WO1992014450A1 - Sustained release drug delivery devices - Google Patents

Sustained release drug delivery devices Download PDF

Info

Publication number
WO1992014450A1
WO1992014450A1 PCT/US1992/001432 US9201432W WO9214450A1 WO 1992014450 A1 WO1992014450 A1 WO 1992014450A1 US 9201432 W US9201432 W US 9201432W WO 9214450 A1 WO9214450 A1 WO 9214450A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
inner core
agent
drug delivery
delivery system
Prior art date
Application number
PCT/US1992/001432
Other languages
French (fr)
Inventor
Thomas J. Smith
Paul Ashton
Paul A. Pearson
Original Assignee
University Of Kentucky Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Of Kentucky Research Foundation filed Critical University Of Kentucky Research Foundation
Priority to JP4506696A priority Critical patent/JPH06505274A/en
Priority to CA002104699A priority patent/CA2104699C/en
Priority to DE69227187T priority patent/DE69227187T2/en
Priority to AU14197/92A priority patent/AU660012B2/en
Priority to DK92906830T priority patent/DK0577646T3/en
Priority to EP92906830A priority patent/EP0577646B1/en
Publication of WO1992014450A1 publication Critical patent/WO1992014450A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/0008Introducing ophthalmic products into the ocular cavity or retaining products therein
    • A61F9/0017Introducing ophthalmic products into the ocular cavity or retaining products therein implantable in, or in contact with, the eye, e.g. ocular inserts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • A61K9/0051Ocular inserts, ocular implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5073Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • A61K9/2806Coating materials
    • A61K9/2833Organic macromolecular compounds
    • A61K9/284Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5026Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates

Definitions

  • the present invention relates to a novel sustained release drug delivery device comprising an inner core or reservoir containing an agent effective in obtaining a desired local or systemic physiological or pharmacological effect, a first coating essentially impermeable to the passage of the effective agent, and a .second coating permeable to the passage of the effective agent.
  • the first coating covers at least a portion of the inner core; however, at least a small portion of the inner core is not coated with the first coating layer.
  • the second coating layer essentially completely covers the first coating layer and the uncoated portion of the inner core. The portion of the inner core which is not coated with the first coating layer allows passage of the agent into the second coating layer thus allowing controlled release.
  • intravenous ganciclovir is effective in the treatment of CMV retinitis in AIDS patients, but bone marrow toxicity limits its usefulness.
  • the incidence of neutropenia (absolute neutrophil count ⁇ 1000) during intravenous GCV therapy ranges from 30 to 50%. Continuous maintenance GCV therapy is necessary to prevent progression or recrudescence of the disease, but despite maintenance therapy 30 to 50% of patients experience a relapse during treatment.
  • Other problems associated with systemic GCV administration include the risk of sepsis related to permanent indwelling catheters and the inability to receive concurrent therapy with zidovudine (AZT) which has been shown to prolong life and improve the immune function in AIDS patients.
  • Intravitreal GCV injections of 200 to 400 ⁇ g administered once or twice weekly have resulted in temporary remission of CMV retinitis in AIDS patients.
  • Intravitreal GCV injections may provide a higher intraocular drug concentration than systemic therapy and reduce the incidence of neutropenia.
  • Current treatment of CMV retinitis in AIDS patients is clearly suboptimal.
  • Ganciclovir is virustatic and thus disease inhibition requires maintenance drug administration.
  • One such delivery device is an orally administered pill or capsule which contains a drug encapsulated within various layers of a composition that dissolves over a period of time in the digestive tract, thereby allowing a gradual or slow release of the drug into the system.
  • Another type of device for controlling the administration of such drugs is produced by coating a drug with a polymeric material permeable to the passage of the drug to obtain the desired effect.
  • Such devices are particularly suitable for treating a patient at a specific local area without having to expose the patient's entire body to the drug. This is advantageous because any possible side effects of the drug could be minimized.
  • Devices formed of polymeric materials that are insoluble in tear fluid retain their shape and integrity during the course of the needed therapy to serve as a drug reservoir for continuously administering a drug to the eye and the surrounding tissues at a rate that is not effected by dissolution or erosion of the polymeric material.
  • the device Upon te ⁇ nination of the desired therapeutic program, the device is removed from the cul-de-sac.
  • Another type of device used for sustained release of a drug to the external surface of the eye is manufactured with a plurality of capillary openings that communicate between the exterior of the device and the interior chamber generally defined from a polymeric membrane.
  • Another such device comprises a three-layered laminant having a pair of separate and discrete first and third walls formed of a material insoluble in tear fluid with one of the walls formed of a drug release material permeable to the passage of drug and the other wall formed of a material impermeable to the passage of the drug.
  • the device in one embodiment, includes an inner core or reservoir which contains an agent effective in obtaining the desired effect.
  • the device further includes a first coating layer.
  • the first coating layer is essentially impermeable to the passage of the agent and covers a portion of the inner core.
  • the first coating layer blocks passage of the agent from the inner core at those sides where it contacts the inner core.
  • the rem__ining portion of the inner core which is not blocked allows a controlled amount of the agent from the inner core to pass into the second coating layer.
  • the second coating layer is permeable to the passage of the agent and covers essentially the entire first coating layer and the exposed inner core.
  • the first coating layer is positioned between the inner core and the second coating layer in order to control the rate at which the agent permeates through the second coating layer.
  • Another object of the present invention is to provide a method for treating a mammalian organism, e.g., human, to obtain a desired local or systemic physiological or pharmacological effect.
  • the method includes positioning the sustained released drug delivery system at an area wherein release of the agent is desired and allowing the agent to pass through the second coating to the desired area of treatment.
  • Another object of the present invention is to provide an ocular device suitable for direct implantation into the vitreous of the eye.
  • Such devices of the present invention are surprisingly found to provide sustained controlled release of various compositions to treat the eye without risk of detrimental side effects.
  • Another object of the present invention is to provide an ocular delivery system that could be applied to an intra-ocular lens to prevent inflamation or posterior capsular opacification.
  • Figure 1 is an enlarged view of one embodiment of the sustained release drug delivery device showing inner core, first coating layer and second coating layer
  • Figure 2 is an enlarged cross sectional schematic of one embodiment of the sustained release drug delivery device showing inner core, first coating layer and second coating layer
  • Figure 3 is a graph showing the concentration of ganciclovir found in test rabbits and delivered by an ocular device of the present invention over time
  • Figure 4 is a graph showing the concentration of ganciclovir found in humans and delivered by an ocular device of the present invention over time;
  • Figure 5 is a graph showing the concentration of 5-fluorouracil (5-FU) delivered by devices of the present invention over time; and Figure 6 illustrates the intraocular pressure of monkeys over time, wherein under the conjunctiva of one eye of each monkey was implanted a device of the present invention.
  • 5-FU 5-fluorouracil
  • the present inventors have surprisingly discovered a device that is suitable for the controlled and sustained release of an agent effective in obtaining a desired local or systemic physiological or pharmacological effect.
  • the device includes an inner core or reservoir which contains an agent effective in obtaining a desired effect.
  • the device further includes a first coating layer and a second coating layer.
  • the first coating layer covers only a portion of the inner core and is impermeable to the passage of the agent.
  • the second coating layer covers all of the inner core and the first coating layer and is permeable to the passage of the agent. The portion of the inner core that is not coated with the first coating layer facilitates passage of the agent through the second coating layer.
  • Figure 1 illustrates one embodiment of the sustained release drug delivery device of the present invention. While the device shown in Figure 1 is cylindrical, the device could be any shape. The device composes an inner core or reservoir 5, an impermeable coating 10 which is impermeable to the passage of the agent in the core or reservoir 5, and a permeable coating 15 which is permeable to the passage of the agent in the core or reservoir 5.
  • Figure 1 further shows an impermeable cap 20 and suture tag 25.
  • FIG 2 illustrates, in cross section, the device shown in Figure 1.
  • the permeable coating 30 may be made of the same material as the permeable coating 15.
  • the impermeable cap 20 is positioned such that there is a passage 35 which allows passage of the agent in the core or reservoir.
  • the impermeable coating 20 is positioned between the permeable coating 15 and the reservoir or core 5.
  • the suture tag 25 is attached to the permeable coating 15.
  • the invention further relates to a method for treating a mammalian organism to obtain a desired local or systemic physiological or pharmacological effect.
  • the method includes administering the sustained release drug delivery system to the mammalian organism and allowing the agent effective in obtaining the desired local or systemic effect to pass through the second coating to contact the mammalian organism.
  • administering means positioning, inserting, injecting, implanting, or any other means for exposing the device to a mammalian organism.
  • the route of administration depends on a variety of factors including type of response or treatment, type of agent and preferred site of administration.
  • the devices in certain embodiments have applicability in providing a controlled and sustained release of agents effective in obtaining a desired local or systemic physiological or pharmacological effect relating at least to the following areas: treatment of cancerous primary tumors, (e.g., glioblastoma); chronic pain; arthritis; rheumatic conditions; hormonal deficiencies such as diabetes and dwarfism; and modification of the immune response such as in the prevention of transplant rejection and in cancer therapy.
  • cancerous primary tumors e.g., glioblastoma
  • chronic pain e.g., chronic pain
  • arthritis rheumatic conditions
  • hormonal deficiencies such as diabetes and dwarfism
  • modification of the immune response such as in the prevention of transplant rejection and in cancer therapy.
  • a wide variety of other disease states may also be prevented or treated using the drug delivery device of the present invention. Such disease states are known by those of ordinary skill in the art. For those not skilled in the art, reference may be made to Goodman and Gilman, The
  • the devices are suitable for use in treating mammalian organisms infected with ADDS and AIDS related opportunistic infections such as cytomegalovirus infections, toxoplasmosis, pneumocystis carinii and mycobacterium avium intercellular.
  • the devices are particularly suitable for treating ocular conditions such as glaucoma, proliferative vitreoretinopathy, diabetic retinopathy, uveitis, and keratitis.
  • the devices are also particularly suitable for use as an ocular device in treating mammalian organisms suffering from cytomegalovirus retinitis wherein the device is surgically implanted within the vitreous of the eye.
  • the inner core or reservoir contains an agent effective in obtaining a desired local or systemic physiological or pharmacological effect.
  • agents such as lidocaine and related compounds and benzodiazepam and related compounds; anti-cancer agents such as 5-fluorouracil, adriamy ⁇ n and related compounds; anti-inflammatory agents such as 6-mannose phosphate; anti-fungal agents such as fluconazole and related compounds; anti-viral agents such as trisodium phosphomonoformate, trifluorothymidine, acyclovir, ganciclovir, DDI and AZT; cell transport/mobility impending agents such as colchicine, vincristine, cytochalasin B and related compounds; antiglaucoma drugs such as beta-blockers: timolo, betaxolo atenalol, etc; immunological response modifiers such as muramyl dipeptide
  • agents are suitable for administration to the eye and its surrounding tissues to produce a local or a systemic physiologic or pharmacologic beneficial effect.
  • antibiotics such as tetracycline, chlortetracycline, bacitracin, neomycin, polymyxin, gramicidin, oxytetracycline, chloramphemcol, gentamycin, and erythromycin; antibacterial such as sulfonamides, sulfacetamide, sulfamethizole and sulfisoxazole; antivirals, including idoxuridine; and other antibacterial agents such as nitrofurazone and sodium pr ⁇ pionate; antiallergenics such as antazoline, methapyriline, cUo_ hen__ramine, pyrilamine and prophenpyridamine; anti- inflammatories such as hydrocortisone, hydrocortisone acetate, dexamethasone 21- phosphate
  • Any pharmaceutically acceptable form of such a compound may be employed in the practice of the present invention, i.e., the free base or a pharmaceutically acceptable salt or ester thereof.
  • Pharmaceutically acceptable salts for instance, include sulfate, lactate, acetate, stearate, hydrochloride, tartrate, maleate and the like.
  • a large number of polymers can be used to construct the devices of the present invention. The only requirements are that they are inert, non- immunogenic and of the desired permeability.
  • Materials that may be suitable for fabricating the first or second coating layer of the device include naturally occurring or synthetic materials that are biologically compatible with body fluids and eye tissues, and essentially insoluble in body fluids with which the material will come in contact.
  • the use of rapidly dissolving materials or materials highly soluble in eye fluids are to be avoided since dissolution of the wall would affect the constancy of the drug release, as well as the capability of the system to remain in place for a prolonged period of time.
  • Naturally occurring or synthetic materials that are biologically compatible with body fluids and eye tissues and essentially insoluble in body fluids which the material will come in contact include, but are not limited to, polyvinyl acetate, cross-linked polyvinyl alcohol, cross-linked polyvinyl butyrate, ethylene ethylacrylate copolymer, polyethyl hexylacrylate, polyvinyl chloride, polyvinyl acetals, plasiticized ethylene vinylacetate copolymer, polyvinyl alcohol, polyvinyl acetate, ethylene vinylchloride copolymer, polyvinyl esters, polyvinylbutyrate, polyvinylformal, polyamides, polymethylmethacrylate, polybutylmethacrylate, plasticized polyvinyl chloride, plasticized nylon, plasticized soft nylon, plasticized polyethylene terephthalate, natural rubber, polyisoprene, polyisobutylene, poly- butadiene, polyethylene, polytetraflu
  • the first layer of the device of the present invention may be made of any of the above-listed polymers or any other polymer which is biologically compatible with body fluids and eye tissues, essentially insoluble in body fluids which the material will come in contact and essentially impermeable to the passage of the effective agent.
  • impermeable means that the layer will not allow passage of the effective agent at a rate required to obtain the desired local or systemic physiological or pharmacological effect.
  • the first layer must be selected to be impermeable, as described above, to the passage of the agent from the inner core out to adjacent portions of the second coating layer. The purpose is to block the passage of the agent to those portions and thus control the release of the agent out of the drug delivery device.
  • the composition of the first layer e.g., the polymer, must be selected so as to allow the above-described controlled release.
  • the preferred composition of the first layer will vary depending on such factors as the active agent, the desired rate of control and the mode of administration.
  • the identity of the active agent is important since the size of the molecule, for instance, is critical in determining the rate of release of the agent into the second layer.
  • the first coating layer is essentially impermeable to the passage of the effective agent, only a portion of the inner core or reservoir may be coated with the first coating layer. Depending on the desired delivery rate of the device, the first coating layer may coat only a small portion of the surface area of the inner core for faster release rates of the effective agent or may coat large portions of the surface area of the inner core for slower release rates of the effective agent.
  • the first coating layer may coat up to 10% of the surface area of the inner core. Preferably, approximately 5-10% of the surface area of the inner core is coated with the first coating layer for faster release rates.
  • the first coating layer may coat at least 10% of the surface area of the inner core. Preferably, at least 25% of the surface area of the inner core is coated with the first coating layer. For even slower release rates, at least 50% of the surface area may be coated. For even slower release rates, at least 75% of the surface area may be coated. For even slower release rates, at least 95% of the surface area may be coated.
  • any portion of the surface area of the inner core up to but not including 100% may be coated with the first coating layer as long as the desired rate of release of the agent is obtained.
  • the first coating may be positioned anywhere on the inner core, including but not limited to the top, bottom or any side of the inner core. In addition, it could be on the top and a side, or the bottom and a side, or the top and the bottom, or on opposite sides or on any combination of the top, bottom or sides.
  • the second layer of the device of the present invention must be biologically compatible with body fluids and eye tissues, essentially insoluble in body fluids which the material will come in contact and permeable to the passage of the agent or composition effective in obtaining the desired effect.
  • the effective agent diffuses in the direction of lower chemical potential, i.e., toward the exterior surface of the device. At the exterior surface of the device, equilibrium is again established.
  • a steady state flux of the effective agent will be established in accordance with Fick's Law of Diffusion.
  • the rate of passage of the drug through the material by diffusion is generally dependent on the solubility of the drug therein, as well as on the thickness of the wall. This means that selection of appropriate materials for fabricating the wall will be dependent on the particular drug to be used.
  • the rate of diffusion of the effective agent through a polymeric layer of the present invention may be determined via diffusion cell studies carried out under sink conditions.
  • concentration of drug in the receptor compartment is essentially zero when compared to the high concentration in the donor compartment. Under these conditions, the rate of drug release is given by:
  • K can be etiminated from the equation.
  • the value DC is essentially constant and equal to the concentration of the donor compartment. Release rate therefore becomes dependent on the surface area (A), thickness (h) and diffusivity (D) of the membrane.
  • the size (and therefore, surface area) is mainly dependent on the size of the effective agent.
  • permeability values may be obtained from the slopes of a Q versus time plot.
  • the permeability P can be related to the diffusion coefficient D, by:
  • the surface area of the agent that must be coated with the coating impermeable to the passage of the agent may be determined. This is done by progressively reducing the available surface area until the desired release rate is obtained.
  • microporous materials suitable for use as a second coating layer are described in U.S. Patent No. 4,014,335 which is incorporated herein by reference in its entirety. These materials include cross- linked polyvinyl alcohol, polyolefins or polyvinyl chlorides or cross-linked gelatins; regenerated, insoluble, non-erodible cellulose, acylated cellulose, esterified celluloses, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, cellulose acetate diethyl-aminoacetate; polyurethanes, polycarbonates, and microporous polymers formed by co-precipitation of a polycation and a polyanion modified insoluble collagen.
  • the second coating layer is selected so as to slow release of the agent from the inner core into contact with a mammalian organism, e.g. , a human.
  • the second coating layer need not provide gradual release or control of the agent into the biological environment, however, the second coating layer may be advantageously selected to also have that property or feature.
  • the devices of the present invention may be made in a wide variety of ways, such as by obtaining an effective amount of the agent and compressing the agent to a desired shape. Once shaped, a first coating layer may be applied. In the case of the ethylene vinyl acetate, the first coating layer may be applied directly in the form of a sheet or membrane to the outer surface of the agent.
  • the effective agent may have a permeable coating applied to its entire surface prior to coating with the first coating layer. See Figure 2.
  • the second coating layer may be applied.
  • the second coating may be applied by dipping the device one or more times in a solution containing the desired polymer.
  • the second coating layer may be applied by dropping, spraying, brushing or other means of coating the outer surface of the device with the polymer solution.
  • the desired thickness may be obtained by applying several coats.
  • Each coat may be dried prior to applying the next coat.
  • the device may be heated to adjust the permeability of the outer coating.
  • the method for treating a mammalian organism to obtain a desired local or systemic physiological or pharmacological effect includes administering the sustained release drug delivery device of the present invention to the mammalian organism and allowing the agent to pass through the device to come in direct contact with the mammalian organism.
  • the drug delivery system of the present invention may be administered to a mammalian organism via any route of administration known in the art.
  • routes of administration include intraocular, oral, subcutaneous, intramuscular, intraperitoneal, intranasal, dermal, and the like.
  • one or more of the devices may be administered at one time or more than one agent may be included in the inner core.
  • the drug delivery system of the present invention is particularly suitable for direct implantation into the vitreous of the eye and for application to an intraocular lens.
  • the drug delivery system may be administered for a sufficient period of time and under conditions to allow treatment of the disease state of concern.
  • the devices may be surgically implanted at or near the site of action. This is the case for devices of the present invention used in treating ocular conditions, primary tumors, rheumatic and arthritic conditions, and chronic pain.
  • the devices may be implanted subcutaneously, intramuscularly or intraperitoneally. This is the case when devices are to give sustained systemic levels and avoid premature metabolism. In addition, such devices may be administered orally.
  • an ocular device containing ganciclovir as the effective agent in an effective amount to prevent a virus from replicating may be prepared.
  • such devices may be used to effectively combat and inhibit reproduction of cytomegalovirus retinitis, when surgically implanted into the vitreous of the eye. Such devices may remain in the vitreous permanently after treatment is complete.
  • the preferred amount of ganciclovir used in these devices ranges from about 0.01 mg to about 20 mg. More preferably, such devices contain from about 2 mg to about 10 mg of ganciclovir. These preferred ranges may provide sustained release of the ganciclovir for a period of from several hours to over one year.
  • the preferred first coating layer is ethylene vinyl acetate.
  • the preferred second coating layer is polyvinyl alcohol.
  • the device does not exceed about 5 millimeters in any direction.
  • the cylindrical device shown in Figure 2 would preferably not exceed 5 millimeters in height or diameter.
  • the preferred thickness of the first coating layer ranges from about 0.1 to about 1.0 millimeters.
  • the preferred thickness of the second coating layer ranges from about 0.1 to about 2.0 millimeters.
  • an ocular device containing 5-FU as the effective agent may be prepared.
  • such devices may be used to effectively maintain the intraocular pressure of glaucoma patients after filter surgery when implanted under the conjunctiva of the eye.
  • the preferred amount of ganciclovir used in these devices ranges from about 0.01 mg to about 20 mg. More preferably, such devices contain from about 2 mg to about 15 mg. These preferred ranges may provide sustained release of the 5-FU for a period of from several hours to over 2 months.
  • Preferred materials include ethylene vinyl acetate as the first coating layer and polyvinyl alcohol as the second coating layer.
  • the preferred thickness of the first coating layer ranges from about 0.01 to about 1.0 millimeters.
  • the preferred thickness of the second coating layer ranges from about 0.01 to about 2.0 millimeters.
  • one or more of the devices could be attached to an intraocular lens or the haptic extending therefrom.
  • Intraocular lenses having the devices of the present invention attached thereto and containing 5-FU, colchicine or dexamethasone are particularly suitable for treating patients that have undergone extra capsular cataract surgery.
  • such devices may be used to reduce proliferation of remnant lens cells thus preventing or reducing posterior capsular opacification.
  • the present inventors have developed an implantable device that will release GCV within the eye for over 90 days.
  • the device is composed of 6 mg GCV encased in layers of ethylene vinyl acetate (EVA) and polyvinyl alcohol (PVA).
  • EVA ethylene vinyl acetate
  • PVA polyvinyl alcohol
  • EVA membranes were prepared by compressing EVA at 180°C under 5 tons of pressure.
  • PVC membranes were prepared from solutions of PVA which were dried to a film and then heated to 125, 150 or 180°C.
  • the permeability of EVA and PVA membranes to GCV was measured in vitro using parallel glass diffusion chambers (Crown Glass Co., Somerville, NJ).
  • One ml solutions of GCV were prepared in normal phosphate buffer (pH 7.4) and applied to the donor side of the chambers.
  • the permeation of GCV across the membranes to the receptor compartment was measured for 3 hours at 37°C.
  • the devices were found to release GCV in a linear manner for approximately 120 days in vitro with a mean release rate of approximately 50 ⁇ g/day.
  • the apparent permeability coefficient of GCV across PVA membranes was dependent on the temperature which they had been treated. The change in physical properties of the membranes is due to alterations in crystal structure of polymer. The permeability of GCV across EVA membranes was too low for permeability coefficients to be calculated. The permeability of GCV across PVA membranes is set forth in Table 1 below.
  • a C-18 reverse phase column was used with mobile phase of 0.02% ammomum acetate buffer (pH 4.0) and a flow rate of 1 ml/min.
  • the effect of implantation on retinal function was assessed by performing electroretinogram (ERG) examinations before and after the study. Histologic examination gave no indication of toxicity or inflammatory reaction due to the implantation of the device. Some inflammation was noted around the suture used to hold the device in place suggesting that this produced a worse reaction than the device itself.
  • Analysis of vitreal samples showed that the device maintained GCV levels in the vitreous at or above 2 ⁇ g/ml for over 80 days. The ERG data suggests that the levels of GCV obtained cause no retinal toxicity in the rabbit eye. The possibility exists for drug resistance to develop in
  • Ganciclovir was obtained from Syntex Laboratories as a free acid in powdered form.
  • the free acid of ganciclovir was prepared by neutralizing an aqueous solution of the commercially available salt (pH 11.2). The precipitated product was then purified with two successive recrystallizations from 95% ethanol.
  • the buffer solution was composed of sodium bicarbonate (0.68%), potassium bicarbonate (0.03%), and sodium chloride (0.65%), in distilled water. The pH of the buffer solution was adjusted to 7.4 prior to use.
  • PVA membranes were prepared by dissolving 4 grams of PVA in 200ml of distilled water at 60°C. The PVA solution was allowed to cool to 22°C and the entire mixture was poured so that it completely covered a silicanized glass slab measuring 35cm by 46cm. After drying for 16 hours, the PVA film was removed from the slab. Membranes prepared in this fashion were then heat cured in a convection oven for 4 hours at 190°C.
  • Diffusion cell studies were performed by placing the membranes between the compartments of a glass diffusion cell (Crown Glass Co., Somerville, NJ). The internal diameter of these cells was 1cm (total surface area of diffusion 0.78 cm 2 ); the volume of each compartment was 3ml. Small magnetic stirring rods were placed in each compartment and operated by a magnetic stirring unit. The entire assembly was maintained at 37°C by a circulating water bath. Membranes were first soaked in isotonic buffered saline (pH 7.4) for 30 minutes and then loaded into the chambers. With the membrane in place, buffer solution was added to each compartment and left in place for 30 minutes to allow for hydration of the membrane and then removed. A 0.025% solution of GCV in isotonic buffered saline was added to the donor compartment and the buffer solution was added to the receptor compartment. The contents of the receptor compartment were periodically removed for analysis and replaced with fresh buffer solution thus maintaining sink conditions.
  • isotonic buffered saline pH 7.4
  • Sheets of EVA membrane were prepared by compressing 3.5 gm pellets under 4 metric tons at 190°C to a thickness of 0.6 mm. Diffusion cell studies were performed with EVA membranes as described above for PVA. It was found that GCV did not permeate through the EVA layer.
  • EVA membranes were prepared as described above.
  • a six milligram pellet of GCV was compressed under 500 pounds of pressure into pellets measuring 2.5 mm in diameter.
  • a first type of sustained release GCV device releasing 2 ⁇ g/hr was prepared by coating the 6 mg pellet of ganciclovir in 300 ⁇ l of a 10% PVA solution and allowing the coated pellet to dry. The pellet was then coated on three sides with a film of prepressed EVA and capped by a 3mm disc of EVA coated in 10% PVA. The pellet was thus completely surrounded by EVA apart from a thin ring of PVA between the EVA walls and the cap. See Figure 2.
  • the assembly was then completely coated in 10% PVA and allowed to dry overnight.
  • the embedded pellet was cut out in a disc shape using a 4 mm punch.
  • a suturing strut was attached to the device by bonding a strip of dry 10% PVA to the bottom of the device with a drop of 2% PVA.
  • the device was subsequently baked at 190°C for 4.75 hours.
  • a second type of device releasing 5 ⁇ g/hr was prepared in the same manner except that GCV pellets had only the top and bottom surfaces covered with EVA.
  • the devices were placed in 10 ml of isotonic buffered saline at 37°C. This solution was periodically sampled and changed to maintain sink conditions. The concentration of GCV in these samples was determined by HPLC with UV detection at 254 nm absorbance. Absorbance values of the samples were converted to drug concentrations and cumulative drug release (average of three trials) was plotted against time.
  • the GCV devices released ganciclovir at a rate of 2 +_ 0.5 ⁇ g/hr (first type) and 5 ⁇ 1 ⁇ g/hr (second type).
  • Example 2 Implants releasing 2 or 5 ⁇ g/hr in vitro were prepared. Implants were sterilized with ethylene oxide gas by the Sterile Products Division of the Veterans Administration Hospital in Lexington, Kentucky. Quality control was ensured by measuring the in vitro release rate of every fifth device. Sterility was ensured by sending every fifth device for culture.
  • New Zealand albino rabbits weighing 1.5 to 2 kg were used in this study. Anesthesia was provided with intramuscular ketamine HC1 (40 mg/kg), atropine sulfate (0.1 mg/kg), xylazine HC1 (10 mg/kg) and topical proparacaine (0.5%). Pupillary dilation was achieved with topical phenylephrine (2.5%) and tropicamide (1 %) drops.
  • a baseline photopic electroretinogram (ERG) was recorded preoperatively in each rabbit using a corneal contact lens.
  • a Gansfeld stimulus was used to improve standardization of results. After sedation, the rabbits were placed inside a Gansfeld stimulator 20 cm away from the flash unit. Flash (cone and rod response) and flicker (cone response) ERGs were done under light adapted conditions. Graphic measurements were recorded, and the waveform amplitudes and implicit times were calculated.
  • Cryopexy was then applied to the superior 180 degrees of the peripheral retina in each eye to decrease the chance of retinal detachment related to EVA/PVA membrane insertion or vitreous sampling. This was done because the pars plana of the New Zealand albino rabbit is poorly developed and it was therefore necessary to implant the devices and take vitreous samples through retina.
  • the ERG was repeated four weeks later immediately prior to insertion of the device. All intraocular procedures were done under sterile conditions and conformed to the ARVO specifications for the ethical treatment of experimental animals. After placement of a lid speculum, a 360 degree conjunctival peritomy was performed. The rectus muscles were secured with 2-0 black silk suture. Using indirect ophthalmoscopy, the area of previous cryopexy was localized and marked with scleral diathermy.
  • the EVA/PVA device was immersed in sterile saline prior to placement of a 7-0 silk suture through the external PVA supporting tag.
  • a MVR blade was used to create a 5mm sclerotomy site through the area cryopexy. Penetration into the vitreous was verified by direct visualization of the MVR blade through the dilated pupil.
  • the device was placed into the vitreous cavity and secured to the sclera with the 7-0 silk suture that was attached to the external PVA supporting tag. Remaining defects in the sclera were closed with 7-0 silk in an interrupted fashion.
  • Topical antibiotic drops consisting of polymyxin B, bacitracin, and neomycin were instilled into each eye twice daily for three days after each procedure.
  • the right eye was treated with a device without GCV (control eyes), while the left eye was given a device containing 6 mg of GCV releasing at 5 +_ 1 ⁇ g/hr (treatment eyes).
  • Vitreous samples were periodically removed using a 20 gauge needle on a tuberculin syringe. Entrance into the vitreous cavity was verified by observation of the needle through the dilated pupil. Retinal examination with indirect ophthalmoscope was performed on each eye prior to each vitreous sampling. After removal, vitreous samples were stored at -60°C until analyzed by HPLC. ERG's were repeated one and two months after device implantation.
  • the device was well tolerated in both groups demonstrating no evidence of intraocular inflammation by indirect ophthalmoscopy.
  • Five treatment eyes from the first group developed lens opacification (5/9, 56%). None of the eyes from the control group or eyes from the second group developed lens opacification (0/19, 0%).
  • Two of the 5 eyes that devdoped lens opacification developed a dim use white cataract after direct trauma to the lens during vitreous sampling.
  • the other eyes that developed lens opacification developed a focal, nonprogressive lens opacity also believed to be related to vitreous sampling. No cataract formation occurred in any of the eyes in which a device containing ganciclovir was placed and no vitreous sampling was performed.
  • Retinal detachment occurred in two treatment eyes (2/9, 22%) from group one and in none of the eyes from the control group or the eyes from the second group (0/19, 0%). Both retinal detachments were thought to be related to traumatic vitreous sampling and not a secondary response to the device.
  • the device was easily inserted through the area of cryopexy in the rabbit. Applicants believe that the retinal detachments seen in two treatment eyes of the first group were a reflection of the difficulty working with rabbit eyes (poorly formed pars plana, low scleral rigidity, and large lens) rather than complications due to the drug or device itself. No detachments occurred in the eyes from the control group or the eyes from the second group that were not undergoing frequent vitreous taps.
  • Visual activity was determined by a standard eye exam and disease progression by fundus photograph.
  • a 6 milligram pellet of 5-FU was compressed under 500 pounds of pressure into pellets measuring 2.5 mm in diameter.
  • Sustained release 5-FU devices were prepared by coating the 6 mg pellet of 5-FU in 300 ⁇ l of a 10% PVA solution and allowed to dry. The pellet was then coated on three sides with a film of prepressed EVA and capped by a 3 mm disc of EVA coated in 10% PVA. The pellet was thus completely surrounded by EVA apart from a thin ring of PVA between the EVA walls and the cap. See Figure 2. The assembly was then completely coated in 10% PVA and allowed to dry overnight. The embedded pellet was cut out in a disc shape using a 3.5 mm punch.
  • Devices containing 6mg of 5-FU were implanted on the exposed sclera 1.0 mm from the limbus superiorly in the right eye of four rabbits under general anesthesia. The left eye was undisturbed and used as a control.
  • ERG's and fundus photographs done prior to sacrificing showed no retinal toxicity from the device or the 5-FU.
  • Intraocular pressure measurements showed no significant difference between the eyes. Histology on the implanted eye showed no inflammation related to the device or other histologic abnormality. Devices retrieved after sacrificing were found to have no drug remaining in them.
  • We have shown that our system for sustained release is biologically inert and releases 5-FU at a rate that does not achieve toxic level. We feel this method of delivery has great promise in the therapy of the glaucoma patient at risk for failure of filtration surgery.
  • a twelve milligram pellet of 5-FU was compressed under 500 pounds of pressure into pellets measuring 2.5 mm in diameter.
  • Sustained release 5-FU devices were prepared by coating the 12 mg pellet as described in Example 5.
  • the solution was periodically sampled and changed to maintain sink conditions.
  • concentration of GCV in these samples was detemiined by HPLC with UV detection at 254 nm absorbance. Absorbance values of the samples were converted to drug concentrations and cumulative drug release (average of three trials) was plotted against time. See Figure 5.
  • Intraocular pressure tends to increase in monkeys which have undergone filtering surgery.
  • the aim of this study was to maintain low IOP in monkeys after filtering surgery by the use of a sustained release 5-FU.
  • a device containing 12 mg of 5-FU was implanted under the conjunctiva after surgery.
  • a device containing no 5-FU was implanted under the conjunctiva after surgery.
  • Figure 6 illustrates the intraocular pressure of a mean average of three monkeys versus time in days.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Ophthalmology & Optometry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Vascular Medicine (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

