WO1992013018A1 - Polymeres et produits derives desdits polymeres - Google Patents

Polymeres et produits derives desdits polymeres Download PDF

Info

Publication number
WO1992013018A1
WO1992013018A1 PCT/EP1992/000129 EP9200129W WO9213018A1 WO 1992013018 A1 WO1992013018 A1 WO 1992013018A1 EP 9200129 W EP9200129 W EP 9200129W WO 9213018 A1 WO9213018 A1 WO 9213018A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
group
amino
compound
activating
Prior art date
Application number
PCT/EP1992/000129
Other languages
English (en)
Inventor
Clement Henry Bamford
Kadem Gayad Al-Lamee
Stephen Alister Jones
Malcolm Donald Purbrick
Trevor John Wear
Original Assignee
Kodak Limited
Eastman Kodak Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB919101727A external-priority patent/GB9101727D0/en
Priority claimed from GB919124000A external-priority patent/GB9124000D0/en
Application filed by Kodak Limited, Eastman Kodak Company filed Critical Kodak Limited
Priority to JP4503487A priority Critical patent/JPH06504802A/ja
Publication of WO1992013018A1 publication Critical patent/WO1992013018A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/48Polymers modified by chemical after-treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/227Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/83Chemically modified polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/252Polypeptides, proteins, e.g. glycoproteins, lipoproteins, cytokines

