WO1992003409A1 - Fluorures d'acides amines et leur utilisation pour la preparation des peptides - Google Patents

Fluorures d'acides amines et leur utilisation pour la preparation des peptides Download PDF

Info

Publication number
WO1992003409A1
WO1992003409A1 PCT/FR1991/000675 FR9100675W WO9203409A1 WO 1992003409 A1 WO1992003409 A1 WO 1992003409A1 FR 9100675 W FR9100675 W FR 9100675W WO 9203409 A1 WO9203409 A1 WO 9203409A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
acid
fluorides
remainder
fmoc
Prior art date
Application number
PCT/FR1991/000675
Other languages
English (en)
Inventor
Gérard Sennyey
Albert Loffet
Original Assignee
Societe Nationale Des Poudres Et Explosifs
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale Des Poudres Et Explosifs filed Critical Societe Nationale Des Poudres Et Explosifs
Publication of WO1992003409A1 publication Critical patent/WO1992003409A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/22Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/57Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C323/58Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups with amino groups bound to the carbon skeleton
    • C07C323/59Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being further substituted by nitrogen atoms, not being part of nitro or nitroso groups with amino groups bound to the carbon skeleton with acylated amino groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/08General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using activating agents
    • C07K1/088General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using activating agents containing other elements, e.g. B, Si, As

