Anstiegsgeschwindigkeit betrachtet wird.
Ein weiterer Vorteil ist die Diagnosemöglichkeit durch Be- trachtung des Zeitraums zwischen der Ventilansteuerung und der Ventilbewegung. Verlängert sich z.B. dieser Zeitraum über ein bestimmtes Maß, so haben sich entweder die Ventileigen¬ schaften verändert oder die Versorgungsspannung liegt außerhalb der vorgegebenen Toleranz. Kurzschlüsse bzw. Unterbrechungen können ebenso erkannt werden.
Die Erfindung wird anhand der Figuren näher erläutert. Dabei zeigen:
Figur 1 ein vereinfachtes Blockschaltbild der Ansteuerung eines Einspritzventils sowie eine Einrichtung zur Erfassung des Einspritzbeginnzeitpunkts und Figur 2 den Stromverlauf an verschiedenen Punkten des Block¬ schaltbilds aus Figur 1.
Beim Blockschaltbild der Figur 1 wi rd ein Einspritzventil 2 über einen Schalter 1 an eine Spannung U geschaltet . Das Ein¬ spritzvent il 2 dient zur Kraftstoffeinspritzung in eine Brenn¬ kraftmaschine. Es kann dabei für eine Singlepoint-Einspritzung nur ein solches Einspritzventil 2 vorgesehen se in oder bei Mul- tipoint-Einspritzungen entsprechend jeweils ein Einspritzven¬ til 2 pro Zylinder . Im folgenden Ausführungsbeispiel wird von einem Einspritzventil 2 ausgegangen , wobei im Falle mehrerer Einspritzventile das gesagte jeweils analog für die anderen gilt . Der in Figur 2 dargestellte Stromverlau f ist typi sch für niederoh ige Venti le (Ri < 2 JU .
Beim Schl ießen des Schalters 1 wird durch den einsetz enden Stromfluß das Einspritzventil 2 geöffnet . Der Schalter 1 ist ein beliebi ger geeigneter Schalter , insbesondere e in Halble i¬ terschalter wie ein MOSFET . Die Ansteuerung d es Schalters 1 erfolgt von einer nicht dargestellten Motorsteuerung aus , die den Schalter über e inen Meßpunkt A ansteuert . Dieses Signal im Meßpunkt A ist in Figur 2 über der Zeit t ge¬ zeigt. Zu einem Ansteuerzeitpunkt ta wird der Schalter 1 ge¬ schlossen. Dadurch steigt der Strom durch das Einspritzventil 2 von 0 beginnend mit konstanter Steigung an. Dieser Stromver- lauf ist für einen Meßpunkt B aus Figur 1 in Figur 2 eingezeich¬ net. Die eigentliche Bewegung des Ventils beginnt erst, wenn der Strom soweit angestiegen ist, daß die durch ihn erzeugte Kraft größer wird als die Gegenkräfte (Federvorspannung, Kraftstoff¬ druck etc., Reibung des Einspritzventils 2). Dieser Zeitpunkt der beginnenden Bewegung des Einspritzventils 2 ist in Figur 2 ein Einspritzbeginnzeitpunkt tb , da erst dann der Kraftstoff das Einspritzventil 2 passieren kann. Nach dem Öffnen des Ein¬ spritzventils 2 wird der Strom zu einem Umschaltzeitpunkt th auf einen Haltestrom begrenzt, um die Verlustleistung d.h. die thermische Belastung zu reduzieren (das Ventil braucht nur noch in der Endlage gehalten zu werden). Zu einem Abschaltzeitpunkt te schließlich wird der Schalter 1 wieder geöffnet und damit der Stromfluß unterbrochen. Das Einspritzventil 2 kehrt dann durch Federkraft in seine geschlossene Ruhelage zurück.
