WO1992014300A1 - High power switch-mode radio frequency amplifier method and apparatus - Google Patents
High power switch-mode radio frequency amplifier method and apparatus Download PDFInfo
- Publication number
- WO1992014300A1 WO1992014300A1 PCT/US1992/000844 US9200844W WO9214300A1 WO 1992014300 A1 WO1992014300 A1 WO 1992014300A1 US 9200844 W US9200844 W US 9200844W WO 9214300 A1 WO9214300 A1 WO 9214300A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switch
- voltage
- radio frequency
- power
- load
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/217—Class D power amplifiers; Switching amplifiers
- H03F3/2176—Class E amplifiers
Definitions
- the present invention relates generally to the field of radio frequency (RF) power amplifiers, focusing on the aspects involved in the field when RF power amplifiers are utilized to generate high power outputs. More particularly the invention pertains to the narrow field of high power RF amplifiers having switching devices and configured similarly to those operating in a Class E mode.
- RF radio frequency
- Radio frequency circuit design unlike circuit design at the lower frequencies, is a field which involves an interplay between the theoretical and the practical. While it is characterized by the same fundamental theoretical relationships well known to almost any circuit designer, across the range of frequencies involved, practical effects also become important. As a result, circuit designers in this field are often required to simultaneously understand and apply the theory of operation of each device, the function of each device as it actually operates, and the ability to experimentally attempt and reconcile results achieved. In actually fashioning circuits and devices to achieve extreme levels of performance, this latter aspect the ability to experimentally attempt and reconcile results achieved becomes very significant as achievements seemingly straightforward from a theoretical basis become increasingly difficult to realize. In this regard, one of the challenges faced is that of understanding and utilizing the theoretical preconceptions while remaining open minded enough to go beyond the limits described by them.
- the present invention can easily produce many times this amount. Where the prior art devices required the use of expensive RF switching devices in order to achieve their levels of performance, the present invention requires only inexpensive switches to achieve similar performance levels. Where the prior art devices rigidly adhered to achieving efficiency through the constraint of pursuing zero voltage at the instant of switch turn-on, the present invention departs sharply to teach a substantial voltage at such time. Perhaps most importantly, however, the present invention discloses a more accurate method of designing high power RF amplifier circuitry whereby a broad variety of improvements in performance can be achieved and whereby each of these improvements may be optimized for different applications.
- the present invention discloses a technique and device to amplify and generate a high power radio frequency signal. Rather than affording an incremental increase in performance over the prior art, the invention utilizes techniques and circuitry which were previously considered undesirable to achieve significant leaps in performance and other criteria compared to the prior art. It also allows for different modes of operation whereby goals such as power, size, cost, and reliability can be optimized depending upon the particular application.
- the invention involves both methods and embodiments of an apparatus. Each of these achieve several different objects which, when combined, act to achieve the mentioned leaps in performance.
- the invention discloses a switch-mode RF amplifier which creates a substantial voltage step at the end of the non-conductive time period to achieve different results ranging from allowing more RF power to be generated to allowing a less expensive switch to be used.
- undesirable internal switch characteristics are actually utilized in a uniquely desirable way to minimize problematic RF effects at the higher frequencies and powers such as in the HF range.
- the undesirable internal switch characteristics are used to lessen sensitivity of the amplifier to tuning.
- designs are used which simplify and lessen the space, and increase the power densities, required for RF amplifiers.
- the invention breaks from several time-honored traditions in RF power amplification. While drawing from some of the operating conditions used in Class E operation, the invention expands upon these conditions in a manner which could be characterized as a new, unique class of operation. With simpler circuitry, the invention teaches the selection and coordination of network components to allow a voltage step in the response waveform and to eliminate a current loop previously utilized. By recognizing and utilizing (rather than avoiding or compensating for) the inherent characteristics in realistic switches, the invention achieves its goals.
- a general object of the present invention is to provide techniques and devices which achieve performance with respect to a variety of criteria.
- One object of the present invention is to provide an RF power amplifier which can achieve power levels beyond the limits of those experienced by the prior art devices.
- an object is to maintain reliability standards consistent with or above those existing for the prior art.