Definitions

  • the invention relates to amino acid fluorides and their use for the preparation of peptides.
  • Azides, mixed or symmetrical anhydrides have limited lifetimes.
  • the active esters are stable but have a moderate reactivity. These are most often aromatic esters and the phenols which are formed during the coupling reaction are generally difficult to remove.
  • Amino acid chlorides are very difficult to prepare using unusual or non-selective reagents and side reactions can occur. In addition, they are very unstable because they hydrolyze and cyclize easily. It is therefore necessary most of the time to use them in an anhydrous medium as indicated in the publication "Principles of Peptide Synthesis" by M. Bodansky, pages 10 and 11. Some such as chlorides of N-tertio-butyloxycarbonyl-amino acids could never be obtained. There was therefore a need for new active derivatives of amino acids which do not have the drawbacks of known derivatives.
  • R 1 represents the benzyloxycarbonyl group (“2")
  • R 2 represents a hydrogen atom or the remainder of an amino acid and R 3 represents a hydrogen atom, the methyl radical or forms with R 2 the remainder of an amino acid.
  • the fluorides of formula (I) are compounds hitherto unknown. They have good stability. No degradation was noted after six months of storage at room temperature. If partial degradation occurs, for example, due to poor conditions, amino acid and hydrofluoric arid are formed which are not troublesome in the preparation of the peptides.
  • the remainder of the amino acid represented by R 2 optionally linked with R 3 is the rest of the known natural amino acids in synthetic form L, D or BL in particular such as those derived in Houben-Weyl vol. XV, 1974, Synthesis von Peptiden.
  • this residue generally consists of an aliphatic radical comprising from 1 to
  • SH, -NH 2 , NH, -COOH, -SS- which generally must be protected as is usual in the chemistry of peptides as indicated by example in the publications cited above.
  • the OH and SH functions can, for example, be protected in the form of ethers or thioethers, in particular alkyl or enzyl, the amino functions in the form of carbamates, in particular benzyl or 9-fluorenylmethyl, the acid functions in the form alkyl esters.
  • fluorides of N ⁇ -protected acids there may be mentioned in particular the fluorides of amino acids such as glycine, valine, alanine, leucine, isoleucine, phenylalanine, serine, threonine, lysine, ⁇ -hydroxylysine, arginine, aspartic acid, aspargine , glutamic acid, glutamine, cysteine, cystine, methionine, tyrosine. thyroxine, proline, hydroxyproline, tryptophan, histidine fuf are N ⁇ -protected by the group "Z" or "Fmoc".
  • the fluorides of formula (I) can be prepared simply by reaction of the amino acid N ⁇ -protected with the cyanuryl fluoride according to the following reaction scheme:
  • the reaction takes place at room temperature in the presence of pyridine, generally in a solvent such as dichioromethane or acetonitrile.
  • Cyanuryl fluoride is generally used in an amount between 1 and 3 equivalent compared to the acidamine.
  • the cyanuric acid which forms is insoluble in the medium and is easily removed by filtration. Amino acid fluorides are thus obtained and easily isolated with very high yields and purity.
  • the invention therefore also relates to a new process for the preparation of peptides, characterized in that an amino acid fluoride N ⁇ -protected of formula (I) is reacted.
  • amino acids or peptides which are reacted with fluoride are chosen from natural or synthetic amino acids in L, D or DL form and the peptides pretared from these amino acids.
  • these are the amino acids cited above or the peptides which have the free amine function and the acid function protected by one of the usual protective groups or by attachment to an insoluble resin as is known (in particular by "Principle of Peptide Synthesis" by Mr. Bodansky).
  • the reaction can therefore take place in a homogeneous or heterogeneous liquid-liquid or liquid-solid phase.
  • suitable solvents for carrying out the reaction may include nitrile ⁇ such as for example acetonitrile, benzonitrile, ketones such as for example acetone, methyl ethyl ketone, methylisobutyleetone, cyclic ethers or not such as for example tetrahydrofuran, dioxane, tertiobutyl ether and methyl, chlorinated hydrocarbons such as for example dichloromethane, dichloroethane, chloroform, amides such as for example dimethylforraamide, dimethylacetamide.
  • nitrile ⁇ such as for example acetonitrile, benzonitrile, ketones such as for example acetone, methyl ethyl ketone, methylisobutyleetone, cyclic ethers or not such as for example tetrahydrofuran, dioxane, tertiobutyl ether and methyl
  • chlorinated hydrocarbons
  • the solvents be anhydrous.
  • aqueous phase in a two-phase system, for example to dissolve a base.
  • the acid acceptor can for example be an organic base such as a tertiary amine such as triethylamine, diisopropylethylamine or N-methylmorpholine or an inorganic base such as sodium carbonate or bicarbonate, potassium hydroxide or soda, in solution aqueous. Generally one to two equivalents of the base are used per equivalent of acid.
  • the amino acid fluoride and the amino acid or the peptide are generally reacted in stoichiometric proportions. An excess of either of these starting compounds can also be used. In particular when the amino acid is fixed on a solid support, it is possible to add up to 10 equivalents of the amino acid fluoride N ⁇ -protected per equivalent of amino acid, generally the amount of fluoride is close to 5 equivalents.
  • the reaction temperature is generally between
  • reaction time for its part most often varies between 10 minutes and 5 hours.
  • the peptides are recovered after the usual treatments. Thanks to the new process according to the invention, dipeptides or higher petptides which are very useful especially in the pharmaceutical industry are easily and quickly prepared in liquid or solid phast with good yields and in the middle. reagent; easy to obtain and stable.
  • Example 1 Preparation of N- (9-fluorenyimethoxycarbonyl) glycine fluoride.
  • the reaction is stopped when there is no longer any ester which requires between 1 h and 2 h. Then the reaction mixture is treated. First of all the aqueous phases are separated and organic. Then the organic phase is washed with 1N hydrochloric acid (2 times) in order to remove the remaining base. Washes with water allow to return to a neutral pH (6.5). Finally a treatment in basic medium (potassium carbonate 1M) makes it possible to eliminate the excess of amino acid fluoride (which is in hydrolysis form: Fmoc-R 3 N-CHR 2 -COO-). The organic phase is finally dried over magnesium sulfate and evaporated with a rotary evaporator. The product obtained is then dried in an oven (50 ° C) for 5 h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)

Abstract

L'invention concerne de nouveaux fluorures d'acides aminés de formule (I), dans laquelle R1 représente le groupe benzyloxycarbonyle ou 9-fluorénylméthoxycarbonyle, R2 représente un atome d'hydrogène ou le reste d'un acide aminé et R3 représente un atome d'hydrogène, le radical méthyle ou forme avec R2 le reste d'un acide aminé. Les fluorures d'acides aminés de formule (I) sont mis à réagir avec un acide aminé ou un peptide dans un solvant en présence d'un agent de fixation de l'acide fluorhydrique pour préparer les dipeptides ou des peptides supérieurs.