Die erfindungsgemäße Einrichtung zum Erfassen des Einspritzbe¬ ginnzeitpunkts tb macht sich den bereits beschriebenen Effekt zunutze, daß sich die Steigung des Stroms durch das Einspritz¬ ventil 2 zum Einspritzbeginnzeitpunkt tb ändert. Dazu wird der Strom durch das Einspritzventil 2 über den Meßpunkt B einer Aufbereitungsschaltung 3 zugeführt. Die Aufbereitungsschaltung 3 enthält hintereinander geschaltet zwei Differenzierstufen 31, 32 und eine Schwellwertstufe 33. Die Differenzierstufen 31, 32 sind entsprechend beschaltete Operationsverstärker und die Schwellwertstufe 33 ist ein Schmitt-Trigger. Das Ausgangssignal an einem Meßpunkt C aus Figur 1 entspricht daher dem zweimal differenzierten Strom durch das Einspritzventil 2. Durch die Schwellwertstufe kommen dabei minimale Steigungsänderungen vor dem Einspritzbeginnzeitpunkt tb oder Störeinflüsse nicht zur Wirkung, solange der eingestellte Schwellwert nicht erreicht wird. Die Höhe dieses Schwellwerts ist anwendungspezifisch. Da die zweite Ableitung der Änderung der ersten Ableitung, also der Änderung der Steigung des Stromverlaufs, entspricht, ergibt sich wie in Figur 2 ersichtlich im Meßpunkt C das erste Mal zu Ansteuerzeitpunkt ta ein i pulsförmiges Schwellsignal.
Die nächste Steigungsänderung und damit das nächste Schwellsi¬ gnal tritt zum Einspritzbeginnzeitpunkt tb auf. Weitere Schwell Signale folgen zum Umschaltzeitpunkt th und zum Abschaltzeit¬ punkt te.
Wie in Figur 1 ersichtlich werden die Schwellsignale einer Logikeinrichtung 4 zugeführt. Die Logikeinrichtung 4 ist ein Microcomputer mit entsprechender Eingangsbeschaltung. Sie er¬ kennt den Einspritzbeginnzeitpunkt tb mit Eintreffen des zwei- ten Schwellsignals nach dem Ansteuerzeitpunkt ta. Ein Signal für den Ansteuerzeitpunkt ta wird der Logikeinrichtung 4 dabei über den Meßpunkt A oder direkt von der den Schalter 1 an¬ steuernden Motorsteuerung zugeleitet. Gemäß einer bevorzugten Ausführungsform sind die Funktionen der Logikeinrichtung 4 in der bereits vorhandenen Motorsteuerung integriert, wobei dann eine solche Signalübermittlung entfällt.
Die erfindungsgemäße Einrichtung ermöglicht weiterhin einen schonenden und stromsparenden Betrieb des Einspritzventils 2. Einerseits soll der Asteuerstrom bei Einspritzventilen bekannt¬ lich öglist groß sein, um eine schnelle Öffnung zu gewähr¬ leisten. Andererseits ist damit ein starkes Anschlagprellen verbunden und durch eine späte Umschaltung vom Ansteuerstrom auf einen niedrigeren Haltestrom ergibt sich ein erhöhter Strom- bedarf.
Über das genaue Erkennen des Einspritzbeginnzeitpunkts kann nun ein günstiger Kompromiß zwischen Ansteuerstrom und Haltestrom gefunden werden. So wird der Ansteuerstrom nach dem Erkennen des Einspritzbeginnzeitpunkts noch um einen bestimmten Faktor der Zeit zwischen der Ventilansteuerung und der Ventilbewegung verlängert und dann auf Haltestrom umgeschaltet. Der Faktor wird durch Versuche ermittelt, wobei sich Werte von 1/4 - 1/2 als besonders günstig erwiesen haben. Der maximale Ansteuer¬ strom wird auf ungefähr 4 Ampere begrenzt, so daß bei even¬ tuellen Fehlern im Zusammenhang mit der Umschaltung eine Über- lastung des Einspritzventils 2 vermieden wird.
Die Logikeinrichtung 4 führt außerdem eine Diagnosefunktion durch. Dabei wird einerseits geprüft, ob pro Ansteuerzyklus, also vom Ansteuerzeitpunkt ta .bis zum Abschaltzeitpunkt te jeweils die entsprechenden Schwellsignale auftreten. Anderer¬ seits wird der Zeitraum zwischen dem Ansteuerzeitpunkt ta und dem Einspritzbeginnzeitpunkt tb betrachtet. Dafür wird für diesen Zeitraum ein Referenzwert abgespeichert, der bei einem funktionsfähigen Einspritzventil 2 und ordnungsgemäßer Spannung U nicht überschritten werden darf. Durch Vergleich des aktuell ermittelten Zeitraums mit diesem Referenzwert kann ein mangel¬ haftes Einspritzventil 2 und/oder eine unzulässige Spannung U erkannt werden.

