WO1992002548A1 - Baculovirus recombinant exprimant les proteins e et nsi de virus appartenant aux flaviviridae ou de virus apparentes aux flaviviridae - Google Patents

Baculovirus recombinant exprimant les proteins e et nsi de virus appartenant aux flaviviridae ou de virus apparentes aux flaviviridae Download PDF

Info

Publication number
WO1992002548A1
WO1992002548A1 PCT/FR1991/000432 FR9100432W WO9202548A1 WO 1992002548 A1 WO1992002548 A1 WO 1992002548A1 FR 9100432 W FR9100432 W FR 9100432W WO 9202548 A1 WO9202548 A1 WO 9202548A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
nsi
plasmid
recombinant
virus
Prior art date
Application number
PCT/FR1991/000432
Other languages
English (en)
Inventor
Philippe Despres
Michèle BOULOY
Marc Girard
Original Assignee
Institut Pasteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Pasteur filed Critical Institut Pasteur
Publication of WO1992002548A1 publication Critical patent/WO1992002548A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1081Togaviridae, e.g. flavivirus, rubella virus, hog cholera virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/14011Baculoviridae
    • C12N2710/14111Nucleopolyhedrovirus, e.g. autographa californica nucleopolyhedrovirus
    • C12N2710/14141Use of virus, viral particle or viral elements as a vector
    • C12N2710/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24111Flavivirus, e.g. yellow fever virus, dengue, JEV
    • C12N2770/24122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/08RNA viruses
    • G01N2333/18Togaviridae; Flaviviridae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a recombinant ba ⁇ culovirus expressing the E and NSI proteins of viruses belonging to Flaviviridae or of viruses related to Flaviviridae (Flavi-like).
  • Flaviviridae is meant the family of viruses described by WESTAWAY et al. in Intervirology 24: 183-192 (1985) comprising the genus Flavivirus, the typical representative of which is the yellow fever virus (VFJ).
  • viruses related to Flaviviridae is meant the Pestiviruses (Marc S. Collett et al, J. Gen. Vir (1989) 70, 253-266), in particular the bovine viral diarrhea virus (BVDV), the cholera virus swine (HCV), border sheep disease virus (BDV), and hepatitis C virus (Roger
  • VFJ is an enveloped virus containing a genome composed of a single-stranded RNA with a positive polarity of 10862 bases.
  • Viral RNA is the only mRNA synthesized during the replication cycle (DESPRES et al, (17)).
  • the complete nucleotide sequences of 3 strains of VJF have been determined (Rice et al, (18), Des briefly et al, (19), Hahn et al, (20), Dupuy et al, (21)). Sequence analysis revealed the presence of a single open reading frame of 10233 bases coding for a polyprotein of 3411 amino acids (approximate MW of 375 kDa).
  • Envelope protein E molecular weight apparent of 54 kDa
  • 6116 consists of a protein integrated in the membranes which binds to cellular receptors and induces neutralizing antibodies.
  • the non-structural glycoprotein NSI (apparent molecular weight of 48 kDa) of undetermined function could play a role in the assembly and maturation of the virus. Immunization with purified NSI protein or polypeptide fragments of NSI expressed as fusion proteins by bacteria has been shown to protect mice and primates from challenge with VFJ. In addition, several monoclonal antibodies specific for NSI of VFJ possess cytolytic activity in the presence of the complement and have been shown to passively protect animals from a test with the homologous infectious virus (Schesinger et al, 1985 (1); Gould et al, 1986 (2)). These data strongly suggest that in preventing viral infection, immune recognition of the NSI protein could provide an alternative to direct neutralization of flaviviruses. Attempts have been made for some time to elicit an immune response by injecting ani ⁇ proteins with munogenic proteins of these viruses produced by an appropriate vector, in particular the envelope protein (E) and the non-structural glycoprotein ( NSI) known to provide good protection.
  • ZHAO et al. (Journal of Virology, Dec. 1987, p. 4019-4022, vol. 61 no. 12) have thus described the expression of the structural and non-structural proteins of the Dengue virus by a recombinant vaccinia virus.
  • Yi-Ming Zhang et al (Journal of Virology, August 1988, p 3027-3031, vol. 62-, No. 8) described the expression of proteins of structure C (capsid), PreM (precursor of M) and glycoprotein of structure E (envelope) as well as non-structural proteins NSI and NS2A by a recombinant baculovirus.
  • the object of the present invention is to provide a system for expressing the immunogenic proteins of Flaviviridae and viruses related to Flaviviridae at a high rate, so as to confer effective immunological protection against infections caused by these viruses.
  • the present invention relates to a recombinant bacu ⁇ lovirus, characterized in that it comprises a cDNA coding for all or part of the antigenic protein of envelope E and / or a cDNA coding for all or part of the antigenic protein not struc ⁇ turale NSI of a virus belonging to Flaviviridae or of a virus related to Flaviviridae, inserted in the polyhedrin gene between nucleotide + 35 and nucleotide of + 170, the A of the initiation codon modified from polyhedrin being numbered + 1.
  • the recombinant baculovirus comprises as insertion segment a cDNA coding for all or part of E or a cDNA coding for all or part of E and NSI, it further comprises, upstream of the cDNA, a sequence leader which corresponds to the 3 ′ end of the 5 ′ non-coding region of the gene for the VP1 protein of the SV40 virus comprising 11 nucleotides 3 ′ to the Hind III site (nt 1488 on the SV40 genome) and the initiation codon ATG of the protein VP1.
  • the recombinant baculovirus comprises as insertion segment a cDNA coding for all of NSI, no initiation codon has been introduced artificially because the signal peptide of NSI contains a large number of ATG in phase; At least one of these is used to initiate translation.
  • a termination codon is present at the 3 ′ end. It was introduced in a step prior to insertion into the baculovirus vector.
  • the recombinant baculovirus comprises as insertion segment a cDNA coding for all or part of E which already includes a termination codon, it is not necessary that it comprises an artificially added termination codon .
  • the recombinant baculoviruses according to the invention respectively comprising a cDNA coding for all or part of the proteins E and NSI, a cDNA coding for all or part of the protein E.
  • a cDNA coding for all or part of the protein NSI are obtained by cotransfection and homologous recombination of the plasmids comprising as insertion segments the respective cDNAs with the genome of the wild-type Autographa California Nuclear Polyhedrosis baculovirus (AcNPV).
  • AcNPV Autographa California Nuclear Polyhedrosis baculovirus
  • Flaviviridae or related to Flaviviridae is the yellow fever virus.
  • a preferred recombinant plasmid designated pAc-E.NSl comprising the cDNA coding for E and NSI deleted from the potential terminal amino acid C of NSI, is advantageously obtained by the following steps: a) digestion of a recombinant plasmid SV40-VFJ comprising the cDNA coding for E and NSI, in order to introduce a termination codon at the carboxylic end of NSI.
  • the expressed protein is deleted from its C-terminal amino acid; b) digestion of this plasmid with Hind III or Bgl II; c) treatment of the ends with the Klenow fragment in the presence of the 4 deoxynucleotides triphosphate, so as to make the ends free; d) digestion of the DNA obtained by Apa I; e) isolation and ligation of the DNA fragments obtained with the plasmid pVL-941 poly previously linearized with Bam HI and treated with the Klenow fragment in the presence of the 4 deoxynucleotides triphospha ⁇ te, then with alkaline phosphatase, to generate a plasmid comprising The initiator ATG of the VP1 protein of the SV40 virus preceded by the 11 adjacent 5 'nucleotides delimited by a Hind III site.
  • This sequence constitutes a part of the 5 'non-coding region of the polyhedrin-VFJ chimeric mRNA, allowing the expression of E and NSI.
  • the 3 'region of the insert codes for the NSI protein where the last terminal amino acid C is deleted and replaced by the exogenous sequence GGSS.
  • pAc-NS1 comprising the cDNA coding for NSI deleted from its potential terminal amino acid C is advantageously obtained by the following steps: a) digestion of a recombinant plasmid SV40-VFJ comprising the cDNA coding for E and NSI deleted from its terminal amino acid C with Xba I; b) filling with the Klenow fragment in the presence of the 4 deoxynucleotides triphosphate and Ligation of the fragments obtained to generate a plasma comprising a leader sequence corresponding to the 3 ′ end of the 5 ′ non-coding region of the VP 40 protein gene of the SV 40 virus comprising the 11 nucleotides 3 ′ of the Hind site III and the ATG initiation codon of the protein VP1 as well as the exogenous sequence GGG GGA TCC TCT AGC TAG downstream of the cDNA coding for E and NSI deleted from its terminal amino acid C; c) digestion of the
  • pAc-E1 Another preferred recombinant plasmid, called pAc-E1 comprising the cDNA coding for the signal peptide of protein E followed by protein E dele ⁇ ted from its C terminal end (amino acids 286 to 720) is obtained by the following steps : a) digestion of the plasmid pAc-E.NSl described previously by Xho I and Apa I and of a plasmid re ⁇ combining SV40-VFJ comprising the cDNA coding for protein E with Apa I and Bgl II, and b) ligation fragments [Xho I - Apa I] of the plasmid pAc-E NSI obtained previously and [Apa I - Bgl II] of the recombinant plasmid SV40-VFJ comprising the cDNA coding for protein E truncated with a transfer vector PVL-941 poly obtained from pVL 941 by insertion of
  • pAc-E2 Another preferred recombinant plasmid, called pAc-E2 comprising the cDNA coding for the signal peptide of protein E followed by protein E deleted from its carboxylic end containing its 5 transmembrane anchoring domain (amino acids 286 to 720) is obtained by the following steps: a) creation of Bam HI and Sma I sites at the ends of the 5 ′ and 3 ′ non-coding regions respectively of the DNc by directed mutagenesis by PCR 0 (Polymerase Chain Reaction) using Taq polymerase to starting from the plasmid pSV-E as defined above, using as primers respectively the oligodeoxynucleotides E-5 'and E-3' of sequences:
  • 5 E-5 ' 5 , GTCGACCTGTACGGATCCGTTACTTCTGCTCTA3,
  • pAc-E ⁇ NSl comprising the cDNA coding for protein E followed by the protein NSI in the form of an uncleaved polyprotein is obtained by site-directed mutagenesis, in particular by PCR, of the sequence VXA (amino acid 776 at 778), X representing the amino acids G, H or Q, in particular G in the VFJ, located upstream of the first amino acid of NSI, in FYV.
  • VXA site is a canonical cleavage site recognized by cellular signalases upstream of the N-terminal end of the NSI protein of flaviviruses.
  • the tripeptide FYV introduced into flaviviruses in place of VXA is no longer recognized as a cleavage site.
  • the plasmid called pAc-E ⁇ NSl is obtained by the following steps: a) creation of a unique Sna BI site at position 2450 (corresponding to the position between amino acids 777 and 778), of cDNA by site-directed mutagenesis by PCR using Taq-Polymerase from the plasmid pAc-E.NSl as defined above, using as primers the oligodesoxynucleotide SP-NS1 of sequence: 5'TCC GCA CTT GAG CTC TCT CTT GCC AAA GTT
  • the recombinant baculoviruses are obtained by transfection and homologous recombination of the plasmids with the genome of the wild-type baculovirus, preferably Autographa california Nuclear Polyhedrosis Virus (AcNPV).