Description

Fluorures d'acides aminés et leur utilisation pour la préparation des peptides
L'invention concerne des fluorures d'acides aminés et leur utilisation pour la préparation des peptides.
On sait que pour préparer des peptides, il faut coupler un acide aminé avec un autre acide ou un autre peptide. Pendant le couplage une seule fonction acide et une seule fonction aminé devant réagir il est par conséquent nécessaire d'une part d'activer ces deux fonctions et d'autre part de protéger les fonctions qui ne doivent pas réagir.
Parmi les solutions proposées pour obtenir la réaction de couplage l'une d'elles consiste à remplacer l'acide aminé par un de ses dérivés actifs.
Comme dérivés actifs d'acides aminés qui ont été utilisés on peut citer des azides, des chlorures, des anhydrides mixtes ou symétriques et des esters.
La difficulté pour trouver un bon dérivé actif réside dans ie fait qu'il doit être à la fois suffisamment réactif et suffisamment stable.
Les azides, les anhydrides mixtes ou symétriques ont def αurées de vie limitée.
Les esters actifs sont stables mais ont une réactivité modérée. Ce sont ie plus souvent des esters aromatiques et les phénols qui se forment pendant la réaction de couplage sont généralement difficiles à éliminer.
Les chlorures d'acides aminés sont très difficiles à préparer au moyen de réactifs peu courants ou non sélectifs et αes réactions secondaires peuvent se produire. De plus ils sont très instables car ils s'hydrolysent et se cyclisent facilement. Ii est par conséquent nécessaire la plupart du temps de les utiliser en milieu anhydre comme indiqué dans la publication "Principles of Peptide Synthesis" par M. Bodansky, pages 10 et 11. Certains tels que les chlorures de N-tertio-butyloxycarbonyl-acides aminés n'ont jamais pu être obtenus. Il existait donc un besoin de nouveaux dérivés actifs d'acides aminés qui ne présentent pas les inconvénients des dérivés connus.
On a maintenant trouvé de nouveaux dérivés actifs d'acides aminés qui sont des fluorures aminés Nα-protégés de formule
Figure imgf000004_0001
dans laquelle R1 représente le groupe benzyloxycarbonyle ( " 2 " ) ou
9- fluorénylméthoxycarbonyle ("Fmoc"),
R2 représente un atome d'hydrogène ou le reste d'un acide aminé et R3 représente un atome d'hydrogène, le radical méthyle ou forme avec R2 le reste d'un acide aminé.
Les fluorures de formule (I) sont des composés ineonnus jusqu'ici. Ils présentent une bonne stabilité. Aucune dégradation n'a été constatée après six mois de stockage à la température ambiante. Si une dégradation partielle intervient par exemple stus de mauvaises conditions, il se forme de l'acide-aminé et de l'aride fluorhydriqiie qui ne sont pas gênants dans la préparation des peptides.
Le reste de l'acide aminé représenté par R2 éventuellement lié avec R3 est le reste des acides aminés connus naturele in synthétiques sous forme L, D ou BL notamment tels que ceux déerits dans Houben-Weyl vol. XV, 1974, Synthesis von Peptiden.
Dans les acides aminés les plus courants, ce reste est généralement constitué d'un radical aliphatique comportant de 1 à
10 atomes de carbone ramifié ou non qui peut porter comme substituants des radicaux aryles substitués ou non, hétérocycliques saturés ou non, aromatiques ou non, des groupes fonctionnels OH,
SH, -NH2 , =NH, -COOH, -S-S- qui généralement doivent être protégés comme il est habituel dans la chimie des peptides conme indiquépar exemple dans les publications précédemment citées. Les fonctions OH, SH peuvent par exemple être protégées sous forme d'éthers ou de thioethers en particulier d' alkyle ou de enzyle, les fonctions aminés sous forme de carbamates, en partiulier de benzyle ou de 9-fluorenylmethyle, les fonctions acides sous forme d'esters d'alkyle.