Definitions

  • the invention relates to polymers and to products derived therefrom. More particularly, fibre-forming or film-forming polyamide, polyurethane or polyurea polymers are provided bearing active substituents which permit the covalent attachment of compounds to the polymers. Applications for such "activated" fibres include affinity separation
  • polyurethane and polyurea polymers is known.
  • polyurethane polymers comprise the reaction products of polyisocyanates and polyhydroxy compounds.
  • Fibres or films can be prepared from solutions or melts of such polymers having a sufficiently high molecular weight.
  • GB-A-1 530 990 describes the production of electrostatically spun polyurethane tubular
  • GB-A-1 527 592 describes the use of a mat of
  • electrostically spun polyurethane fibres in a product suitable for use as a wound dressing.
  • the invention provides a fibre-forming or film-forming polyamide, polyurethane or polyurea polymer characterised in that the polymer contains activating groups attached to the polymer through the nitrogen atom of the amide, urethane or urea groups of the polymer, the activating groups being capable of reaction with the amino or thiol group of a compound containing an amino or thiol group to effect covalent attachment of the compound to the polymer e.g. by the formation of an amide or thioether link, respectively.
  • the invention also extends to the polymer in shaped form e.g. fibrous or film form.
  • the polymer has an amino or thiol group-containing compound covalently attached thereto by the formation of a link by reaction between the activating group of the polymer and the amino or thiol group of the compound.
  • containing the compound comprises passing the liquid through a mat of fibres of the activated polymer of the invention.
  • the polymers of the invention can be prepared by modifying any polyamide, polyurethane or polyurea having fibre-forming or film-forming
  • the polymer may be an elastomer and, in a preferred embodiment of the invention, a
  • polyetherurethane is employed.
  • suitable commercially available polymers from which polymers of the invention can be prepared include, but are not limited to, BIOMERTM, PELLETHANETM, TECOFLEXTM and ESTANETM polymers.
  • Preferred activating groups include an imidazolyl carbamate group, a 14methyl-2-pyrydyl group or a group having the formula -COOZ wherein Z is an electron-withdrawing group.
  • Functional groups are classified as electron-withdrawing groups relative to hydrogen, e.g. -NO 2 and -I groups draw electrons to themselves more than a hydrogen atom occupying the same position in the molecule, J. March, Advanced
  • Z groups include N-succinimido, benzylidene aniline, pentafluorophenyl, 4-nitrophenyl, 4-cyanophenyl, 4-alkylsulphonylphenyl, acyl, 4-acylphenyl, 4-dialkylaminocarbonylphenyl, 4-alkoxycarbonylphenyl and 4-alkoxysulphonylphenyl.
  • invention comprises units having the formula o r
  • 0 or 1 is an amide, urethane or urea group in the polymer backbone, L and L' are each independently a linking group, R is hydrogen or alkyl, Y is an amide, urethane or urea group in the polymer backbone, L and L' are each independently a linking group, R is hydrogen or alkyl, Y is an amide, urethane or urea group in the polymer backbone, L and L' are each independently a linking group, R is hydrogen or alkyl, Y is an amide, urethane or urea group in the polymer backbone, L and L' are each independently a linking group, R is hydrogen or alkyl, Y is an amide, urethane or urea group in the polymer backbone, L and L' are each independently a linking group, R is hydrogen or alkyl, Y is an amide, urethane or urea group in the polymer backbone, L and L' are each independently a linking group, R is
  • n is an integer from 10 to 150, preferably from 30 to 120.
  • L and L' together with the atoms linking them serve to space the activating group Y away from the polymer backbone.
  • Each of L and L' may comprise one or more divalent hydrocarbon groups such as substituted or unsubstituted alkylene and arylene groups which are connected or terminated with
  • L comprises a chain of from 4 to 50 atoms separating the activating group or the activating group-containing moiety from the polymer backbone.
  • L and L' groups are shown in the following schematic representations of polyurethane polymers of the invention wherein the term "Polymer” is used to indicate the remainder of the polyurethane polymer which contains further urethane groups similarly substituted: ,
  • the compound is a protein or a polypeptide.
  • the protein may be a ligand suitable for use in affinity chromatography e.g. an antibody.
  • the protein may be a cell-compatible protein such as collagen which could render the polymer suitable for use as a cell support medium.
  • the polypeptide may be a growth factor, e.g. Epidermal Growth Factor (EGF)
  • the activating group reacts directly with the amino group-containing compound. Preferably, such reaction will take place under physiological reaction conditions.