Claims

Patentansprüche
1. Einrichtung zur Erfassung des Einspritzbeginnzeitpunkts bei einem Einspritzventil für eine Brennkraftmaschine, d a d u r c h g e k e n n z e i c h n e t , daß eine Differenziereinrichtung (31,32) vorgesehen ist, der der Strom durch das Einspritzventil (2) zugeführt ist und die ein Ausgangssignal entsprechend dessen zweiter Ableitung abgibt, daß eine Schwellwertstufe (33) das Ausgangssignal erhält, die ein Schwellsignal erzeugt, wenn das Ausgangssignal einen Schwellwert übersteigt und daß die Einrichtung den Einspritzbeginnzeitpunkt (tb) erkennt, wenn nach einem Ansteuerzeitpunkt (ta) des Einspritzventils (2) das Schwellsignal zum zweiten Mal auftritt.
2. Einrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Differenziereinrichtung (31,32) zwei hintereinander geschaltete als Differenzierer beschaltete Operationsverstärker aufweist.
3. Einrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Schwellwertstufe (33) ein Schmitt-Trigger ist.
4. Einrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Einrichtung nach Erkennung des Einspritzbeginnzeit¬ punkts (tb) den dabei fließenden erhöhten Ansteuerstrom um einen bestimmten Faktor der Zeit zwischen dem Ansteuerzeitpunkt (ta) und dem Einspritzbeginnzeitpunkt (tb) verlängert und den Strom dann auf einen gegenüber dem Ansteuerstrom niedrigeren Haltestrom zurücknimmt.
5. Einrichtung nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t , daß der Faktor 1/4 - 1/2 ist.
6. Einrichtung nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t , daß die Einrichtung den maximalen Ansteuerstrom auf einen wähl¬
PCT/EP1992/000254 1991-02-27 1992-02-05 Einrichtung zur erfassung des einspritzbeginnzeitpunks bei einem einspritzventil WO1992015779A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP92903606A EP0573437B1 (de) 1991-02-27 1992-02-05 Einrichtung zur erfassung des einspritzbeginnzeitpunks bei einem einspritzventil
DE59200861T DE59200861D1 (de) 1991-02-27 1992-02-05 Einrichtung zur erfassung des einspritzbeginnzeitpunks bei einem einspritzventil.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP91102942.9 1991-02-27
EP91102942 1991-02-27

Publications (1)

Publication Number Publication Date
WO1992015779A1 true WO1992015779A1 (de) 1992-09-17

Family

ID=8206463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1992/000254 WO1992015779A1 (de) 1991-02-27 1992-02-05 Einrichtung zur erfassung des einspritzbeginnzeitpunks bei einem einspritzventil

Country Status (5)

Country Link
US (1) US5433109A (de)
EP (1) EP0573437B1 (de)
DE (1) DE59200861D1 (de)
MX (1) MX9200825A (de)
WO (1) WO1992015779A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013991A1 (en) * 1992-12-08 1994-06-23 Pi Research Ltd. Electromagnetic valves