- the invention also is designed to avoid the creation of unusual limitations peculiar to the design and allows operation with frequency sensitivities consistent with the prior art devices.
- Another object of the present invention is to provide designs and techniques which afford manufacturing and commercial advantages.
- Another object of the present invention is to reduce the complexity and number of components required in the amplification circuitry.
- the invention has several different goals and objects. Practically, it is an object to allow a design which is less expensive to manufacture. This is achieved both through the use of fewer components and the use of even less expensive individual components. For some applications, it is an object to provide a design which is smaller. Naturally this may enhance the scope of application of such amplifiers.
- Another object of the present invention is to overcome the limitations encountered in some operating parameters. At higher frequency and power, the effects of circulating currents have previously posed limitations. The present invention overcomes these limitations and as a result allows performance leaps. An object in this regard is to minimize circulating currents and improve output form.
- Yet another object of the present invention is to accommodate existing switch designs and limitations.
- the invention not only avoids the need to overcome switch limitations, but actually utilizes the inherent characteristics of a practical transistor switch to achieve its performance abilities.
- One of the modes in which the present invention can be configured acts to address the voltage breakdown limitations found for many switches. In so doing it has as an object the reduction of the voltage to which the switch is subjected.
- the invention also allows designers to recognize the impact of the inherent characteristics of practical switches.
- An object of the invention is to disclose to designers the relationship between switch characteristics and circuit performance. Once the character of the switch is determined, the designer may coordinate all of the circuit's other components to optimize a variety of operating parameters.
- a further object of the invention is to provide techniques and designs whereby trade-offs may be accepted by the designer to optimize specific performance parameters depending upon application.
- an object is to utilize some trade-offs, one example being that of efficiency, in a manner that allows offsetting gains such that the result in only minor changes and yet still realizes the performance advances desired.
- Figure 1 is a circuit diagram of an embodiment of the invention.
- Figures 2a and 2b are representations of the voltage and current waveforms during the response and conductive time periods, respectively.
- Figures 3a and 3b are representations of the voltage and current waveforms of prior art devices during the response and conductive time periods, respectively.
- Figure 4 is a schematic representation of a realistic FET switch device.
- Figure 5 is a circuit diagram of the typical prior art device showing the current loops which exist.
- Figure 1 shows the present invention as it is currently configured.
- this new circuit and the potentially new class of operation can be varied.
- the performance boundaries have not yet been established. Accordingly, it is anticipated that refinements to the present understanding may continue to be added and additional performance achieved.
- the present invention embarks in a completely new direction, it should be understood that such refinements and improvements will fall within the scope of the present invention and its claims.
- the invention is most simply characterized as a single loop RF power amplifier in which power amplifier (10) is combined with load (1 1) to create network current loop (33).
- load (11 ) may be any device which utilizes power and may have its own reactive aspects as well.
- this power may be supplied either in a continuous, pulsed, or even amplitude modulated manner.
- voltage supply (12) includes RF choke (45).
- Network current loop (33) includes reactive network circuitry (15) including, in simplified form, serially- connected inductor (26) and separate capacitor (27). These are also serially connected to switch (13). Switch (13) and toad (11 ) are connected to common voltage reference (28) to complete network current loop (33). In this manner, switch has common lead (43) well defined.
- the amplifier can be arranged to look very similar to a Class E amplifier, it functions differently in many regards. [Much like the original Class E amplifier does with respect to its predecessors.] Like a Class E amplifier the present invention has inherently high efficiency and is relatively simple.
- Class E amplifiers in general, however, are designed such that when the switch transitions from "off" (its non-conductive state) to "on” (its conductive state) the voltage across it is essentially zero during the switching transition. This is in sharp contrast to the present invention. While in Class E operation, this condition is desired to minimize turn-on or step losses, an exactly opposite condition that of a substantial voltage step is desired by the present invention to achieve performance improvements. In Class E operation, the network causes the waveform across the transistor to approach both a zero voltage and a zero slope at the end of the "off" state. The present invention does not require these restrictions. As a result, all aspects of the circuit may be optimized for high output power. The result is a single stage RF amplifier which may operate efficiently at power levels of many kilowatts.