  • One method comprises reacting a fibreforming or film-forming polyamide, polyurethane or polyurea with a haloisocyanate or an ethylenically unsaturated isocyanate and subsequently grafting an ethylenically unsaturated monomer comprising an activating group onto the product.
  • haloisocyanates include haloalkyl and haloacetyl isocyanates e.g. 2-chloroethyl isocyanate and trichloroacetyl isocyanate.
  • ethylenically unsaturated isocyanates include isocyanato acrylate monomers e.g.
  • Examples of ethylenically unsaturated monomers comprising an activating group include N-acryloyloxy-succinimide and the succinimide ester of 6-methacrylamidocaproic acid.
  • Another method of preparing a polymer of the invention comprises reacting a fibre-forming or film-forming polyamide, polyurethane or polyurea with a diisocyanate and subsequently reacting the product containing free isocyanate groups with a hydroxy- containing reactive ester.
  • the product containing free isocyanate groups may be reacted with an alkanolamine or other amino alcohol, or a diol, to produce a hydroxylated or carboxylated polymer which may subsequently be activated.
  • diisocyanates examples include alkylene and arylene diisocyanates, e.g. hexamethylene diisocyanate and 2,4-tolylene diisocyanate.
  • hydroxy-containing reactive esters examples include hydroxyalkyl, hydroxyaryl,
  • hydroxyalkaryl and hydroxyaralkyl reactive esters e.g. N-[3-(4-hydroxyphenyl)-propionyloxy]-succinimide.
  • hydroxylated forms include alkanolamines such as ethanolamine, 6-amino-1-hexanol and glucamine, and diols such as poly (ethylene glycol).
  • carboxylated forms include amine group-containing carboxylic acids such as 6-aminocaproic acid.
  • activating the hydroxylated polymer are 1,1'-carbonyldiimidazole (CDI) and 2-fluoro-1-methyl pyridinium toluene 4-sulphonate (FMP).
  • CDI 1,1'-carbonyldiimidazole
  • FMP 2-fluoro-1-methyl pyridinium toluene 4-sulphonate
  • activated polymer is formed which may subsequently be shaped into the desired fibrous or film form.
  • the polymer in solid form e.g. in fibrous or film form may be treated with solutions of the reactants so that only the surface of the polymer is activated.
  • the activated polymer is provided in fibrous form.
  • the fibres may be produced by
  • the activated polymer of the invention may be spun into fibres.
  • a polymer may be spun into fibres and then modified by the attachment of activating groups.
  • the fibres are collected as a porous mat on a suitably located receiver. In this way, a substrate coated with a layer of the fibres can be produced.
  • the fibrous mat can be stripped from the receiver.
  • the fibrous product can be produced in a variety of shapes. For example, by using a
  • a tubular product can be made.
  • diameters of 0.5 to 10 ⁇ m, especially 1.0 to 5 ⁇ m may be preferred.
  • the polymer may be conveniently spun from solution.
  • Suitable solvents include
  • Solvent mixtures may be preferred, such as a mixture of N,N-dimethylformamide and methyl ethyl ketone (1.45:1 weight ratio).
  • concentration of the polymer in solution will depend upon the amount required to provide adequate fibre properties and will be
  • poly (etherurethaneurea) having a molecular weight in the region of 60,000, dissolved in N,N- dimethylacetamide is from 10 to 20% w/w, for example, 16% w/w.
  • the solution may be supplied to an appropriate position in the electrostatic field by feeding it to a nozzle from which it is drawn by the field to form fibres.
  • the solution may be fed from a syringe reservoir to the tip of a grounded syringe needle, the tip being located at an appropriate distance from an
  • the electrostatic potential employed may be conveniently from 10 to 100 Kv, preferably from 10 to 50 Kv.
  • the pore size and porosity of the fibrous product may be controlled, for example, by varying such parameters as the diameter of the fibres and their density of deposition.
  • the fibrous product Typically, the fibrous product
  • the overall surface area of the fibres is extremely large. For example, 1 g of the fibrous material may have a total surface area of
  • BIOMER TM polymer is a commercially available poly (etherurethaneurea) having the structure:
  • the molecular weight (MnW) of the polymer is about 60,000.
  • a polyetherurethane (BIOMERTM, Ethicon, Someville, NJ: 30 g) was dissolved in N,N-dimethylacetamide (DMAC) (50 ml). 2-Chloroethyl isocyanate (4 ml) was added to the resultant solution. The reaction mixture was kept for 3 days at room temperature and then precipitated into water. After precipitation the polymer was filtered off, washed carefully with water and then dried in a vacuum oven.
  • DMAC N,N-dimethylacetamide
  • 6-Aminocaproic acid (26.2 g, 0.2 moles) was dissolved in a solution of sodium hydroxide (8.0 g) m water (25 ml).
  • TOPANOL OC TM a commercially available surfactant from ICI comprising 4-methyl-2,6- tertiary-butyl phenol, was added, and the solution cooled to -10°C.