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5738071A (en) * 1991-05-22 1998-04-14 Wolff Controls Corporation Apparatus and method for sensing movement of fuel injector valve
US5747684A (en) * 1996-07-26 1998-05-05 Siemens Automotive Corporation Method and apparatus for accurately determining opening and closing times for automotive fuel injectors
US5765120A (en) * 1997-02-05 1998-06-09 Brymen Technology Corporation Detecting device for fuel-injecting interval of engine
DE10021086B4 (de) * 2000-04-28 2006-11-30 Siemens Ag Verfahren zum Bestimmen des Kraftstoffmassenstroms bei einer Brennkraftmaschine
US6848626B2 (en) * 2001-03-15 2005-02-01 Siemens Vdo Automotive Corporation End of valve motion detection for a spool control valve
FI115008B (fi) * 2003-05-13 2005-02-15 Waertsilae Finland Oy Menetelmä solenoidin toiminnan valvomiseksi
ITTO20030921A1 (it) * 2003-11-20 2005-05-21 Fiat Ricerche Dispositivo di comando di elettroattuatori con rilevamento dell'istante di fine attuazione e metodo di rilevamento dell'istante di fine attuazione di un elettroattuatore.
EP2455601B1 (de) * 2010-11-17 2018-06-06 Continental Automotive GmbH Verfahren und Vorrichtung zum Betreiben eines Einspritzventils
US20140373508A1 (en) * 2013-06-19 2014-12-25 Continental Automotive Systems, Inc. Reductant delivery unit for automotive selective catalytic reduction with thermally optimized peak-and-hold actuation based on an injector open event
DE102015204686A1 (de) * 2015-03-16 2016-09-22 Robert Bosch Gmbh Verfahren zur Steuerung der Kraftstoffzumessung
DE102019200572A1 (de) * 2019-01-17 2020-07-23 Robert Bosch Gmbh Verfahren zur Ermittlung der Bewegung eines Ankers eines elektrischen Saugventils

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4612597A (en) * 1984-12-19 1986-09-16 General Motors Corporation Circuit for controlling and indicating fuel injector operation
US4736267A (en) * 1986-11-14 1988-04-05 Motorola, Inc. Fault detection circuit
EP0438640A1 (de) * 1989-12-23 1991-07-31 Daimler-Benz Aktiengesellschaft Verfahren zur Bewegungs- und Lagezustandserkennung eines durch magnetische Wechselwirkung zwischen einer Ruhelage und einer Endlage beweglichen Bauteiles eines induktiven elektrischen Verbrauchers

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1443705A (en) * 1972-12-15 1976-07-21 Int Research & Dev Co Ltd Rock drills
DE2725933A1 (de) * 1977-06-08 1978-12-21 Bosch Gmbh Robert Druck-impulsdauer-wandler
JPS55153833A (en) * 1979-05-17 1980-12-01 Nippon Carbureter Co Ltd Revolution speed control system for internal combustion engine
DE3118425A1 (de) * 1981-05-09 1982-12-09 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung zum erfassen der den brennraeumen eines dieselmotors zugefuehrten kraftstoffmenge
JPS5970879A (ja) * 1982-10-18 1984-04-21 Nissan Motor Co Ltd デイ−ゼル機関の燃料噴射弁診断装置
JPS60182354A (ja) * 1984-02-28 1985-09-17 Nippon Denso Co Ltd インジエクタ駆動パルス幅の測定装置
DE3508335A1 (de) * 1985-03-08 1986-09-11 Voest-Alpine Friedmann GmbH, Linz Schaltungsanordnung zur erfassung der stromaenderungssignale eines an einer konstanten gleichspannung liegenden nadelhubsensors einer einspritzduese fuer brennkraftmaschinen
JPH01105084A (ja) * 1987-10-13 1989-04-21 Mazda Motor Corp 電磁弁の故障検出装置
US5038744A (en) * 1990-06-21 1991-08-13 Barrack Technology Limited Method and apparatus for controlling spark ignition in an internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4612597A (en) * 1984-12-19 1986-09-16 General Motors Corporation Circuit for controlling and indicating fuel injector operation
US4736267A (en) * 1986-11-14 1988-04-05 Motorola, Inc. Fault detection circuit
EP0438640A1 (de) * 1989-12-23 1991-07-31 Daimler-Benz Aktiengesellschaft Verfahren zur Bewegungs- und Lagezustandserkennung eines durch magnetische Wechselwirkung zwischen einer Ruhelage und einer Endlage beweglichen Bauteiles eines induktiven elektrischen Verbrauchers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 13, no. 320 (M-853)(3668) 20. Juli 1989 & JP,A,01 105 084 ( MAZDA ) 21. April 1989 *
PATENT ABSTRACTS OF JAPAN vol. 5, no. 25 (M-55)14. Februar 1981 & JP,A,55 153 833 ( NIPPON CARBURETER ) 1. Dezember 1980 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013991A1 (en) * 1992-12-08 1994-06-23 Pi Research Ltd. Electromagnetic valves