A method and device for treating a mammalian organism to obtain a desired local or systemic physiological or pharmacological effect is provided. The method includes administering a sustained release drug delivery system to a mammalian organism in need of such treatment at an area wherein release of an effective agent is desired and allowing the effective agent to pass through the device in a controlled manner. The device (1) includes an inner core or reservoir (5) comprising the effective agent; a first coating layer (10), which is essentially impermeable to the passage of the effective agent; and a second coating layer (15) which is permeable to the passage of the effective agent. The first coating layer covers at least a portion of the inner core; however, at least a small portion of the inner core is not coated with the first coating layer. The second coating layer essentially completely covers the first coating layer and the uncoated portion of the inner core.

Description

SUSTAINED RELEASE DRUG DELIVERY DEVICES
Field of the Invention The present invention relates to a novel sustained release drug delivery device comprising an inner core or reservoir containing an agent effective in obtaining a desired local or systemic physiological or pharmacological effect, a first coating essentially impermeable to the passage of the effective agent, and a .second coating permeable to the passage of the effective agent. The first coating covers at least a portion of the inner core; however, at least a small portion of the inner core is not coated with the first coating layer. The second coating layer essentially completely covers the first coating layer and the uncoated portion of the inner core. The portion of the inner core which is not coated with the first coating layer allows passage of the agent into the second coating layer thus allowing controlled release.
Background of the Invention Over the years, various drugs have been developed to assist in the treatment of a wide variety of ailments and diseases. However, in many instances such drugs are not capable of being administered either orally or intravenously without the risk of various detrimental side effects.
For example, intravenous ganciclovir (GCV) is effective in the treatment of CMV retinitis in AIDS patients, but bone marrow toxicity limits its usefulness.
The incidence of neutropenia (absolute neutrophil count < 1000) during intravenous GCV therapy ranges from 30 to 50%. Continuous maintenance GCV therapy is necessary to prevent progression or recrudescence of the disease, but despite maintenance therapy 30 to 50% of patients experience a relapse during treatment. Other problems associated with systemic GCV administration include the risk of sepsis related to permanent indwelling catheters and the inability to receive concurrent therapy with zidovudine (AZT) which has been shown to prolong life and improve the immune function in AIDS patients. Intravitreal GCV injections of 200 to 400 μg administered once or twice weekly have resulted in temporary remission of CMV retinitis in AIDS patients. Intravitreal GCV injections may provide a higher intraocular drug concentration than systemic therapy and reduce the incidence of neutropenia. Current treatment of CMV retinitis in AIDS patients is clearly suboptimal. Ganciclovir is virustatic and thus disease inhibition requires maintenance drug administration.
Due to the risks that certain drugs impose, researchers have developed systems for administering such drugs to aid in the treatment of these ailments and diseases. Many of these systems provide a release rate which reduces the occurrence of detrimental side effects.
One such delivery device is an orally administered pill or capsule which contains a drug encapsulated within various layers of a composition that dissolves over a period of time in the digestive tract, thereby allowing a gradual or slow release of the drug into the system. Another type of device for controlling the administration of such drugs is produced by coating a drug with a polymeric material permeable to the passage of the drug to obtain the desired effect. Such devices are particularly suitable for treating a patient at a specific local area without having to expose the patient's entire body to the drug. This is advantageous because any possible side effects of the drug could be minimized.
Such systems are particularly suitable for treating ailments affecting the eye. Advances for administering a drug to the external surface of the eye are disclosed in U.S. Patent No. 4,014,335 to Arnold. Arnold describes various ocular inserts that act as a deposit or drug reservoir for slowly releasing a drug into the tear film for prolonged periods of time. These inserts are fabricated of a flexible polymeric material that is biologically inert, non-allergenic, and insoluble in tear fluid. To initiate the therapeutic programs of these devices, the ocular inserts are placed in the cul-de-sac between the sclera of the eyeball and the eyelid for adπώiistering the drug to the eye. Devices formed of polymeric materials that are insoluble in tear fluid retain their shape and integrity during the course of the needed therapy to serve as a drug reservoir for continuously administering a drug to the eye and the surrounding tissues at a rate that is not effected by dissolution or erosion of the polymeric material. Upon teπnination of the desired therapeutic program, the device is removed from the cul-de-sac.
Another type of device used for sustained release of a drug to the external surface of the eye, described in U.S. Patent No. 3,416,530, is manufactured with a plurality of capillary openings that communicate between the exterior of the device and the interior chamber generally defined from a polymeric membrane.
While these capillary openings in this construction are effective for releasing certain drugs to the eye, they add considerable complexity to the manufacture of the device because it is difficult to control the size of these openings in large scale manufacturing using various polymers. Another device, described in U.S. Patent No. 3,618,604, does not involve such capillary openings, but instead provides for the release of the drug by diffusion through a polymeric membrane. The device, in a preferred embodiment, as disclosed in that patent, comprises a sealed container having the drug in an interior chamber. Nonetheless, as described in U.S. Patent No. 4,014,335, certain problems have been identified with such devices such as the difficult task of sealing the margins of the membrane to form the container. In addition, stresses and strains introduced into the membrane walls from deformation during manufacturing of those devices may cause the reservoir to rupture and leak.
Another such device, described in U.S. Patent No. 4,014,335, comprises a three-layered laminant having a pair of separate and discrete first and third walls formed of a material insoluble in tear fluid with one of the walls formed of a drug release material permeable to the passage of drug and the other wall formed of a material impermeable to the passage of the drug.
The above described systems and devices are intended to provide sustained release of drugs effective in treating patients at a desired local or systemic level for obtaining certain physiological or pharmacological effects. However, there are many disadvantages associated with their use including the fact that it is often times difficult to obtain the desired release rate of the drug. The need for a better release system is especially significant in the treatment of CMV retinitis. Thus, there remains a long-felt need in the art for an improved system for providing sustained release of a drug to a patient to obtain a desired local or systemic physiological or pharmacological effect. In addition, all of these devices release their drug into the tear film. If relatively high levels are required inside the eye, such devices are essentially useless.
Summary of the Invention
It is, therefore, a primary objective of the present invention to provide a device suitable for the controlled and sustained release of a composition effective in obtaining a desired local or systemic physiological or pharmacological effect. The device, in one embodiment, includes an inner core or reservoir which contains an agent effective in obtaining the desired effect. The device further includes a first coating layer. The first coating layer is essentially impermeable to the passage of the agent and covers a portion of the inner core. The first coating layer blocks passage of the agent from the inner core at those sides where it contacts the inner core. The rem__ining portion of the inner core which is not blocked allows a controlled amount of the agent from the inner core to pass into the second coating layer. The second coating layer is permeable to the passage of the agent and covers essentially the entire first coating layer and the exposed inner core. The first coating layer is positioned between the inner core and the second coating layer in order to control the rate at which the agent permeates through the second coating layer.
Another object of the present invention is to provide a method for treating a mammalian organism, e.g., human, to obtain a desired local or systemic physiological or pharmacological effect. The method includes positioning the sustained released drug delivery system at an area wherein release of the agent is desired and allowing the agent to pass through the second coating to the desired area of treatment.
Another object of the present invention is to provide an ocular device suitable for direct implantation into the vitreous of the eye. Such devices of the present invention are surprisingly found to provide sustained controlled release of various compositions to treat the eye without risk of detrimental side effects.
Another object of the present invention is to provide an ocular delivery system that could be applied to an intra-ocular lens to prevent inflamation or posterior capsular opacification. With the foregoing as well as other objects, advantages, features and aspects of the invention that will become hereinafter apparent, the nature of the invention may be more clearly understood by reference to the detailed description of the invention and to the appended claims.
«. Brief Description of the Drawings In the drawings, which are not drawn to scale, but are set forth to illustrate various embodiments of the invention, the figures are as follows:
Figure 1 is an enlarged view of one embodiment of the sustained release drug delivery device showing inner core, first coating layer and second coating layer; Figure 2 is an enlarged cross sectional schematic of one embodiment of the sustained release drug delivery device showing inner core, first coating layer and second coating layer;
Figure 3 is a graph showing the concentration of ganciclovir found in test rabbits and delivered by an ocular device of the present invention over time; Figure 4 is a graph showing the concentration of ganciclovir found in humans and delivered by an ocular device of the present invention over time;
Figure 5 is a graph showing the concentration of 5-fluorouracil (5-FU) delivered by devices of the present invention over time; and Figure 6 illustrates the intraocular pressure of monkeys over time, wherein under the conjunctiva of one eye of each monkey was implanted a device of the present invention.
Detailed Description of the Preferred Embodiments of the Invention
More specifically, the present inventors have surprisingly discovered a device that is suitable for the controlled and sustained release of an agent effective in obtaining a desired local or systemic physiological or pharmacological effect.
The device includes an inner core or reservoir which contains an agent effective in obtaining a desired effect. The device further includes a first coating layer and a second coating layer. The first coating layer covers only a portion of the inner core and is impermeable to the passage of the agent. The second coating layer covers all of the inner core and the first coating layer and is permeable to the passage of the agent. The portion of the inner core that is not coated with the first coating layer facilitates passage of the agent through the second coating layer.
Specifically, the first coating layer is positioned between the inner core and the second coating layer such that it blocks the passage of the agent through the adjacent portions of the second coating layer thus controlling the rate of passage of the agent. Figure 1 illustrates one embodiment of the sustained release drug delivery device of the present invention. While the device shown in Figure 1 is cylindrical, the device could be any shape. The device composes an inner core or reservoir 5, an impermeable coating 10 which is impermeable to the passage of the agent in the core or reservoir 5, and a permeable coating 15 which is permeable to the passage of the agent in the core or reservoir 5. Figure 1 further shows an impermeable cap 20 and suture tag 25.
Figure 2 illustrates, in cross section, the device shown in Figure 1. As illustrated, there may be a permeable coating 30 between the core or reservoir 5 and the impermeable coating 10. The permeable coating 30 may be made of the same material as the permeable coating 15. In the embodiment illustrated in Figure 2, the impermeable cap 20 is positioned such that there is a passage 35 which allows passage of the agent in the core or reservoir. The impermeable coating 20 is positioned between the permeable coating 15 and the reservoir or core 5. The suture tag 25 is attached to the permeable coating 15.
The invention further relates to a method for treating a mammalian organism to obtain a desired local or systemic physiological or pharmacological effect. The method includes administering the sustained release drug delivery system to the mammalian organism and allowing the agent effective in obtaining the desired local or systemic effect to pass through the second coating to contact the mammalian organism. The term administering, as used herein, means positioning, inserting, injecting, implanting, or any other means for exposing the device to a mammalian organism. The route of administration depends on a variety of factors including type of response or treatment, type of agent and preferred site of administration.
The devices in certain embodiments have applicability in providing a controlled and sustained release of agents effective in obtaining a desired local or systemic physiological or pharmacological effect relating at least to the following areas: treatment of cancerous primary tumors, (e.g., glioblastoma); chronic pain; arthritis; rheumatic conditions; hormonal deficiencies such as diabetes and dwarfism; and modification of the immune response such as in the prevention of transplant rejection and in cancer therapy. A wide variety of other disease states may also be prevented or treated using the drug delivery device of the present invention. Such disease states are known by those of ordinary skill in the art. For those not skilled in the art, reference may be made to Goodman and Gilman, The
Pharmacological Basis of Therapeutics. 8th Ed., Pergamon Press, NY, 1990; and Remington's Pharmaceutical Sciences. 18th Ed., Mack Publishing Co., Easton, PA, 1990; both of which are incorporated by reference herein.
In addition, the devices are suitable for use in treating mammalian organisms infected with ADDS and AIDS related opportunistic infections such as cytomegalovirus infections, toxoplasmosis, pneumocystis carinii and mycobacterium avium intercellular.
The devices are particularly suitable for treating ocular conditions such as glaucoma, proliferative vitreoretinopathy, diabetic retinopathy, uveitis, and keratitis. The devices are also particularly suitable for use as an ocular device in treating mammalian organisms suffering from cytomegalovirus retinitis wherein the device is surgically implanted within the vitreous of the eye.
As described above, the inner core or reservoir contains an agent effective in obtaining a desired local or systemic physiological or pharmacological effect. The following classes of agents could be incorporated into the devices of the present invention: anesthetics and pain killing agents such as lidocaine and related compounds and benzodiazepam and related compounds; anti-cancer agents such as 5-fluorouracil, adriamyάn and related compounds; anti-inflammatory agents such as 6-mannose phosphate; anti-fungal agents such as fluconazole and related compounds; anti-viral agents such as trisodium phosphomonoformate, trifluorothymidine, acyclovir, ganciclovir, DDI and AZT; cell transport/mobility impending agents such as colchicine, vincristine, cytochalasin B and related compounds; antiglaucoma drugs such as beta-blockers: timolo, betaxolo atenalol, etc; immunological response modifiers such as muramyl dipeptide and related compounds; peptides and proteins such as cyclosporin, insulin, growth hormones, insulin related growth factor, heat shock proteins and related compounds; steroidal compounds such as dexamethasone, prednisolone and related compounds; and carbonic anhydrize inhibitors.
In addition to the above agents, other agents are suitable for administration to the eye and its surrounding tissues to produce a local or a systemic physiologic or pharmacologic beneficial effect. Examples of such agents include antibiotics such as tetracycline, chlortetracycline, bacitracin, neomycin, polymyxin, gramicidin, oxytetracycline, chloramphemcol, gentamycin, and erythromycin; antibacterial such as sulfonamides, sulfacetamide, sulfamethizole and sulfisoxazole; antivirals, including idoxuridine; and other antibacterial agents such as nitrofurazone and sodium prσpionate; antiallergenics such as antazoline, methapyriline, cUo_ hen__ramine, pyrilamine and prophenpyridamine; anti- inflammatories such as hydrocortisone, hydrocortisone acetate, dexamethasone 21- phosphate, fluocinolone, medrysone, methylprednisolone, prednisolone 21- phosphate, prednisolone acetate, fiuoromethalone, betamethasone and triminolone; decongestants such as phenylephrine, naphazoline, and tetrahydrazoline; miotics and anti-cholinesterase such as pilocarpine, eserine salicylate, carbachol, di- isopropyl fluorophosphate, phospholine iodine, and demecarium bromide; mydriatics such as atropine sulfate, cyclopentolate, homatropine, scopolamine, tropicamide, eucatropine, and hydroxyamphetamine; and sympathomimetics such as epinephrine. Once again, reference may be made to any standard pharmaceutical textbook such as Remington's Pharmaceutical Sciences for the identify of other agents.
Any pharmaceutically acceptable form of such a compound may be employed in the practice of the present invention, i.e., the free base or a pharmaceutically acceptable salt or ester thereof. Pharmaceutically acceptable salts, for instance, include sulfate, lactate, acetate, stearate, hydrochloride, tartrate, maleate and the like.
A large number of polymers can be used to construct the devices of the present invention. The only requirements are that they are inert, non- immunogenic and of the desired permeability.
Materials that may be suitable for fabricating the first or second coating layer of the device include naturally occurring or synthetic materials that are biologically compatible with body fluids and eye tissues, and essentially insoluble in body fluids with which the material will come in contact. The use of rapidly dissolving materials or materials highly soluble in eye fluids are to be avoided since dissolution of the wall would affect the constancy of the drug release, as well as the capability of the system to remain in place for a prolonged period of time. Naturally occurring or synthetic materials that are biologically compatible with body fluids and eye tissues and essentially insoluble in body fluids which the material will come in contact include, but are not limited to, polyvinyl acetate, cross-linked polyvinyl alcohol, cross-linked polyvinyl butyrate, ethylene ethylacrylate copolymer, polyethyl hexylacrylate, polyvinyl chloride, polyvinyl acetals, plasiticized ethylene vinylacetate copolymer, polyvinyl alcohol, polyvinyl acetate, ethylene vinylchloride copolymer, polyvinyl esters, polyvinylbutyrate, polyvinylformal, polyamides, polymethylmethacrylate, polybutylmethacrylate, plasticized polyvinyl chloride, plasticized nylon, plasticized soft nylon, plasticized polyethylene terephthalate, natural rubber, polyisoprene, polyisobutylene, poly- butadiene, polyethylene, polytetrafluoroethylene, polyvinylidene chloride, polyacrylonitrile, cross-linked polyvinylpyrrolidone, polytrifluorochloroethylene, chlorinated polyethylene, poly(l,4'-isopropylidene diphenylene carbonate), vinylidene chloride, acrylonitrile copolymer, vinyl chloride-diethyl fumerale copolymer, silicone rubbers, especially the medical grade polydimethylsiloxanes, ethylene-propylene rubber, silicone-carbonate copolymers, vinylidene chloride- vinyl chloride copolymer, vinyl chloride-acrylonitrile copolymer and vinylidene chloride-acrylonitride copolymer.
Specifically, the first layer of the device of the present invention may be made of any of the above-listed polymers or any other polymer which is biologically compatible with body fluids and eye tissues, essentially insoluble in body fluids which the material will come in contact and essentially impermeable to the passage of the effective agent. The term impermeable, as used herein, means that the layer will not allow passage of the effective agent at a rate required to obtain the desired local or systemic physiological or pharmacological effect.
The first layer must be selected to be impermeable, as described above, to the passage of the agent from the inner core out to adjacent portions of the second coating layer. The purpose is to block the passage of the agent to those portions and thus control the release of the agent out of the drug delivery device. The composition of the first layer, e.g., the polymer, must be selected so as to allow the above-described controlled release. The preferred composition of the first layer will vary depending on such factors as the active agent, the desired rate of control and the mode of administration. The identity of the active agent is important since the size of the molecule, for instance, is critical in determining the rate of release of the agent into the second layer.
Since the first coating layer is essentially impermeable to the passage of the effective agent, only a portion of the inner core or reservoir may be coated with the first coating layer. Depending on the desired delivery rate of the device, the first coating layer may coat only a small portion of the surface area of the inner core for faster release rates of the effective agent or may coat large portions of the surface area of the inner core for slower release rates of the effective agent.
For faster release rates, the first coating layer may coat up to 10% of the surface area of the inner core. Preferably, approximately 5-10% of the surface area of the inner core is coated with the first coating layer for faster release rates.
For slower release rates, the first coating layer may coat at least 10% of the surface area of the inner core. Preferably, at least 25% of the surface area of the inner core is coated with the first coating layer. For even slower release rates, at least 50% of the surface area may be coated. For even slower release rates, at least 75% of the surface area may be coated. For even slower release rates, at least 95% of the surface area may be coated.
Thus, any portion of the surface area of the inner core up to but not including 100% may be coated with the first coating layer as long as the desired rate of release of the agent is obtained. The first coating may be positioned anywhere on the inner core, including but not limited to the top, bottom or any side of the inner core. In addition, it could be on the top and a side, or the bottom and a side, or the top and the bottom, or on opposite sides or on any combination of the top, bottom or sides.
The second layer of the device of the present invention must be biologically compatible with body fluids and eye tissues, essentially insoluble in body fluids which the material will come in contact and permeable to the passage of the agent or composition effective in obtaining the desired effect.
The effective agent diffuses in the direction of lower chemical potential, i.e., toward the exterior surface of the device. At the exterior surface of the device, equilibrium is again established. When the conditions on both sides of the second coating layer are maintained constant, a steady state flux of the effective agent will be established in accordance with Fick's Law of Diffusion. The rate of passage of the drug through the material by diffusion is generally dependent on the solubility of the drug therein, as well as on the thickness of the wall. This means that selection of appropriate materials for fabricating the wall will be dependent on the particular drug to be used.
The rate of diffusion of the effective agent through a polymeric layer of the present invention may be determined via diffusion cell studies carried out under sink conditions. In diffusion cell studies carried out under sink conditions, the concentration of drug in the receptor compartment is essentially zero when compared to the high concentration in the donor compartment. Under these conditions, the rate of drug release is given by:
Q/t = (D -K-A-DC)/h
where Q is the amount of drug released, t is time, D is the diffusion coefficient, K is the partition coefficient, A is the surface area, DC is the difference in concentration of the drug across the membrane, and h is the thickness of the membrane.
In the case where the agent diffuses through the layer via water filled pores, there is no partitioning phenomena. Thus, K can be etiminated from the equation. Under sink conditions, if release from the donor side is very slow, the value DC is essentially constant and equal to the concentration of the donor compartment. Release rate therefore becomes dependent on the surface area (A), thickness (h) and diffusivity (D) of the membrane. In the construction of the device of the present invention, the size (and therefore, surface area) is mainly dependent on the size of the effective agent.
Thus, permeability values may be obtained from the slopes of a Q versus time plot. The permeability P, can be related to the diffusion coefficient D, by:
P = (K-D)/h
Once the permeability is established for the coating permeable to the passage of the agent, the surface area of the agent that must be coated with the coating impermeable to the passage of the agent may be determined. This is done by progressively reducing the available surface area until the desired release rate is obtained.
Exemplary microporous materials suitable for use as a second coating layer, for instance, are described in U.S. Patent No. 4,014,335 which is incorporated herein by reference in its entirety. These materials include cross- linked polyvinyl alcohol, polyolefins or polyvinyl chlorides or cross-linked gelatins; regenerated, insoluble, non-erodible cellulose, acylated cellulose, esterified celluloses, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, cellulose acetate diethyl-aminoacetate; polyurethanes, polycarbonates, and microporous polymers formed by co-precipitation of a polycation and a polyanion modified insoluble collagen. Cross-linked polyvinyl alcohol is preferred. The second coating layer is selected so as to slow release of the agent from the inner core into contact with a mammalian organism, e.g. , a human. The second coating layer need not provide gradual release or control of the agent into the biological environment, however, the second coating layer may be advantageously selected to also have that property or feature. The devices of the present invention may be made in a wide variety of ways, such as by obtaining an effective amount of the agent and compressing the agent to a desired shape. Once shaped, a first coating layer may be applied. In the case of the ethylene vinyl acetate, the first coating layer may be applied directly in the form of a sheet or membrane to the outer surface of the agent. Optionally, the effective agent may have a permeable coating applied to its entire surface prior to coating with the first coating layer. See Figure 2. Once the first coating layer is applied to the device, the second coating layer may be applied. In the case of polyvinyl alcohol, the second coating may be applied by dipping the device one or more times in a solution containing the desired polymer. Optionally, the second coating layer may be applied by dropping, spraying, brushing or other means of coating the outer surface of the device with the polymer solution. When using a polyvinyl alcohol solution to obtain the second coating layer, the desired thickness may be obtained by applying several coats.
Each coat may be dried prior to applying the next coat. Finally, the device may be heated to adjust the permeability of the outer coating.
The above description of how to make the devices of the present invention is merely illustrative and should not be considered as limiting the scope of the invention in any way, as various compositions are well known by those skilled in the art. In particular, the methods of making the device depends on the identity of the active agent and polymers selected. Given the active agent, and the composition of both the first coating and the second coating, one skilled in the art could easily make the devices of the present invention using conventional coating techniques.
The method for treating a mammalian organism to obtain a desired local or systemic physiological or pharmacological effect includes administering the sustained release drug delivery device of the present invention to the mammalian organism and allowing the agent to pass through the device to come in direct contact with the mammalian organism.
The drug delivery system of the present invention may be administered to a mammalian organism via any route of administration known in the art. Such routes of administration include intraocular, oral, subcutaneous, intramuscular, intraperitoneal, intranasal, dermal, and the like. In addition, one or more of the devices may be administered at one time or more than one agent may be included in the inner core.
The drug delivery system of the present invention is particularly suitable for direct implantation into the vitreous of the eye and for application to an intraocular lens.
These methods of administration and technique for their preparation are well known by those of ordinary skill in the art. Techniques for their preparation are set forth in Remington's Pharmaceutical Sciences.
The drug delivery system may be administered for a sufficient period of time and under conditions to allow treatment of the disease state of concern.