  • a solution of methacryloyl chloride (20.8 g, 0.2 moles) in dioxane (15 ml) was then added simultaneously with a solution of sodium hydroxide (8.0 g) in water (20 ml) over a period of 1 hour. The latter two solutions had been cooled in an ice-bath prior to their addition.
  • reaction was stirred for a further 2 hours at -10°C. The reaction mixture was then left to stand overnight in the refrigerator.
  • 6-Methacrylamidocaproic acid (10 g, 0.05 moles) and N-hydroxysuccinimide (5.75 g, 0.05 moles) were placed in a three-necked flask that was fitted with a magnetic stirrer, air condenser (with calcium chloride guard tube) and a dropping funnel.
  • Dichloromethane (50 ml) and tetrahydrofuran (10 ml) and 4-methylamino ⁇ yridine (4-DMAP) (0.12 g) were added, and the solution was stirred in an ice bath.
  • a solution of dicyclohexylcarbodiimide (DCCI) (11.5 g) in dichloromethane (20 ml) was added dropwise. The urea precipitated in due course and the reaction was allowed to run overnight.
  • DCCI dicyclohexylcarbodiimide
  • the solid (urea) precipitate was filtered off and washed with dichloromethane. The combined washings and filtrate were stripped on the rotary evaporator. The residual oil was dissolved in acetonitrile and the solution was cooled in the refrigerator for 2 hours. The small amount of urea which had precipitated was filtered off and the solvent was then removed under vacuum. The remaining oil was dissolved in ethyl acetate. The solid product precipitated on standing in an ice-salt bath, and was filtered and dried.
  • the polymer product was filtered off and washed with diethyl ether, vacuum dried and weighed.
  • the weight increase - corresponding to grafting of the polymer of (II) onto (I) to generate the pre-activated polyetherurethane (III) - was 8.14%.
  • the photochemically initiated grafting reaction is represented in the following equation.
  • the pre-activated polymer (III) was dissolved in bulk DMAC to obtain a concentration suitable for electrostatic spinning (16% w/w). The solution was spun at minimum humidity following the procedure given in GB-A-1 530 990 to produce the required sheet of fibrous pre-activated
  • the sheet was cut into strips measuring 2 ⁇ 1 cm. Samples of the strips were immersed in a solution of radiolabelled Protein A (1.0 ml, 1 mg Protein A/ml 0.1 molar sodium hydrogen carbonate buffer, pH 8). The strips were left to stand for 2 hours at room temperature. The strips were then removed, washed first in excess buffer and then in deionised water before blotting dry on a filter paper.
  • Radiolabelled Protein A 1.0 ml, 1 mg Protein A/ml 0.1 molar sodium hydrogen carbonate buffer, pH 8
  • the strips were allowed to stand in a solution of sodium dodecyl sulphate (SDS) (5 ml, 2% by weight) for one hour at room temperature. They were then washed with deionised water and dried.
  • SDS sodium dodecyl sulphate
  • Each strip was then counted for one minute in a scintillation counter and compared with a reference to determine the quantity of Protein A covalently bound to the polyetherurethane.
  • the binding activity of the Protein A coupled to the polymer was assessed as follows.
  • the strips of polyetherurethane having Protein A coupled thereto were placed in a solution of radiolabelled human IgG (1.0 mg/ml, 1 ml) for one hour at room temperature.
  • the strips were removed, washed with water and placed in 0.15 molar PBS containing 0.2% TWEEN TM 20 nonionic surfactant (5 ml) for five minutes to remove non-specifically bound protein.
  • the strips were rewashed with water and blotted dry on filter paper. Each strip was counted for one minute using a scintillation counter to provide a measure of specific binding.
  • nonionic surfactant as above to provide a measure of non-specific binding of protein.
  • Reference strips were prepared by adsorbing a known quantity of radiolabelled human IgG (1 mg/ml) on the polyetherurethane and counted.
  • Protein A coupled thereto was about 92 mg/m 2 .
  • the non-specific binding of protein to the equivalent sample was found to be about 18 mg/m 2 .
  • An electrostatically spun polyetherurethane (BIOMERTM) tube suitable for use in arterial prosthesis was modified as follows.
  • the fibrous tube was reacted with trichloroacetyl isocyanate (3 g, 0.016 mole) in 150ml hexane for 24 hours. After this time the tube was washed off with water very carefully and subsequently immersed in water for 2 days and vacuum dried. The tube showed a positive chlorine test.
  • the overall reaction of the polyetherurethane and trichloroacetyl isocyanate is depicted in the following equation:
  • the fibrous tube of functionalized polyetherurethane (IV) was placed in a reaction vessel and a solution of Re 2 (CO) 10 (0.095 g 0.00014 mole) and
  • N-acryloyloxysuccinimide (0.75 g, 0.0044 mole) in 25 ml dry ethyl acetate was added.
  • the reaction mixture was degassed under vacuum and the vessel sealed off.
  • V The chemical structure of the grafted polyetherurethane (V) is shown as follows :
  • the grafted tube of polyetherurethane (V) was reacted with 1% w/v suspension collagen (type I) in 0.05 molar acetic acid for 2 hours.
  • the tube was dried at room temperature overnight and then in a vacuum for 24 hours.