- current waveform (44) in this class of operation includes current spike (39) in all cycles after the initial cycle which is not shown.
- Current waveform (44) is abruptly driven to zero at the end of conduction time period (30) by the transition of switch (13) to its non-conducting state at turn-off time (23). This transition is accomplished rapidly such that no significant active region exists in the switch transition. Some slope is shown, however, since practical devices do require some time to transition.
- This type of rapid transition commonly referred to as the switching mode of operation or switch-mode, the operation of switch (13) is utilized very differently than when the active region (the regime in which the switch acts only partially open) causes the desired effect. In making the transition between states, it should be understood that by driving switch (13) through the use of greater than necessary voltages, less expensive, slow acting switch devices may be used.
- response voltage waveform (46) is thus conditioned by the components in network current loop (33) and as shown is time-varying as desired to obtain the appropriate output result.
- response voltage waveform (46) reaches a maximum response voltage (47) which is relative to supply voltage (25).
- response voltage waveform (46) is such that at the end of response time period (31) or the time immediately prior to turn-on time (22), a substantial voltage step (24) remains.
- a practical transistor switch (as currently designed), whether a bipolar device or an FET, has numerous particular electrical characteristics, several of which are important to the present invention.
- a schematic representation of a realistic FET switch device three of these characteristics can be seen.
- varactor capacitor (38) which exists parallel to switch element (14).
- reverse diode (41) is such that it can be subject to failure if rapidly transitioned from negative to positive voltage.
- the common and output (non-drive) connections of switch (13) include lead inductances (32). These are uniquely accommodated by the present invention and play an important part in developing the initial theoretical understanding of the function of the present invention. With respect to this understanding, it should be understood that many aspects of the invention may vary as switch and other component design evolves. In this regard, it should be understood that such variations will fall within the scope of the present invention, its essence lying more fundamentally with the design realizations and discoveries achieved than merely the particular circuit designs developed.
- varactor capacitor (38) With respect to varactor capacitor (38), it should be understood that this type of internal capacitance varies as a function of the output voltage.
- the internal output varactor capacitance changes inversely proportional to the square root of the voltage across it for any significant voltage. Since in many single switch RF amplifiers this capacitance is a significant component in the circuit, the resulting output voltage waveform is significantly affected.
- varactor capacitor (41 ) as the only capacitive circuit element which is parallel to the switch actually provides the advantage of reducing the slope of the response voltage curve at turn-off of the switch. This reduces the power dissipated in the switch during its turn-off transient, as the instantaneous product of the voltage across it and the current through it during the turn-off period is reduced by the reduction of the slope.
- varactor capacitor (38) on response voltage waveform (46) can be lessened by providing an external fixed capacitor across the output of the transistor as shown in the original Class E patent.
- the voltage across the switch will not be as great as it would with varactor capacitor (38) alone.
- switch current loop (34) which the parallel capacitor creates. It can be seen that when such a configuration is pursued, an additional loop, switch current loop (34), is created defined by the switch's varactor capacitor (38), its lead inductances (32), and the external capacitor (42).
- lead inductances (32) are internal to the transistor as well as external, so only a portion of it may be controlled. Potentially harmful circulating currents will be generated through the switch as a result of this additional loop. This is especially true at high power levels where the maximum possible output power will be limited due to excessive currents through the switch. This effect is, of course, also more significant as the frequency is raised. Although the addition of another loop in the circuit may not be significant at low power levels, it can become a limiting factor at higher power levels. Conversely, without external capacitor (42), lead inductances (32) may simply be included in the series inductance value required in the conditioning circuitry. Instead of adding the additional component of external capacitor (42), the present invention affirmatively utilizes varactor capacitor (38) to achieve its function.
- FETs are often used as switching transistors. As a consequence of their construction these include reverse diode (41 ).
- This element is actually a parasitic bipolar transistor which is forward biased when the output voltage drops below the common voltage reference. Stress on, even failure of, this transistor (acting in essence as reverse diode (41 )) can result if the rate of voltage rise across the device (dv/dt) exceeds the capability of the transistor.