Comme fluorures d'acides Nα-protégés on peut en particulier citer les fluorures des acides aminés tels que la glycine, valine, alanine, leucine, isoleucine, phénylalanine, serine, thréonine, lysine, δ-hydroxylysine, arginine, acide aspartique, aspargine, acide glutamique, glutamine, cystéine, cystine, methionine, tyrosine. thyroxine, proline, hydroxyproline, tryptophan, histidine fuf sont Nα-protégés par le groupe "Z" ou "Fmoc".
Les fluorures de formule (I) peuvent être préparés simplement par réaction de l'acide aminé N α-protégé sur le fluorure de cyanuryle selon le schéma réactionnel suivant :
Figure imgf000005_0001
La réaction a lieu à la température ambiante en présence dpyridine généralement dans un solvant tel que le dichiorométnane ou l'acétonitrile. Le fluorure de cyanuryle est généralement utilisé en quantité comprise entre 1 et 3 équivalent par rapport à l'acidaminé. L'acide cyanurique qui se forme est insoluble dans le milieu et est éliminé aisément par filtration. Les fluorures d'acides aminés sont ainsi obtenus et isolés facilement ave: de cens rendements et une excellente pureté.
En plus de leur bonne stabilité, on a trouvé que ces fluorures d'acides aminés Nα-protégés pouvaient réagi: très facilement sur la fonction aminé d'un autre aria? aminé tu d'un peptide en formation sans qu'il soit nécessaire d'activér la fonction amine. L'invention concerne par conséquent également un nouveau procédé de préparation des peptides caractérisé en ce que l'on fait réagir un fluorure d'acide aminé Nα-protégé de formule (I).
dans laquelle R1 , R2 et R3 sont tels que définis
Figure imgf000006_0001
précédemment, sur un acide aminé ou un peptide dans un solvant en présence d'un agent de fixation de l'acide fluorhydrique.
Les acides aminés ou les peptides qui sont mis à réagir avee le fluorure sont choisis parmi les acides aminés naturels eu synthétiques sous forme L, D ou DL et les peptides pretarés à partir de ces acides aminés. En particulier ce sont ieε acides aminés cités précédemment ou les peptides qui ont la fonction amine libre et la fonction acide protégée par un des groupes protecteurs habituels ou par fixation sur une résine insoluble comme il est connu (notamment par "Principle of Peptide Synthesis" par M. Bodansky). La réaction peut avoir lieu par conséquent en phase homogène ou hétérogène liquide-liquide ou liquide-solide.
Comme solvants qui conviennent pour effectuer la réaction, or. peut citer les nitrileε tels que par exemple l'acétonitriie, le benzonitrile, les cétones comme par exemple l'acétone, la méthyléthylcétone, la méthylisobutyleétone, les éthers cycliques ou non tels que par exemple le tétrahydrofuranne, le dioxanne, l'éther de tertiobutyle et de méthyle, les hydrocarbures chlorés tels que par exemple le dichlorométhane, le dichloroéthane, le chloroforme, les amides comme par exemple la diméthylforraamide, la diméthylacétamide.
On préfère généralement que les solvants soient anhydres.
Cependant il est possible d'utiliser une phase aqueuse dans un système biphasique, par exemple pour dissoudre une base.
La présence d'un agent de fixation de l'acide fluorhydrique est nécessaire pour éliminer l'acide qui se forme au cours de la réaction. Tous les moyens habituels peuvent être employés. L'accepteur d'acide peut par exemple être une base organique comme une aminé tertiaire telle que la triéthylamine, la diisopropyléthylamine ou la N-méthylmorpholine ou une base minérale telle que le carbonate ou bicarbonate de sodium, la potasse ou la soude, en solution aqueuse. En général on utilise de un à deux équivalents de la base par équivalent d'acide. Le fluorure d'acide aminé et l'acide aminé ou le peptide sont généralement mis à réagir dans des proportions stoechiométriques. Un excès de l'un ou l'autre de ces composés de départ peut également être utilisé. En particulier lorsque l'acide aminé est fixé sur un support solide, on peut ajouter jusqu'à 10 équivalents du fluorure d'acide aminé Nα-protégé par équivalent d'acide aminé, généralement la quantité de fluorure est voisine de 5 équivalents.