For localized drug delivery, the devices may be surgically implanted at or near the site of action. This is the case for devices of the present invention used in treating ocular conditions, primary tumors, rheumatic and arthritic conditions, and chronic pain. „ For systemic relief, the devices may be implanted subcutaneously, intramuscularly or intraperitoneally. This is the case when devices are to give sustained systemic levels and avoid premature metabolism. In addition, such devices may be administered orally.
In one embodiment of the invention, an ocular device containing ganciclovir as the effective agent in an effective amount to prevent a virus from replicating may be prepared. As further shown in the Examples which follow, such devices may be used to effectively combat and inhibit reproduction of cytomegalovirus retinitis, when surgically implanted into the vitreous of the eye. Such devices may remain in the vitreous permanently after treatment is complete. The preferred amount of ganciclovir used in these devices ranges from about 0.01 mg to about 20 mg. More preferably, such devices contain from about 2 mg to about 10 mg of ganciclovir. These preferred ranges may provide sustained release of the ganciclovir for a period of from several hours to over one year. The preferred first coating layer is ethylene vinyl acetate. The preferred second coating layer is polyvinyl alcohol. When such devices are prepared for implantation within the vitreous of the eye, it is preferred that the device does not exceed about 5 millimeters in any direction. Thus, the cylindrical device shown in Figure 2 would preferably not exceed 5 millimeters in height or diameter. Li addition, the preferred thickness of the first coating layer ranges from about 0.1 to about 1.0 millimeters. The preferred thickness of the second coating layer ranges from about 0.1 to about 2.0 millimeters.
In another embodiment of the invention, an ocular device containing 5-FU as the effective agent may be prepared. As further shown in the Examples which follow, such devices may be used to effectively maintain the intraocular pressure of glaucoma patients after filter surgery when implanted under the conjunctiva of the eye. The preferred amount of ganciclovir used in these devices ranges from about 0.01 mg to about 20 mg. More preferably, such devices contain from about 2 mg to about 15 mg. These preferred ranges may provide sustained release of the 5-FU for a period of from several hours to over 2 months. Preferred materials include ethylene vinyl acetate as the first coating layer and polyvinyl alcohol as the second coating layer. The preferred thickness of the first coating layer ranges from about 0.01 to about 1.0 millimeters. The preferred thickness of the second coating layer ranges from about 0.01 to about 2.0 millimeters.
Optionally, one or more of the devices could be attached to an intraocular lens or the haptic extending therefrom. Intraocular lenses having the devices of the present invention attached thereto and containing 5-FU, colchicine or dexamethasone are particularly suitable for treating patients that have undergone extra capsular cataract surgery. Specifically, such devices may be used to reduce proliferation of remnant lens cells thus preventing or reducing posterior capsular opacification.
While the above described embodiments of the invention are described in terms of preferred ranges of the amount of effective agent, and preferred thicknesses of the preferred first and second coating, these preferences are by no means meant to limit the invention. As would be readily understood by one skilled in the art, the preferred amounts, materials and dimensions depend on the method of administration, the effective agent used, the polymers used, the desired release rate and the like. Likewise, actual release rates and release duration depend on a variety of factors in addition to the above such as the disease state being treated, the age and condition of the patient, the route of administration as well as other factors which would be readily apparent to those skilled in the art.
The following examples are merely illustrative of the present invention and they should not be considered as limiting the scope of the invention in any way, as these examples and other equivalents thereof will become more apparent to those skilled in the art in light of the present disclosure.
EXAMPLE 1
INTRAOCULAR SUSTAINED RELEASE OF ANTIVIRAL AGENTS
This example demonstrates that the severe problems associated with present GCV therapy may be avoidable by delivering the drug locally thus avoiding high systemic drug levels. The present inventors have developed an implantable device that will release GCV within the eye for over 90 days. The device is composed of 6 mg GCV encased in layers of ethylene vinyl acetate (EVA) and polyvinyl alcohol (PVA).
Characteristics of Polymers
EVA membranes were prepared by compressing EVA at 180°C under 5 tons of pressure. PVC membranes were prepared from solutions of PVA which were dried to a film and then heated to 125, 150 or 180°C. The permeability of EVA and PVA membranes to GCV was measured in vitro using parallel glass diffusion chambers (Crown Glass Co., Somerville, NJ). One ml solutions of GCV were prepared in normal phosphate buffer (pH 7.4) and applied to the donor side of the chambers. The permeation of GCV across the membranes to the receptor compartment was measured for 3 hours at 37°C. The devices were found to release GCV in a linear manner for approximately 120 days in vitro with a mean release rate of approximately 50 μg/day.
Preparation and Testing of the Devices 6 mg pellets of GCV were prepared by direct compression using a 2.5 mm die. These were surrounded on three sides with the impermeable EVA membrane and then coated in a 10% PVA solution. After being allowed to dry for 24 hours, the device was cured at 180°C for 4.7 hours to further reduce the release rate. The release rate of GCV from the devices prepared above was measured in vitro by immersing each device in 5 ml of isotonic phosphate buffer (pH 7.4). One ml samples were periodically withdrawn and replaced with fresh buffer .and the buffer solution was changed every 10 days to avoid microbial growth.
The apparent permeability coefficient of GCV across PVA membranes was dependent on the temperature which they had been treated. The change in physical properties of the membranes is due to alterations in crystal structure of polymer. The permeability of GCV across EVA membranes was too low for permeability coefficients to be calculated. The permeability of GCV across PVA membranes is set forth in Table 1 below.
TABLE 1 PERMEABILITY OF GCV ACROSS PVA MEMBRANE
TREATED AT VARIOUS TEMPERATUPES
Membrane Papp (cm/s x 10"7)
Treatment f°C. +/-SD.N=4
125 8.3 +/- 0.6 150 2.1 +/- 0.2
180 0.9 +/- 0.1 In Vivo Testing of Devices Devices were surgically implanted into both the subconjunctival space and the vitreous of albino rabbits. After 10 days, the animals were sacrificed and a histological examination was performed. In another group of animals, devices were implanted into the posterior chamber of the eye and samples of vitreous humour was periodically removed. In a third group of animals devices were implanted into the vitreous of both eyes. The animals were killed 10, 30, 40, 70 and 80 days after implantation of the devices. The devices and vitreous samples removed for analysis. The concentration of GCV in these samples was determined by HPLC with UV detection at 254 nm. A C-18 reverse phase column was used with mobile phase of 0.02% ammomum acetate buffer (pH 4.0) and a flow rate of 1 ml/min. The effect of implantation on retinal function was assessed by performing electroretinogram (ERG) examinations before and after the study. Histologic examination gave no indication of toxicity or inflammatory reaction due to the implantation of the device. Some inflammation was noted around the suture used to hold the device in place suggesting that this produced a worse reaction than the device itself. Analysis of vitreal samples showed that the device maintained GCV levels in the vitreous at or above 2 μg/ml for over 80 days. The ERG data suggests that the levels of GCV obtained cause no retinal toxicity in the rabbit eye. The possibility exists for drug resistance to develop in
CMV although there have been no reports of this as yet. Resistance to GCV, should it occur, could be countered by the use of other drugs (Foscarnet or trifluorothymidine) in similar release devices.
Conclusion The implantation of controlled release devices for the release of GCV appears to offer some significant advantages over existing therapy. The work performed in rabbits indicates that vitreal concentrations of GCV can be maintained above the ID 100 for CMV for a prolonged period without high systemic exposure. This will, if effective, treat potentially blinding CMV retinitis and allow concurrent therapy of AZT for HIV. It is anticipated that fewer complications will arise from this procedure than occur in repeated intravitreal injections.
EXAMPLE 2 INTRAVITREAL SUSTAINED RELEASE OF GANCICLOVIR:
MEMBRANE PERMEABILITY AND DEVICE CONSTRUCTION
The following paragraphs illustrate the membrane permeability and device construction of particular embodiments of the present invention.
Ganciclovir was obtained from Syntex Laboratories as a free acid in powdered form. Alternatively, the free acid of ganciclovir was prepared by neutralizing an aqueous solution of the commercially available salt (pH 11.2). The precipitated product was then purified with two successive recrystallizations from 95% ethanol. The buffer solution was composed of sodium bicarbonate (0.68%), potassium bicarbonate (0.03%), and sodium chloride (0.65%), in distilled water. The pH of the buffer solution was adjusted to 7.4 prior to use. Polyvinyl alcohol
(PVA) of 76-78,000 M.W. and 98% hydration was obtained from Aldrich Chemical Co. Ethylene vinyl acetate was obtained from Du Pont of Wilmington (trade name ELVAX, grade 40w).
Diffusion Cell Studies PVA membranes were prepared by dissolving 4 grams of PVA in 200ml of distilled water at 60°C. The PVA solution was allowed to cool to 22°C and the entire mixture was poured so that it completely covered a silicanized glass slab measuring 35cm by 46cm. After drying for 16 hours, the PVA film was removed from the slab. Membranes prepared in this fashion were then heat cured in a convection oven for 4 hours at 190°C.
Diffusion cell studies were performed by placing the membranes between the compartments of a glass diffusion cell (Crown Glass Co., Somerville, NJ). The internal diameter of these cells was 1cm (total surface area of diffusion 0.78 cm2); the volume of each compartment was 3ml. Small magnetic stirring rods were placed in each compartment and operated by a magnetic stirring unit. The entire assembly was maintained at 37°C by a circulating water bath. Membranes were first soaked in isotonic buffered saline (pH 7.4) for 30 minutes and then loaded into the chambers. With the membrane in place, buffer solution was added to each compartment and left in place for 30 minutes to allow for hydration of the membrane and then removed. A 0.025% solution of GCV in isotonic buffered saline was added to the donor compartment and the buffer solution was added to the receptor compartment. The contents of the receptor compartment were periodically removed for analysis and replaced with fresh buffer solution thus maintaining sink conditions.
An ultraviolet spectrophotometry assay was used to determine concentrations of ganciclovir (252nm, detection limit 0.1 μg/cc). A linear relationship between absorbance and concentration was demonstrated using known concentrations of drug in a tear buffer solution.
Sheets of EVA membrane were prepared by compressing 3.5 gm pellets under 4 metric tons at 190°C to a thickness of 0.6 mm. Diffusion cell studies were performed with EVA membranes as described above for PVA. It was found that GCV did not permeate through the EVA layer.
Device Construction
Because EVA was found to be impermeable to ganciclovir it was used in these devices as a blocking agent. EVA membranes were prepared as described above. A six milligram pellet of GCV was compressed under 500 pounds of pressure into pellets measuring 2.5 mm in diameter. A first type of sustained release GCV device releasing 2 μg/hr was prepared by coating the 6 mg pellet of ganciclovir in 300 μl of a 10% PVA solution and allowing the coated pellet to dry. The pellet was then coated on three sides with a film of prepressed EVA and capped by a 3mm disc of EVA coated in 10% PVA. The pellet was thus completely surrounded by EVA apart from a thin ring of PVA between the EVA walls and the cap. See Figure 2. The assembly was then completely coated in 10% PVA and allowed to dry overnight. The embedded pellet was cut out in a disc shape using a 4 mm punch. A suturing strut was attached to the device by bonding a strip of dry 10% PVA to the bottom of the device with a drop of 2% PVA. The device was subsequently baked at 190°C for 4.75 hours.
A second type of device releasing 5 μg/hr was prepared in the same manner except that GCV pellets had only the top and bottom surfaces covered with EVA.
Release Rate Studi s
The devices were placed in 10 ml of isotonic buffered saline at 37°C. This solution was periodically sampled and changed to maintain sink conditions. The concentration of GCV in these samples was determined by HPLC with UV detection at 254 nm absorbance. Absorbance values of the samples were converted to drug concentrations and cumulative drug release (average of three trials) was plotted against time.
As stated above, the GCV devices released ganciclovir at a rate of 2 +_ 0.5 μg/hr (first type) and 5 ± 1 μg/hr (second type).
Device/drug stability Near IR of the individual components (EVA, PVA and ganciclovir) showed no change after heat treatment; however, the device showed a single new peak at approximately 2075nm. In addition, there was no apparent drug loss cr decomposition after heat treatment of the ganciclovir pellet based on HPLC analysis, and a scanning EM of the device demonstrated that there were no holes or cracks in the walls of the device after heat treatment. EXAMPLE 3
INTRAVITREAL SUSTAINED RELEASE OF GANCICLOVIR: IN VIVO PHARMACOKINETICS AND TOLERABILITY
The membrane permeability studies, the construction of the implants and the in vitro release rate studies of the implants used in this study are described in
Example 2. Implants releasing 2 or 5 μg/hr in vitro were prepared. Implants were sterilized with ethylene oxide gas by the Sterile Products Division of the Veterans Administration Hospital in Lexington, Kentucky. Quality control was ensured by measuring the in vitro release rate of every fifth device. Sterility was ensured by sending every fifth device for culture.
New Zealand albino rabbits weighing 1.5 to 2 kg were used in this study. Anesthesia was provided with intramuscular ketamine HC1 (40 mg/kg), atropine sulfate (0.1 mg/kg), xylazine HC1 (10 mg/kg) and topical proparacaine (0.5%). Pupillary dilation was achieved with topical phenylephrine (2.5%) and tropicamide (1 %) drops.
A baseline photopic electroretinogram (ERG) was recorded preoperatively in each rabbit using a corneal contact lens. A Gansfeld stimulus was used to improve standardization of results. After sedation, the rabbits were placed inside a Gansfeld stimulator 20 cm away from the flash unit. Flash (cone and rod response) and flicker (cone response) ERGs were done under light adapted conditions. Graphic measurements were recorded, and the waveform amplitudes and implicit times were calculated.
Cryopexy was then applied to the superior 180 degrees of the peripheral retina in each eye to decrease the chance of retinal detachment related to EVA/PVA membrane insertion or vitreous sampling. This was done because the pars plana of the New Zealand albino rabbit is poorly developed and it was therefore necessary to implant the devices and take vitreous samples through retina. The ERG was repeated four weeks later immediately prior to insertion of the device. All intraocular procedures were done under sterile conditions and conformed to the ARVO specifications for the ethical treatment of experimental animals. After placement of a lid speculum, a 360 degree conjunctival peritomy was performed. The rectus muscles were secured with 2-0 black silk suture. Using indirect ophthalmoscopy, the area of previous cryopexy was localized and marked with scleral diathermy.
The EVA/PVA device was immersed in sterile saline prior to placement of a 7-0 silk suture through the external PVA supporting tag. A MVR blade was used to create a 5mm sclerotomy site through the area cryopexy. Penetration into the vitreous was verified by direct visualization of the MVR blade through the dilated pupil. The device was placed into the vitreous cavity and secured to the sclera with the 7-0 silk suture that was attached to the external PVA supporting tag. Remaining defects in the sclera were closed with 7-0 silk in an interrupted fashion. Topical antibiotic drops consisting of polymyxin B, bacitracin, and neomycin were instilled into each eye twice daily for three days after each procedure.
In a first group of nine rabbits, the right eye was treated with a device without GCV (control eyes), while the left eye was given a device containing 6 mg of GCV releasing at 5 +_ 1 μg/hr (treatment eyes). Vitreous samples were periodically removed using a 20 gauge needle on a tuberculin syringe. Entrance into the vitreous cavity was verified by observation of the needle through the dilated pupil. Retinal examination with indirect ophthalmoscope was performed on each eye prior to each vitreous sampling. After removal, vitreous samples were stored at -60°C until analyzed by HPLC. ERG's were repeated one and two months after device implantation.
After the last ERG, the rabbits were sacrificed with an overdose of intravenous sodium pentobaibital. At this time, no GCV was detectable in the vitreous. Enucleated eyes were fixed in 70% formaldehyde-glutaraldehyde solution, dehydrated in alcohol, embedded in paraffin, and sectioned with microtome. Tissues were stained with hematoxylin-eosin and examined under a light microscope.
In a second group of 10 rabbits, a device containing 6 mg of GCV releasing at 2 +. 0.5 μg/hr was implanted into both eyes. Vitreous samples were not collected from the treated eyes. Instead, the rabbits were sacrificed 10, 30,
40, 70 and 80 days after implantation. As with the first group, retinal examination was performed with an indirect ophthalmoscope and ERGs were performed immediately prior to sacrifice. In this group, devices were removed from the eyes and the amount of GCV still present determined by HPLC. The animals were killed with an overdose of intravenous sodium pentobarbital when no detectable GCV was present in the treatment eyes. Enucleated eyes were fixed in 20% formaldehyde-glutaraldehyde solution, dehydrated in alcohol, embedded in paraffin, and sectioned with a microtome. Tissues were stained with hematoxylin-eosin and examined by light microscopy. In the final experimentation group, 6 mg of GCV was placed into the vitreous of one rabbit (both eyes) through the pars plana to assess retinal toxicity in the "worst case scenario" event of immediate device breakdown. ERGs were done preoperatively and on postoperative days 2, 11, and 48.
Results In this investigation, mean GCV vitreous concentrations in the first group ranged from 14 μg/ml to 19 μg/ml for 42 to 56 days after EVA/PVA device insertion. The calculated mean in vivo release rate was approximately 5 μg/hr.
No detectable drug was measured 72 days after device implantation in any eye from the first group. In the second group, GCV was present in the vitreous at over 2 μg/ml for over 80 days. Implanted devices were found to have released
GCV at approximately 2 g/hr in vivo. This would suggest that levels would be maintained in the vitreous for approximately 120 days.
The device was well tolerated in both groups demonstrating no evidence of intraocular inflammation by indirect ophthalmoscopy. Five treatment eyes from the first group developed lens opacification (5/9, 56%). None of the eyes from the control group or eyes from the second group developed lens opacification (0/19, 0%). Two of the 5 eyes that devdoped lens opacification developed a dim use white cataract after direct trauma to the lens during vitreous sampling. The other eyes that developed lens opacification developed a focal, nonprogressive lens opacity also believed to be related to vitreous sampling. No cataract formation occurred in any of the eyes in which a device containing ganciclovir was placed and no vitreous sampling was performed.
Retinal detachment occurred in two treatment eyes (2/9, 22%) from group one and in none of the eyes from the control group or the eyes from the second group (0/19, 0%). Both retinal detachments were thought to be related to traumatic vitreous sampling and not a secondary response to the device.
No detachments or other abnormalities occurred in the second group of animals which were not periodically sampled. Flash (rod and cone response) and flicker (cone response) ERG measurements were obtained preoperatively and postoperatively in all eyes. No significant deterioration of the flash or flicker ERG wave amplitudes occurred in either group one or two eyes. No significant prolongation of the ERG implicit times occurred in either group. Modest abnormalities seen in the postoperative ERG b-wave amplitudes and implicit times were most likely related to the cryopexy.
Histological examination of the retina showed no significant difference between the control and treatment eyes. Light microscopic examination of both groups revealed normal retinal architecture. The two eyes from the final group that received a 6 mg bolus dose of intravitreal GCV showed no evidence of toxicity by indirect ophthalmoscopy. Postoperatively, the photopic flash ERG remained unchanged throughout, while the photopic flicker ERG showed a 50% deterioration in b-wave amplitude and modest delay in implicit time beginning 48 hours after GCV administration. The flicker ERG completely recovered in one eye and partially in the other 48 days after GCV administration.
No observable retinal toxicity was present by ERG or light microscopic examination of retinal tissue postoperatively. Chronic low concentrations of GCV appear to be well tolerated by the retina. Although some ERG changes were noted with the implantation of 6mg of uncoated GCV it does not appear that complete device breakdown would result in permanent retinal damage. We believe that the cataracts which formed in the 5 eyes of group one were secondary to lens trauma from the repeated vitreous taps rather than drug toxicity. No lens opacification occurred in either the eyes from the control group or the eyes from the second group in which frequent vitreous taps were not performed.
The device was easily inserted through the area of cryopexy in the rabbit. Applicants believe that the retinal detachments seen in two treatment eyes of the first group were a reflection of the difficulty working with rabbit eyes (poorly formed pars plana, low scleral rigidity, and large lens) rather than complications due to the drug or device itself. No detachments occurred in the eyes from the control group or the eyes from the second group that were not undergoing frequent vitreous taps.
There was minimal inflammatory response to the EVA/PVA device alone. These polymers are biologically inert and are well tolerated by the eye. This is a non-biodegradable system. Although this may be considered a drawback, the reliable release rates over extended periods of time and the lack of inflammatory response would be very difficult to obtain using an erodible drug delivery system. Our in vitro release rates seem to be predictive of the in vivo release rate. In the eyes from the second group, drug devices were constructed to release GCV at a slower rate to extend the duration of treatment. Increasing the amount of drug carried in the device would also be technically simple and could extend the duration of GCV release to the vitreous for several months. EXAMPLE 4
INTRAVΓΓREAL SUSTAINED RELEASE OF GANCICLOVIR IN vivo PHARMACOKINEΠCS AND TOLERABILITY: HUMAN STUDIES The membrane permeability studies, the construction of the implants and the in vitro release rates studies of the implants used in this study are described in Example 2. The devices used were those which released GCV at 2 μg/hr.
Eight humans infected with AIDS were used in this study. One eye of each patient treated with an implant containing ganciclovir. The implant was surgically positioned within the vitreous. The other eye of each patient was used as a control, that is, was not treated with ganciclovir. In all eight patients, vision stabilized in the eye treated with the implant. See Table 2 below. In Table 2, the first column indicates the initials of the patient. The second column indicates the visual acuity of the patient prior to implantation. The third column indicates the visual acuity of the patient on the last day, the vision of the patient was checked before death.
TABLE 2
Figure imgf000030_0001
1 Retina was detached at time of implantation but was repaired during implantation. Subsequently, the retina redetached.
2 Count Fingers Vision Failure In addition, progression of the disease arrested or reversed in the eye treated with ganciclovir. Table 3 below and the photography in Figure 5 show the progression of the disease. Figure 4 shows the concentration of GCV over time.
TABLE
Progression of CMV in Patients Treated with Implant
CONTROL EYE progressed progressed progressed no disease no disease progressed no disease
Figure imgf000031_0001
progressed
Visual activity was determined by a standard eye exam and disease progression by fundus photograph.
Samples of vitreous from human eyes were analyzed by high performance liquid chromatography (HPLC) using a C-18 reverse phase column with a 0.02% ammonium acetate mobile phase (pH 4.0). Under these conditions, GCV has a retention time of 31 minutes. This work has shown that implantation of the devices maintains GCV levels of approximately 1.5μg/ml in the vitreous for over 70 days. EXAMPLE 5
SUSTAINED RELEASE OF 5-FU USING A HEAT TREATED MEMBRANE SYSTEM OF LAYERED ETHYLENE VINYL ACETATE AND POLYVINYL ALCOHOL
In Vitro Studies
Subconjunctival administration of 5-FU as an adjunct to filtration surgery in high risk glaucoma patients is attended by the necessity of multiple subconjunctival injections and the potentially serious complications due to delayed wound healing. Alternative delivery systems have been proposed including liposomes, topical administration, and sustained release polymers. Work with diffusion of 5-FU through ethylene vinyl acetate (EVA) and polyvinyl alcohol (PVA) membranes showed that EVA was impermeable to 5-FU while PVA provided a linear release that appeared to be optimal for the sustained release of 5- FU (J. Ocular Pharmacol. 1988;1062:231). Applicants found that release rates could be markedly decreased by heat treating the PVA membrane. Nonetheless, Applicants found that an improved system could be made by optimizing the release rate using a layered EVA PVA system. Therefore, the rate of release was further decreased by layering EVA within the PVA to create a membrane system that was 6 8 mm in size.
Device Construction A 6 milligram pellet of 5-FU was compressed under 500 pounds of pressure into pellets measuring 2.5 mm in diameter. Sustained release 5-FU devices were prepared by coating the 6 mg pellet of 5-FU in 300 μl of a 10% PVA solution and allowed to dry. The pellet was then coated on three sides with a film of prepressed EVA and capped by a 3 mm disc of EVA coated in 10% PVA. The pellet was thus completely surrounded by EVA apart from a thin ring of PVA between the EVA walls and the cap. See Figure 2. The assembly was then completely coated in 10% PVA and allowed to dry overnight. The embedded pellet was cut out in a disc shape using a 3.5 mm punch. A suturing strut was attached to the device by bonding a strip of dry 10% PVA to the bottom of the device with a drop of 2% PVA. The device was subsequently baked at 190°C for three hours. With this design, Applicants were able to decrease the release rate to approximately 4 μg/hr (4.16 +_ 0.43 μg/hr, n=3) and to sustain the release over one month in vitro.
In Vivo Studies The above-described devices were implanted subconjunctivally in four rabbits to study possible in vivo toxicity from the device and 5-FU.
Devices containing 6mg of 5-FU were implanted on the exposed sclera 1.0 mm from the limbus superiorly in the right eye of four rabbits under general anesthesia. The left eye was undisturbed and used as a control.
ERG's and fundus photographs done prior to sacrificing showed no retinal toxicity from the device or the 5-FU. Intraocular pressure measurements showed no significant difference between the eyes. Histology on the implanted eye showed no inflammation related to the device or other histologic abnormality. Devices retrieved after sacrificing were found to have no drug remaining in them. We have shown that our system for sustained release is biologically inert and releases 5-FU at a rate that does not achieve toxic level. We feel this method of delivery has great promise in the therapy of the glaucoma patient at risk for failure of filtration surgery. EXAMPLE 6
SUSTAINED RELEASE OF 5-FU USING A HEAT TREATED MEMBRANE SYSTEM OF LAYERED ETHYLENE VINYLACETATE AND POLYVINYL ALCOHOL Device Construction
A twelve milligram pellet of 5-FU was compressed under 500 pounds of pressure into pellets measuring 2.5 mm in diameter. Sustained release 5-FU devices were prepared by coating the 12 mg pellet as described in Example 5.
Release Rate Studies The devices were placed in 10 ml of isotonic buffered saline at 37°C.
The solution was periodically sampled and changed to maintain sink conditions. The concentration of GCV in these samples was detemiined by HPLC with UV detection at 254 nm absorbance. Absorbance values of the samples were converted to drug concentrations and cumulative drug release (average of three trials) was plotted against time. See Figure 5.
Li Vivo Studies Implants prepared as described above were surgically implanted in the eyes of monkeys which have undergone filtering surgery. Intraocular pressure (IOP) tends to increase in monkeys which have undergone filtering surgery. Thus, the aim of this study was to maintain low IOP in monkeys after filtering surgery by the use of a sustained release 5-FU. In one eye of each monkey, a device containing 12 mg of 5-FU was implanted under the conjunctiva after surgery. In the other eye of each monkey, a device containing no 5-FU was implanted under the conjunctiva after surgery. Figure 6 illustrates the intraocular pressure of a mean average of three monkeys versus time in days. As clearly illustrated, the treated eyes maintained an intraocular pressure below that of the untreated (control) eyes. From the foregoing description, one of ordinary skill in the art can easily ascertain the essential characteristics of the instant invention, and without departing from the spirit and scope thereof, can make various changes and/or modifications of the invention to adapt it to various usages and conditions. As such, these changes and/or modifications are properly, equitably and intended to be, within the full range of equivalence of the following claims.