  • AcNPV Autographa california Nuclear Polyhedrosis Virus
  • the recombinant baculovirus Ac-E2 obtained by transfection and recombination of the genome of AcNPV with the plasmid p Ac E2 was deposited at the CNCM on May 21, 1991 under the number ⁇ 1-1098.
  • the baculovirus Ac-E with NSI obtained by transfection and recombination of the genome of Ac NPV with the plasmid of pAc-E ⁇ NSl was deposited at the CNCM on May 21, 1991 under the number 1-1097.
  • Baculoviruses express truncated or whole E proteins associated / in tandem with NSI after maturation (glycosylation, oligomerization, etc.) at high rates when they are propagated in eukaryotic insect cells, in particular Spodoptera frugiperda cells. .
  • the proteins thus obtained are antigeni- ques and therefore find their application in in vitro diagnostic methods of viral infections caused by Flaviviridae or viruses related to Flaviviridae.
  • the present invention thus also relates to a method of in vitro diagnosis in humans or in animals, by detecting antibodies directed against all or part of the protein E and / or the immunogenic NSI protein as obtained. by a recombinant baculovirus according to the invention, in a biological sample from man or animal, in which the immunogenic protein (s) E and NSI are brought into contact with the biological sample from man or animal may contain said antibodies and the presence of fixed antibodies is revealed.
  • This process can be based on a radioimmunological method of RIA, RIPA or IRMA type or an immunoenzymatic method of WESTERN-BLOT type on strips or of ELISA type.
  • the present invention also relates to a kit for in vitro diagnosis of infections caused by Flaviviridae or viruses related to Flaviviridae for the implementation of the above-mentioned process, comprising all or part of the protein.
  • Immunogenic NSI and / or protein E as obtained by a recombinant baculovirus according to the invention and containing, in addition, an antibody specific for an immunoglobulin isotype.
  • the present invention also relates to a vaccine intended for the treatment and prevention of infections caused by Flaviviridae or viruses related to Flaviviridae in humans or in animals, in which the vaccinating agent consists in all or part of protein E and / or protein NSI, obtained by a recombinant baculovirus according to the invention.
  • the vaccinating agent can be administered in the form of purified protein (s) using the fractionation properties of Triton X 114, or even via a recombinant baculovirus as described above producing the or immunogenic peptides or also by means of eukaryotic cells, such as insect cells, in particular Spodoptera frugiperda cells used for the propagation of the recombinant baculovirus and the immunogenic proteins produced by it.
  • eukaryotic cells such as insect cells, in particular Spodoptera frugiperda cells used for the propagation of the recombinant baculovirus and the immunogenic proteins produced by it.
  • the massive preparation of these re-combining proteins can be obtained either by fermenting Spodoptera frugiperda cells, or from larvae of insects infected with the recombinant baculovirus.
  • the vaccine may contain an adjuvant with immunostimulatory properties.
  • adjuvants that can be used are mineral salts such as aluminum hydroxide, hydrophobic compounds or surfactants such as incomplete Freund's adjuvant, squalane or liposomes, synthetic polynucleotides , microorganisms or components of microorganisms such as murabutide, synthetic artificial molecules such as imuthiol or levamisole, or also cytokines such as interferons, ⁇ , or interleukins.
  • the invention further relates to a monoclonal anti ⁇ body directed against all or part of a protein E and / or 31, obtained by a re ⁇ combining baculovirus as described above.
  • Monoclonal antibodies according to the invention can be prepared according to a conventional technique.
  • the polypeptides can be coupled, if necessary, to an immunogenic agent, such as tetanus toxoid, by a coupling agent such as glutaraldehyde, a carbodiimide or the benzidine bis diazotized.
  • FIG. 1 shows a diagram of construction of the plasmid pAc-E.NSl making it possible to obtain the recombinant baculovirus Ac-E.NSl.
  • the sequence coding for the VFJ proteins E and NSI including the initiation codon taken from the VP 40 gene of the SV 40 virus, the signal peptide of protein E and the termination codon at the C terminus of the protein NSI are isolated. of the plasmid pSV-E.NSl- (TAG).
  • TAG plasmid pSV-E.NSl-
  • the sequences representing the genome ⁇ i u AcNPV virus and the cDNA of the VFJ are indicated by the thick lines and the hatched parts, respectively.
  • FIG. 2 represents the organization of the sequences of the polyhedrin gene of the plasmid pVL 941-poly serving as the transfer vector for its homologous re-combination with the baculovirus, and of the recombinant plasmid pAc-E.NSl.
  • the nucleotide sequence at the junction between the polyhedrin gene and the 5 ′ end of the region coding for the proteins E and NSI is reported on the face.
  • the ATG initiation codon and the TAG termination codon are overcome. in one stroke.
  • the sequence of amino acids of the N and C ends of the translated polypeptide is indicated in the figure. The numbering corresponds to that of the precursor polyprotein of the VFJ.
  • FIG. 3 shows the diagram of construction of the plasmid pAc-El allowing to obtain the recombinant baculovirus Ac-El
  • Figure 4 represents the diagram of construction of the plasmid pAc-NSl making it possible to obtain the recombinant baculovirus Ac-NSl ,
  • FIG. 5 represents the organization of the sequences of the baculovirus pVL 941-poly serving as a transfer vector, and of the recombinant plasmids pAc-El and pAc-NSl,
  • the nucleotide sequence at the junction between the polyhedrin gene and the 5 ′ end of the region coding for the proteins E and NSI is shown in the figure.
  • the ATG initiation codon and the respective TGA and TAG termination codons of the cDNAs encoding E and NSI are surmounted by means of a line.
  • the amino acid sequence of the N and C ends of the translated polypeptide is shown in the figure.
  • FIG. 6 shows the scheme for obtaining the plasmid p Ac-E2 from the DNA of VFJ.
  • FIG. 7 shows the scheme for obtaining the plasmid p Ac-E ⁇ NSl by mutation directed by PCR on the sequence upstream of NSI from the corresponding sequence of p Ac-E.NSl.
  • FIG. 8 represents the results of immunizations carried out in Swiss mice with a lysate of Spodoptera frugiperda cells (strain Sf9), infected with the wild baculovirus AcNPV, the virus 17D or a lysate of Vero cells infected with the virus 17D
  • FIG. 9 represents the results of immunizations carried out in Swiss mice with a cell lysate of Sf9 infected with the baculovirus AcNPV and the recombinant baculoviruses of the invention Ac-E.NSl, Ac-El and AC-NS1;
  • FIG. 10 shows the immunoprecipitation results of a lysate obtained in RIPA buffer from Vero cells infected with VFJ and labeled with methionine [ ⁇ S] in the presence of actinomycin D.
  • the radiolabelled ly ⁇ sat (10 "cpm in a volume of 200 ⁇ l) is immunoprecipitated with 20 ⁇ l of mouse serum taken before the test with the 17D virus in the presence of protein A Sepharose (Pharmacia).
  • 17D ip sera of mice immunized with VFJ intraperitoneally
  • 17D Lys sera of mice immunized with the lysate of Vero cells infected with VFJ
  • AcNPV sera of mice immunized with the ly- sat of Sf9 cells infected with wild ba ⁇ culovirus
  • Ac-E.NSl sera of mice immunized with ly ⁇ sat of Sf9 cells infected with the recombinant baculovirus Ac-E.NSl
  • Ac-El sera of mice immunized with ly ⁇ sat of Sf9 cells infected with the recombinant baculovirus Ac-El
  • Ac-NSl (A) sera from mice immunized with ly ⁇ sat of Sf9 cells infected with the recombinant baculovirus Ac-NSl being died after the challenge with the infectious virus
  • Ac-NSl (B) sera of mice immunized with the ly-s
  • the sequence coding for the E and NSI proteins of the VFJ comprising the signal peptide of E and the initiation codon ATG of the VP1 protein of SV40 is isolated from the plasmid pSV-E.NSl in the form of a DNA fragment of 2 , 6 kbp, as described by Desrés et al, (4).
  • a phase termination codon is inserted at the 3 ′ end of this complementary DNA by digestion of the plasmid pSV-E.NSl with Xbal (unique site in the multilinker) and filling with the Klenow fragment so as to generate the exogenous peptide sequence GGSSS at the carboxylic end of the NSI protein ( Figure 2).
  • the blunt ends are circularized with T4 DNA ligase, thus generating the plasmid pSV-E.NSl- (TAG) ( Figure 1).
  • the passenger DNA is isolated from pSV-E.NSl- (TAG) in the form of two fragments of 0.70 kbp and 1.90 kbp as shown in FIG. 1.
  • the 0.70 kbp fragment containing the sequence encoding the N-terminal half of protein E, including its signal peptide, is cleaved by Hind III (nucleotide 1488 on the SV40 genome), filled with the Klenow fragment and digested with Apa I (nucleotide 1603 on the genome of the VFJ).
  • the 1.90 kbp fragment containing the sequence encoding the C-terminal half of the E protein followed by the complete NSI protein, is digested with Bgl II (3 ′ terminal site of the multilinker of the DNA combining SV40 ), filled with the Klenow fragment and digested with Apa I.
  • Plasmid pVL 941-poly is obtained from plasmid pVL 941 described by Luckow and Summers (5) by insertion of a multilinker at the 3 'end of the Bam HI site ( Figure 2).
  • the plasmid pVL941-poly is digested with BamHI, filled with the Klenow fragment, dephosphorylated and used for the insertion of the cDNA fragments of the VFJ of 0.70 and 1.90 kbp.
  • the substitution by the genes of E and NSI in the gene of the lyedrine begins at nucleotide + 35, by numbering the A of the modified initiation codon ATT of the polyhedrin by + 1.
  • the recombinant plasmid containing the segment d inserting 2.6 kbp in the correct orientation is designated pAc-E.NSl.
  • the blunt ends of the Bam HI site are ligated to those of the Hind III site generating the sequence 5 '... GGATCAGCTTATGAAGATGG ... 3' in the non-coding region, as shown in Figure 2 .
  • This transfer vector is used to generate the recombinant baculovirus Ac-E.NSl after trans ⁇ fection and homologous recombination with the genome of the Autographa California Nuclear Polyhedrosis virus (Ac NPV) of the wild type using the conventional calcium precipitation techniques. -phosphate described by Summers and Smith (6).
  • Occlusion-negative viral particles are purified in ranges and propagated in cells of Spodoptera frugiperda Sf9 (clonal isolate 9 of IPLB-Sf21-AE strain).
  • viral DNA is extracted from cells infected with Ac-E.NS1.
  • E and NSI advantage was taken of the presence of two Eco RV sites at the two ends of the VFJ cDNA, one in position -96 on the polyhedrin gene, the other in the multilinker downstream of the insertion segment.
  • the inserted DNA having correct dimensions is revealed by using a specific cRNA probe obtained from the plasmid pGX4-El (Ruiz Linarix et al, (7)) .
  • the recombinant baculovirus Ac-E1 contains the cDNA isolated from the plasmid pSV-E (Deshoff et al, (4)). This cDNA codes for the signal peptide of protein E (aa 271 to 285 of the polyprotein precursor of virus 17D) followed by protein E deleted from its C-terminal end (aa 286 to 720).
  • the plasmid pAc-El is generated after ligation of the fragments [Xho I-Apa IJ of the plasmid pAc-E.NSl (described previously), and £ Apa I-Bgl II] of the plasmid pSV-E (DESPRES et al. (4) ) with the transfer vector pVL 941-poly digested with Xho and BamH I ( Figure 3).