- dv/dt stress can be ignored since the output power or fundamental frequency of operation is low, and therefore the rate of change of voltage across the device rarely approaches this limitation. As either power or frequency is increased, however, this aspect can become important and even limiting.
- the dv/dt stress can limit the output power enabled by the FET switch by limiting the output voltage that the transistor is capable of generating reliably.
- the dv/dt rating of a device is usually broken up into two different categories, static and commutating dv/dt.
- the static dv/dt rating applies when the internal diode is reverse biased.
- the commutating dv/dt rating results from applying reverse bias to the diode before it has had time to fully recover from a previous forward bias condition.
- the static dv/dt capability is approximately three to four times greater than the commutating dv/dt capability.
- the present invention achieves a reduction in the effects that varactor capacitor (38) has on the peak voltage ratio by allowing the output voltage level just prior to the start of conduction to remain substantially higher than zero, even to levels greater than 20% of the supply voltage.
- This voltage step which was found in one embodiment to offer the most optimum set of conditions at 50% of the supply voltage, addresses several of the concerns raised when no fixed external capacitor (42) is placed in parallel with varactor capacitor (38).
- An advantage derived from the introduction of voltage step (24) is that if desired, maximum response voltage (47) can be decreased.
- voltage step (24) is equal to approximately 50% of the supply voltage, it has been found that the peak voltage and output power are reduced in possibly an optimum manner from that of the prior art Class E amplifier.
- Allowing for a substantial voltage step across the switch immediately prior to conduction also prevents the possibility of forward biasing the FET internal diode, increasing the effective dv/dt stress capability.
- the optimum Class E amplifier creates a positive voltage waveform across the switch when the switch is off that is substantially sinusoidal prior to the start of conduction, and which decays at a zero slope to zero volts at the start of conduction. Tuning for this type of waveform has been taught in the prior art to be critical. Since harmonic currents flow in most practical circuitries, the waveform prior to conduction can produce a slightly non-zero voltage and/or non-zero slope waveform.
- step losses attribute only a small drop in efficiency, perhaps only a few percent.
- voltage step (24) has the effect of lowering the average current through the switch thus lowering conduction losses for the same conduction angle. This reduction of conduction losses does not theoretically entirely make up for the additional losses incurred in the switch itself.
- experimental amplifier circuits have shown little overall change in efficiency when the step is introduced. In fact, improved efficiency has been demonstrated by introduction of the voltage step. This may be surprising to those skilled in the prior art because of their concentration on losses in the switch element itself. The lower average current in the circuit reduces the losses in the other circuit elements by amounts more than enough to compensate for the slightly increased switch losses resulting in the observed increase in efficiency.
- varactor capacitor (38) also known as output capacitance, drain to source capacitance, or Coss measured at any particular drain and gate voltages is primarily a function of die size with a less strong relationship to breakdown voltage the voltage above which the switch will either fail or become unreliable.
- a higher breakdown voltage together with higher output capacitance is desired for higher power operation.
- a substantial varactor capacitor (38) may be selected.
- switch (13) By substantial, it is meant that rather than selecting switch (13) in a manner which minimizes the value of this component, the switch would actually be selected for the highest value in relation to the trade ⁇ offs possible in the breakdown voltage and other aspects.
- switch (13) By substantial, it is meant that rather than selecting switch (13) in a manner which minimizes the value of this component, the switch would actually be selected for the highest value in relation to the trade ⁇ offs possible in the breakdown voltage and other aspects.
- the internal varactor capacitance of the switch itself is used for the tuning of the output circuit.
- the value of varactor capacitor (38) and the maximum allowable output switch voltage or breakdown voltage will determine all other parameters of the output circuit, including inductor value, series capacitor value, load resistance, maximum supply voltage, and output power.
- each of these are uniquely coordinated to the internal capacitance of switch (13) and selection of switch (13).
- the internal capacitance of switch (13) acts to establish the parameters of frequency and power optimally possible.
- one embodiment of the invention uses available packaged FETs. In this embodiment it is important that several small die type devices be used and mounted in a symmetrical configuration with the most compact layout possible.