Claims

CLAIMS We claim: 1. A method for treating a mammalian organism to obtain a desired local or systemic physiological or pharmacological effect comprising: administering a sustained release drug delivery system to a mammalian organism in need of such treatment, said drug delivery system comprising; (1) an inner core or reservoir comprising an effective amount of an agent to obtain a desired local or systemic physiological or pharmacological effect, (2) a first coating layer, said first coating layer essentially impermeable to the passage of said agent, and said first coating layer covering at least a portion of the inner core, wherein at least a small portion of the inner core is not coated with said first coating layer, and (3) a second coating layer permeable to the passage of said agent, wherein said second coating layer essentially completely covers said first coating layer and the uncoated portion of the inner core, whereby said agent is able to pass through said second coating layer in a controlled manner.
2. A method for treating a mammalian organism as claimed in Claim 1, wherein said second coating layer comprises polyvinyl alcohol.
3. A method for treating a mammalian organism as claimed in Claim 2, wherein said first coating layer comprises ethylene vinyl acetate.
4. A method for treating a mammalian organism as claimed in Claim 3, wherein said effective agent comprises 5-fluorouracil or ganciclovir.
5. A method for treating a mammalian organism for cytomegalovirus retinitis comprising: administering a sustained release drug delivery system to a mammalian organism in need of such treatment, said drug delivery system comprising; (1) an inner core or reservoir comprising an effective amount of ganciclovir effective to obtain a desired local or systemic physiological or pharmacological effect, (2) a first coating layer, said first coating layer essentially impermeable to the passage of said ganciclovir, and said first coating layer covering at least a portion of the inner core, wherein at least a small portion of the inner core is not coated with said first coating layer, and (3) a second coating layer permeable to the passage of said ganciclovir, wherein said second coating layer essentially completely covers said first coating layer and the uncoated portion of the inner core, whereby said ganciclovir is able to pass through said second coating layer in a controlled manner.
6. A method for providing controlled and sustained administration of ganciclovir to a mammalian organism, comprising: administering a sustained release drug delivery system to a mammalian organism in need of such treatment, said drug delivery system comprising; (1) an inner core or reservoir comprising an effective amount of ganciclovir to obtain a desired local or systemic physiological or pharmacological effect and (2) a coating layer which essentially completely covers the inner core and is permeable to the passage of said ganciclovir whereby said ganciclovir is able to pass through said second coating layer in a controlled manner.
7. A method as claimed in Claim 6, wherein said permeable coating layer comprises polyvinyl alcohol.
8. A method as claimed in Claim 6, wherein said drug delivery system further comprises another coating layer which is essentially impermeable to the passage of said ganciclovir, said impermeable coating layer covering at least a portion of the inner core, wherein at least a small portion of the inner core is not coated with said first coating layer.
9. A method as claimed in Claim 8, wherein said permeable coating layer comprises polyvinyl alcohol.
10. A method as claimed in Claim 9, wherein said impermeable coating layer comprises ethylene vinyl acetate.
11. A method for providing controlled and sustained administration of 5- fluorouracil to a mammalian organism, comprising: administering a sustained release drug delivery system to a mammalian organism in need of such treatment, said drug delivery system comprising; (1) an inner core or reservoir comprising an effective amount of 5- fluorouracil to obtain a desired local or systemic physiological or pharmacological effect and (2) a coating layer which essentially completely covers the inner core and is permeable to the passage of said 5-fluorouracil, whereby said agent is able to pass through said second coating layer in a controlled manner.
12. A method as claimed in Claim 11, wherein said permeable coating layer comprises polyvinyl alcohol.
13. A method as claimed in Claim 11, wherein said drug delivery system further comprises another coating layer which is essentially impermeable to the passage of said 5-fluorouracil, said impermeable coating layer covering at least a portion of the inner core, wherein at least a small portion of the inner core is not coated with said first coating layer.
14. A method as claimed in Claim 13, wherein said permeable coating layer comprises polyvinyl alcohol.
15. A method as claimed in Claim 14, wherein said impermeable coating layer comprises ethylene vinyl acetate.
16. A method for providing controlled and sustained administration of an agent effective in obtaining a desired local or systemic physiological or pharmacological effect comprising: surgically implanting a sustained release drug delivery system at a desired location, said drug delivery system comprising; (1) an inner core or reservoir comprising an effective amount of an agent effective in obt_tining a desired physiological or pharmacological effect, and (2) a coating layer which essentially completely covers the inner core and is permeable to the passage of said effective agent whereby said agent is able to pass through said second coating layer in a controlled manner.
17. A method as claimed in Claim 19, wherein said device is surgically implanted within the vitreous of the eye.
18. A method as claimed in Claim 16, wherein said drug delivery system further comprises another coating layer which is essentially impermeable to the passage of said effective agent, said impermeable layer covering at least a portion of the inner core, wherein at least a small portion of the inner core is not coated with said first coating layer.
19. A method as claimed in Claim 17, wherein said permeable coating layer comprises polyvinyl alcohol.
20. A method as claimed in Claim 18, wherein said impermeable coating layer comprises ethylene vinyl acetate.
21. A method as claimed in Claim 20, wherein said effective agent is gandclovir or 5-fluorouradl.
22. A sustained release drug delivery system comprising: (A) an inner core or reservoir comprising an effective amount of an agent effective in obtaining a desired local or systemic physiological or pharmacological effect, (B) a first coating layer, said first coating layer impermeable to the passage of said effective agent, and said first coating layer covering at least a portion of the inner core, wherein at least a small portion of the inner core is not coated with said first coating layer, and (C) a second coating layer, said second coating layer permeable to the passage of said effective agent, wherein said second coating layer essentially completely covers the first coating layer and the uncovered portion of the inner core.
23. A sustained release drug delivery system as claimed in Claim 22, wherein said second coating layer comprises polyvinyl alcohol.
24. A sustained release drug delivery system as claimed in Claim 23, wherein said first coating layer comprises ethylene vinyl acetate.
25. A sustained release drug delivery system as claimed in Claim 24, wherein said effective agent is ganciclovir or 5-fluorouracil.
PCT/US1992/001432 1991-02-21 1992-02-21 Sustained release drug delivery devices WO1992014450A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP4506696A JPH06505274A (en) 1991-02-21 1992-02-21 Sustained release drug delivery device
CA002104699A CA2104699C (en) 1991-02-21 1992-02-21 Sustained release drug delivery devices
DE69227187T DE69227187T2 (en) 1991-02-21 1992-02-21 DELIVERED RELEASE DRUG DELIVERY SYSTEMS
AU14197/92A AU660012B2 (en) 1991-02-21 1992-02-21 Sustained release drug delivery devices
DK92906830T DK0577646T3 (en) 1991-02-21 1992-02-21 Extended release drug delivery device
EP92906830A EP0577646B1 (en) 1991-02-21 1992-02-21 Sustained release drug delivery devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US658,695 1984-10-09
US07/658,695 US5378475A (en) 1991-02-21 1991-02-21 Sustained release drug delivery devices

Publications (1)

Publication Number Publication Date
WO1992014450A1 true WO1992014450A1 (en) 1992-09-03

Family

ID=24642282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1992/001432 WO1992014450A1 (en) 1991-02-21 1992-02-21 Sustained release drug delivery devices

Country Status (10)

Country Link
US (1) US5378475A (en)
EP (2) EP0577646B1 (en)
JP (2) JPH06505274A (en)
AT (2) ATE171617T1 (en)
AU (1) AU660012B2 (en)
CA (1) CA2104699C (en)
DE (1) DE69227187T2 (en)
DK (2) DK0577646T3 (en)
ES (2) ES2125259T3 (en)
WO (1) WO1992014450A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993021874A2 (en) * 1992-05-04 1993-11-11 Allergan, Inc. Subconjunctival implants for ocular drug delivery
EP0613383A1 (en) * 1991-11-21 1994-09-07 Thee Alfred Device and method for administration to eye.
WO1998055101A1 (en) * 1997-06-04 1998-12-10 Debio Recherche Pharmaceutique S.A. Implants for controlled release of pharmaceutically active principles and method for making same
WO2004111064A1 (en) 2003-06-16 2004-12-23 Institute Of Organic Chemistry And Biochemistry, Academy Of Sciences Of The Czech Republic Pyrimidine compounds having phosphonate groups as antiviral nucleotide analogs
EP2308885A2 (en) 2008-02-20 2011-04-13 Gilead Sciences, Inc. Novel compounds and methods for therapy
EP2772225A1 (en) * 2001-03-15 2014-09-03 THE UNITED STATES OF AMERICA, represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES Ocular therapeutic agent delivery devices and methods for making and using such devices
RU2618194C2 (en) * 2011-09-14 2017-05-02 Форсайт Вижн5, Инк. Eye inserter and methods
US9750636B2 (en) 2012-10-26 2017-09-05 Forsight Vision5, Inc. Ophthalmic system for sustained release of drug to eye
US9849085B2 (en) 2000-04-26 2017-12-26 Psivida Us Inc. Sustained release drug delivery devices, methods of use, and methods of manufacturing thereof
US10004636B2 (en) 2009-06-03 2018-06-26 Forsight Vision5, Inc. Anterior segment drug delivery
US10098836B2 (en) 2013-05-02 2018-10-16 Retina Foundation Of The Southwest Method for forming a molded two-layer ocular implant
US11224602B2 (en) 2015-04-13 2022-01-18 Forsight Vision5, Inc. Ocular insert composition of a semi-crystalline or crystalline pharmaceutically active agent