  • the open reading frame for the passenger DNA inserted into the polyhedrin gene is described in Figure 5.
  • the recombinant baculovirus Ac-NSl contains the cDNA of the virus 17D encoding the glycoprotein NSI isolated from the plasmid pSV-E.NSl- (TAG) described previously. This cDNA codes for the potential signal peptide of the NSI protein (aa 758 to 778) followed by the NSI protein (aa 779 to 1129).
  • the plasmid pAc-NSl was generated after ligation of the fragments [Tth 111 I-Mlu I] (nt 2389 to 2947 of the viral genome) and [Mlu I-Pst 1] (nt 2947 to 3506; Pst 1 is a site of the multilinker ) with the transfer vector pVL941-poly digested with BamH 1 and Pst 1 ( Figure 4).
  • the open reading frame for the passenger DNA inserted into the polyhedrin gene is described in Figure 5.
  • the recombinant baculovirus Ac-E2 contains the cDNA coding for protein E deleted from its transmembrane anchor domain.
  • the plasmid pAc-E2 is generated from the plasmid pSV-E (Deshoff et al. (4)).
  • the unique Bam HI and Sma I sites were created by mutagenesis directed at the ends of the non-coding regions (RNC) in 5 'and 3' respectively of the gene from the plasmid pSV-E.
  • Two synthetic oligodeoxynucleotides were prepared to carry out site-directed mutagenesis: a) an oligodesoxynucleotide with 33 bases E-5 'th sequence:
  • E-3 ' c, CAATGATCACGCTAGTCCCGGGCAAGCTTC
  • This sequence is complementary to nucleotides 7 to 42, counting the nucleotide 3 ′ of the stop coding TGA of RNC 3 ′ of the gene coding for protein E as + 1, in the plasmid pSV-E (Deshoff et al. ( 4)).
  • a Sma I site (underlined in dotted lines on the E-3 'sequence) is generated by the oligomer of 36 E-3' bases in positions 20 to 25 from TGA.
  • the oligomers E-5 'and E-3' are used as primers for the synthesis of a PCR product of 1400 bp by site-directed mutagenesis from the plasmid pSV-E, corresponding to the protein E of the virus.
  • 10 ng of the plasmid pSV-E are mixed with 10 ng of the oligomers E-5 'and E-3' in the presence of Taq-polymerase.
  • 25 denaturation cycles at 94 ° C are carried out for 1 min 30 sec.
  • the oligomers are fixed at 55 ° C for 2 minutes and an extension is carried out at 72 ° C for 2 minutes.
  • the PCR product is deposited on an agarose gel.
  • the 1400 bp PCR product is electroeluted from the agarose gel, treated with phenol / chloroform and then precipitated with 95% ethanol at -20 ° C. in the presence of 0.2 M sodium acetate.
  • the dried DNA is taken up in commercial buffers for digestion with the restriction enzymes Bam HI and Sma I.
  • the digested PCR product is treated as for the plasmids previously described. to obtain an intermediate plasmid.
  • the PVL 941-poly plasmid described above is digested with Bam HI and Sma I and ligated with the digested PCR product corresponding to the gene coding for the truncated protein E of the VFJ.
  • the fragment between the Hind III site (nucleotide-13) and the Pst I site (nucleotide 1964 of the VFJ genome) ie approximately 1050 pb of the intermediate plasmid, is substituted by the homologous fragment originating from the plasmid pSV-E.
  • the plasmid pAc-E2 is obtained (FIG. 6). The rest of the sequence was checked by direct sequencing.
  • the new plasmid pAc-E2 at the origin of the recombinant baculovirus Ac-E2 contains the same open reading frame coding for the truncated protein E as that present in the plasmid pAc-El; only the RNCs at the ends of the open reading frame have been modified.
  • Ac-E ⁇ NSl recombinant baculovirus contains the cDNA coding for protein E followed by the NSI protein in the form of an uncleaved polyprotein.
  • the cleavage site between the two major antigens of the VFJ was modified by site-directed mutagenesis, so that it is no longer recognized by cellular signalases, thus generating a 100 kDa polyprotein corresponding to the covalently linked E and NSI proteins. .
  • VGA cleavage site upstream of the first amino acid of NSI (aa 779) recognized by cellular signalases allows the cleavage of E and NSI; this tripeptide was modified into FYV by mutagenesis directed so that it is no longer recognized as a cryptic cleavage site according to the rules of Von Heijne (23).
  • an oligodeox- nucleotide of 89 bases SP-NS1 of sequence is a sequence:
  • GAT CAC TCC TA 3 complementary to nucleotides 2413 to 2501 of the VFJ genome, vaccine strain 17D-204; the substitution of the codons corresponding to VAG to codons corresponding to FYV is underlined on the sequence of the SP-NS1 oligomer.
  • a unique Sna BI site is generated at position 2450 (between amino acids 777 and 778) by the SP-NS1 oligomer.
  • SP-oligomer the oligomer E and NS1-5 'described earlier are used as primers for ⁇ a synthesis of a PCR product of 1500 bp from the plasmid pSV-E.NSl crosscédanment described, corresponding to the complete E protein ⁇ - i-us 15 N-terminal amino acids of the NSI protein.
  • 10 ng of the plasmid pAc-E.NSl are mixed with 10 ng of the oligomers E-5 'and SP-NS1 in the presence of Taq-Polymerase. Amplification is carried out over 25 cycles as described above for pAc-E2.
  • the 1500 bp PCR product is purified as described for pAc-E2 and digested with Bam HI (single site provided by E-5 ') and by Sac I (site in 2490 of the VFJ genome provided by SP-NS1).
  • the transfer vector pVL 941-poly described above is digested with BamHI and Sac I.
  • the fragments obtained are ligated with the digested PCR product corresponding to complete protein E plus 13 amino acids of NSI from VFJ.
  • the resulting plasmid pAc-E ⁇ NSl (o) is an intermediate plasmid for the construction of the plasmid pAc-E ⁇ Sl; this intermediate plasmid contains the VGA substitution for FYV (amino acid 776 to 778) at the carboxyl end of VFJ protein E.
  • the final construction - to obtain the plasmid pAc-E NSI was carried out by ligation of the fragments: - [Bam HI-EcoRI] of the plasmid pAc-E2 corresponding to the truncated protein E,
  • the complexity of these constructions was made necessary by the risk of introducing random mutations during the PCR carried out to obtain site-directed mutagenesis.
  • the plasmid pAc-EWNS1 thus obtained codes for the E and NSI proteins in tandem not cleaved from the VFJ.
  • the baculovirus Ac-EWNSl generated by transfection differs from the virus Ac-E.NSl only by the VGA substitution in FYV at the carboxylic end of the protein E. II - Expression of the recombinant baculoviruses
  • Vero cells African green monkey kidney cell lines infected with VFJ are pretreated at 8 h pi with 5 Mg / ml of actinomycin D (act D) and labeled at 25 h pi for 3 hours with ⁇ oo ci [ 35 S] methionine per ml in the presence of actinomycin D.
  • act D actinomycin D
  • tunicamycin 5 Ug / ml
  • infected cells are marked for 30 minutes with 200 (JCi / ml of [ 35 S] methionine per ml. After the labeling period, the cells are washed and incubated with an excess of cold methionine for variable durations.
  • the proteins present in the supernatant are precipitated by adding 9 volumes of 95% ethanol and incubation at -20 ⁇ C for 18 hours as described by Des originally et al, (4).
  • the cells are washed twice with cold saline solution of phosphate buffer (PBS) and lysed with cold RIPA buffer (50 mM tris HCl pH 7.5; 150 mM NaCl; 10 mM EDTA ; 0.1% SDS; 1% Triton X 100; 1% deoxycholate) containing 25 ⁇ g / ml aprotinin (Sigma).
  • PBS phosphate buffer
  • RIPA buffer 50 mM tris HCl pH 7.5; 150 mM NaCl; 10 mM EDTA ; 0.1% SDS; 1% Triton X 100; 1% deoxycholate
  • the proteins separated on SDS-polyacrylamide gel are transferred by electrophoresis to nitrocellulose filters (Schleicher and Schuell, RFA).
  • the membrane is saturated with the washing buffer (20 mM Tris HCl pH 7.5; 500 mM NaCl) containing 3% fetal bovine serum and incubated for one night at 4 C C with a rabbit antiserum diluted 1 / 50 directed against the NSI protein (Schlesinger et al, (1)) or a TrpE-E fusion protein obtained by insertion of the cDNA coding for protein E in the 3 ′ region of the TrpE gene of the tryptophan operon in the PATH plasmid described by C. Dieckmann and A. Tzagoloff (J. Biol.
  • the membrane is incubated successively at room temperature with an anti-rabbit biotinylated horse serum diluted 1/500 and with a complex diluted 1/500 of Streptavidin-biotinylated horseradish peroxidase (Amersham ). After washing, the bound antibodies are visualized by reacting the membrane with 0.06% 4-chloro-1-naphthol (Sigma) and 0.015% hydrogen peroxide.
  • Sf9 cells infected with the recombinant baculo ⁇ virus or Vero cells infected with VFJ are labeled as described above and immunoprecipitated cell extracts using antibodies directed against VFJ proteins.
  • the immune complexes are treated with Endo-H (20 mU / ml) or Endo-F (1U / ml) (Boehringer) using the technique described by Jarvis and Summers (22).
  • Triton X 114 Extraction with Triton X 114
  • the cells are rinsed with PBS, suspended in a solution of 2% Triton X 114 (BDH) in 50 mM tris-HCl pH 7.5, containing 25 ⁇ g / ml of aprotinin and incubated for 10 min at 0 ⁇ C.
  • the aqueous and detergent phases are obtained by incubation in a water bath at 37 ⁇ C and then by centrifugation at 37 ° C. in a mini-centrifuge at 3000 rpm.
  • the aqueous phase is recovered and after several washes with buffer E (10 mM tris-HCl pH 7.5; 150 mM NaCl; 5 mM EDTA), the detergent phase is obtained.
  • the aqueous phase and detergent diluted with 5 volumes of buffer E are precipitated overnight with 9 volumes of ethanol at 95% - 20 ⁇ C.
  • the proteins were analyzed on polyacrylamide gels.
  • the recombinant plasmid Ac-E.NS1 contains the VFJ cDNA which codes for a polyprotein precursor of proteins E and NSI, having a theoretical molecular weight of 100 kDa (865 amino acid residues).
  • VFJ cDNA which codes for a polyprotein precursor of proteins E and NSI, having a theoretical molecular weight of 100 kDa (865 amino acid residues).
  • the recombinant proteins E and NSI migrate with the same mobilities as the authentic proteins obtained from Vero cells infected with the VFJ.
  • the cells are treated with tunicamycin, an inhibitor of N-glycosylation of proteins, the authentic NSI protein and the recombinant NSI protein co-migrate with an apparent molecular weight of 43 kDa.
  • the recombinant protein nor the authentic E protein is glycosylated as it could be judged from the absence of effects of the drug on their electrophoretic mobility.
  • the antigenicity of the recombinant proteins is analyzed using monoclonal antibodies directed against the E and NSI proteins.
  • the monoclonal antibodies neutralizing 2C9 (Schleslnger et al, (10)) and 864 (above mentioned) recognize the envelope protein synthesized by the vaccine strain 17D-204 of the VFJ and react with the recombinant protein E expressed by the SV40-VFJ hybrid virus (Deshoff et al, (4)). Both types of monoclonal antibodies also react with protein E recombinant synthesized in insect cells.