La température de la réaction est en général comprise entre
10ºC et 50°C, de préférence entre 20º et 30ºC. Le temps de réaction quant à lui varie le plus souvent entre 10 minutes et 5 heures.
Les peptides sont récupérés après les traitements habituels. Grâce au nouveau procédé selon l'invention des dipeptides ou des petptides supérieurs très utiles notamment dans l'industrie pharmaceutique sont préparés aisément et rapidement en phast liquide ou solide avec de bons rendements et au moyer. de réactif; faciles à obtenir et stables.
Les exemples qui suivent illustrent l'invention sans toutefois la limiter.
Exemple 1 : Préparation du fluorure de N-(9-fluorényiméthoxycarbonyl)glycine.
Dans un ballon de 500 ml, on place 2,75 g (0,02 mole) de fluorure de cyanuryle dissous dans 50 ml de dichiorométhane anhydre et on ajoute goutte à goutte une solution de 6,0 g (0,02 mole) de N-(9-fluorénylméthoxycarbonyl)glycine et 1,59 g αe pyridme dans 250 ml de dichloromethane. On agite 4 à 5 h à 25ºC puis on filtre le précipité, on ajoute 5 ml d'eau glacée au filtrat et on agite 5 minutes. On filtre de nouveau et on sèche le filtrat sur du sulfate de magnésium. On évapore le solvant et on obtient 5,085 g (rendement : R=85 %) du fluorure attendu sous forme d'une poudre blanche. Point de fusion : F=133-134°C, IR V(C=0) : 1860 cm-1.
Exemple 2 : Préparation du fluorure de N-benzyioxycarbonyl-glycine.
On ajoute goutte à goutte une solution de 4,0 g (0,019 mole) de N-benzyloxycarbonylglycine et de 1,5 g de pyridine dans 20 ml d'acétonitrile à une solution de 2,1 g (0,015 mole) de fluorure de cyanuryle dans 24 ml d'acétonitrile. On agite 4 heures à 25ºC.
On filtre. On reprend avec 100 ml de chloroforme et on lave avec
25 ml d'eau glacée. On sèche la phase organique sur du sulfate de magnésium et on évapore les solvants pour obtenir 3,55 g (R=88 %) du fluorure attendu sous forme d'un solide blanc, F = 50-51ºC, I.R.
√ (C=0) : 1860 cm-1.
Exemple 3 :
On prépare divers fluorures d'acides aminés selon. les méthodes décrites dans les exemples 1 ou 2. Les résultats sont indiqués ci-dessous :
Acide Méthode Rdt % F C IR [ α ]D 20 utilisé
Z-Ala 2 80 liq 11885500 - 4,8 (3 AcOEt )
Z-Leu 2 80 liq 1850 -12.2 (1 ,6 AeOEt)
Z-Phe 1 70 80-83 1845 -30 .5 (1,3 AcOEt) Z-Phe 2 80 80-83 1845 -30.5 (1,3 AcOEt)
Z-Val 2 75 liq 1850 + 7.8 (3 AcOEt)
Fmoc-Ala 1 85 108 1850 - 1.07 (2 AcOEt)
Fmoc-Ala 2 85 108 1850 -1 .07 (2 AcOEt)
Fmoc-Gly 2 91 134-135 1850 - Fmoc- I Ie 2 81 113-114 1845 -13.1 (6,0 AcOEt Fmoc-Leu 2 92 95-96 1850 - 6,3 (1 AcOEt)
Fmoc-Lys(Boc) 2 80 -
Fmoc-Met 2 80 122-123 1850 -
Fmoc-Phe 2 75 110-111 1850 -22,8 (0,6 AcOEt)
Fmoc-Pro 2 91 75-77 1850 -26,2 (0,9 AcOEt)
Fmoc-Val 2 85 112-113 1845 + 8,5 (1,85AcOEt) Fmoc-Tyr (OBzl ) 2 80 128-130 1850 +24,61 (1 AcOEt)
Exemple 4 : Synthèses de dipeptides
On prépare divers dipeptides selon les méthodes A ou B suivantes :
Méthode A
On dissout (et/ou suspend) 4,5 mmoles de fluorure d'acide aminé Nα-protégé, 4, 9 mmoles de chlorhydrate de l'ester de l'acide aminé dans 13 ml d'acétonitrile. On ajoute à ce mélange 10 mmoles de N-méthylmorpholine diluée dans 14 ml d'acétonitrile. On agite 4 h à 25°C. On reprend à l'acétate d'éthvle et lave la phase organique successivement avec HCl dilué, du bicarbonate de potassium et de l'eau. On sèche sur du sulfate de magnésium et on évapore à set puis on cristallise.
Méthode B