Families Citing this family (430)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5871472A (en) * 1987-11-17 1999-02-16 Brown University Research Foundation Planting devices for the focal release of neuroinhibitory compounds
US5811447A (en) * 1993-01-28 1998-09-22 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US6515009B1 (en) * 1991-09-27 2003-02-04 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5876438A (en) * 1993-08-02 1999-03-02 Houston Biotechnology Incorporated Polymeric device for the delivery of immunotoxins for the prevention of secondary cataract
US20030083733A1 (en) * 1997-10-10 2003-05-01 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US20020091433A1 (en) * 1995-04-19 2002-07-11 Ni Ding Drug release coated stent
US6099562A (en) * 1996-06-13 2000-08-08 Schneider (Usa) Inc. Drug coating with topcoat
US5837313A (en) * 1995-04-19 1998-11-17 Schneider (Usa) Inc Drug release stent coating process
US5869079A (en) * 1995-06-02 1999-02-09 Oculex Pharmaceuticals, Inc. Formulation for controlled release of drugs by combining hydrophilic and hydrophobic agents
US20060280774A1 (en) * 1995-06-02 2006-12-14 Allergan, Inc. Compositions and methods for treating glaucoma
US6107102A (en) * 1995-06-07 2000-08-22 Regents Of The University Of California Therapeutic microdevices and methods of making and using same
US5773019A (en) * 1995-09-27 1998-06-30 The University Of Kentucky Research Foundation Implantable controlled release device to deliver drugs directly to an internal portion of the body
US5904144A (en) * 1996-03-22 1999-05-18 Cytotherapeutics, Inc. Method for treating ophthalmic diseases
US6299895B1 (en) 1997-03-24 2001-10-09 Neurotech S.A. Device and method for treating ophthalmic diseases
US5928662A (en) * 1996-07-31 1999-07-27 Phillips; Andrew F. Ocular drug delivery device
EP0973499B1 (en) * 1997-03-31 2003-08-06 Alza Corporation Diffusional implantable delivery system
US20040009924A1 (en) * 1997-05-30 2004-01-15 Veronique Stoven Anticancer products for treating cystic fibrosis
US5902598A (en) * 1997-08-28 1999-05-11 Control Delivery Systems, Inc. Sustained release drug delivery devices
US6196993B1 (en) 1998-04-20 2001-03-06 Eyelab Group, Llc Ophthalmic insert and method for sustained release of medication to the eye
US6210639B1 (en) 1998-10-26 2001-04-03 Novartis Ag Apparatus, method and composition for cleaning and disinfecting
ATE404172T1 (en) 1998-12-30 2008-08-15 Dexcel Ltd DISPERSIBLE CONCENTRATE FOR ADMINISTRATION OF CYCLOSPORINE
CA2358296A1 (en) * 1999-01-05 2000-07-13 Anthony P. Adamis Targeted transscleral controlled release drug delivery to the retina and choroid
DE60017363T2 (en) 1999-02-02 2006-03-02 Wright Medical Technology Inc., Arlington CONTROLLED RELEASE OF A COMPOSITE MATERIAL
US6217895B1 (en) 1999-03-22 2001-04-17 Control Delivery Systems Method for treating and/or preventing retinal diseases with sustained release corticosteroids
US20040121014A1 (en) * 1999-03-22 2004-06-24 Control Delivery Systems, Inc. Method for treating and/or preventing retinal diseases with sustained release corticosteroids
US6413245B1 (en) 1999-10-21 2002-07-02 Alcon Universal Ltd. Sub-tenon drug delivery
US6416777B1 (en) 1999-10-21 2002-07-09 Alcon Universal Ltd. Ophthalmic drug delivery device
AU768400B2 (en) * 1999-10-21 2003-12-11 Alcon Inc. Drug delivery device
US7943162B2 (en) * 1999-10-21 2011-05-17 Alcon, Inc. Drug delivery device
EP1241973B1 (en) 1999-12-28 2007-04-11 Kimberly-Clark Worldwide, Inc. Use-dependent indicator system for absorbent articles
WO2001047705A1 (en) 1999-12-28 2001-07-05 Kimberly-Clark Worldwide, Inc. Controlled release anti-microbial wipe for hard surfaces
US7732404B2 (en) * 1999-12-30 2010-06-08 Dexcel Ltd Pro-nanodispersion for the delivery of cyclosporin
US6852688B2 (en) 2000-03-10 2005-02-08 University Of Florida Compositions for treating diabetic retinopathy and methods of using same
US20040175410A1 (en) * 2000-04-26 2004-09-09 Control Delivery Systems, Inc. Sustained release device and method for ocular delivery of carbonic anhydrase inhibitors
US20040208910A1 (en) * 2000-04-26 2004-10-21 Control Delivery Systems, Inc. Sustained release device and method for ocular delivery of adrenergic agents
US20040115268A1 (en) * 2000-04-26 2004-06-17 Control Delivery Systems, Inc. Systemic delivery of antiviral agents
US8236048B2 (en) 2000-05-12 2012-08-07 Cordis Corporation Drug/drug delivery systems for the prevention and treatment of vascular disease
US20050002986A1 (en) * 2000-05-12 2005-01-06 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US6726918B1 (en) 2000-07-05 2004-04-27 Oculex Pharmaceuticals, Inc. Methods for treating inflammation-mediated conditions of the eye
ATE547080T1 (en) * 2000-08-30 2012-03-15 Univ Johns Hopkins DEVICES FOR INTRAOCULAR DRUG DELIVERY
US9925087B2 (en) * 2000-09-15 2018-03-27 Bruder Healthcare Company, Llc Wound and therapy compress and dressing
ATE343969T1 (en) * 2000-09-29 2006-11-15 Cordis Corp COATED MEDICAL DEVICES
AU3649502A (en) 2000-11-29 2002-06-11 Oculex Pharm Inc Methods for reducing or preventing transplant rejection in the eye and intraocular implants for use therefor
WO2002056863A2 (en) * 2000-12-29 2002-07-25 Bausch & Lomb Incorporated Sustained release drug delivery devices
ES2320533T3 (en) 2001-01-03 2009-05-25 BAUSCH &amp; LOMB INCORPORATED ADMINISTRATION DEVICES OF SUSTAINED RELEASE PHARMACES WITH MULTIPLE AGENTS.
EP1847255A3 (en) * 2001-01-03 2009-03-04 Bausch & Lomb Incorporated Sustained release drug delivery devices with coated drug cores
ES2294043T3 (en) * 2001-01-03 2008-04-01 BAUSCH &amp; LOMB INCORPORATED PROLONGED RELEASE DEVICES OF MEDICINES THAT INCLUDE NUCLEOS COVERED MEDICINES.
CA2432225C (en) * 2001-01-03 2008-01-15 Michael J. Brubaker Sustained release drug delivery devices with prefabricated permeable plugs
US6991808B2 (en) * 2001-01-26 2006-01-31 Bausch & Lomb Inc. Process for the production of sustained release drug delivery devices
US7181287B2 (en) * 2001-02-13 2007-02-20 Second Sight Medical Products, Inc. Implantable drug delivery device
US7431710B2 (en) 2002-04-08 2008-10-07 Glaukos Corporation Ocular implants with anchors and methods thereof
US6613083B2 (en) * 2001-05-02 2003-09-02 Eckhard Alt Stent device and method
EP1387671A1 (en) 2001-05-03 2004-02-11 MASSACHUSETTS EYE &amp; EAR INFIRMARY Implantable drug delivery device and use thereof
EP2316394B1 (en) 2001-06-12 2016-11-23 The Johns Hopkins University Reservoir device for intraocular drug delivery
DE10133870A1 (en) * 2001-07-12 2003-02-06 Chris P Lohmann Ophthalmic agent, use of EGF for the treatment of dry eye syndrome and insert for the administration of EGF to the eye
PT1385452E (en) * 2001-07-23 2006-12-29 Alcon Inc Ophthalmic drug delivery device
PT1409065E (en) 2001-07-23 2007-03-30 Alcon Inc Ophthalmic drug delivery device
US20030158598A1 (en) * 2001-09-17 2003-08-21 Control Delivery Systems, Inc. System for sustained-release delivery of anti-inflammatory agents from a coated medical device
US6837696B2 (en) 2001-09-28 2005-01-04 Mcneil-Ppc, Inc. Apparatus for manufacturing dosage forms
US7838026B2 (en) 2001-09-28 2010-11-23 Mcneil-Ppc, Inc. Burst-release polymer composition and dosage forms comprising the same
US7122143B2 (en) 2001-09-28 2006-10-17 Mcneil-Ppc, Inc. Methods for manufacturing dosage forms
US7217381B2 (en) 2001-09-28 2007-05-15 Mcneil-Ppc, Inc. Systems, methods and apparatuses for manufacturing dosage forms
US20040062804A1 (en) * 2001-09-28 2004-04-01 Der-Yang Lee Modified release dosage forms
US6982094B2 (en) 2001-09-28 2006-01-03 Mcneil-Ppc, Inc. Systems, methods and apparatuses for manufacturing dosage forms
US20060034929A1 (en) * 2001-12-27 2006-02-16 Brubaker Michael J Sustained release drug delivery devices with prefabricated permeable plugs
US8685427B2 (en) * 2002-07-31 2014-04-01 Boston Scientific Scimed, Inc. Controlled drug delivery
US8133501B2 (en) 2002-02-08 2012-03-13 Boston Scientific Scimed, Inc. Implantable or insertable medical devices for controlled drug delivery
AU2003216379A1 (en) * 2002-02-22 2003-09-09 Control Delivery Systems, Inc. Method for treating otic disorders
EP2522319A3 (en) * 2002-03-11 2013-09-25 Novartis AG Implantable drug delivery system
AU2003217531A1 (en) * 2002-05-02 2003-11-17 Massachusetts Eye And Ear Infirmary Ocular drug delivery systems and use thereof
US8871241B2 (en) * 2002-05-07 2014-10-28 Psivida Us, Inc. Injectable sustained release delivery devices
WO2003094888A1 (en) * 2002-05-07 2003-11-20 Control Delivery Systems, Inc. Processes for forming a drug delivery device
NZ536308A (en) * 2002-05-24 2009-01-31 Angiotech Int Ag Compositions and methods for coating medical implants
US8313760B2 (en) * 2002-05-24 2012-11-20 Angiotech International Ag Compositions and methods for coating medical implants
US20030235610A1 (en) * 2002-06-21 2003-12-25 Piedmont Pharmaceuticals, Llc Liposomes containing biologically active compounds
US6976584B2 (en) * 2002-06-26 2005-12-20 Bausch & Lomb Incorporated Package for surgical implant
CN100435880C (en) * 2003-02-28 2008-11-26 微创医疗器械(上海)有限公司 Medicament elution interventional medical apparatus and preparing method thereof
US20070184089A1 (en) * 2002-07-15 2007-08-09 Alcon, Inc. Non-Polymeric Lipophilic Pharmaceutical Implant Compositions for Intraocular Use
BR0312635A (en) * 2002-07-15 2005-04-19 Alcon Inc Non-polymeric Lipophilic Pharmaceutical Implant Compositions for Intraocular Use
US8920826B2 (en) * 2002-07-31 2014-12-30 Boston Scientific Scimed, Inc. Medical imaging reference devices
DE10238310A1 (en) * 2002-08-21 2004-03-04 Erich Jaeger Gmbh electrode assembly
ES2428354T3 (en) * 2002-09-18 2013-11-07 Trustees Of The University Of Pennsylvania Rapamycin for use in the inhibition or prevention of choroidal neovascularization
US6899717B2 (en) * 2002-09-18 2005-05-31 Allergan, Inc. Methods and apparatus for delivery of ocular implants
US20050203542A1 (en) * 2002-09-18 2005-09-15 Allergan, Inc. Apparatus for delivery of ocular implants with reduced incidence of ocular adverse events
KR20050047118A (en) * 2002-09-18 2005-05-19 알러간, 인코포레이티드 Methods and apparatus for delivery of ocular implants
US7807197B2 (en) 2002-09-28 2010-10-05 Mcneil-Ppc, Inc. Composite dosage forms having an inlaid portion
CA2689424A1 (en) * 2002-09-29 2004-04-08 Surmodics, Inc. Methods for treatment and/or prevention of retinal disease
WO2004036182A2 (en) * 2002-10-17 2004-04-29 Control Delivery Systems, Inc. Methods for monitoring treatment of disease
AU2003287666A1 (en) * 2002-11-13 2004-06-03 Control Delivery Systems, Inc. Systemic delivery of antiviral agents
JP2006521287A (en) 2002-12-20 2006-09-21 エスティ.ジェイムス アソシエイト エルエルシー/フェイバー リサーチ シリーズ High pressure compression for pharmaceutical formulations
US20050048099A1 (en) 2003-01-09 2005-03-03 Allergan, Inc. Ocular implant made by a double extrusion process
US20040137059A1 (en) * 2003-01-09 2004-07-15 Thierry Nivaggioli Biodegradable ocular implant
WO2004066980A2 (en) * 2003-01-24 2004-08-12 Control Delivery Systems, Inc. Sustained release device and method for ocular delivery of carbonic anhydrase inhibitors
CN1741793A (en) * 2003-01-24 2006-03-01 控释给药系统公司 Controlled release of highly soluble agents
SI1592408T1 (en) * 2003-01-24 2010-01-29 Psivida Inc Sustained release device and method for ocular delivery of adrenergic agents
WO2004073551A2 (en) * 2003-02-18 2004-09-02 Massachusetts Eye And Ear Infirmary Transscleral drug delivery device and related methods
CA2516790A1 (en) * 2003-02-20 2004-09-02 Alcon, Inc. Formulations of glucocorticoids to treat pathologic ocular angiogenesis
BRPI0407693A (en) * 2003-02-20 2006-03-01 Alcon Inc use of steroids for the preparation of formulations usable for the treatment of people suffering from eye disorders, as well as the formulation thus obtained
US20040166091A1 (en) 2003-02-24 2004-08-26 Genvec, Inc. Materials and methods for treating disorders of the ear
US9445901B2 (en) * 2003-03-12 2016-09-20 Deger C. Tunc Prosthesis with sustained release analgesic
US7483750B2 (en) * 2003-03-21 2009-01-27 Second Sight Medical Products, Inc. Transretinal implant and method of implantation
US7037521B2 (en) * 2003-03-28 2006-05-02 Bausch & Lomb Incorporated Using a laser for cutting a hole in a capsule for controlled drug delivery
US20050261668A1 (en) * 2003-03-28 2005-11-24 Bausch & Lomb Incorporated Drug delivery device
US8246974B2 (en) * 2003-05-02 2012-08-21 Surmodics, Inc. Medical devices and methods for producing the same
JP4824549B2 (en) * 2003-05-02 2011-11-30 サーモディクス,インコーポレイティド Controlled release bioactive substance delivery device
US7589107B2 (en) * 2003-05-19 2009-09-15 Othera Holding, Inc. Amelioration of vitrectomy-induced cataracts
EP1633339A4 (en) * 2003-06-13 2009-06-03 Alcon Inc Formulations of non-steroidal anti-inflammatory agents to treat pathologic ocular angiogenesis
JP5628467B2 (en) * 2003-06-26 2014-11-19 シヴィダ・ユーエス・インコーポレイテッドPsivida Us, Inc. Biodegradable sustained release drug delivery system
TWI377958B (en) 2003-06-26 2012-12-01 Control Delivery Sys Inc In-situ gelling drug delivery system
CN1842321B (en) * 2003-06-26 2012-07-04 控制递送系统有限公司 Bioerodible sustained release drug delivery systems
US20040265356A1 (en) * 2003-06-30 2004-12-30 Bausch & Lomb Incorporated Drug delivery device
US20050054586A1 (en) * 2003-06-30 2005-03-10 Bartels Stephen P. Treatment of ophthalmic disorders
CN1805719A (en) * 2003-07-10 2006-07-19 爱尔康公司 Ophthalmic drug delivery device
WO2005012537A2 (en) * 2003-07-25 2005-02-10 Genvec, Inc. Adenoviral vector-based vaccines
CA2539324A1 (en) * 2003-09-18 2005-03-31 Macusight, Inc. Transscleral delivery
US20050101582A1 (en) * 2003-11-12 2005-05-12 Allergan, Inc. Compositions and methods for treating a posterior segment of an eye
US20070224278A1 (en) * 2003-11-12 2007-09-27 Lyons Robert T Low immunogenicity corticosteroid compositions
US20050250737A1 (en) * 2003-11-12 2005-11-10 Allergan, Inc. Therapeutic ophthalmic compositions containing retinal friendly excipients and related methods
US20060141049A1 (en) * 2003-11-12 2006-06-29 Allergan, Inc. Triamcinolone compositions for intravitreal administration to treat ocular conditions
DK1696822T3 (en) * 2003-11-13 2010-05-17 Psivida Inc Injectable sustained release implant having a bioerodible matrix core and a bioerodible housing
DE602004025726D1 (en) * 2003-11-14 2010-04-08 Genvec Inc PHARMACEUTICAL COMPOUND FOR THE TREATMENT OF LOCALLY ADVANCED PRIMARY INOPERABLES PANCREATIC CARCINOMA (LAPC).
AU2004293463A1 (en) * 2003-11-20 2005-06-09 Angiotech International Ag Implantable sensors and implantable pumps and anti-scarring agents
US20050130906A1 (en) * 2003-11-20 2005-06-16 Matier William L. Amelioration of macular degeneration and other ophthalmic diseases
BRPI0405798B8 (en) * 2003-11-28 2021-05-25 Halex Istar Ind Farmaceutica L process for eliminating alkaline residues present in 9-((1,3-dihydroxypropan-2-yloxy)methyl)-2-amino-1h-purin-6(9h)-one and pharmaceutical presentation
US7211272B2 (en) * 2003-12-22 2007-05-01 Bausch & Lomb Incorporated Drug delivery device
US20050137538A1 (en) 2003-12-22 2005-06-23 Bausch & Lomb Incorporated Drug delivery device
US20050158365A1 (en) 2003-12-22 2005-07-21 David Watson Drug delivery device with mechanical locking mechanism
US20050136095A1 (en) * 2003-12-22 2005-06-23 Brian Levy Drug delivery device with suture ring
JP2007518804A (en) 2004-01-20 2007-07-12 アラーガン、インコーポレイテッド Composition for topical ophthalmic treatment preferably containing triamcinolone acetonide and hyaluronic acid
CN101018541A (en) * 2004-01-26 2007-08-15 普西维达公司 Controlled and sustained delivery of nucleic acid-based therapeutic agents
US20060018949A1 (en) * 2004-04-07 2006-01-26 Bausch & Lomb Incorporated Injectable biodegradable drug delivery system
CN1972958B (en) 2004-04-12 2013-01-23 美国政府卫生与公共服务部 Method of using adenoviral vectors to induce an immune response
WO2005102334A2 (en) * 2004-04-13 2005-11-03 Alza Corporation Apparatus and method for transdermal delivery of fentany-based agents
US7691381B2 (en) 2004-04-15 2010-04-06 Allergan, Inc. Stabilized biodegradable neurotoxin implants
US20050244463A1 (en) * 2004-04-30 2005-11-03 Allergan, Inc. Sustained release intraocular implants and methods for treating ocular vasculopathies
US20050244469A1 (en) * 2004-04-30 2005-11-03 Allergan, Inc. Extended therapeutic effect ocular implant treatments
US8147865B2 (en) * 2004-04-30 2012-04-03 Allergan, Inc. Steroid-containing sustained release intraocular implants and related methods
US9498457B2 (en) 2004-04-30 2016-11-22 Allergan, Inc. Hypotensive prostamide-containing biodegradable intraocular implants and related implants
US20050244471A1 (en) * 2004-04-30 2005-11-03 Allergan, Inc. Estradiol derivative and estratopone containing sustained release intraocular implants and related methods
US7799336B2 (en) 2004-04-30 2010-09-21 Allergan, Inc. Hypotensive lipid-containing biodegradable intraocular implants and related methods
US8673341B2 (en) * 2004-04-30 2014-03-18 Allergan, Inc. Intraocular pressure reduction with intracameral bimatoprost implants
US8119154B2 (en) * 2004-04-30 2012-02-21 Allergan, Inc. Sustained release intraocular implants and related methods
US20050244465A1 (en) * 2004-04-30 2005-11-03 Allergan, Inc. Drug delivery systems and methods for treatment of an eye
US20050244462A1 (en) * 2004-04-30 2005-11-03 Allergan, Inc. Devices and methods for treating a mammalian eye
US8455656B2 (en) 2004-04-30 2013-06-04 Allergan, Inc. Kinase inhibitors
US8685435B2 (en) 2004-04-30 2014-04-01 Allergan, Inc. Extended release biodegradable ocular implants
WO2005107708A1 (en) 2004-04-30 2005-11-17 Allergan, Inc. Biodegradable intravitreal tyrosine kinase inhibitors implants
US7993634B2 (en) 2004-04-30 2011-08-09 Allergan, Inc. Oil-in-oil emulsified polymeric implants containing a hypotensive lipid and related methods