  • the monoclonal antibody 8G4 immunoprecipates the NSI protein of the VFJ produced in infected Vero cells as well as the non-glycosylated form synthesized in the presence of tunicamycin. Recognition by the monoclonal antibody 8G4 is considerably affected when the protein is treated with SDS and dithiotreitol, which indicates that the epitome is dependent on the conformation.
  • the 8G4 monoclonal antibody also reacts with the recombinant NSI protein obtained from Sf9 cells infected with Ac-E.NSl. In addition to the 48 kDa recombinant protein, a minor polypeptide with an apparent molecular weight of 47 kDa is immunoprecipitated from a lysate of insect cells infected with Ac-E.NSl.
  • RNA oligomeric forms and associated with the membrane of the NSI protein The oligomerization of NSI in the cells of mosquitoes and mammals infected with different flaviviruses has been described by nomer et al, (13, 14), Mason (15) and Schleslnger et al, (16). The question is asked whether the NSI protein also forms oligomers in lepidopteran cells infected with the Ac-E.NSl virus. It was therefore necessary to establish the conditions for detecting NSI oligomers in cells of mammals infected with VFJ. The NSI dimers formed during infection with the Dengue virus are resistant to reducing treatments and by SDS but sensitive to heat denaturation.
  • the primate cells infected with the VFJ strain 17D-204 are labeled for 30 min at 25 h pi in the presence of actinomycin D and driven out for variable durations.
  • the proteins obtained from the cell lysates are dissolved in a Laemmli buffer and analyzed on polyacrylamide gel before and after heat denaturation.
  • the protein NSI of 48 kDa is detected in the form of a weak band after a labeling period of 30 min., And becomes increasingly important after an incubation of 60 min.
  • the 48 kDa protein is detected at the end of the labeling without it accumulating during hunting. Concomitantly, a new viral band with an apparent molecular weight of 72 kDa appears, which becomes more and more intense during hunting.
  • the 72 kDa polypeptide is eluted from the gel and shown to represent an oligomeric form of the NSI protein.
  • the isolated polypeptide is analyzed by estern-blot using a rabbit immuniser directed against the NSI protein of the VFJ (Schlesln ⁇ ger et al, (1)).
  • the 72 kDa polypeptide reacts with the specific serum and after heat denaturation dissociates to form the 48 kDa NSI protein.
  • Triton X 114 After treatment of the cell extracts with Triton X 114, the transmembrane proteins having hydrophobic anchoring sequences are effectively distributed in the detergent phase, while the more hydrophilic, cytosolic and secreted proteins remain in the aqueous phase .
  • the presence of the envelope protein of the VFJ or of the recombinant protein E expressed by the Ac-E.NSl virus in the detergent phase is revealed by direct analysis of the cytoplasmic extract marked and confirmed by Western type analysis. blot by means of a rabbit immune serum directed against protein E of the VFJ. Protein E is extracted * - completely and completely in the detergent phase as expected for a transmembrane protein.
  • NSI Oligomers in the phase detergent is revealed clearly.
  • Wertern-blot analyzes with a rabbit immuniser directed against the NSI protein of the VFJ shows that the 72 kDa NSI oligomer is extracted both in the aqueous phase and in the detergent phase. After heat denaturation, the oligomeric form is dissociated and converted into a 48 kDa protein. In the absence of heating, most of the products appear in the form of oligomers.
  • N-glycosylation is blocked with tunicamycin, the presence of a 62 kDa polypeptide in the unheated sample is observed.
  • he NSI protein expressed by the recombinant baculovirus Ac-E.NSl is detected by Western blotting with the immune serum directed against the NSI protein of the VFJ both in the monomeric form gp48 and in the oligomeric form gp72.
  • the oligomeric form is found in the aqueous and detergent phases of Triton 'X114. These results mean that the oligomerization and the association with the membranes of the recombinant protein NSI take place in the cells of insects infected with the recombinant bacu ⁇ lovirus Ac-E.NSl and at a temperature of 27 ⁇ C.
  • NSI proteins of different flaviviruses have been described as the antigens soluble fixing the complement and later as a protein secreted in the cell culture medium, it was interesting to determine whether the authentic and recombinant NSI proteins synthesized in Vero cells infected with VFJ or in Sf9 cells infected with baculoviruses were also secreted into the medium.
  • Vero cells infected with VFJ are radiolabelled with [ 35 S] methionine for 30 min. then driven out with an excess of cold methionine for 0 to 5 hours.
  • the authentic NSI protein is present in the cell supernatant after 2 hours of hunting, after which a plateau is quickly reached.
  • the secreted form of NSI migrates in the form of a diffuse band with an apparent molecular weight slightly higher than its cellular counterpart. Although the proportion of NSI in the extra- and intracellular fractions has not been quantified, autoradiographic analyzes clearly indicate that a large part remains in the intracellular form.
  • Vero cells infected with VFJ the NSI recombinant protein obtained from Sf9 cells infected with Ac-E.NSl is not secreted because none of the recombinant polypeptides could be detected in the extracellular fraction after labeling for 30 min . followed by a 3 hour hunt. The duration of the hunt did not exceed periods that were too long due to possible cell lysis due to baculovirus infection.
  • oligosaccharide groups linked to aspargins present on the NSI protein expressed by the VFJ or by the Ac-E.NSl virus should give indications on its transport in the path intracellular secretory and an indication of the compartment in which the oligomerization takes place.
  • the intra- and extracellular samples obtained from the labeling experiments followed by 2 hours of hunting are analyzed as to their reactivity with regard to endoglycosidases.
  • the VFJ extracellular NSI protein appears to be almost completely resistant to Endo-H and shows the same heterogeneity as the untreated form; but as expected, is sensitive to Endo-F. This indicates that NSI must cross the secretory compartment where the oligosaccharides with a high mannose content are modified into complex sugars resistant to Endo-H.
  • the heterogeneity of the NSI protein released is probably due to multiple modifications of the oligosaccharides linked to the Asparagine residues.
  • the intra-cellular NSI protein is completely sensitive to Endo-H, which indicates that it does not migrate to the Golgi complex but remains in the endoplasmic reticulum. Insofar as the majority of NSI is present in the oligomeric form, these results strongly suggest that the folding and the oligomerization take place probably in the endoplasmic reticulum or in a compartment which precedes the trans-Golgi.
  • the labeled proteins obtained from Sf9 cells infected with Ac-E.NSl and treated with Triton X 114 are distributed between the aqueous and detergent phases. then the NSI protein of each phase is immunoprecipitated. Similar results are obtained with one or the other phase.
  • the recombinant NSI protein composed of the two forms gp 48 and gp 47 is treated with endoglycosidase H, two bands are observed which migrate with the non-glycosylated p 43 form and the gp 47 form respectively. Both bands are sensitive to Endo-F which reduces their size to 43 kDa.
  • gp 48 is the form sensitive to Endo-H while gp 47 represents the form resistant to Endo-H.
  • the existence of the endo-H resistant protein gp 47 suggests that, although the majority of NSI proteins have glycans with a high mannose content, some of the oligosaccharides are shortened without additional elongation . This means that the protein has been transported from the endoplasmic reticulum to the Golgi apparatus, where sequences rich in mannos have probably been modified into an3GlcNAc 2 . This phenomenon is observed in insect cells. In addition, such glycans are known to be poor substrates for Endo-H. Thus, it appears that the glycosylation of the recombinant NSI protein expressed in insect cells is different from that of the authentic NSI protein synthesized in mammalian cells.
  • the recombinant baculovirus Ac-E 1 expresses the envelope protein E of the Yellow Fever virus deleted from its terminal C transmembrane anchor domain.
  • the recombinant protein E has a theoretical molecular weight of 52 kDa (96% of the protein E of the virus 17D).
  • Antigenicity of the recombinant protein E The protein E expressed by the virus Ac-E 1 has an electrophoretic migration profile very similar to those synthesized by the virus 17D or by the recombinant baculovirus Ac-E.NSl.
  • This re-combining protein reacts with an anti-17D mouse immune serum as well as with the neutralizing monoclonal antibodies 4E8,2C9,2E10,2D12 and 5E3 (Schleslnger et al, (10)).
  • the neutralizing mAb 864 (Gould et al, (9)), specific for the 17D-204 vaccine strains, recognizes the recombinant protein E.
  • Protein E truncated in insect cells infected with the Ac-E 1 virus is visualized by Coomassie blue staining from the total proteins of a lysate of 10 ° cells after analysis on a polyacrylamide-SDS gel (PAGE-SDS). E production is estimated at 10 for 10 ° cells. * Physicochemical properties of the recombinant protein E
  • the recombinant protein E is not detected in the supernatant of Sf9 cells infected with the Ac-El virus.
  • the absence of secretion, despite the deletion of its transmembrane anchoring domain, is said to correlate with its property. insolubility in the intracellular compartment.
  • the pr- Tin E is only found in the intracellular compartment, it is not detected on the surface of the cell.
  • the recombinant baculovirus Ac-El expresses protein E of the Yellow Fever virus, vaccine strain 17D-204 France, which correctly presents the neutralization epitopes.
  • the NSI recombinant protein synthesized by the Ac-NSl virus migrates in the form of a doublet (apparent PM of 48 and 47 kDa) with an electrophoretic migration profile very similar to that of the protein expressed by the 17D virus or by the recombinant baculovirus.
  • the doublet of NSI reacts with an anti-17D mouse immune serum and with the mAb 1A5,4E3,2D10,2G2 and 8G4 (Schleslnger et al, 10).
  • MAb 1A5 and 8G4 have cytolytic activity in the presence of complement and can passively protect mice and primates against the 17D virus injected intracerebral. * Glycosylation
  • the doublet of NSI of 48 and 47 kDa disappears while a poly ⁇ peptide of 43 kDa appears which has a migration profile ele- trophoretic very comparable to the non-glycosylated form of the NSI protein of the yellow fever virus.
  • This result indicates that the 48-47 kDa doublet corresponds to two major forms of the recombinant protein NSI which differ in the nature of their oligosaccharides.
  • the NSI protein in insect cells infected with the Ac-NS1 virus is visualized by staining with Coomassie blue from a lysate of 10 ⁇ cells after analysis on an SDS-PAGE. It is estimated that approximately 10) g of NSI protein is produced per 10 ° cells.
  • 72 kDa previously described for the 17D virus and for the recombinant baculovirus Ac-E.NSl, is observed in the insect cells infected with the Ac-NSl virus after staining with Coomassie blue of the total proteins of a cell lysate undenatured analyzed on an SDS-PAGE.
  • the existence of the 72 kDa gp oligomeric form of the NSI protein expressed by the Ac-NS1 virus was confirmed by Western blotting with an anti-NSI rabbit immune serum.
  • the oligomeric form and the NSI protein is found associated with the membranes according to the fractionation experiments with non-ionic detergent Triton X 114.
  • the recombinant protein NSI is not detected in the supernatant of Sf9 cells infected with the Ac-NS1 virus.
  • the absence of excretion of the NSI protein by the lepidopteran cells has been observed beforehand in the cells infected with the recombinant baculovirus Ac-E.NSl.