Dans un tricol contenant l'acide aminé estérifié (1 mmole, en solution dans le dichloromethane, le fluorure d'acide amine (1,2 mmole, en solution dans CH2CI2 et une solution aqueuse de bicarbonate de sodium à 10 % (10 ml) sont additionnés goutte à goutte, simultanément à l'aide de 2 ampoules de coulée. La sclution est maintenue sous agitation magnétique et à température ambiante. La réaction est suivie par CCM sur plaque de silice 'éluant CHOle MeOH : 9/1 ou 7/3). Cela permet de constater la disparition de l'ester qui est en défaut. L'acide aminé bloqué par le groupement Fmoc est visible en UV (256 nm) alors que l'ester est révélé grâce à la ninhydrine. La réaction est arrêtée quand il n'y a plue d'ester ce qui demande entre 1 h et 2 h. Alors le mélange réactionnei est traité. Tout d'abord on sépare les phases aqueuses et organiques. Ensuite la phase organique est lavée avec de l'acide chlorhydrique 1 N (2 fois) afin d'éliminer la base restante. Des lavages à l'eau permettent de revenir à un pH neutre (6,5). Enfin un traitement en milieu basique (carbonate de potassium 1M) permet d'éliminer l'excès de fluorure d'acide aminé (qui est sous forme hydrolyse : Fmoc-R3N-CHR2-COO-) . La phase organique est finalement séchée sur du sulfate de magnésium et évaporée avec un évaporateur rotatif. Le produit obtenu est alors séché à l'étuve (50°C) pendant 5 h.
Les résultats sont indiqués ci-dessous :
[ ] 20
Dipeptide Mé- Rdt% F °C [ α ]
préparé thode [ ] D
Z-Gly-Phe-OMe A 82 huile + 34,2 (1 AcOEt)
Z-Gly-Ala-OMe A 60 huile - 5 , 6 (1 AcOEt)
Z-Ala-Gly-OEt A 50 95-96 -
Z-Val-Phe-OEt A 84 128-130 -
Z-Yal-Ala-OEt A 74 159-160 - 47,3 (1,6 AcOEt)
Z-Leu-Phe-OMe A 95 79-80 - 26,1 (1,3 MeOH)
Z-Phe-Ala-GMe A 91 128-130 - 22,3 ( 1 , 25 Et OH)
Fmoc-Ala-Ala-OMe B 87 195-196 - 3,0- (0,63 AcOH
Fmoc-Phe-Phe-OEt B 86 171-173 + 18,5 (0 ,97 CH2 C l 2
Fmoc-I le-Pro-OMe B 77 63-65 - 59,1 (0, 28 CH2 Cl2
Exemple 5 : Synthèse en phase solide de Leu-Ala-Val-Gly
On place dans un réacteur muni d'un verre fritte 4,0 g de résine 4-(hydroxyméthyl) phénoxyméthyl-copoly(styrène-1%-divinylbenzène) contenant 0,78 mmole/g de sites actifs. On lave cette résine 2 fois 1 min. avec CH2Cl2 (10 ml), 1 min avec une solution à 5 % de diisopropyléthylamine dans CH2CI2 , puis 4 fois 1 min. avec CH2CI2 (10 ml). On traite par une solution de 2,80 g ( 9 , 36 mmoIes) de Fmoc-Gly-F, 1,2 g (9,36 mmoles) de diisopropyléthylamine et 0,114 g (0,936 mmoles) de dimethylaminopyridine (DMAP) dans 25 ml de dichloromethane pendant 2 heures. On lave la résine 5 fois 1 min. avec CH2Cl2 (10 ml) et on traite la résine par une solution de 1,5 g (15,6 mmoles) d'anhydride acétique et 189 mg de DMAP dans 25 ml de dichloromethane pendant 30 min. On lave la résine 3 fois 1 min. avec CH2CI2 (10 ml), 5 fois 1 min. avec de la diméthylformamide (DMF) (10 ml), 1 fois 3 min. puis 1 fois 7 min. avec une solution à 20 % de pipédirine dans la DMF (10 ml), 3 fois 1 min. avec la DMF et enfin 7 fois 1 min. avec CH2CI2 (10 ml). On fait réagir la résine 20 min. avec une solution de 3,17 g (9,36 mmoles) de Fmoc-Val-F et 1,2 g (9,36 mmoles) de diisopropyléthylamine dans 25 ml de dichloromethane puis on lave 5 fois 1 min. avec CH2Cl2 (10 ml), 5 fois 1 min. avec de la DMF (10 ml). 1 fois 3 min. puis 1 fois 7 min. avec une solution à 20 % de pipéridine dans la DMF (10 ml), 3 fois 1 min. avec la DMF et enfin 7 fois 1 min. avec CH2CI2 (10 ml). On recommence alors les opérations avec Fmoc-AIa-F puis Fmoc-Leu-F. Après le dernier lavage, on traite la résine 1 heure avec 22 ml d'acide trifluoroacétique à 55 % dans le dichlorométnane. On. filtre, on évapore le solvant, or. reprend à L'eau, on évapore à nouveau et on obtient 1,2 g 'R=95%) de Leu-Ala¬Val-Gly à 99 % de pureté par HPLC.