- Another embodiment of the invention uses a hybrid module containing several small FET dice, with drain-to-source ratings between 400 volts and 1000 volts. Naturally, the higher voltage dice enable the circuit to yield higher powers. In either case, there is a unique relationship between output capacitance and maximum output power which can be obtained by coordination of the circuit element values as described earlier.
- the topology appears nearly identical to many series resonant circuits such as mixed-mode Class C or Class E RF amplifiers.
- the distinctive elements are the drive, conduction angle, voltage waveforms, switch type, and output circuit values. These together act to produce very different operational modes and very improved performance.
- the drive circuit is designed to provide five to ten amps rms into a capacitive load.
- an "L" network was used on the output to transform the load impedance to about 50 ohms.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/300,586 US6229392B1 (en) | 1992-01-30 | 1992-01-30 | High power switch-mode radio frequency amplifier method and apparatus |
EP92906032A EP0570491B1 (en) | 1991-02-04 | 1992-01-30 | High power switch-mode radio frequency amplifier method and apparatus |
DE0570491T DE570491T1 (en) | 1991-02-04 | 1992-01-30 | Method and device for high-performance radio frequency amplification in switching operation. |
DE69221716T DE69221716T2 (en) | 1991-02-04 | 1992-01-30 | Method and device for switching high-performance radio frequency amplification |
JP04506293A JP3130039B2 (en) | 1991-02-04 | 1992-01-30 | Method and apparatus for high power switch mode radio frequency amplification |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US650,789 | 1984-09-17 | ||
US65078991A | 1991-02-04 | 1991-02-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1992014300A1 true WO1992014300A1 (en) | 1992-08-20 |
Family
ID=24610298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1992/000844 WO1992014300A1 (en) | 1991-02-04 | 1992-01-30 | High power switch-mode radio frequency amplifier method and apparatus |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0570491B1 (en) |
JP (1) | JP3130039B2 (en) |
DE (2) | DE69221716T2 (en) |
WO (1) | WO1992014300A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1028522A1 (en) * | 1999-02-10 | 2000-08-16 | Semiconductor Ideas to The Market (ItoM) BV | Communication device |
US20130054165A1 (en) * | 2011-08-29 | 2013-02-28 | Landis+Gyr, Inc. | Method and arrangement for controlling dc power output in utility meter |
US11536754B2 (en) | 2019-08-15 | 2022-12-27 | Landis+Gyr Innovations, Inc. | Electricity meter with fault tolerant power supply |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4536468B2 (en) * | 2004-09-21 | 2010-09-01 | パナソニック株式会社 | Class E amplifier and EER modulation amplifier |
US7236053B2 (en) | 2004-12-31 | 2007-06-26 | Cree, Inc. | High efficiency switch-mode power amplifier |
US7345539B2 (en) * | 2005-02-10 | 2008-03-18 | Raytheon Company | Broadband microwave amplifier |
JP7206452B2 (en) | 2018-07-03 | 2023-01-18 | 国立大学法人千葉大学 | POWER CONVERSION DEVICE AND CONTROL METHOD FOR POWER CONVERSION DEVICE |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4449174A (en) * | 1982-11-30 | 1984-05-15 | Bell Telephone Laboratories, Incorporated | High frequency DC-to-DC converter |
US4891746A (en) * | 1988-12-05 | 1990-01-02 | American Telephone And Telegraph Company, At&T Bell Laboratories | Method of optimizing the efficiency of a high frequency zero voltage switching resonant power inverter for extended line and load range |
-
1992
- 1992-01-30 JP JP04506293A patent/JP3130039B2/en not_active Expired - Fee Related
- 1992-01-30 WO PCT/US1992/000844 patent/WO1992014300A1/en active IP Right Grant
- 1992-01-30 DE DE69221716T patent/DE69221716T2/en not_active Expired - Lifetime
- 1992-01-30 EP EP92906032A patent/EP0570491B1/en not_active Expired - Lifetime
- 1992-01-30 DE DE0570491T patent/DE570491T1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4449174A (en) * | 1982-11-30 | 1984-05-15 | Bell Telephone Laboratories, Incorporated | High frequency DC-to-DC converter |