  • the tube was washed thoroughly in distilled water and vacuum dried. Scanning
  • the film was washed extensively with water and dried.
  • the film of polyetherurethane was treated in a manner identical to that described for the fibrous tube in steps 1 to 3 of Example 3.
  • the sheet of polymer (VI) was placed in a flask containing a solution of 0.4 g of N-[3-(4- hydroxyphenyl)propionyloyl] succinimide (Fluka) in 40 ml of dry acetonitrile. The flask was wrapped in foil and stirred at room temperature for 5 days. After this time the sheet was removed and carefully washed with an excess of acetonitrile and vacuum dried.
  • the activated polymer was produced according to the following equation.
  • a solution of radiolabelled Protein A was prepared containing 1 mg Protein A/ml 0.1 molar
  • the disc was left standing for one hour in 10 ml sodium dodecyl sulphate (SDS) (2%), washed with deionised water and blotted dry. The disc was then counted for 1 minute in a vial using a SDS (SDS) (2%), washed with deionised water and blotted dry. The disc was then counted for 1 minute in a vial using a SDS (SDS) (2%), washed with deionised water and blotted dry. The disc was then counted for 1 minute in a vial using a
  • BIOMERTM 0.1086 11, 600 0 . 0370 7 . 93
  • the electrostatically spun polymer was reacted with isocyanatoethyl methacrylate monomer (20% v/v in hexane) at room temperature for 5 days. After this time the functionalized polyetherurethane was washed with hexane, methanol, water and methanol, respectively. The reaction is shown as follows.
  • a specimen of macromer (VIII) (1.9 g) was placed in a reaction vessel containing a mixture of 0.5 g N-acryloyloxysuccinimide in 10 ml of dry acetonitrile and 0.2 g azobisisobutyronitrile (AIBN) dissolved in 10 ml acetonitrile. After degassing, the polymerization was carried out at 60°C for 4 hours. The macromer sheet was removed and washed with
  • Protein A was bound to a sample of
  • polyetherurethane sheet was reacted with 2-chloroethyl isocyanate (1 g in 20 ml of hexane) for 24 hours at
  • a graft copolymer (X) was synthesized by grafting N-acryloyloxysuccinimide
  • Protein A was bound to a sample of
  • BIOMERTM polymer sheet (2 g each) were placed in two
  • reaction vessels The first one was reacted with 30% hexamethylene diisocyanate in petroleum ether (b.p.
  • BIOMERTM which had been isocyanated with hexamethylene diisocyanate was reacted with 0.5 g (1.7 mmole) of FMP dissolved in 10 ml of dry acetonitrile in the presence of triethylamine (0.2 ml) to give an activated polymer of the invention (Example 8).
  • the reaction was carried out at room temperature for 24 hours. After this time, the sample was washed with dry acetonitrile and dried in a vacuum.
  • Example 9 an activated polymer of the invention (Example 9).
  • the reaction was carried out at room temperature for 24 hours. After this time the sample was washed with dry acetonitrile and dried in a vacuum.
  • hexamethylene diisocyanate were converted to hydroxylic forms by reaction with 6-amino-1-hexanol (Example 12) and glucamine (Example 15).
  • Polymer samples isocyanated with 2,4-tolylene diisocyanate were converted to hydroxylic forms by reaction with 6- amino-1-hexanol (Example 13), poly (ethylene glycol) ( Molecular weight 4000) (Example 14) and glucamine
  • Carboxylated polymers were prepared from polyurethane samples isocyanated with
  • CDI (Examples 17 and 18, respectively).
  • BIOMERTM polymer unreacted BIOMERTM polymer as a control.
  • PBS containing 0.2% TWEENTM 20 nonionic surfactant for one hour to remove the non-specifically bound protein PBS containing 0.2% TWEENTM 20 nonionic surfactant for one hour to remove the non-specifically bound protein.
  • the discs were washed with water and blotted dry on filter paper. Each disc was counted for one minute in
  • IgG (mg/g
  • IgG was coupled to samples of polymer VII and the polymer of Example 9 directly. In this case three discs of each of these samples were placed in two Millipore filter holders and labeled IgG ( 125 I)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Polymers & Plastics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Materials For Medical Uses (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Certains polyamides, polyuréthanes et polycarbamides formant des fibres et filmogènes ont été préparés de façon à produire des substituants actifs pour la fixation par covalence de composés, tels que des composés biologiques ou possédant des groupes réactifs amino ou thiol. Les substituants actifs sont fixés au squelette du polymère par l'intermédiaire d'un groupe amide, uréthane ou carbamide. Ces polymères 'activés' peuvent être utilisés comme matrice de séparation par affinité, supports cellulaires et compositions bioartificielles, sous des formes très diverses.
PCT/EP1992/000129 1991-01-25 1992-01-20 Polymeres et produits derives desdits polymeres WO1992013018A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4503487A JPH06504802A (ja) 1991-01-25 1992-01-20 ポリマー及びそれから誘導される製品