Claims

REVENDICATIONS
1. Fluorures d'acides aminés de formule
Figure imgf000012_0001
dans laquelle R1 représente le groupe benzyloxycarbonyle ou 9-fluorénylméthoxycarbonyle,
R2 représente un atome d'hydrogène ou le reste d'un acide aminé et
R3 représente un atome d'hydrogène, le radical méthyle ou forme avec R2 le reste d'un acide aminé.
2. Fluorures d'acides aminés selon la revendication 1 caractérisés en ce que R2 seul ou lié à R3 représente le reste d'ut acide aminé choisi parmi la glycine, valine, alanine, leucine. isoleueine, phénylalanine, serine, théorine, Iysine, δ-hydroxylysine, argirine, acide aspartique, aspargine, acide glumatique, glutamine. cystéine, cystine, methionine, tyrosine, thyroxine. proline, hydroxypreline, tryptophan, histidine.
3. Procédé de préparation des peptides caractérisé en ce que l'on fait réagir un fluorure d'acide aminé N'α-protégé de formule
dans laquelle R1 , R2 et R3 sont tels que
Figure imgf000012_0002
définis dans les revendications 1 ou 2 , sur un acide aminé ou un peptide, dans un solvant en présence d'un agent de fixation ce l'acide fluorhydrique.
4. Procédé selon la revendication 3 caractérisé en ce que la fonction acide de l'acide aminé ou du peptide est protégée par un groupe protecteur habituel ou par fixation sur une résine insoluble.
5. Procédé selon la revendication 3 ou 4 caractérisé en ce que la réaction a lieu en présence d'un solvant choisi parmi les nitriles, les cétones, les éthers cycliques ou non, les hydrocarbures chlorés et les amides.
6, Procédé selon la revendication 3 ou
l'agent de fixation de l'acide fluorhydrique est une base organique telle qu'une aminé tertiaire ou une base minérale telle qu'une solution aqueuse de carbonate ou bicarbonate de sodium , se potasse ou de soude.
7. Procédé selon la revendication 4, 5 ou 6 caractérise en ce que la température de la réaction est comprise entre 10ºC et 50ºC de préférence entre 20ºC et 30°C.
PCT/FR1991/000675 1990-08-22 1991-08-20 Fluorures d'acides amines et leur utilisation pour la preparation des peptides WO1992003409A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR90/10544 1990-08-22
FR9010544A FR2666086B1 (fr) 1990-08-22 1990-08-22 Fluorures d'acides amines et leur utilisation pour la preparation des peptides.

Publications (1)

Publication Number Publication Date
WO1992003409A1 true WO1992003409A1 (fr) 1992-03-05

Family

ID=9399782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1991/000675 WO1992003409A1 (fr) 1990-08-22 1991-08-20 Fluorures d'acides amines et leur utilisation pour la preparation des peptides

Country Status (2)

Country Link
FR (1) FR2666086B1 (fr)
WO (1) WO1992003409A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996004297A1 (fr) * 1994-08-02 1996-02-15 Research Corporation Technologies, Inc. Synthese et utilisation de fluorures d'acides amines en tant que reactifs de couplage de peptides