Also Published As

Publication number Publication date
EP0573437A1 (de) 1993-12-15
MX9200825A (es) 1992-10-01
US5433109A (en) 1995-07-18
EP0573437B1 (de) 1994-11-30
DE59200861D1 (de) 1995-01-12

Similar Documents

Publication Publication Date Title
DE3817770C2 (de)
DE3942836C2 (de)
DE102011005672B4 (de) Verfahren, Vorrichtung und Computerprogramm zur elektrischen Ansteuerung eines Aktuators zur Bestimmung des Zeitpunkts eines Ankeranschlags
DE10235188B3 (de) Verfahren zum Ermitteln der Position eines Stellelements eines elektrisch antreibbaren Aktuators, zugehörige Schaltungsanordnung und Vorrichtung
DE19533452B4 (de) Verfahren zur Anpassung einer Steuerung für einen elektromagnetischen Aktuator
WO1989002648A1 (en) Process and device for detecting the switching times of electrovalves
DE60123919T2 (de) Ansteuerschaltung für einen piezoelektrischen Aktor sowie Brennstoff-Einspritzsystem
EP0573437B1 (de) Einrichtung zur erfassung des einspritzbeginnzeitpunks bei einem einspritzventil
DE2602906C2 (de)
DE102015217945A1 (de) Vorrichtung zur Steuerung von wenigstens einem schaltbaren Ventil
EP2042792A2 (de) Magnetventil mit einer Handhilfsbetätigung
EP1234316B1 (de) Elektromagnetisches schaltgerät mit gesteuertem antrieb sowie zugehörig ein verfahren und eine schaltung
DE102010043306B4 (de) Verfahren zum Betreiben eines magnetischen Schaltgliedes, elektrische Schaltung zum Betreiben des magnetischen Schaltgliedes sowie eine Steuer- und/oder Regeleinrichtung
EP3743613B1 (de) Vorrichtung zur zustandserfassung eines injektors
WO2008090047A1 (de) Vorrichtung und verfahren zur steuerung eines elektromagnetischen ventils
DE10112902B4 (de) Verfahren zum Betreiben einer einen Elektromagnet aufweisenden Bremse
DE19612597A1 (de) Anschlags- und Blockiererkennung bei einem Schrittmotor
DE102009001400A1 (de) Verfahren zur Überwachung der elektrischen Eigenschaften eines getaktet gesteuerten Lastkreises und Schaltungsanordnung zur Durchführung des Verfahrens
DE10044087A1 (de) Vorrichtung zur Aktivierung eines Steuergeräts
EP3669385A1 (de) Verfahren zur einstellung des anzugsverhaltens eines elektromagnetischen feedback-aktuators
EP3864281B1 (de) Injektor
DE102018215687B4 (de) Aktoreinrichtung, Ventileinrichtung und Verfahren zur Erfassung einer Stellung eines Stellglieds
EP3920202A1 (de) Schaltanordnung und verfahren zur bestimmung des genauen schaltzeitpunktes eines elektromechanischen relais
CH709613A1 (de) Verfahren und Vorrichtung zur Ermittlung des Ankerhubes eines Magnetaktuators.
DE10313721B4 (de) Verfahren zum Betreiben eines elektronisch-mechanischen Positionsschalters

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

WWE Wipo information: entry into national phase

Ref document number: 1992903606

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08113409

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1992903606

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992903606

Country of ref document: EP