  • the Ac-E2 virus expresses truncated protein E (apparent molecular weight 52 kDa). Its production rate is approximately 5) g / 1,000,000 Sf9 cells after 48 hours of infection. Protein E is recognized by the monoclonal antibodies directed against the envelope protein of VFJ: 2C9,2E10,5E3,2D12, 864. Truncated protein E expressed by the Ac-E2 virus is secreted by the Spodoptera frugiperda cells infected in the culture medium. This phenomenon is confirmed by labeling the infected cells in the presence of methionine ["" S] followed by hunting as well as by indirect immunofluorescence where a membrane fluorescence is observed.
  • the protein E expressed by the Ac-E2 virus is excreted like that synthesized by the recombinant SV40 SV-E in primate cells (Desmond et al., (4)).
  • the Ac-E ⁇ NSI virus synthesizes a protein in the form of a doublet having an approximate apparent molecular weight of 100 kDa.
  • the heterogeneity, which disappears in the presence of tunicamycin of this protein is due to its degree of glycosylation (in gp 100, only the polypeptide representing NSI is glycos? É); this phenomenon has already been described for gp 100 expressed by Ac-E.NSl.
  • the gplOO expressed by Ac-E ⁇ NSl is recognized by monoclonal antibodies specific for E (2C9,2E10,2D12, 864) as well as by NSI specific monoclonal antibodies (1A5,8G4,2G12). This result is confirmed by indirect immunofluorescence.
  • the production rate is estimated at 10 pg / 1,000,000 Spodoptera frugiperda cells at 2 days after infection. No cleavage in E and NSI is observed from gplOO.
  • proteins E and NSI in tandem does not affect their conformation or their respective antigenicity.
  • the immunogenicity and protective power of the recombinant proteins E and NSI expressed in Sf9 insect cells infected with the various baculoviruses were tested in the mouse, which is the reference animal model for studying the pathogenesis of VFJ.
  • the 17D vaccine strains kill the adult rodent after injection by the intracerebral or intraperitoneal routes, the 17D vaccine strains are lethal only when the virus is injected intracerebral. Mice are sensitive to wild or vaccine virus regardless of the route of inoculation.
  • cell lysates were inoculated into three week old Swiss mice. The virulent virus test is done by injecting the virus intracerebrally.
  • Each Swiss mouse receives an intraperitoneal injection (ip) of 5 x 10 ⁇ cells (except 2.5 x 10 ⁇ cells infected with Ac-E.NSl) contained in 0.3 ml, without adjuvant, or 10 ° pfu of virus 17D, at times JO and J 15.
  • ip intraperitoneal injection
  • the sera of the immunized mice are taken and on D 21 the animals receive a dose of 100 LD50 of virus 17D contained in a volume of 30 ⁇ l intracerebral (ic).
  • the mortality of the mice is counted until the 21st day following the test, ie 6 weeks after the start of the immunization.
  • mice protected Cell Ac NI titer on total number of mice from injected sera immunized (% of protection) before test
  • mice received either a lysate of cells infected with the recombinant baculovirus Ac-El, a lysate of cells infected with the recombinant baculovirus Ac-NSl.
  • the mice immunized against the protein E truncated from its C terminal end (Ac-El virus) are protected against the infectious virus (FIG. 7), those immunized against the NSI protein (Ac-NS1 virus) remaining sensitive to VFJ at 80% despite a delay of 2 days in the appearance of clinical signs compared to mice having received only the baculovirus proteins (AcNPV virus) ( Figure 7).
  • mice immuni ⁇ mice before the injection of the 17D virus in intracerebral are tested for the presence of antibodies directed against the E or NSI proteins.
  • methionine ⁇ _ 35 sJ By radioimmunoprecipitation of a lysate of Verf cells infected with VFJ and labeled with methionine ⁇ _ 35 sJ, it is confirmed that the sera of mice immunized with the baculovirus AcNPV do not react with any of the proteins of VFJ.
  • mice immunized with the lysate of Sf9 cells infected with the Ac.E-NSl virus immunoprecipitate the NSI protein and to a lesser extent the VFJ protein E (FIG. 8) very well.
  • the sera of the mice immunized with the lysate of Sf9 cells infected with the Ac-El or Ac-NS1 viruses immunoprecipitate very weakly or not with the proteins E or NSI respectively (FIG. 8).
  • the titer of neutralizing antibodies (AcNI) present in the sera was used.
  • the in vitro seroneutralization test is carried out as follows; one hundred plaque-forming units (pfu) of VFJ, vacinal strain 17D-204 France, are incubated for 2 hours with successive dilutions of sera and then brought into contact with pig kidney cells (PS) in the presence of carboxymethylcellulose (CMC ). After 5 days, the cells are stained and the dilution of the serum is determined, which makes it possible to obtain 50 ranges of approximately 50%, a reduction of 50% in the viral titer (titer of the serum in neutralization).
  • the title obtained is 40-80 for the sera of mice having received the virus 17D in ip and 10 for those of animals immunized against the lysate of Vero cells infected with VFJ (Table 1).
  • no NI Ac was detected in the sera of mice immunized against the proteins of the baculovirus AcNPV or against the recombinant protein NSI expressed by the recombinant baculovirus Ac-NS1 (titer ⁇ 10).
  • the sera of mice immunized with the baculoviruses Ac-E.NSl or Ac-E 1 have neutralizing antibody titers of 10 and 20 respectively (Table 1).
  • the proteins E and NSI of the yellow fever virus, vaccine strain 17D-204 France, expressed by the recombinant baculovirus Ac-E.NSl induce a complete protective immune response (100%) against the infectious agent with a titer in neutralizing antibodies of 10.
  • CM.H. major histocountability complex
  • the envelope protein has a primordial role in the protective anti-viral immune response, certainly by the induction of neutralizing antibodies.
  • the immune response directed against the E and NSI proteins expressed by the Ac-E.NSl virus is even more effective for the following reasons:
  • Newly synthesized dengue-2 virus nonstructural protein NSI is a soluble protein bu becomes partially hydrophobic and membrane-associated after dimerization.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Virology (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

L'invention a pour objet un baculovirus recombinant, caracterisé en ce qu'il comporte un ADNc codant pour tout ou partie de la protéine antigénique d'enveloppe E et/ou un ADNc codant pour tout ou partie de la protéine antigénique non structurale NS1 d'un virus appartenant aux Flaviviridae ou d'un virus apparenté aux Flaviviridae, inséré dans le gène de la polyédrine entre le nucléotide + 35 et le nucléotide de + 170, le A du codon d'initiation modifié de la polyédrine étant numéroté + 1, les polypeptides obtenus grâce à ce baculovirus ainsi que leurs applications diganostiques et thérapeutiques.

Description

BACULOVIRUS RECOMBINANT EXPRIMANT LES PROTEINES E ET NSI DE VIRUS APPARTENANT AUX FLAVIVIRIDAE OU DE VIRUS APPARENTES AUX FLAVIVIRIDAE
La présente invention se rapporte à un ba¬ culovirus recombinant exprimant les protéines E et NSI de virus appartenant aux Flaviviridae ou de virus ap¬ parentés aux Flaviviridae (Flavi-like) . Par Flaviviridae, on entend la famille de virus décrite par WESTAWAY et coll. dans Intervirology 24 : 183-192 (1985) comprenant le genre Flavivirus dont le réprésentant type est le virus de la fièvre jaune (VFJ). Par virus apparentés aux Flaviviridae, on entend les Pestivirus (Marc S. Collett et coll, J. Gen. Vir (1989) 70, 253-266), notamment le virus de la diarrhée virale des bovins (BVDV), le virus du choléra porcin (HCV), le virus de la border disease des mou- tons (BDV), ainsi que le virus de l'hépatite C (Roger
H. Miller dans Proc. Natl. Acad. Sci. USA, vol. 87 pp. 2057-2061, Mars 1990).
Le VFJ est un virus enveloppé contenant un génome composé d'un ARN monocaténaire de polarité positive de 10862 bases. L'ARN viral est le seul ARNm synthétisé pendant le cycle de replication (DESPRES et coll, (17)). Les séquences nucléotidiques complètes de 3 souches de VJF ont été déterminées (Rice et coll, (18), Desprès et coll, (19), Hahn et coll, (20), Dupuy et coll, (21)). L'analyse des séquences a révélé la présence d'un cadre de lecture unique ouvert de 10233 bases codant pour une polyprotéine de 3411 acides aminés (PM approximatif de 375 kDa). L'ordre des pro¬ téines sur le génome viral : 5'-C-prM-E-NSl-NS2A-NS2B- NS3-NS4A-NS4B-NS5-3' a été déduit d'après les données concernant les séquences nucléiques et peptidiques, chacune des protéines matures étant générés après clivages co et post-traductionnels par les protéases virales et cellulaires.
La protéine d'enveloppe E (poids moléculaire apparent de 54 kDa) présente à la surface des virions est l'antigène le plus important; "6116 consiste en une protéine intégrée dans les membranes qui se lie aux récepteurs cellulaires et induit des anticorps neutra- lisants.
La glycoprotéine non structurale NSI (poids moléculaire apparent de 48 kDa) de fonction indéter¬ minée pourrait jouer un rôle dans l'assemblage et la maturation du virus. L'immunisation avec la protéine NSI purifiée ou des fragments polypeptidiques de NSI exprimés sous formes de protéines de fusion par des bactéries s'est avérée protéger des souris et des primates contre une épreuve avec le VFJ. En outre, plusieurs anticorps monoclonaux spécifiques de NSI du VFJ possèdent une activité cytolytique en présence du complément et se sont montrés capables de protéger de manière passive des animaux d'une épreuve avec le virus infectieux homologue (Schesinger et coll, 1985 (1); Gould et coll, 1986 (2)). Ces données suggèrent fortement que dans la prévention d'une infection virale, la reconnaissance immunitaire de la protéine NSI pourrait fournir une alternative à la neutralisation directe des flavivirus. On a cherché depuis un certain temps à pro¬ voquer une réponse immunitaire en injectant à des ani¬ maux des protéines i munogènes de ces virus produites par un vecteur approprié, notamment la protéine d'enveloppe (E) et la glycoprotéine non-structurale (NSI) connue pour conférer une bonne protection.
ZHAO et coll. (Journal of Virology, dec. 1987, p. 4019-4022, vol. 61 n° 12) ont ainsi décrit l'expression des protéines structurales et non structurales du virus de la Dengue par un virus recom¬ binant de la vaccine. Yi-Ming Zhang et coll, (Journal of Virology, août 1988, p 3027-3031, vol. 62-, N° 8) ont décrit l'expression des protéines de structure C (capside), PreM (précurseur de M) et de la glycoprotéine de structure E (enveloppe) ainsi que de protéines non structurales NSI et NS2A par un baculovirus recombi¬ nant.
Cependant, bien que les animaux immunisés soient protégés contre le virus de la Dengue, aucune de ces technique n'a permis d'obtenir un titre d'an¬ ticorps suffisamment élevé.
La présente invention a pour but de fournir un système d'expression des protéines immunogènes de Flaviviridae et virus apparentés aux Flaviviridae à un taux élevé, de manière à conférer une protection immu- nologique efficace contre les infections dues à ces virus.
La présente invention a pour objet un bacu¬ lovirus recombinant, caractérisé en ce qu'il comporte un ADNc codant pour tout ou partie de la protéine antigenique d'enveloppe E et/ou un ADNc codant pour tout ou partie de la protéine antigenique non struc¬ turale NSI d'un virus appartenant aux Flaviviridae ou d'un virus apparenté aux Flaviviridae, inséré dans le gène de la polyédrine entre le nucléotide + 35 et le nucléotide de + 170, le A du codon d'initiation mo¬ difié de la polyédrine étant numéroté + 1.