US20050244478A1 (en) * 2004-04-30 2005-11-03 Allergan, Inc. Anti-excititoxic sustained release intraocular implants and related methods
US20050244461A1 (en) * 2004-04-30 2005-11-03 Allergan, Inc. Controlled release drug delivery systems and methods for treatment of an eye
US7771742B2 (en) 2004-04-30 2010-08-10 Allergan, Inc. Sustained release intraocular implants containing tyrosine kinase inhibitors and related methods
US20050244466A1 (en) * 2004-04-30 2005-11-03 Allergan, Inc. Photodynamic therapy in conjunction with intraocular implants
US8722097B2 (en) 2004-04-30 2014-05-13 Allergan, Inc. Oil-in-water method for making polymeric implants containing a hypotensive lipid
US20050244458A1 (en) 2004-04-30 2005-11-03 Allergan, Inc. Sustained release intraocular implants and methods for treating ocular neuropathies
US8425929B2 (en) * 2004-04-30 2013-04-23 Allergan, Inc. Sustained release intraocular implants and methods for preventing retinal dysfunction
US20060024350A1 (en) * 2004-06-24 2006-02-02 Varner Signe E Biodegradable ocular devices, methods and systems
CA2572223C (en) 2004-06-25 2014-08-12 The Johns Hopkins University Angiogenesis inhibitors
EP3470108A1 (en) * 2004-07-02 2019-04-17 Mati Therapeutics Inc. Treatment medium delivery device for delivery of treatment media to the eye
EP1611879B1 (en) * 2004-07-02 2009-08-12 Novagali Pharma SA Use of emulsions for intra- and periocular injection
US20060110428A1 (en) * 2004-07-02 2006-05-25 Eugene Dejuan Methods and devices for the treatment of ocular conditions
JP2008505978A (en) * 2004-07-12 2008-02-28 アラーガン、インコーポレイテッド Ophthalmic composition and eye disease treatment method
AU2005274948B2 (en) 2004-07-16 2011-09-22 Genvec, Inc. Vaccines against aids comprising CMV/R-nucleic acid constructs
AU2005269599A1 (en) * 2004-07-26 2006-02-09 Clarity Corporation Implantable device having reservoir with controlled release of medication and method of manufacturing the same
US20060020253A1 (en) * 2004-07-26 2006-01-26 Prescott Anthony D Implantable device having reservoir with controlled release of medication and method of manufacturing the same
US7117870B2 (en) * 2004-07-26 2006-10-10 Clarity Corporation Lacrimal insert having reservoir with controlled release of medication and method of manufacturing the same
WO2006023130A2 (en) * 2004-08-12 2006-03-02 Surmodics, Inc. Biodegradable controlled release bioactive agent delivery device
US20060045865A1 (en) * 2004-08-27 2006-03-02 Spherics, Inc. Controlled regional oral delivery
WO2006026504A2 (en) * 2004-08-27 2006-03-09 Spherics, Inc. Mucoadhesive oral formulations of high permeability, high solubility drugs
JP2008511336A (en) * 2004-09-01 2008-04-17 アメリカ合衆国 Methods for using adenoviral vectors with increased immunogenicity in vivo
US20160106717A1 (en) 2004-09-24 2016-04-21 Gen Pharma Holdings LLC Cai-based systems and methods for the localized treatment of uveitis
US20060116404A1 (en) 2004-09-24 2006-06-01 Gary Robinson CAI-based systems and methods for the localized treatment of ocular and other diseases
US20060067978A1 (en) * 2004-09-29 2006-03-30 Bausch & Lomb Incorporated Process for preparing poly(vinyl alcohol) drug delivery devices
US20060068012A1 (en) * 2004-09-29 2006-03-30 Bausch & Lomb Incorporated Process for preparing poly (vinyl alcohol) drug delivery devices with humidity control
US20060067980A1 (en) * 2004-09-30 2006-03-30 Bausch & Lomb Incorporated Capsule for encasing tablets for surgical insertion into the human body
US20060067979A1 (en) * 2004-09-30 2006-03-30 Bausch & Lomb Incorporated Ophthalmic drug release device for multiple drug release
US20060078592A1 (en) * 2004-10-12 2006-04-13 Bausch & Lomb Incorporated Drug delivery systems
US20070276481A1 (en) * 2004-12-08 2007-11-29 Renner Steven B Drug delivery device
US20060134162A1 (en) * 2004-12-16 2006-06-22 Larson Christopher W Methods for fabricating a drug delivery device
WO2006068921A2 (en) * 2004-12-22 2006-06-29 Alcon, Inc. Device for ophthalmic drug delivery
WO2006068898A1 (en) * 2004-12-22 2006-06-29 Bausch & Lomb Incorporated Reusable drug delivery device
US20060134176A1 (en) * 2004-12-22 2006-06-22 Bausch & Lomb Incorporated Pharmaceutical delivery system and method of use
US20060134174A1 (en) * 2004-12-22 2006-06-22 Bausch & Lomb Incorporated Pharmaceutical delivery system and method of use
US20060134175A1 (en) * 2004-12-22 2006-06-22 Stephen Bartels Drug eluting pharmaceutical delivery system for treatment of ocular disease and method of use
DK1848431T3 (en) * 2005-02-09 2016-04-18 Santen Pharmaceutical Co Ltd LIQUID FORMULATIONS FOR TREATMENT OF DISEASES OR CONDITIONS
US8663639B2 (en) * 2005-02-09 2014-03-04 Santen Pharmaceutical Co., Ltd. Formulations for treating ocular diseases and conditions
AU2005100176A4 (en) * 2005-03-01 2005-04-07 Gym Tv Pty Ltd Garbage bin clip
JP2008535847A (en) * 2005-04-08 2008-09-04 サーモディクス,インコーポレイティド Sustained release implant for subretinal delivery
US20080312283A1 (en) * 2005-05-26 2008-12-18 Othera Pharmaceuticals, Inc. Use of Hydroxylamine Derivates for Inhibiting Vitrectomy-Induced Cataracts
US20060292222A1 (en) * 2005-06-21 2006-12-28 Matthew Jonasse Drug delivery device having zero or near zero-order release kinetics
US20060292202A1 (en) * 2005-06-27 2006-12-28 Bausch & Lomb Incorporated Drug delivery device
WO2007014327A2 (en) 2005-07-27 2007-02-01 University Of Florida Research Foundation, Inc. Small compounds that correct protein misfolding and uses thereof
AU2006284756B2 (en) * 2005-08-31 2012-06-07 Genvec, Inc. Adenoviral vector-based malaria vaccines
US20070212397A1 (en) * 2005-09-15 2007-09-13 Roth Daniel B Pharmaceutical delivery device and method for providing ocular treatment
EP1937244B1 (en) 2005-09-30 2018-07-25 Io Therapeutics, LLC Treatment of cancer with specific rxr agonists
WO2007047626A1 (en) * 2005-10-14 2007-04-26 Alcon, Inc. Combination treatment with anecortave acetate and bevacizumab or ranibizumab for pathologic ocular angiogenesis
EP1956906A4 (en) 2005-11-09 2009-12-30 Combinatorx Inc Methods, compositions, and kits for the treatment of medical conditions
CA2629163C (en) * 2005-11-10 2017-03-21 Genvec, Inc. Adenoviral vector-based foot-and-mouth disease vaccine
US20070122449A1 (en) * 2005-11-28 2007-05-31 Choonara Yahya E Biodegradable implantable drug delivery device
US20070178138A1 (en) * 2006-02-01 2007-08-02 Allergan, Inc. Biodegradable non-opthalmic implants and related methods
AU2007212271B2 (en) 2006-02-09 2012-11-01 Santen Pharmaceutical Co., Ltd. Stable formulations, and methods of their preparation and use
US20070203190A1 (en) * 2006-02-22 2007-08-30 Ghanshyam Patil Hydroxylamines and derivatives for the inhibition of complement activation
BRPI0709016A2 (en) 2006-03-23 2011-06-21 Macusight Inc formulations and methods for diseases or conditions related to vascular permeability
US20110034498A1 (en) * 2006-03-24 2011-02-10 Mcgovern Karen J Dosing regimens for the treatment of cancer
US20070232660A1 (en) * 2006-04-04 2007-10-04 Allergan, Inc. Therapeutic and delivery methods of prostaglandin ep4 agonists
US7981096B2 (en) * 2006-05-12 2011-07-19 David Castillejos Optic nerve head implant and medication delivery system
US8668676B2 (en) * 2006-06-19 2014-03-11 Allergan, Inc. Apparatus and methods for implanting particulate ocular implants
US20070298073A1 (en) * 2006-06-23 2007-12-27 Allergan, Inc. Steroid-containing sustained release intraocular implants and related methods
US8802128B2 (en) * 2006-06-23 2014-08-12 Allergan, Inc. Steroid-containing sustained release intraocular implants and related methods
US9039761B2 (en) 2006-08-04 2015-05-26 Allergan, Inc. Ocular implant delivery assemblies with distal caps
BRPI0714815A2 (en) 2006-08-07 2013-05-21 Bausch & Lomb composition, and use of an (a) agonist and (b) an anti-infectious agent
EP2056833A2 (en) 2006-08-23 2009-05-13 Government of the United States of America, Represented by the Secretary, Department of Health and Human Services Derivatives of uric and thiouric acid for oxidative stress-related diseases
CN101528208A (en) * 2006-08-31 2009-09-09 博士伦公司 Compositions and methods for treating or preventing glaucoma or progression thereof
US9744137B2 (en) * 2006-08-31 2017-08-29 Supernus Pharmaceuticals, Inc. Topiramate compositions and methods of enhancing its bioavailability
US20110104159A1 (en) * 2006-09-11 2011-05-05 Rohrs Brian R Compositions and methods for treating, controlling, reducing, ameliorating, or preventing allergy
KR20090050076A (en) * 2006-09-11 2009-05-19 보오슈 앤드 롬 인코포레이팃드 Compositions and methods for treating, controlling, reducing, ameliorating, or preventing allergy
US20110105559A1 (en) * 2006-09-11 2011-05-05 Rohrs Brian R Compositions and Methods for Treating, Controlling, Reducing, Ameliorating, or Preventing Allergy
EP1973528B1 (en) 2006-11-17 2012-11-07 Supernus Pharmaceuticals, Inc. Sustained-release formulations of topiramate
US8969415B2 (en) 2006-12-01 2015-03-03 Allergan, Inc. Intraocular drug delivery systems
US20080145405A1 (en) * 2006-12-15 2008-06-19 Kunzler Jay F Drug delivery devices
TWI433674B (en) 2006-12-28 2014-04-11 Infinity Discovery Inc Cyclopamine analogs
WO2008086386A2 (en) * 2007-01-09 2008-07-17 Genvec, Inc. Adenoviral vector-based malaria vaccines
UY30883A1 (en) 2007-01-31 2008-05-31 Alcon Res PUNCTURAL PLUGS AND METHODS OF RELEASE OF THERAPEUTIC AGENTS
US8622991B2 (en) * 2007-03-19 2014-01-07 Insuline Medical Ltd. Method and device for drug delivery
EP2136863A2 (en) * 2007-03-19 2009-12-30 Insuline Medical Ltd. Device for drug delivery and associated connections thereto
US9220837B2 (en) * 2007-03-19 2015-12-29 Insuline Medical Ltd. Method and device for drug delivery
CN101678169A (en) * 2007-03-19 2010-03-24 茵苏莱恩医药有限公司 Drug delivery device
US7911053B2 (en) * 2007-04-19 2011-03-22 Marvell World Trade Ltd. Semiconductor packaging with internal wiring bus
US20080265343A1 (en) * 2007-04-26 2008-10-30 International Business Machines Corporation Field effect transistor with inverted t shaped gate electrode and methods for fabrication thereof
US20090042936A1 (en) * 2007-08-10 2009-02-12 Ward Keith W Compositions and Methods for Treating or Controlling Anterior-Segment Inflammation
US7910123B2 (en) * 2007-09-05 2011-03-22 Warsaw Orthopedic Methods of treating a trauma or disorder of the knee joint by local administration and sustained-delivery of a biological agent
US20090062922A1 (en) * 2007-09-05 2009-03-05 Mckay William F Method and apparatus for delivering treatment to a joint
US20090104243A1 (en) * 2007-09-07 2009-04-23 Qlt Plug Delivery, Inc. - Qpdi Drug cores for sustained release of therapeutic agents
US20090087443A1 (en) 2007-09-27 2009-04-02 Bartels Stephen P Pharmacological Adjunctive Treatment Associated with Glaucoma Filtration Surgery
TWI451862B (en) * 2007-10-09 2014-09-11 Alcon Res Ltd Thermal coefficient driven drug pellet size for ophthalmic injection
TWI498136B (en) * 2007-10-09 2015-09-01 Alcon Res Ltd An injection device for delivering a rate and temperature-dependent substance into the eye and method of preparing the same
US9849027B2 (en) * 2007-11-08 2017-12-26 Alimera Sciences, Inc. Ocular implantation device
GB0722484D0 (en) * 2007-11-15 2007-12-27 Ucl Business Plc Solid compositions
US8409133B2 (en) 2007-12-18 2013-04-02 Insuline Medical Ltd. Drug delivery device with sensor for closed-loop operation
US20100297118A1 (en) * 2007-12-27 2010-11-25 Macdougall John Therapeutic Cancer Treatments
EP3190121B1 (en) 2007-12-27 2019-02-20 Infinity Pharmaceuticals, Inc. Methods for stereoselective reduction of cyclopamine 4-en-3-one derivative
JP2011522773A (en) * 2007-12-27 2011-08-04 インフィニティ ファーマスーティカルズ、インク. Methods of treating cancer with therapeutic agents
US8173163B2 (en) 2008-02-21 2012-05-08 Rutgers, The State University Of New Jersey Polymeric drug delivery compositions and methods for treating ophthalmic diseases
US20100152646A1 (en) * 2008-02-29 2010-06-17 Reshma Girijavallabhan Intravitreal injection device and method
WO2009140246A2 (en) 2008-05-12 2009-11-19 University Of Utah Research Foundation Intraocular drug delivery device and associated methods
US10064819B2 (en) 2008-05-12 2018-09-04 University Of Utah Research Foundation Intraocular drug delivery device and associated methods
US9095404B2 (en) 2008-05-12 2015-08-04 University Of Utah Research Foundation Intraocular drug delivery device and associated methods
US9877973B2 (en) 2008-05-12 2018-01-30 University Of Utah Research Foundation Intraocular drug delivery device and associated methods
US20090291073A1 (en) * 2008-05-20 2009-11-26 Ward Keith W Compositions Comprising PKC-theta and Methods for Treating or Controlling Ophthalmic Disorders Using Same
WO2010024930A2 (en) 2008-08-28 2010-03-04 President And Fellows Of Harvard College Cortistatin analogues and syntheses therof
US7985208B2 (en) * 2008-09-18 2011-07-26 Oasis Research LLC Ring shaped contoured collagen shield for ophthalmic drug delivery
WO2010052579A2 (en) 2008-11-07 2010-05-14 Insuline Medical Ltd. Device and method for drug delivery
US20100158980A1 (en) * 2008-12-18 2010-06-24 Casey Kopczynski Drug delivery devices for delivery of therapeutic agents
US8545554B2 (en) * 2009-01-16 2013-10-01 Allergan, Inc. Intraocular injector
US8623395B2 (en) 2010-01-29 2014-01-07 Forsight Vision4, Inc. Implantable therapeutic device
CN104887389B (en) 2009-01-29 2017-06-23 弗赛特影像4股份有限公司 Posterior segment drug delivery
WO2010093945A2 (en) 2009-02-13 2010-08-19 Glaukos Corporation Uveoscleral drug delivery implant and methods for implanting the same
WO2010096561A1 (en) 2009-02-18 2010-08-26 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Synthetic hiv/siv gag proteins and uses thereof
US20110077270A1 (en) * 2009-04-21 2011-03-31 Pfeffer Bruce A Compositions and Methods for Treating Ocular Inflammation with Lower Risk of Increased Intraocular Pressure
US8372036B2 (en) * 2009-05-06 2013-02-12 Alcon Research, Ltd. Multi-layer heat assembly for a drug delivery device
AU2010249683B2 (en) * 2009-05-18 2015-06-25 Dose Medical Corporation Drug eluting ocular implant
US10206813B2 (en) 2009-05-18 2019-02-19 Dose Medical Corporation Implants with controlled drug delivery features and methods of using same
WO2012071476A2 (en) 2010-11-24 2012-05-31 David Haffner Drug eluting ocular implant
IN2012DN00352A (en) 2009-06-16 2015-08-21 Bikam Pharmaceuticals Inc
GB201111485D0 (en) 2011-07-05 2011-08-17 Biocopea Ltd Drug composition and its use in therapy
CN102574791A (en) 2009-08-05 2012-07-11 无限药品股份有限公司 Enzymatic transamination of cyclopamine analogs
US9605844B2 (en) * 2009-09-01 2017-03-28 Cree, Inc. Lighting device with heat dissipation elements
US20120219583A1 (en) 2009-10-16 2012-08-30 Los Alamos National Security, Llc Nucleic acid sequences encoding expandable hiv mosaic proteins
WO2011057254A2 (en) 2009-11-09 2011-05-12 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Simian adenoviral vector-based vaccines
CN102724951A (en) 2009-11-09 2012-10-10 阿勒根公司 Compositions and methods for stimulating hair growth
US9205091B2 (en) 2009-11-13 2015-12-08 The United States Of America, As Represented By The Secretary Department Of Health And Human Services Diazeniumdiolated compounds, pharmaceutical compositions, and method of treating cancer
US8177747B2 (en) * 2009-12-22 2012-05-15 Alcon Research, Ltd. Method and apparatus for drug delivery
US20110238036A1 (en) * 2009-12-23 2011-09-29 Psivida Us, Inc. Sustained release delivery devices
WO2011088404A1 (en) * 2010-01-15 2011-07-21 Infinity Pharmaceuticals , Inc Treatment of fibrotic conditions using hedgehog inhibitors
US10166142B2 (en) 2010-01-29 2019-01-01 Forsight Vision4, Inc. Small molecule delivery with implantable therapeutic device
US20110189174A1 (en) * 2010-02-01 2011-08-04 Afshin Shafiee Compositions and methods for treating, reducing, ameliorating, alleviating, or inhibiting progression of, pathogenic ocular neovascularization
AU2011213616B2 (en) 2010-02-08 2013-08-15 Microchips, Inc. Low-permeability, laser-activated drug delivery device
KR101876693B1 (en) 2010-03-08 2018-07-09 스펙트럼 파마슈티컬즈 인크 Thioxanthone-based autophagy inhibitor therapies to treat cancer
US9682133B2 (en) 2010-03-17 2017-06-20 Cornell University Disrupted adenovirus-based vaccine against drugs of abuse
EP2547660B1 (en) 2010-03-19 2015-01-07 The United States Of America, As Represented By The Secretary, Department of Health and Human Services Nitroxyl (hno) releasing compounds and uses thereof in treating diseases
EP2383286A1 (en) 2010-04-30 2011-11-02 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treatment of retinal degenerative diseases
CA2798084A1 (en) 2010-05-17 2011-11-24 Aerie Pharmaceuticals, Inc. Drug delivery devices for delivery of ocular therapeutic agents
WO2011159824A1 (en) 2010-06-16 2011-12-22 Allergan, Inc. Composition and method for treating overactive bladder
SI2600930T1 (en) 2010-08-05 2021-08-31 Forsight Vision4, Inc. Injector apparatus for drug delivery
AU2011285548B2 (en) 2010-08-05 2014-02-06 Forsight Vision4, Inc. Combined drug delivery methods and apparatus
HUE057267T2 (en) 2010-08-05 2022-05-28 Forsight Vision4 Inc Apparatus to treat an eye
WO2012021730A2 (en) 2010-08-11 2012-02-16 Genvec, Inc. Respiratory syncytial virus (rsv) vaccine
US8697056B2 (en) 2010-08-19 2014-04-15 Allergan, Inc. Compositions and soft tissue replacement methods
US8697057B2 (en) 2010-08-19 2014-04-15 Allergan, Inc. Compositions and soft tissue replacement methods
US8821457B2 (en) 2010-09-08 2014-09-02 Johnson & Johnson Vision Care, Inc. Punctal plug containing drug formulation
WO2012037217A1 (en) 2010-09-14 2012-03-22 Infinity Pharmaceuticals, Inc. Transfer hydrogenation of cyclopamine analogs
WO2012068549A2 (en) 2010-11-19 2012-05-24 Forsight Vision4, Inc. Therapeutic agent formulations for implanted devices