US4891746A (en) * | 1988-12-05 | 1990-01-02 | American Telephone And Telegraph Company, At&T Bell Laboratories | Method of optimizing the efficiency of a high frequency zero voltage switching resonant power inverter for extended line and load range |
Non-Patent Citations (1)
Title |
---|
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. vol. 37, no. 8, August 1990, NEW YORK US pages 1057 - 1060; J.C. MANDOJANA ET AL: 'A DISCRETE/CONTINUOUS TIME-DOMAIN ANALYSIS OF A GENERALIZED CLASS E AMPLIFIER' * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1028522A1 (en) * | 1999-02-10 | 2000-08-16 | Semiconductor Ideas to The Market (ItoM) BV | Communication device |
WO2000048305A1 (en) * | 1999-02-10 | 2000-08-17 | Semiconductor Ideas To The Market (Itom) B.V. | Communication device |
US20130054165A1 (en) * | 2011-08-29 | 2013-02-28 | Landis+Gyr, Inc. | Method and arrangement for controlling dc power output in utility meter |
US10036768B2 (en) * | 2011-08-29 | 2018-07-31 | Landis+Gyr Llc | Method and arrangement for controlling DC power output in utility meter |
US11536754B2 (en) | 2019-08-15 | 2022-12-27 | Landis+Gyr Innovations, Inc. | Electricity meter with fault tolerant power supply |
Also Published As
Publication number | Publication date |
---|---|
EP0570491A1 (en) | 1993-11-24 |
JPH06505844A (en) | 1994-06-30 |
DE570491T1 (en) | 1994-08-18 |
JP3130039B2 (en) | 2001-01-31 |
DE69221716D1 (en) | 1997-09-25 |
DE69221716T2 (en) | 1997-12-18 |
EP0570491B1 (en) | 1997-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5187580A (en) | High power switch-mode radio frequency amplifier method and apparatus | |
US11362646B1 (en) | Variable current drive for isolated gate drivers | |
JP3666843B2 (en) | Gate circuit of insulated gate semiconductor device | |
US11929588B2 (en) | Pulsed laser diode driver | |
US11218129B2 (en) | Impedance matching device and impedance matching method | |
US7405609B2 (en) | Circuit arrangement for driving an electrical circuit breaker at high voltage potential | |
US20220182004A1 (en) | Updating control parameters of a gate driver during operation | |
JPH09504160A (en) | Pulse width modulation DC / DC boost converter | |
JP3577807B2 (en) | Driver circuit for self-extinguishing semiconductor device | |
US7660094B2 (en) | Inverter circuit | |
EP1455452B1 (en) | Driving circuit for a control terminal of a bipolar transistor in an emitter-switching configuration and corresponding driving method | |
KR20060059996A (en) | High frequency control of a semiconductor switch | |
EP0570491B1 (en) | High power switch-mode radio frequency amplifier method and apparatus | |
JP2760590B2 (en) | Drive circuit for voltage-driven elements | |
US6229392B1 (en) | High power switch-mode radio frequency amplifier method and apparatus | |
JP2004510400A (en) | High output high frequency resonant load inverter | |
JP2001169534A (en) | Gate circuit of insulated gate semiconductor element | |
US5313109A (en) | Circuit for the fast turn off of a field effect transistor | |
US6222744B1 (en) | Isolated power supply circuit for a floating gate driver | |
JPH10191575A (en) | Power circuit | |
JP3602011B2 (en) | Control circuit | |
US6903943B2 (en) | Switching circuit | |
JP2005033876A (en) | Inverter circuit | |
JP2004088892A (en) | Gate circuit of insulated gate type semiconductor element | |
JP2009055521A (en) | Semiconductor apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1992906032 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref country code: US Ref document number: 1993 98356 Date of ref document: 19930730 Kind code of ref document: A Format of ref document f/p: F |
|
WWP | Wipo information: published in national office |
Ref document number: 1992906032 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref country code: US Ref document number: 1994 300586 Date of ref document: 19940902 Kind code of ref document: A Format of ref document f/p: F |
|
WWG | Wipo information: grant in national office |
Ref document number: 1992906032 Country of ref document: EP |