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB9101727.7 1991-01-25
GB919101727A GB9101727D0 (en) 1991-01-25 1991-01-25 Polymers and products derived therefrom
GB919124000A GB9124000D0 (en) 1991-11-12 1991-11-12 Polymers and products derived therefrom
GB9124000.2 1991-11-12

Publications (1)

Publication Number Publication Date
WO1992013018A1 true WO1992013018A1 (fr) 1992-08-06

Family

ID=26298337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1992/000129 WO1992013018A1 (fr) 1991-01-25 1992-01-20 Polymeres et produits derives desdits polymeres

Country Status (3)

Country Link
EP (1) EP0571406A1 (fr)
JP (1) JPH06504802A (fr)
WO (1) WO1992013018A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996015223A1 (fr) * 1994-11-14 1996-05-23 Universite Catholique De Louvain Biomateriau et son procede d'obtention
EP0733303A2 (fr) * 1995-03-08 1996-09-25 Kodak Limited Matériau, procédé et dispositif pour inhiber la croissance bactérienne dans un milieu aqueux
EP0744428A2 (fr) * 1995-05-26 1996-11-27 Kodak Limited Polymères et les produits à partir de leur-ci
WO2002058645A1 (fr) * 2001-01-23 2002-08-01 Unilever Plc Polyurethannes, compositions cosmetiques les contenant et methode de preparation
WO2003062790A2 (fr) 2002-01-17 2003-07-31 Applera Corporation Phases solides optimisees pour la detection par chimioluminescence
EP1700873A1 (fr) * 2005-03-11 2006-09-13 Bayer MaterialScience AG Polyuréthanes contenant des allophanates spéciaux
US7812087B2 (en) * 2005-09-03 2010-10-12 Bayer Materialscience Ag Polyurethane prepolymers containing alkoxysilane groups and allophanate and/or biuret groups

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2427948A1 (de) * 1973-06-15 1975-01-09 Univ Ramot Substituierte polyamide und verfahren zu deren herstellung
FR2240233A1 (fr) * 1973-08-06 1975-03-07 Nat Res Dev
WO1986002654A1 (fr) * 1984-10-29 1986-05-09 Memtec Limited Derives de polyamide/chlorure de sulphuryle
DE3523615A1 (de) * 1985-07-02 1987-01-15 Cytomed Medizintechnik Medizinisches geraet, insbesondere kanuele, katheter oder implantat
US4880883A (en) * 1987-06-03 1989-11-14 Wisconsin Alumni Research Foundation Biocompatible polyurethanes modified with lower alkyl sulfonate and lower alkyl carboxylate
EP0367489A2 (fr) * 1988-11-01 1990-05-09 Baxter International Inc. Matériaux antithrombosiques et leur méthode de préparation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2427948A1 (de) * 1973-06-15 1975-01-09 Univ Ramot Substituierte polyamide und verfahren zu deren herstellung
FR2240233A1 (fr) * 1973-08-06 1975-03-07 Nat Res Dev
WO1986002654A1 (fr) * 1984-10-29 1986-05-09 Memtec Limited Derives de polyamide/chlorure de sulphuryle
DE3523615A1 (de) * 1985-07-02 1987-01-15 Cytomed Medizintechnik Medizinisches geraet, insbesondere kanuele, katheter oder implantat
US4880883A (en) * 1987-06-03 1989-11-14 Wisconsin Alumni Research Foundation Biocompatible polyurethanes modified with lower alkyl sulfonate and lower alkyl carboxylate
EP0367489A2 (fr) * 1988-11-01 1990-05-09 Baxter International Inc. Matériaux antithrombosiques et leur méthode de préparation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BIOMATERIALS vol. 9, no. 1, January 1988, GUILDFORD,SURREY,GB pages 36 - 46; W.G.PITT ET AL.: 'ALBUMIN ADSORPTION ON ALKYL CHAIN DERIVATIZED POLYURETHANES' *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996015223A1 (fr) * 1994-11-14 1996-05-23 Universite Catholique De Louvain Biomateriau et son procede d'obtention
EP0733303A2 (fr) * 1995-03-08 1996-09-25 Kodak Limited Matériau, procédé et dispositif pour inhiber la croissance bactérienne dans un milieu aqueux
EP0733303A3 (fr) * 1995-03-08 1999-02-17 Kodak Limited Matériau, procédé et dispositif pour inhiber la croissance bactérienne dans un milieu aqueux
EP0744428A2 (fr) * 1995-05-26 1996-11-27 Kodak Limited Polymères et les produits à partir de leur-ci
EP0744428A3 (fr) * 1995-05-26 1997-10-01 Kodak Ltd Polymères et les produits à partir de leur-ci
US6730289B2 (en) 2001-01-23 2004-05-04 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Cosmetic composition
WO2002058645A1 (fr) * 2001-01-23 2002-08-01 Unilever Plc Polyurethannes, compositions cosmetiques les contenant et methode de preparation
WO2003062790A2 (fr) 2002-01-17 2003-07-31 Applera Corporation Phases solides optimisees pour la detection par chimioluminescence
EP1470422A2 (fr) * 2002-01-17 2004-10-27 Applera Corporation Phases solides optimisees pour la detection par chimioluminescence
EP1470422A4 (fr) * 2002-01-17 2006-06-07 Applera Corp Phases solides optimisees pour la detection par chimioluminescence
US7368296B2 (en) 2002-01-17 2008-05-06 Applied Biosystems Solid phases optimized for chemiluminescent detection
EP2101174A1 (fr) * 2002-01-17 2009-09-16 Applied Biosystems, LLC Phase solides optimisées pour détection de chimiluminescence
EP1700873A1 (fr) * 2005-03-11 2006-09-13 Bayer MaterialScience AG Polyuréthanes contenant des allophanates spéciaux
US7812087B2 (en) * 2005-09-03 2010-10-12 Bayer Materialscience Ag Polyurethane prepolymers containing alkoxysilane groups and allophanate and/or biuret groups