WO2012083297A2 (en) 2010-12-17 2012-06-21 Genvec, Inc. Adenoviral vectors with modified hexon regions
EP2654786B1 (en) 2010-12-20 2019-02-20 GenVec, Inc. Adenoviral vector-based dengue fever vaccine
US20120238994A1 (en) * 2010-12-22 2012-09-20 Martin Nazzaro Two-piece injectable drug delivery device with heat-cured seal
WO2012112757A2 (en) 2011-02-17 2012-08-23 Allergan, Inc. Compositions and improved soft tissue replacement methods
EP2678022A2 (en) 2011-02-23 2014-01-01 Allergan, Inc. Compositions and improved soft tissue replacement methods
US9012647B2 (en) 2011-04-07 2015-04-21 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Nitroxide modified non-steroidal anti-inflammatory compounds and uses thereof in the treatment and prevention of diseases or disorders
US8889672B2 (en) 2011-04-29 2014-11-18 The Regents Of The University Of Michigan Compounds, formulations, and methods of protein kinase C inhibition
SG194843A1 (en) 2011-05-18 2013-12-30 Univ California Compositions and methods for treating retinal diseases
WO2012162428A1 (en) 2011-05-23 2012-11-29 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Prime-boost vaccination for viral infection
WO2012170578A1 (en) * 2011-06-06 2012-12-13 Oak Crest Institute Of Science Drug delivery device employing wicking release window
US10245178B1 (en) 2011-06-07 2019-04-02 Glaukos Corporation Anterior chamber drug-eluting ocular implant
US20120316199A1 (en) 2011-06-07 2012-12-13 Ward Keith W Compositions and methods for treating, controlling, reducing, or ameliorating inflammatory pain
BR112013032199A2 (en) 2011-06-14 2017-12-12 Bikam Pharmaceuticals Inc opsin binding binders, compositions and methods of use
EP2726016B1 (en) 2011-06-28 2023-07-19 ForSight Vision4, Inc. An apparatus for collecting a sample of fluid from a reservoir chamber of a therapeutic device for the eye
EP2741720A1 (en) 2011-08-10 2014-06-18 On Demand Therapeutics, Inc. Laser-activated drug delivery device
WO2013040238A2 (en) 2011-09-13 2013-03-21 Vista Scientific Llc Sustained release ocular drug delivery devices and methods of manufacture
US9883968B2 (en) 2011-09-16 2018-02-06 Forsight Vision4, Inc. Fluid exchange apparatus and methods
US8685106B2 (en) 2011-11-15 2014-04-01 Abraham Lin Method of a pharmaceutical delivery system for use within a joint replacement
US9353063B2 (en) 2011-11-30 2016-05-31 Bikam Pharmaceuticals, Inc. Opsin-binding ligands, compositions and methods of use
JP6322142B2 (en) 2011-12-01 2018-05-09 ビカム ファーマスーティカルス,インコーポレイテッド Opsin binding ligands, compositions and methods of use
US10653650B2 (en) 2011-12-13 2020-05-19 Io Therapeutics, Inc. Treatment of diseases by concurrently eliciting remyelination effects and immunomodulatory effects using selective RXR agonists
AU2012352149B2 (en) 2011-12-13 2017-06-01 Io Therapeutics, Inc. Autoimmune disorder treatment using RXR agonists
US10080648B2 (en) 2012-01-24 2018-09-25 Clarvista Medical, Inc. Modular intraocular lens designs, tools and methods
US10028824B2 (en) 2012-01-24 2018-07-24 Clarvista Medical, Inc. Modular intraocular lens designs, tools and methods
US9364316B1 (en) * 2012-01-24 2016-06-14 Clarvista Medical, Inc. Modular intraocular lens designs, tools and methods
JP6270739B2 (en) 2012-01-24 2018-01-31 ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド, ア ボディー コーポレイトTHE REGENTS OF THE UNIVERSITY OF COLORADO, a body corporate Modular intraocular lens design and method
WO2013116061A1 (en) 2012-02-03 2013-08-08 Forsight Vision4, Inc. Insertion and removal methods and apparatus for therapeutic devices
EP2811952A1 (en) 2012-02-07 2014-12-17 On Demand Therapeutics, Inc. Drug delivery devices and methods of use thereof
WO2013123275A1 (en) 2012-02-16 2013-08-22 Allergan, Inc. Compositions and improved soft tissue replacement methods
EP2814482A1 (en) 2012-02-16 2014-12-24 Allergan, Inc. Compositions and improved soft tissue replacement methods
EP2814510A1 (en) 2012-02-16 2014-12-24 Allergan, Inc. Compositions and improved soft tissue replacement methods
WO2013123274A1 (en) 2012-02-16 2013-08-22 Allergan, Inc. Compositions and improved soft tissue replacement methods
US20150038557A1 (en) 2012-02-24 2015-02-05 Inserm (Institut National De La Sante Et De La Recherche Medicale) Methods and compositions for treatment of retinal degenerative diseases
US10093947B2 (en) 2012-02-28 2018-10-09 Cornell University AAV-directed persistent expression of an anti-nicotine antibody gene for smoking cessation
US10004811B2 (en) 2012-04-13 2018-06-26 Cornell University Development of a highly efficient second generation nicotine-conjugate vaccine to treat nicotine addiction
US9676824B2 (en) 2012-05-29 2017-06-13 Genvec, Inc. Herpes simplex virus vaccine
EP2855030B1 (en) 2012-06-01 2019-08-21 SurModics, Inc. Apparatus and method for coating balloon catheters
US9827401B2 (en) 2012-06-01 2017-11-28 Surmodics, Inc. Apparatus and methods for coating medical devices
NZ706067A (en) 2012-09-26 2016-07-29 Tangent Reprofiling Ltd Modulators of androgen synthesis
CA2887893C (en) 2012-10-09 2021-07-06 Douglas SEARS Therapeutic treatment for attention deficit disorder
AU2013336683A1 (en) 2012-10-24 2015-05-14 Biocopea Limited Drug combinations containing statins for treating cardiovascular diseases
US11090468B2 (en) 2012-10-25 2021-08-17 Surmodics, Inc. Apparatus and methods for coating medical devices
WO2014093270A1 (en) 2012-12-10 2014-06-19 Virginia Commonwealth University Tropism modified cancer terminator virus (ad.5/3 ctv;ad.5/3-ctv-m7)
JP6513576B2 (en) 2013-01-14 2019-05-15 ヘルス クリニックス リミテッド Anticancer agents and uses
EP2956096A1 (en) 2013-02-15 2015-12-23 Allergan, Inc. Sustained drug delivery implant
WO2014164703A1 (en) 2013-03-11 2014-10-09 University Of Florida Research Foundation, Inc. Delivery of card protein as therapy for occular inflammation
WO2014152959A1 (en) 2013-03-14 2014-09-25 Forsight Vision4, Inc. Systems for sustained intraocular delivery of low solubility compounds from a port delivery system implant
US10517759B2 (en) 2013-03-15 2019-12-31 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
AU2014235854B2 (en) 2013-03-21 2019-04-11 Eupraxia Pharmaceuticals USA LLC Injectable sustained release composition and method of using the same for treating inflammation in joints and pain associated therewith
EP4302736A3 (en) 2013-03-28 2024-04-03 ForSight Vision4, Inc. Ophthalmic implant for delivering therapeutic substances
US20160355573A1 (en) 2013-09-05 2016-12-08 Cornell University Gene therapy for alzheimer's and other neurodegenerative diseases and conditions
US10087224B2 (en) 2013-11-01 2018-10-02 Cornell University Gene therapy for Alzheimer's and other neurodegenerative diseases and conditions
EA201891279A1 (en) 2013-12-24 2019-01-31 Президент Энд Феллоус Оф Гарвард Колледж ANALOGUES OF CORTISTATIN, THEIR SYNTHESIS AND APPLICATIONS
WO2015112739A1 (en) 2014-01-22 2015-07-30 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Compounds and method for treating parp1-deficient cancers
EP4215159A1 (en) 2014-02-18 2023-07-26 Alcon Inc. Modular intraocular lens designs, tools and methods
WO2015184173A1 (en) 2014-05-29 2015-12-03 Dose Medical Corporation Implants with controlled drug delivery features and methods of using same
US20160008376A1 (en) 2014-07-10 2016-01-14 Biocopea Limited Compositions, Methods and Uses for Treating Gender-Biased Immune Disorders
KR102416726B1 (en) 2014-07-15 2022-07-05 포사이트 비젼4, 인크. Ocular implant delivery device and method
WO2016022750A1 (en) 2014-08-08 2016-02-11 Forsight Vision4, Inc. Stable and soluble formulations of receptor tyrosine kinase inhibitors, and methods of preparation thereof
US10507101B2 (en) 2014-10-13 2019-12-17 W. L. Gore & Associates, Inc. Valved conduit
US10500091B2 (en) 2014-11-10 2019-12-10 Forsight Vision4, Inc. Expandable drug delivery devices and methods of use
JP7002331B2 (en) 2015-01-30 2022-01-20 クラービスタ メディカル,インコーポレイテッド A device configured for intraocular insertion
WO2016164920A1 (en) 2015-04-09 2016-10-13 Cornell University Gene therapy to prevent reactions to allergens
EP3294298A4 (en) 2015-05-08 2018-10-17 President and Fellows of Harvard College Cortistatin analogues, syntheses, and uses thereof
EP3294894B8 (en) 2015-05-12 2019-09-25 The U.S.A. as represented by the Secretary, Department of Health and Human Services Aav isolate and fusion protein comprising nerve growth factor signal peptide and parathyroid hormone
KR20180014051A (en) 2015-05-28 2018-02-07 코넬 유니버시티 Delivery of adeno-associated virus mediated C1E1 as an angiostatic agent
BR112017026103B1 (en) 2015-06-04 2023-10-03 Sol-Gel Technologies Ltd TOPICAL COMPOSITIONS WITH HEDGEHOG INHIBITOR COMPOUND, TOPICAL DELIVERY SYSTEM AND THEIR USES
US10206978B2 (en) 2015-06-08 2019-02-19 Retinal Solutions Llc Norrin regulation of junction proteins and the use thereof to treat epithelial or endothelial membrane leakage induced edema
US10202429B2 (en) 2015-06-08 2019-02-12 Retinal Solutions Llc Norrin regulation of cellular production of junction proteins and use to treat retinal vasculature edema
US10669321B2 (en) 2015-06-08 2020-06-02 Retinal Solutions Llc Retinal capillary regeneration with synthetic norrin protein
WO2017004411A1 (en) 2015-07-01 2017-01-05 President And Fellows Of Harvard College Cortistatin analogues and syntheses and uses thereof
US11925578B2 (en) 2015-09-02 2024-03-12 Glaukos Corporation Drug delivery implants with bi-directional delivery capacity
US11564833B2 (en) 2015-09-25 2023-01-31 Glaukos Corporation Punctal implants with controlled drug delivery features and methods of using same
ES2672993T3 (en) 2015-10-27 2018-06-19 Eupraxia Pharmaceuticals Inc. Sustained release formulations of local anesthetics
NZ741393A (en) 2015-10-31 2018-11-30 Io Therapeutics Inc Treatment of nervous system disorders using combinations of rxr agonists and thyroid hormones
AU2016349363B2 (en) 2015-11-04 2022-01-27 Alcon Inc. Modular intraocular lens designs, tools and methods
US11180538B2 (en) 2015-11-13 2021-11-23 University Of Utah Research Foundation Combinatorial gene construct and non-viral delivery for anti-obesity
AU2016355345A1 (en) 2015-11-20 2018-05-31 Forsight Vision4, Inc. Porous structures for extended release drug delivery devices
CA3014774A1 (en) 2016-02-17 2017-08-24 Children's Medical Center Corporation Ffa1 (gpr40) as a therapeutic target for neural angiogenesis diseases or disorders
US12029681B2 (en) 2016-03-01 2024-07-09 The Hilsinger Company Parent, Llc Therapeutic eye mask system
US12011388B2 (en) 2016-03-01 2024-06-18 The Hilsinger Company Parent, Llc Therapeutic thermal compress with phase-change material
WO2017155578A1 (en) 2016-03-10 2017-09-14 Io Therapeutics, Inc. Treatment of muscular disorders with combinations of rxr agonists and thyroid hormones
EP3426302B1 (en) 2016-03-10 2022-12-14 IO Therapeutics, Inc. Treatment of autoimmune diseases with combinations of rxr agonists and thyroid hormones
CN109195556B (en) 2016-04-05 2021-03-26 弗赛特影像4股份有限公司 Implantable ocular drug delivery device
CN109937025B (en) 2016-04-20 2022-07-29 多斯医学公司 Delivery device for bioabsorbable ocular drugs
US10501744B2 (en) 2016-05-04 2019-12-10 Indiana University Research And Technology Corporation Presentation of bioactive proteins
US11045309B2 (en) 2016-05-05 2021-06-29 The Regents Of The University Of Colorado Intraocular lens designs for improved stability
USD844795S1 (en) 2016-11-30 2019-04-02 Bruder Healthcare Company, Llc Therapeutic eye mask
USD871598S1 (en) 2016-11-30 2019-12-31 Bruder Healthcare Company, Llc Therapeutic eye mask
US11406533B2 (en) 2017-03-17 2022-08-09 W. L. Gore & Associates, Inc. Integrated aqueous shunt for glaucoma treatment
TW201920654A (en) 2017-06-05 2019-06-01 加州大學董事會 Compositions for treating retinal diseases and methods for making and using them
US11382736B2 (en) 2017-06-27 2022-07-12 Alcon Inc. Injector, intraocular lens system, and related methods
US11103460B2 (en) 2017-08-07 2021-08-31 Board Of Regents, The University Of Texas System Fabrication methods for nanodelivery systems for long term controlled delivery of active pharmaceutical ingredients
US12025615B2 (en) 2017-09-15 2024-07-02 Arizona Board Of Regents On Behalf Of Arizona State University Methods of classifying response to immunotherapy for cancer
CA3076373A1 (en) 2017-09-20 2019-03-28 Io Therapeutics, Inc. Treatment of disease with esters of selective rxr agonists
CA3077189A1 (en) 2017-10-02 2019-04-11 Genedit Inc. Modified cpf1 guide rna
EP3697401A4 (en) 2017-10-18 2021-11-24 Washington University Dominant negative sarm1 molecules as a therapeutic strategy for neurodegenerative diseases or disorders
WO2019103906A1 (en) 2017-11-21 2019-05-31 Forsight Vision4, Inc. Fluid exchange apparatus for expandable port delivery system and methods of use
KR20240132386A (en) 2017-12-29 2024-09-03 코넬 유니버시티 Gene therapy for eosinophilic disorders
EP3775177A1 (en) 2018-04-03 2021-02-17 Cornell University Gene therapy for oxidative stress
WO2019222121A1 (en) * 2018-05-12 2019-11-21 Goldenbiotech, Llc Self-retaining implantable drug delivery device
US11821009B2 (en) 2018-05-15 2023-11-21 Cornell University Genetic modification of the AAV capsid resulting in altered tropism and enhanced vector delivery
CN111971026A (en) 2018-05-24 2020-11-20 塞拉尼斯伊娃高性能聚合物公司 Implantable devices for sustained release of macromolecular drug compounds
AU2019275409B2 (en) 2018-05-24 2024-08-15 Celanese Eva Performance Polymers Llc Implantable device for sustained release of a macromolecular drug compound
US11689849B2 (en) 2018-05-24 2023-06-27 Nureva, Inc. Method, apparatus and computer-readable media to manage semi-constant (persistent) sound sources in microphone pickup/focus zones
EP3829718A4 (en) 2018-07-31 2022-06-22 Cornell University Gene therapy methods to control organ function
WO2020112816A1 (en) 2018-11-29 2020-06-04 Surmodics, Inc. Apparatus and methods for coating medical devices
US11678983B2 (en) 2018-12-12 2023-06-20 W. L. Gore & Associates, Inc. Implantable component with socket
US11039954B2 (en) 2019-03-21 2021-06-22 Microoptx Inc. Implantable ocular drug delivery devices and methods
US11819590B2 (en) 2019-05-13 2023-11-21 Surmodics, Inc. Apparatus and methods for coating medical devices
US10966950B2 (en) 2019-06-11 2021-04-06 Io Therapeutics, Inc. Use of an RXR agonist in treating HER2+ cancers
BR112021026265A2 (en) 2019-06-27 2022-06-14 Layerbio Inc Eye device delivery methods and systems
EP4007609A1 (en) 2019-08-01 2022-06-08 Cornell University Targeted gene therapy to treat neurological diseases
WO2021067550A1 (en) 2019-10-02 2021-04-08 Arizona Board Of Regents On Behalf Of Arizona State University Methods and compositions for identifying neoantigens for use in treating and preventing cancer
WO2021076794A1 (en) 2019-10-15 2021-04-22 Cornell University Methods for modulating level of expression from gene therapy expression cassette
US20230405148A1 (en) 2019-10-16 2023-12-21 Cornell University Gene therapy for alzheimer's disease
WO2021086973A2 (en) 2019-10-28 2021-05-06 University Of Iowa Research Foundation Formulation for delivery of lubricin gene
KR20220107243A (en) 2019-11-25 2022-08-02 코넬 유니버시티 APOE gene therapy
CN118767143A (en) 2019-12-12 2024-10-15 听治疗有限责任公司 Compositions and methods for preventing and treating hearing loss
US11826421B2 (en) 2020-03-20 2023-11-28 Athanor Biosciences, Inc. Bacteriophage-based vaccines and engineered bacteriophage
WO2021207069A1 (en) 2020-04-05 2021-10-14 Athanor Biosciences, Inc. Bacteriophage-based antibodies and protein-based binders
EP4138921A1 (en) 2020-04-23 2023-03-01 University Of Iowa Research Foundation Gper proteolytic targeting chimeras
EP4157309A1 (en) 2020-06-01 2023-04-05 Black Cat Bio Limited Compositions and methods for treating infections and netopathy
WO2022011099A1 (en) 2020-07-08 2022-01-13 Regents Of The University Of Minnesota Modified hexosaminidase and uses thereof
WO2022036104A1 (en) 2020-08-12 2022-02-17 University Of Iowa Research Foundation Insulin sensitizers for the treatment of diabetes mellitus
WO2022040564A1 (en) 2020-08-21 2022-02-24 University Of Iowa Research Foundation Cationic nanoparticle adjuvants
US20230414787A1 (en) 2020-08-27 2023-12-28 University Of Iowa Research Foundation Gene knock-out for treatment of glaucoma
US20240100183A1 (en) 2020-12-11 2024-03-28 University Of Iowa Research Foundation Compositions comprising molecules for cystic fibrosis treatment
EP4340894A1 (en) 2021-05-21 2024-03-27 University Of Iowa Research Foundation Anti-oxidant containing particles and methods of use
EP4395785A1 (en) 2021-08-31 2024-07-10 Inserm (Institut National de la Santé et de la Recherche Scientifique) Methods for the treatment of ocular rosacea
US11357620B1 (en) 2021-09-10 2022-06-14 California LASIK & Eye, Inc. Exchangeable optics and therapeutics
KR20240115316A (en) 2021-12-07 2024-07-25 아이오 테라퓨틱스, 인크. Use of RXR agonists in the treatment of drug-resistant HER2+ cancer
KR20240119103A (en) 2021-12-07 2024-08-06 아이오 테라퓨틱스, 인크. Use of RXR agonists and taxanes in the treatment of HER2+ cancer
WO2023130022A2 (en) 2021-12-29 2023-07-06 University Of Iowa Research Foundation Cystatin rna compositions for tissue engineering
USD1033637S1 (en) 2022-01-24 2024-07-02 Forsight Vision4, Inc. Fluid exchange device
WO2023164727A1 (en) 2022-02-28 2023-08-31 University Of Iowa Research Foundation A-fabp antibodies for diagnosis and treatment of obesity-associated diseases
US20230346862A1 (en) 2022-05-02 2023-11-02 Athanor Biosciences, Inc. Cancer eradicating - bio-nanoparticles (ce-bnp)
WO2023215560A1 (en) 2022-05-05 2023-11-09 Atoosa Corporation Tumor cell/immune cell multivalent receptor engager – bio-nanoparticle (timre-bnp)
WO2024037982A1 (en) 2022-08-16 2024-02-22 Boehringer Ingelheim International Gmbh Pharmaceutical formulations of nintedanib for intraocular use