Lorsque le baculovirus recombinant comporte en tant que segir -nt d'insertion un ADNc codant pour tout ou partie de E ou un ADNc codant pour tout ou partie de E et NSI, il comporte, en outre, en amont de l'ADNc une séquence leader qui correspond à l'ex¬ trémité 3' de la région 5' non codante du gène de la protéine VPl du virus SV40 comportant 11 nucléotides en 3' du site Hind III (nt 1488 sur le génome de SV40) et le codon d'initiation ATG de la protéine VPl.
Lorsque le baculovirus recombinant comporte en tant que segment d'insertion un ADNc codant pour tout au partie de NSI, aucun codon d'initiation n'a été introduit artificiellement car le peptide signal de NSI contient un nombre important d'ATG en phase; 1'un au moins de ces derniers sert à initier la traduction.
Dans le cas où le baculovirus recombinant comporte en tant que segment d'insertion un ADNc co¬ dant pour tout ou partie de E, un codon de terminaison est présent à 1'extrémité 3' . Il a été introduit dans une étape préalable à l'insertion dans le vecteur baculovirus. Dans le cas où le baculovirus recombinant comporte en tant que segment d'insertion un ADNc co¬ dant pour tout ou partie de E qui inclut déjà un codon de terminaison, il n'est pas nécessaire qu'il comporte un codon de terminaison ajouté artificiellement. Les baculovirus recombinants selon l'inven¬ tion comportant respectivement un ADNc codant pour tout ou partie des protéines E et NSI, un ADNc codant pour tout ou partie de la protéine E .et un ADNc codant pour tout ou partie de la protéine NSI, sont obtenus par cotransfection et recombinaison homologue des plasmides comportant en tant que segments d'insertion les ADNc respectifs avec le génome du baculovirus Autographa California Nuclear Polyhedrosis (AcNPV) de type sauvage. Avantageusement, le virus appartenant aux
Flaviviridae ou apparenté aux Flaviviridae est le virus de la fièvre jaune.
Un plasmide recombinant préféré, dénommé pAc-E.NSl comprenant l'ADNc codant pour E et NSI délé- tée de l'aminoacide C terminal potentiel de NSI, est avantageusement obtenu par les étapes suivantes : a) digestion d'un plasmide recombinant SV40-VFJ comportant l'ADNc codant pour E et NSI, afin d'introduire un codon de terminaison à l'extrémité carboxylique de NSI. Il en résulte que la protéine exprimée est délétée de son aminoacide C-terminal; b) digestion de ce plasmide par Hind III ou Bgl II; c) traitement des extrémités avec le frag- ment de Klenow en présence des 4 désoxynucléotides triphosphate, de manière à rendre les extrémités fran¬ ches; d) digestion des ADN obtenus par Apa I; e) isolement et ligation des fragments d'ADN obtenus avec le plasmide pVL-941 poly préalablement linéarisé avec Bam Hl et traité par le fragment de Klenow en présence des 4 désoxynucléotides triphospha¬ te, puis par la phosphatase alcaline, pour générer un plasmide comportant 1'ATG initiateur de la protéine VPl du virus SV40 précédé des 11 nucléotides adjacents en 5' délimités par un site Hind III. Cette séquence constitue une partie de région 5' non codante du ARNm chimérique polyédrine-VFJ, permettant l'expression de E et NSI. La région 3' de 1'insérât code pour la protéine NSI où le dernier aminoacide C terminal est délété et remplacé par la séquence exogène G-G-S-S.
Un autre plasmide recombinant préféré, dénommé pAc-NSl comprenant l'ADNc codant pour NSI délété de son aminoacide C terminal potentiel est avantageusement obtenu par les étapes suivantes : a) digestion d'un plasmide recombinant SV40-VFJ comportant l'ADNc codant pour E et NSI délétée de son aminoacide C terminal avec Xba I; b) remplissage avec le fragment de Klenow en présence des 4 désoxynucléotides triphosphate et ligation des fragments obtenus pour générer un plasmi¬ de comportant une séquence leader correspondant à 1'extrémité 3' de la région 5' non codante du gène de la protéine VPl du virus SV 40 comportant les 11 nu- cléotides en 3' du site Hind III et le codon d'initia¬ tion ATG de la protéine VPl ainsi que la séquence exo¬ gène GGG GGA TCC TCT AGC TAG en aval de l'ADNc codant pour E et NSI délétée de son aminoacide C terminal; c) digestion du plasmide obtenu à 1'étape b) avec Tth 111 I, Mlul et Pst 1, d) ligation des fragments obtenus à l'étape c) après remplissage du site Tth 1111 par le fragment de Klenow en présence des 4 désoxynucléotides tri¬ phosphate avec un vecteur de transfert pVL-941 poly obtenu à partir de pVL 941 par insertion d'un multi- linker à l'extrémité 3' du site Bam HI digéré par BamHl et remplissage du site Bam HI par le fragment de Klenow en présence des 4 désoxynucléotides triphos¬ phate. Un autre plasmide recombinant préféré, dé¬ nommé pAc-El comprenant 1'ADNc codant pour le peptide signal de la protéine E suivie de la protéine E délé¬ tée de son extrémité C terminale (aminoacides 286 à 720) est obtenu par les étapes suivantes : a) digestion du plasmide pAc-E.NSl décrit précédemment par Xho I et Apa I et d'un plasmide re¬ combinant SV40-VFJ comportant l'ADNc codant pour la protéine E avec Apa I et Bgl II, et b) ligation des fragments [Xho I - Apa I] du plasmide pAc-E NSI obtenu précédemment et [Apa I - Bgl II] du plasmide recombinant SV40-VFJ comportant l'ADNc codant pour la protéine E tronquée avec un vecteur de transfert PVL-941 poly obtenu à partir de pVL 941 par insertion d'un multilinker à 1'extrémité 3' du site Bam HI et digéré par Xho I et Bam H I. Un autre plasmide recombinant préféré, dénommé pAc-E2 comprenant l'ADNc codant pour le peptide signal de la protéine E suivie de la protéine E deletée de son extrémité carboxylique contenant son 5 domaine d'ancrage transmembranaire (aminoacides 286 à 720) est obtenu par les étapes suivantes: a) création de sites Bam HI et Sma I aux extrémités des régions non codantes 5' et 3' respecti¬ vement de 1' DNc par mutagénèse dirigée par PCR 0 (Polymerase Chain Reaction) au moyen de la Taq polymérase à partir du plasmide pSV-E tel que défini précédemment en utilisant comme amorces respectivement les oligodésoxynucléotides E-5' et E-3' de séquences :
5 E-5' : 5,GTCGACCTGTACGGATCCGTTACTTCTGCTCTA3,
E-3' : c1TCAATGATCACGCTAGTCCCGGGCAAGCTTCT
Figure imgf000009_0001
la ligne en pointillés représentant respectivement les sites Bam HI et Sma I; b) digestion de l'ADN obtenu à l'étape pré¬ cédente par Bam HI et Sma I; *5 c) ligation des fragments d'ADN obtenus dans le plasmide pVL 941-poly obtenu à partir de pVL941 par insertion d'un multilinker à l'extrémité 3' du site Bam HI, et digéré par Bam HI et Sma I pour obtenir un plasmide intermédiaire ; 0 d) substitution du fragment compris entre le site Hind III (nucléotide -13 dans la région 5* non codante du virus appartenant à ou apparenté aux Flaviviridae et le site PstI (nucléotide 1964 du virus appartenant à ou apparenté aux Flaviviridae) du plasmide intermédiaire obtenu à l'étape précédente par le fragment homologue provenant du plasmide pSV-E.
Un autre plasmide recombinant préféré dénommé pAc-EΔNSl comprenant l'ADNc codant pour la protéine E suivie de la protéine NSI sous forme d'une polyprotéine non clivée est obtenu par mutagénèse dirigée, notamment par PCR, de la séquence VXA (amino¬ acide 776 à 778), X représentant les aminoacides G, H ou Q, notamment G chez le VFJ, située en amont du premier aminoacide de NSI, en FYV. Le site VXA est un site canonique de clivage reconnu par les signalases cellulaires en amont de l'extrémité N terminale de la protéine NSI des flavivirus. Le tripeptide FYV introduit chez les flavivirus à la place de VXA n'est plus reconnu comme site de clivage.
De préférence, le plasmide dénommé pAc-EΛNSl est obtenu par les étapes suivantes : a) création d'un site Sna BI unique en position 2450, (correspondant à la position entre les aminoacides 777 et 778), de l'ADNc par mutagénèse dirigée par PCR au moyen de la Taq-Polymérase à partir du plasmide pAc-E.NSl tel, que défini précédemment, en utilisant comme amorces 1'oligodesoxynucleotide SP-NS1 de séquence : 5'TCC GCA CTT GAG CTC TCT CTT GCC AAA GTT
GAT GGC GCA TCC TTG ATC TAC GTA AAA TCC TAG AGA CAA
AAA CAT CAT GAT CAC TCC TA31 , la ligne pointillée représentant les codons substitués codant pour FYV, et 1'oligodesoxynucleotide E-5' tel que défini précédemment; b) digestion de l'ADN obtenu par Bam HI et Sacl ; (les sites étant situés aux extrémités 5'et 3' respectivemen ) c) ligation dans le plasmide pVL 941-poly obtenu à partir de pVL 941 par insertion d'un multi- linker à l'extrémité 3' du site Bam HI, et digéré par Bam HI et Sac I, de manière à obtenir un plasmide intermédiaire; d) ligation des fragments d'ADN suivants :
-[Bam HI-Eco RI] du plasmide pAc-E2, tel que défini précédemment, correspondant à la protéine E tronquée; -[Eco RI - Sac I] du plasmide intermédiaire défini précédemment, correspondant aux aminoacides 720 à 790 du Virus appartenant à ou apparenté aux Flaviviridae, comprenant la mutagénèse dirigée FYV ; -[Sac I-Sma I] du plasmide pAc-E.NSl tel que défini précédemment correspondant à la protéine NSI, dans le plasmide pVL 941-poly obtenu comme décrit précédemment et digéré par Bam HI et Sma I.
Les baculovirus recombinants sont obtenus par transfection et recombinaison homologue des plasmides avec le génome du baculovirus de type sauvage, de préférence Autographa california Nuclear Polyhedrosis Virus (AcNPV).
Le baculovirus recombinant Ac-E2 obtenu par transfection et recombinaison du génome de AcNPV avec le plasmide p Ac E2 a été déposé à la CNCM le 21 mai 1991 sous le nβ 1-1098. Le baculovirus Ac-E à NSI obtenu par transfection et recombinaison du génome de Ac NPV avec le plasmide de pAc-EΔNSl a été déposé à la CNCM le 21 mai 1991 sous le n° 1-1097.
Les baculovirus expriment les protéines E tronquée ou entière associée/en tandem avec NSI après maturation (glycosylation, oligomérisation.... ) à des taux élevés lorsqu'ils sont propagés dans des cellules eucaryotes d'insecte, en particulier des cellules de Spodoptera frugiperda.