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF ORGANIC CHEMISTRY. vol. 51, no. 19, 19 Septembre 1986, EASTON US pages 3732 - 4; A OKU ET.AL.: '((9-Fluorenylmethyl)oxy)carbonyl (Fmoc) amino acid chlorides.Synthesis,characterization,and application to the rapid synthesis of short peptide segments.' voir en entier *
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. vol. 112, no. 26, 19 Décembre 1990, GASTON, PA US pages 9651 - 2; L.A CARPINO ET.AL.: '((9-Fluorenylmethyl)oxy)carbonyl (Fmoc) amino acid fluorides.Convenient new peptide coupling reagents applicable to the Fmoc/tert-butyl strategy for solution and solid- phase SA 50800 030 syntheses.' voir en entier *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712418A (en) * 1989-10-23 1998-01-27 Research Corporation Technologies, Inc. Synthesis and use of amino acid fluorides as peptide coupling reagents
US6040422A (en) * 1989-10-23 2000-03-21 Research Corporation Technologies, Inc. Synthesis and use of amino acid fluorides as peptide coupling reagent
US6534627B1 (en) 1989-10-23 2003-03-18 Research Corporation Tecnologies, Inc. Synthesis and use of amino acid fluorides as peptide coupling reagents
WO1996004297A1 (fr) * 1994-08-02 1996-02-15 Research Corporation Technologies, Inc. Synthese et utilisation de fluorures d'acides amines en tant que reactifs de couplage de peptides

Also Published As

Publication number Publication date
FR2666086B1 (fr) 1992-10-16
FR2666086A1 (fr) 1992-02-28

Similar Documents

Publication Publication Date Title
EP0297641B1 (fr) Composés guanidiniques comprenant un ion tétraphénylborate substitué, procédé d'obtention de ces composés et utilisation des composés lors de la synthése peptidique
EP0583338B1 (fr) Procede de synthese de peptides, nouveaux derives d'acides amines mis en oeuvre dans ce procede et leurs procedes de preparation
EP0185578B1 (fr) Procédé de synthèse d'esters actifs d'acides carboxyliques, carbonates alpha-halogénés utiles pour cette synthèse et leur mode d'obtention
WO1992003409A1 (fr) Fluorures d'acides amines et leur utilisation pour la preparation des peptides
EP0154581B1 (fr) Nouveaux carbonates alpha-chlorés, leur procédé de fabrication et leur application à la protection des fonctions amines des amino-acides
EP0210896B1 (fr) Dérivés d'acides amino-4 hydroxy-3 carboxyliques optiquement purs et procédé de synthèse stéréospécifique
EP0300518B1 (fr) Composés guanidiniques comprenant un ion tétraphénylborate, procédé d'obtention de ces composés et utilisation des composés lors de la synthèse peptidique
EP3067430B1 (fr) Procédé de production de dérivé d'acide aminé de forme d ou de forme l ayant un groupe thiol
EP0955310B1 (fr) Nouveaux dérivés de l'acide (3,4,7,8,9,10) -hexahydro-6,10-dioxo-6H-pyridazino /1,2-a/ /1,2/ diazépine-1-carboxylique, leur procédé de préparation et leur application à la préparation de médicaments
EP0165226B1 (fr) Nouveaux dérivés d'acide amino-4 butanoique, leur procédé de préparation ainsi que leur utilisation
EP1992611B1 (fr) Isodipeptide comme unite de synthese utile dans le synthese de peptides
WO2022136366A1 (fr) Nouveau procédé de synthèse de composés ncas
JP3285440B2 (ja) N−アルコキシカルボニルアミノ酸エステルの製造方法
JPH04321674A (ja) エステルまたはアミド結合を有する化合物の合成方法
EP0209430B1 (fr) L-di ou tripeptides possédant une activité biologique utilisable en médecine humaine et vétérinaire, procédé pour leur obtention et médicament les contenant
EP0853612B1 (fr) Derives d'alfa-hydrazinoacides et procede pour les fabriquer
EP0225311A2 (fr) Dérivés d'acide amino-4 butanoîque, leur procédé de préparation et leur utilisation
EP0315494B1 (fr) Procédé de préparation de synthons peptidiques
EP0633267A1 (fr) Procédé de préparation d'un amide d'alpha-aminoacide, utilisable en synthèse peptidique
EP2192110A1 (fr) Procédé de fabrication d'un dérivé de n-(halopropyl)amino acide optiquement actif
WO2005095332A1 (fr) Derives d’amino-acides utiles comme agents de liaison a un support solide
EP0399885A1 (fr) Nouveau tripeptide, son procédé de préparation et son utilisation
FR2623506A1 (fr) Procede de preparation de synthons peptidiques
FR2589860A1 (fr) Nouveau procede de preparation des n-nitrosourees
WO1990010009A1 (fr) Sels de phosphonium comme reactifs de couplage peptidique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

122 Ep: pct application non-entry in european phase