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730013A (en) * 1981-10-08 1988-03-08 Merck & Co., Inc. Biosoluble ocular insert
US4865846A (en) * 1988-06-03 1989-09-12 Kaufman Herbert E Drug delivery system
US4882150A (en) * 1988-06-03 1989-11-21 Kaufman Herbert E Drug delivery system

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3416530A (en) * 1966-03-02 1968-12-17 Richard A. Ness Eyeball medication dispensing tablet
US3896819A (en) * 1969-04-01 1975-07-29 Alejandro Zaffaroni IUD having a replenishing drug reservoir
US3630200A (en) * 1969-06-09 1971-12-28 Alza Corp Ocular insert
US3618604A (en) * 1969-06-09 1971-11-09 Alza Corp Ocular insert
US3632739A (en) * 1969-12-29 1972-01-04 Sandoz Ag Solid sustained release pharmaceutical preparation
US3980463A (en) * 1970-11-16 1976-09-14 Sumitomo Chemical Company, Limited Process for producing granular composition for use in agriculture and horticulture
US3993071A (en) * 1971-09-09 1976-11-23 Alza Corporation Bioerodible ocular device
US4036227A (en) * 1973-04-25 1977-07-19 Alza Corporation Osmotic releasing device having a plurality of release rate patterns
US3916899A (en) * 1973-04-25 1975-11-04 Alza Corp Osmotic dispensing device with maximum and minimum sizes for the passageway
US3961628A (en) * 1974-04-10 1976-06-08 Alza Corporation Ocular drug dispensing system
US4142526A (en) * 1974-12-23 1979-03-06 Alza Corporation Osmotic releasing system with means for changing release therefrom
US4014335A (en) * 1975-04-21 1977-03-29 Alza Corporation Ocular drug delivery device
US3977404A (en) * 1975-09-08 1976-08-31 Alza Corporation Osmotic device having microporous reservoir
US4034758A (en) * 1975-09-08 1977-07-12 Alza Corporation Osmotic therapeutic system for administering medicament
US4077407A (en) * 1975-11-24 1978-03-07 Alza Corporation Osmotic devices having composite walls
US4008719A (en) * 1976-02-02 1977-02-22 Alza Corporation Osmotic system having laminar arrangement for programming delivery of active agent
US4014334A (en) * 1976-02-02 1977-03-29 Alza Corporation Laminated osmotic system for dispensing beneficial agent
US4247498A (en) * 1976-08-30 1981-01-27 Akzona Incorporated Methods for making microporous products
US4111203A (en) * 1976-11-22 1978-09-05 Alza Corporation Osmotic system with means for improving delivery kinetics of system
US4111201A (en) * 1976-11-22 1978-09-05 Alza Corporation Osmotic system for delivering selected beneficial agents having varying degrees of solubility
US4256108A (en) * 1977-04-07 1981-03-17 Alza Corporation Microporous-semipermeable laminated osmotic system
US4519909A (en) * 1977-07-11 1985-05-28 Akzona Incorporated Microporous products
US4186184A (en) * 1977-12-27 1980-01-29 Alza Corporation Selective administration of drug with ocular therapeutic system
JPS54119021A (en) * 1978-03-06 1979-09-14 Nippon Kayaku Co Ltd Carcinostatic agent
US4290426A (en) * 1978-05-04 1981-09-22 Alza Corporation Dispenser for dispensing beneficial agent
US4200098A (en) * 1978-10-23 1980-04-29 Alza Corporation Osmotic system with distribution zone for dispensing beneficial agent
US4326525A (en) * 1980-10-14 1982-04-27 Alza Corporation Osmotic device that improves delivery properties of agent in situ
US4327725A (en) * 1980-11-25 1982-05-04 Alza Corporation Osmotic device with hydrogel driving member
US4439196A (en) * 1982-03-18 1984-03-27 Merck & Co., Inc. Osmotic drug delivery system
US4475916A (en) * 1982-03-18 1984-10-09 Merck & Co., Inc. Osmotic drug delivery system
DK90883A (en) * 1982-03-18 1983-09-19 Merck & Co Inc CONTAINER FOR OSMOTIC RELEASE OF A SUBSTANCE OR MIXTURE
US4432965A (en) * 1982-07-09 1984-02-21 Key Pharmaceuticals, Inc. Quinidine sustained release dosage formulation
US4519801A (en) * 1982-07-12 1985-05-28 Alza Corporation Osmotic device with wall comprising cellulose ether and permeability enhancer
US4522625A (en) * 1982-09-29 1985-06-11 Alza Corporation Drug dispenser comprising wall formed of semipermeable member and enteric member
US4673405A (en) * 1983-03-04 1987-06-16 Alza Corporation Osmotic system with instant drug availability
US4627850A (en) * 1983-11-02 1986-12-09 Alza Corporation Osmotic capsule
JPS60100516A (en) * 1983-11-04 1985-06-04 Takeda Chem Ind Ltd Preparation of sustained release microcapsule
US4777049A (en) * 1983-12-01 1988-10-11 Alza Corporation Constant release system with pulsed release
EP0147780A3 (en) * 1984-01-03 1987-03-11 Merck & Co. Inc. Drug delivery device
IT1206166B (en) * 1984-07-26 1989-04-14 Sigma Tau Ind Farmaceuti DEVICE FOR RELEASING A SUBSTANCE IN A DISSOLUTION FLUID WITH ZERO ORDER KINETICS AND PROCEDURE FOR ITS PREPARATION
US4692336A (en) * 1984-03-19 1987-09-08 Alza Corporation Self controlled release device for administering beneficial agent to recipient
US4716031A (en) * 1984-03-21 1987-12-29 Alza Corporation Drug dispenser comprising a multiplicity of members acting together for successfully dispensing drug
US4615698A (en) * 1984-03-23 1986-10-07 Alza Corporation Total agent osmotic delivery system
US4657543A (en) * 1984-07-23 1987-04-14 Massachusetts Institute Of Technology Ultrasonically modulated polymeric devices for delivering compositions
US4927687A (en) * 1984-10-01 1990-05-22 Biotek, Inc. Sustained release transdermal drug delivery composition
IE58110B1 (en) * 1984-10-30 1993-07-14 Elan Corp Plc Controlled release powder and process for its preparation
US4913906B1 (en) * 1985-02-28 2000-06-06 Yissum Res Dev Co Controlled release dosage form of valproic acid
US4609374A (en) * 1985-04-22 1986-09-02 Alza Corporation Osmotic device comprising means for governing initial time of agent release therefrom
US4693886A (en) * 1985-04-22 1987-09-15 Alza Corporation Osmotic device with inert core
US4624847A (en) * 1985-04-22 1986-11-25 Alza Corporation Drug delivery device for programmed delivery of beneficial drug
US4720384A (en) * 1985-05-03 1988-01-19 E. I. Du Pont De Nemours And Company Manufacture of hollow fine tubular drug delivery systems
US4898733A (en) * 1985-11-04 1990-02-06 International Minerals & Chemical Corp. Layered, compression molded device for the sustained release of a beneficial agent
US4717567A (en) * 1985-11-25 1988-01-05 Eastman Kodak Company Rumen-stable pellets
IT1188212B (en) * 1985-12-20 1988-01-07 Paolo Colombo SYSTEM FOR THE RELEASE SPEED OF ACTIVE SUBSTANCES
US5141752A (en) * 1986-05-09 1992-08-25 Alza Corporation Delayed drug delivery device
US4832957A (en) * 1987-12-11 1989-05-23 Merck & Co., Inc. Controlled release combination of carbidopa/levodopa
US4786500A (en) * 1986-06-26 1988-11-22 Alza Corporation Programmable agent delivery system
JPH0794384B2 (en) * 1986-09-01 1995-10-11 帝国製薬株式会社 Sustained-release oral formulation
US4861627A (en) * 1987-05-01 1989-08-29 Massachusetts Institute Of Technology Preparation of multiwall polymeric microcapsules
US4891223A (en) * 1987-09-03 1990-01-02 Air Products And Chemicals, Inc. Controlled release delivery coating formulation for bioactive substances
US4994273A (en) * 1987-11-02 1991-02-19 Merck & Co., Inc. Solubility modulated drug delivery device
IT1223150B (en) * 1987-11-18 1990-09-12 Ubaldo Conte TABLET FOR OPHTHALMIC USE AND CONTROLLED RELEASE OF THE ACTIVE SUBSTANCE
US4877618A (en) * 1988-03-18 1989-10-31 Reed Jr Fred D Transdermal drug delivery device
US5098443A (en) * 1989-03-23 1992-03-24 University Of Miami Method of implanting intraocular and intraorbital implantable devices for the controlled release of pharmacological agents
US5028435A (en) * 1989-05-22 1991-07-02 Advanced Polymer Systems, Inc. System and method for transdermal drug delivery
AU651084B2 (en) * 1990-01-30 1994-07-14 Akzo N.V. Article for the controlled delivery of an active substance, comprising a hollow space fully enclosed by a wall and filled in full or in part with one or more active substances
US5091185A (en) * 1990-06-20 1992-02-25 Monsanto Company Coated veterinary implants
IS3778A7 (en) * 1990-10-31 1992-05-02 Amgen Inc. A method for administering animal growth hormone, where the given amount is controlled

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730013A (en) * 1981-10-08 1988-03-08 Merck & Co., Inc. Biosoluble ocular insert
US4865846A (en) * 1988-06-03 1989-09-12 Kaufman Herbert E Drug delivery system
US4882150A (en) * 1988-06-03 1989-11-21 Kaufman Herbert E Drug delivery system

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0613383A1 (en) * 1991-11-21 1994-09-07 Thee Alfred Device and method for administration to eye.
EP0613383A4 (en) * 1991-11-21 1994-12-28 Thee Alfred Device and method for administration to eye.
WO1993021874A2 (en) * 1992-05-04 1993-11-11 Allergan, Inc. Subconjunctival implants for ocular drug delivery
US5476511A (en) * 1992-05-04 1995-12-19 Allergan, Inc. Subconjunctival implants for ocular drug delivery
WO1993021874A3 (en) * 1992-05-04 1994-01-06 Allergan Inc Subconjunctival implants for ocular drug delivery
WO1998055101A1 (en) * 1997-06-04 1998-12-10 Debio Recherche Pharmaceutique S.A. Implants for controlled release of pharmaceutically active principles and method for making same
US6319512B1 (en) 1997-06-04 2001-11-20 Debio Recherche Pharmaceutique Sa Implants for controlled release of pharmaceutically active principles and method for making same
AU742372B2 (en) * 1997-06-04 2002-01-03 Debio Recherche Pharmaceutique S.A. Implants for controlled release of pharmaceutically active principles and method for making same
US9849085B2 (en) 2000-04-26 2017-12-26 Psivida Us Inc. Sustained release drug delivery devices, methods of use, and methods of manufacturing thereof
EP2772225A1 (en) * 2001-03-15 2014-09-03 THE UNITED STATES OF AMERICA, represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES Ocular therapeutic agent delivery devices and methods for making and using such devices
US7115592B2 (en) 2003-06-16 2006-10-03 Institute Of Organic Chemistry Phosphonate substituted pyrimidine compounds and methods for therapy
WO2004111064A1 (en) 2003-06-16 2004-12-23 Institute Of Organic Chemistry And Biochemistry, Academy Of Sciences Of The Czech Republic Pyrimidine compounds having phosphonate groups as antiviral nucleotide analogs
EP2308885A2 (en) 2008-02-20 2011-04-13 Gilead Sciences, Inc. Novel compounds and methods for therapy
US10004636B2 (en) 2009-06-03 2018-06-26 Forsight Vision5, Inc. Anterior segment drug delivery
US10736774B2 (en) 2009-06-03 2020-08-11 Forsight Vision5, Inc. Anterior segment drug delivery
US9937073B2 (en) 2010-06-01 2018-04-10 Forsight Vision5, Inc. Ocular insert apparatus and methods
RU2618194C2 (en) * 2011-09-14 2017-05-02 Форсайт Вижн5, Инк. Eye inserter and methods
US10835416B2 (en) 2011-09-14 2020-11-17 Forsight Vision5, Inc. Ocular insert apparatus and methods
RU2740680C2 (en) * 2011-09-14 2021-01-19 Форсайт Вижн5, Инк. Eye inserter device and methods
US10456293B2 (en) 2012-10-26 2019-10-29 Forsight Vision5, Inc. Ophthalmic system for sustained release of drug to eye
US9750636B2 (en) 2012-10-26 2017-09-05 Forsight Vision5, Inc. Ophthalmic system for sustained release of drug to eye
US10098836B2 (en) 2013-05-02 2018-10-16 Retina Foundation Of The Southwest Method for forming a molded two-layer ocular implant
US10449145B2 (en) 2013-05-02 2019-10-22 Retina Foundation Of The Southwest Two-layer ocular implant
US10881609B2 (en) 2013-05-02 2021-01-05 Retina Foundation Of The Southwest Methods for treating eye disorders using ocular implants
US11224602B2 (en) 2015-04-13 2022-01-18 Forsight Vision5, Inc. Ocular insert composition of a semi-crystalline or crystalline pharmaceutically active agent

Also Published As

Publication number Publication date
ATE511832T1 (en) 2011-06-15
CA2104699C (en) 2008-02-12
EP0861659B1 (en) 2011-06-08
CA2104699A1 (en) 1992-08-22
DE69227187D1 (en) 1998-11-05
EP0577646A4 (en) 1994-06-01
EP0577646A1 (en) 1994-01-12
US5378475A (en) 1995-01-03
DE69227187T2 (en) 1999-06-02
JP3908592B2 (en) 2007-04-25
EP0577646B1 (en) 1998-09-30
ATE171617T1 (en) 1998-10-15
ES2366573T3 (en) 2011-10-21
ES2125259T3 (en) 1999-03-01
DK0861659T3 (en) 2011-08-29
JPH06505274A (en) 1994-06-16
JP2003002825A (en) 2003-01-08
AU660012B2 (en) 1995-06-08
AU1419792A (en) 1992-09-15
EP0861659A1 (en) 1998-09-02
DK0577646T3 (en) 1999-06-21

Similar Documents

Publication Publication Date Title
EP0577646B1 (en) Sustained release drug delivery devices
AU741846B2 (en) Sustained release drug delivery devices
US9849085B2 (en) Sustained release drug delivery devices, methods of use, and methods of manufacturing thereof
EP1404295B1 (en) Sustained release drug delivery devices with coated drug cores
EP1345588A2 (en) Sustained release drug delivery devices
AU2001253675A1 (en) Sustained release drug delivery devices, methods of use, and methods of manufacturing thereof
EP1847255A2 (en) Sustained release drug delivery devices with coated drug cores

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2104699

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1992906830

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992906830

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992906830

Country of ref document: EP