Les protéines ainsi obtenues sont antigéni- ques et trouvent par conséquent leur application dans des procédés de diagnostic in vitro des infections virales causées par les Flaviviridae ou virus apparen¬ tés aux Flaviviridae. La présente invention a ainsi également pour objet un procédé de diagnostic in vitro chez l'homme ou chez l'animal, par mise en évidence des anticorps dirigés contre tout ou partie de la protéine E et/ou la protéine NSI immunogène telle qu'obtenue par un baculovirus recombinant suivant l'invention, dans un prélèvement biologique de l'homme ou de l'animal, dans lequel on met en contact la ou les protéines immunogè- nes E et NSI avec le prélèvement biologique de l'homme ou de l'animal pouvant contenir lesdits anticorps et on révèle la présence des anticorps fixés.
Ce procédé peut être basé sur une méthode radioimmunologique de type RIA, RIPA ou IRMA ou une méthode immunoenzymatique de type WESTERN-BLOT sur bandelettes ou de type ELISA. La présente invention a également pour objet une trousse de diagnostic in vitro des infections cau¬ sées par les Flaviviridae ou les virus apparentés aux Flaviviridae pour la mise en oeuvre du procédé ci-des¬ sus mentionné, comprenant tout ou partie de la protéi- ne NSI et/ou la protéine E immunogènes telles qu'obte¬ nues par un baculovirus recombinant suivant l'inven¬ tion et contenant, en outre, un anticorps spécifique d'un isotype d'immunoglobuline.
---La présente invention a également pour objet un vaccin destiné au traitement et à la prévention des infections causées par les Flaviviridae ou les virus apparentés aux Flaviviridae chez l'homme ou chez l'animal, dans lequel l'agent vaccinant consiste en tout ou partie de la protéine E et/ou de la protéine NSI, obtenues par un baculovirus recombinant selon l'invention.
L'agent vaccinant peut être administré sous la forme de protéine(s) purifiée(s) en utilisant les propriétés de fractionnement du Triton X 114, ou en- core par l'intermédiaire d'un baculovirus recombinant tel que décrit précédemment produisant la ou les pep- tides immunogènes ou encore par 1'intermédiaire de cellules d'eucaryotes, telles que les cellules d'in¬ sectes, notamment les cellules de Spodoptera frugiperda servant à la propagation du baculovirus recombinant et des protéines immunogènes produites par lui.
La préparation massive de ces protéines re¬ combinantes peut être obtenue soit en fermenteur de cellules Spodoptera frugiperda, soit à partir de lar¬ ves d'insectes infectées par le baculovirus recombi- nant.
Outre la séquence peptidique immunogène, le vaccin peut contenir un adjuvant doué de propriétés immunostimulantes.
Parmi les adjuvants que l'on peut utiliser figurent les sels minéraux tels que l'hydroxyde d'aluminium, des composés hydrophobes ou des surfac- tants tels que l'adjuvant incomplet de Freund, le squalane ou des liposomes, des polynucléotides syn¬ thétiques, des microorganismes ou composants de microorganismes tels que le murabutide, des molécules artificielles synthétiques telles que l'imuthiol ou le levamisole, ou encore des cytokines telles que les interférons , β , ou les interleukines.
L'invention a, en outre, pour objet un anti¬ corps monoclonal dirigé contre tout ou partie d'une protéine E et/ou 31, obtenue par un baculovirus re¬ combinant tel que décrit précédemment.
Les anticorps monoclonaux selon l'invention peuvent être préparés selon une technique classique. A cet effet, les polypeptides peuvent être couplés si nécessaire à un agent immunogene, tel que l'anatoxine tétanique, par un agent de couplage tel que le gluta- raldéhyde, un carbodiimide ou la benzidine bis diazo- tée.
On décrira ci-après plus en détail dans le cas du virus de la fièvre jaune (VFJ) :
- l'obtention des baculovirus recombinants selon l'invention exprimant tout ou partie des protéi¬ nes E et/ou NSI du VFJ,
- les propriétés physicochimiques, antigé- niques et immunogènes des protéines E et NSI du VFJ produites par des baculovirus recombinants en se ré- férant aux figures annexées sur lesquelles :
- la Figure 1 représente un schéma de cons¬ truction du plasmide pAc-E.NSl permettant d'obtenir le baculovirus recombinant Ac-E.NSl.
La séquence codant pour les protéines E et NSI du VFJ incluant le codon d'initiation prélevé du gène VPl du virus SV 40, le peptide signal de la protéine E et le codon de terminaison à l'extrémité C terminale de la protéine NSI sont isolés du plasmide pSV-E.NSl-(TAG). Les séquences représentant le génome <iu virus AcNPV et l'ADNc du VFJ sont indiquées par les lignes épaisses et les parties hachurées, respective¬ ment.
- la Figure 2 représente l'organisation des séquences du gène de la polyédrine du plasmide pVL 941-poly servant du vecteur de transfert pour sa re- combinaison homologue avec le baculovirus, et du plas¬ mide recombinant pAc-E.NSl.
La séquence nucléotidique à la jonction en¬ tre le gène de la polyédrine et l'extrémité 5' de la région codant pour les protéines E et NSI est reportée sur la figure. Le codon d'initiation ATG et le codon de terminaison TAG sont surmontés. d'un trait. La sé¬ quence d'aminoacides des extrémités N et C du polypep- tide traduit est indiquée sur la figure. La numérota¬ tion correspond à celle de la polyprotéine précurseur du VFJ.
- la Figure 3 représente le schéma de cons¬ truction du plasmide pAc-El permettant d'obtenir le baculovirus recombinant Ac-El, la Figure 4 représente le schéma de construction du plasmide pAc-NSl permettant d'obtenir le baculovirus recombinant Ac-NSl,
- la Figure 5 représente l'organisation des séquences du baculovirus pVL 941-poly servant de vec¬ teur de transfert, et des plasmides recombinants pAc-El et pAc-NSl,
La séquence nucléotidique à la jonction en¬ tre le gène de la polyédrine et l'extrémité 5' de la région codant pour les protéines E et NSI est reportée sur la figure. Le codon d'initiation ATG et les codons de terminaison TGA et TAG respectifs des ADNc codant pour E et NSI sont surmontés à l'aide d'un trait. La séquence d'aminoacides des extrémités N et C du poly- peptide traduit est indiquée sur la figure.
- la Figure 6 représente le schéma d'obten¬ tion du plasmide p Ac-E2 à partir de l'ADN du VFJ.
- la Figure 7 représente le schéma d'obten¬ tion du plasmide p Ac-EΔNSl par mutation dirigée par PCR sur la séquence en amont de NSI à partir de la séquence correspondante de p Ac-E.NSl.
- la Figure 8 représente les résultats d'immunisations réalisées chez les souris Swiss avec un lysat de cellules de Spodoptera frugiperda (souche Sf9), infectées par le baculovirus sauvage AcNPV, le virus 17D ou un lysat de cellules Vero infectées par le virus 17D, la Figure 9 représente les résultats d'immunisations réalisées chez des souris Swiss avec un lysat cellulaire de Sf9 infectées par le baculo- virus AcNPV et les baculovirus recombinants de 1'in¬ vention Ac-E.NSl, Ac-El et AC-NS1;
- la Figure 10 représente les résultats d'immunoprécipitation d'un lysat obtenu en tampon RIPA de cellules Vero infectées par le VFJ et marquées à la méthionine [^S] en présence d'actinomycine D. Le ly¬ sat radiomarqué (10" cpm dans un volume de 200 pi) est immunoprécipité avec 20 pi de sérum de souris prélevé avant l'épreuve par le virus 17D en présence de protéine A Sépharose (Pharmacia). 17D i.p. : sérums de souris immunisées avec le VFJ en intrapéritonéale; 17D Lys : sérums de souris immunisées avec le lysat des cellules Vero infectées par le VFJ; AcNPV : sérums des souris immunisées avec le ly- sat des cellules Sf9 infectées par le ba¬ culovirus sauvage; Ac-E.NSl : sérums des souris immunisées avec le ly¬ sat des cellules Sf9 infectées par le baculovirus recombinant Ac-E.NSl; Ac-El : sérums des souris immunisées avec le ly¬ sat des cellules Sf9 infectées par le ba¬ culovirus recombinant Ac-El; Ac-NSl(A) : sérums des souris immunisées avec le ly¬ sat des cellules Sf9 infectées par le ba- culovirus recombinant Ac-NSl étant décé¬ dées après l'épreuve avec le virus infec¬ tieux; Ac-NSl(B) : sérums des souris immunisées avec le ly¬ sat des cellules Sf9 infectées par le ba¬ culovirus recombinant Ac-NSl ayant survê- eues après l'épreuve avec le virus infec¬ tieux. La position des protéines E et NSI est indi¬ quée par les flèches.
I - Construction des baculovirus recombi¬ nants
La construction des plasmides recombinants est effectuée en utilisant les techniques standards décrites par Maniatis et coll, (3).
1. Construction du baculovirus recombinant Ac-E.NSl
La séquence codant pour les protéines E et NSI du VFJ comportant le peptide signal de E et le codon d'initiation ATG de la protéine VPl de SV40 est isolée du plasmide pSV-E.NSl sous forme d'un fragment d'ADN de 2,6 kpb, comme décrit par Desprès et coll, (4). Avant son insertion dans le baculovirus vecteur, un codon de terminaison en phase est inséré à l'ex- trémité 3' de cet ADN complémentaire par digestion du plasmide pSV-E.NSl avec Xbal (site unique dans le multilinker) et remplissage avec le fragment de Klenow de manière à générer la séquence peptidique exogène GGSSS à l'extrémité carboxylique de la protéine NSI (Figure 2). Les extrémités franches sont circularisées avec l'ADN ligase de T4, générant ainsi le plasmide pSV-E.NSl-(TAG) (Figure 1).
Pour faciliter son insertion dans le vecteur navette, l'ADN passager est isolé de pSV-E.NSl-(TAG) sous forme de deux fragments de 0,70 kpb et 1,90 kpb comme cela apparaît sur la Figure 1.
Le fragment de 0,70 kpb contenant la séquen¬ ce codant pour la moitié N-terminale de la protéine E y compris son peptide signal, est clivée par Hind III (nucléotide 1488 sur le génome de SV40), rempli avec le fragment de Klenow et digéré par Apa I (nucléotide 1603 sur le génome du VFJ).
Le fragment de 1,90 kpb contenant la séquen¬ ce codant pour la moitié C terminale de la protéine E suivie par la protéine NSI complète, est digéré par Bgl II (site 3' terminal du multilinker de l'ADN re¬ combinant de SV40), rempli avec le fragment de Klenow et digéré par Apa I.
Le plasmide pVL 941-poly est obtenu à partir du plasmide pVL 941 décrit par Luckow et Summers (5) par insertion d'un multilinker à l'extrémité 3' du site Bam HI (Figure 2). Le plasmide pVL941-poly est digéré par Bam HI, rempli par le fragment de Klenow, déphosphorylé et utilisé pour l'insertion des frag- ments d'ADNc du VFJ de 0,70 et 1,90 kpb. La substitu¬ tion par les gènes de E et NSI dans le gène de la po¬ lyédrine commence au nucléotide + 35, en numérotant le A du codon d'initiation modifié ATT de la polyédrine par + 1. Le plasmide recombinant contenant le segment d'insertion de 2,6 kpb dans l'orientation correcte est désigné pAc-E.NSl. Dans le plasmide recombinant, les extrémités franches du site Bam HI sont ligaturées à celles du site Hind III générant la séquence 5' ...GGATCAGCTTATGAAGATGG...3' dans la région non-co- dante, comme cela apparaît sur la Figure 2.