Also Published As

Publication number Publication date
EP0571406A1 (fr) 1993-12-01
JPH06504802A (ja) 1994-06-02

Similar Documents

Publication Publication Date Title
Ishihara et al. Synthesis of phospholipid polymers having a urethane bond in the side chain as coating material on segmented polyurethane and their platelet adhesion-resistant properties
US5403750A (en) Biocompatible, low protein adsorption affinity matrix
JP2538559B2 (ja) 生物適合性表面に関する改良
Park et al. PDMS-based polyurethanes with MPEG grafts: synthesis, characterization and platelet adhesion study
JP5671024B2 (ja) ポリマー、好ましくは(アルキル)アクリロイルポリカーボネートを作る方法、得られるポリマーおよび(アルキル)アクリロイルポリカーボネート、ならびにこれを含むバイオデバイス
JP4053612B2 (ja) 機能化された光開始剤、そのマクロマー及びその用途
EP2213293A2 (fr) Monomères auto-assemblés et oligomères en tant que groupements terminaux à modification de surface pour polymères
JP2000506554A (ja) ポリシロキサン/ポリオールマクロマーから製造されるポリウレタン
KR20150123791A (ko) 개질된 폴리아릴에테르케톤 폴리머 (paek) 및 이를 얻기 위한 방법
WO1992013018A1 (fr) Polymeres et produits derives desdits polymeres
EP0714417A1 (fr) Procedes de revetement de surface avec des polymeres
EP0913416A1 (fr) Polymeres biocompatibles
JP2017082174A (ja) ポリマー、ポリマー溶液及びポリマー被覆基板
Meng et al. Phosphorylcholine modified chitosan: Appetent and safe material for cells
EP0744428A2 (fr) Polymères et les produits à partir de leur-ci
Li et al. Synthesis and hemocompatibilities of new segmented polyurethanes and poly (urethane urea) s with poly (butadiene) and phosphatidylcholine analogues in the main chains and long-chain alkyl groups in the side chains
Lu et al. Grafting of a novel phosphorylcholine-containing vinyl monomer onto poly-carbonateurethane surfaces by ultraviolet radiation grafting polymerization
US6143893A (en) 1,4-bis{β-[N-methyl-N-(2-hydroxyethyl)amino]propionyl}piperazine and process for its preparation
US5910565A (en) Oligoglycine compound, fibrous microtube of oligoglycine compound and process of producing fibrous microtube
EP0567187A1 (fr) Essai immunologique et trousse d'essai
US5216087A (en) Process for the preparation of sulfonated polyethyleneoxide-substituted polymers with improved blood compatibility
Yoo et al. Characteristics of crosslinked blends of Pellethene® and multiblock polyurethanes containing phospholipid
JP2001136960A (ja) 細胞培養膜
WO2023018816A2 (fr) Procédés et dispositifs à membrane modifiée par un polyuréthane zwittérionique à encrassement ultra-faible pour la séparation rapide de plasma de sang total
JP3173615B2 (ja) 血液適合性材料

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: US

Ref document number: 1993 90165

Date of ref document: 19930715

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1992903268

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992903268

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1992903268

Country of ref document: EP