Ce vecteur de transfert est utilisé pour gé¬ nérer le baculovirus recombinant Ac-E.NSl après trans¬ fection et recombinaison homologue avec le génome du virus Autographa California Nuclear Polyhedrosis (Ac NPV) de type sauvage en employant les techniques classiques de précipitation au calcium-phosphate dé¬ crites par Summers et Smith (6).
Des particules virales occlusion-négatives sont purifiées en plages et propagées dans des cel¬ lules de Spodoptera frugiperda Sf9 (isolât clonal 9 de la souche IPLB-Sf21-AE ) .
Pour confirmer que la totalité de l'ADNc du VFJ a été transféré dans le génome du baculovirus, on extrait l'ADN viral à partir de cellules infectées par Ac-E.NSl. Dans le but d'isoler la séquence codant pour E et NSI, on a tiré parti de la présence de deux sites Eco RV aux deux extrémités de l'ADNc du VFJ, l'un en position-96 sur le gène de la polyédrine, l'autre dans le multilinker en aval du segment d'insertion. Après séparation des produits de digestion sur gel d'agarose, l'ADN inséré ayant des dimensions correctes est révélé par utilisation d'une sonde d'ARNc spécifique obtenue à partir du plasmide pGX4-El (Ruiz Linarès et coll, (7)).
2. Construction du baculovirus recombinant Ac-El
Le baculovirus recombinant Ac-El contient l' ADNc isolé du plasmide pSV-E (Desprès et coll, (4)). Cet ADNc code pour le peptide signal de la protéine E (aa 271 à 285 de la polyprotéine précurseur du virus 17D) suivi de la protéine E délétée de son extrémité C terminale (aa 286 à 720). Le plasmide pAc-El est généré après ligation des fragments [Xho I-Apa IJ du plasmide pAc-E.NSl (décrit précédemment), et £Apa I-Bgl II] du plasmide pSV-E (DESPRES et coll. (4)) avec le vecteur de transfert pVL 941-poly digéré par Xho et BamH I (Figure 3). Le cadre de lecture ouvert de l'ADN passager inséré dans le gène de la polyédrine est décrit dans la Figure 5.
3. Construction du baculovirus recombinant Ac-NSl
Le baculovirus recombinant Ac-NSl contient l'ADNc du virus 17D codant pour la glycoprotéine NSI isolée du plasmide pSV-E.NSl-(TAG) décrit précédem¬ ment. Cet ADNc code pour le peptide signal potentiel de la protéine NSI (aa 758 à 778) suivi de la protéine NSI (aa 779 à 1129). Le plasmide pAc-NSl a été généré après ligation des fragments [Tth 111 I-Mlu I] (nt 2389 à 2947 du génome viral) et [Mlu I-Pst 1] (nt 2947 à 3506; Pst 1 est un site du multilinker) avec le vec¬ teur transfert pVL941-poly digéré par BamH 1 et Pst 1 (Figure 4). Le cadre de lecture ouvert de l'ADN pas- sager inséré dans le gène de la polyédrine est décrit dans la Figure 5.
4. Construction du baculovirus recombinant Ac-E2
Le baculovirus recombinant Ac-E2 contient l'ADNc codant pour la protéine E délétée de son domaine d'ancrage transmembranair . Le plasmide pAc-E2 est généré à partir du plasmide pSV-E (Desprès et coll. (4)). Les sites uniques Bam HI et Sma I ont été créés par mutagénèse dirigée aux extrémités des régions non codantes (RNC) en 5' et 3' respectivement du gène à partir du plasmide pSV-E. Deux oligodésoxy- nucléotides synthétiques ont été préparés pour réaliser la mutagénèse dirigée : a) un oligodesoxynucleotide de 33 bases E-5' e séquence :
E-5' :5ιGTCGACCTGTACGGATCCGTTACTTCTGCTCTA3, ,
correspondant à la séquence en 3' de la RNC en 5' du gène E inséré dans le plasmide pSV-E (Després et Coll.(4)). Cette séquence correspond aux nucléotides -46 à -14, en comptant le A de l'ATG initiateur de la traduction comme + 1. Un site Bam HI (souligné en pointillé sur la séquence E-5' ) est généré par 1Oligomère de 33 bases E-5' en position - 29 à -34 à partir de l'ATG ; 19
b) un oligodesoxynucleotide de 36 bases E-3' de séquence :
E-3' :c, CAATGATCACGCTAGTCCCGGGCAAGCTTC
TCTCT31.
Cette séquence est complémentaire aux nucléotides 7 à 42, en comptant le nucléotide en 3' du codant stop TGA de la RNC en 3' du gène codant pour la protéine E comme + l, dans le plasmide pSV-E (Desprès et coll. (4)). Un site Sma I(souligné en pointillé sur la séquence E-3') est généré par l'oligomère de 36 bases E-3' en position 20 à 25 à partir du TGA.
Les oligomères E-5' et E-3' sont utilisés comme amorces pour la synthèse d'un produit PCR de 1400 pb par mutagénèse dirigée à partir du plasmide pSV-E, correspondant à la protéine E du virus.
A cet effet 10 ng du plasmide pSV-E sont mélangés avec 10 ng des oligomères E-5' et E-3' en présence de la Taq-polymérase. 25 cycles de dénaturation à 94°C sont réalisés pendant 1 min 30 sec. Les olîgomères sont fixés à 55°C pendant 2 minutes et une extension est réalisée à 72°C pendant 2 minutes. A la fin des réactions d'amplification, le produit PCR est déposé sur un gel d'agarose. Le pro¬ duit PCR de 1400 pb est électro-élué du gel d'agarose, traité au phénol/chloroforme puis précipité à l'étha- nol à 95% à - 20'C en présence d'acétate de sodium 0,2 M. Après précipitation par centrifugation, l'ADN séché es-t repris dans les tampons commerciaux pour une digestion par les enzymes de restriction Bam HI et Sma I. A la fin de la digestion le produit PCR digéré est traité comme pour les plasmides précédemment décrits pour obtenir un plasmide intermédiaire.
Le plasmide PVL 941-poly décrit précédemment est digéré par Bam HI et Sma I et mis en ligation avec le produit PCR digéré correspondant au gène codant pour la protéine E tronquée du VFJ. Pour éviter le maintien de mutations apportées par la PCR au niveau du gène codant pour la protéine E, le fragment compris entre le site Hind III (nucléotide-13) et le site Pst I (nucléotide 1964 du génome du VFJ), soit environ 1050 pb du plasmide intermédiaire, est substitué par le fragment homologue provenant du plasmide pSV-E. Le plasmide pAc-E2 est obtenu (fig. 6). Le reste de la séquence a été contrôlée par séquençage direct.
Le nouveau plasmide pAc-E2 à l'origine du baculovirus recombinant Ac-E2 contient le même cadre de lecture ouvert codant pour la protéine E tronquée que celui présent dans le plasmide pAc-El; seules les RNC aux extrémités du cadre de lecture ouvert ont été modifiées.
5. Construction du baculovirus recombinant Ac-EΔNSl e baculovirus recombinant Ac-EΔNSl con¬ tient l'ADNc codant pour la protéine E suivie de la protéine NSI sous la forme d'une polyprotéine non clivée. Le site de clivage entre les deux antigènes majeurs du VFJ a été modifié par mutagénèse dirigée, de telle façon qu'il ne soit plus reconnu par les signalases cellulaires, générant ainsi une polyprotéine de 100 kDa correspondant aux protéines E et NSI liées de façon covalente.
Le site de clivage (aa 776 à 778) VGA en amont du premier acide aminé de NSI (aa 779) reconnu par les signalases cellulaires permet le clivage de E et NSI; ce tripeptide a été modifié en FYV par muta¬ génèse dirigée de façon à ce qu'il ne soit plus reconnu comme site cryptique de clivage selon les règles de Von Heijne (23).
A cet effet on a synthétisé un oligodésox- nucléotide de 89 bases SP-NS1 de séquence :
5«TCC GCA CTT GAG CTC TCT CTT GCC AAA GTT GAT GGC GCA
TCC TTG ATC TAC GTA AAA TCC TAG AGA CAA AAA CAT CAT
GAT CAC TCC TA3. complémentaire des nucléotides 2413 à 2501 du génome du VFJ, souche vaccinale 17D-204 ; la substitution des codons correspondants à VAG en codons correspondant à FYV est soulignée sur la séquence de 1Oligomère SP-NS1. Un site Sna BI unique est généré en position 2450 (entre les acides aminés 777 et 778) par 1*oligomère SP-NS1. Oligomère SP-NS1 et l'oligomère E-5' décrit précédemment sont utilisés comme amorces pour ιa synthèse d'un produit PCR de 1500 pb à partir du plasmide pSV-E.NSl décrit précédanment, correspondant à la protéine E complète μ-i-us 15 aminoacides N-terminaux de la protéine NSI.
A cet effet 10 ng du plasmide pAc-E.NSl sont mélangés avec 10 ng des oligomères E-5' et SP-NS1 en présence de la Taq-Polymérase. On réalise une amplification sur 25 cycles comme décrit précédemment pour pAc-E2. Le produit PCR de 1500 pb est purifié comme décrit pour pAc-E2 et digéré par Bam HI (site unique apporté par E-5') et par Sac I, (site en 2490 du génome du VFJ apporté par SP-NS1).
Le vecteur de transfert pVL 941-poly décrit précédemment est digéré par Bam HI et Sac I. Les fragments obtenus sont mis en ligation avec le produit PCR digéré correspondant à la protéine E complète plus 13 aminoacides de NSI du VFJ. Le plasmide résultant pAc-EΔNSl (o ) est un plasmide intermédiaire pour la construction du plasmide pAc-EΔ Sl; ce plasmide intermédiaire contient la substitution VGA en FYV (aminoacide 776 à 778) à l'extrémité carboxyligue de la protéine E du VFJ.
La construction finale- pour obtenir le plasmide pAc-E NSI a été réalisée par ligation des fragments : - [Bam HI-EcoRI] du plasmide pAc-E2 correspondant à la protéine E tronquée,
- [EcoRI-SacI] du plasmide pAc-EWNSl(a) correspondant aux aminoacides 720 à 790 du VFJ incluant la mutagénèse dirigée FYV, - [Sacl-Smal] du plasmide pAc-E.NSl correspondant à la protéine NSI, les trois fragments étant introduits dans le vecteur pVL941-poly digéré par Bam HI et Sma I.
La ligation des quatre fragments d'ADN génère le plasmide pAc-EΔNSl (fig. 7).
La complexité de ces constructions a été rendue nécessaire par le risque d'introduction de mutations aléatoires lors de la PCR réalisée pour obtenir la mutagénèse dirigée. Le plasmide pAc-EWNSl ainsi obtenu code pour les protéines E et NSI en tandem non clivées du VFJ. Le baculovirus Ac-EWNSl généré par transfection ne diffère du virus Ac-E.NSl que par la substitution VGA en FYV à l'extrémité carboxylique de la protéine E. II - Expression des baculovirus recombinants
A/ Expression du baculovirus recombinant
Ac-E.NSl
1. Détection des protéines E et NSI recombi- nantes Les cellules Vero infectées par le VFJ ou les cellules SF9 infectées par les différents baculo¬ virus l'ont été à raison approximativement de 10 uni¬ tés formant plage (UFP) par cellule. a) Marquage des protéines dans des cellules Sf9 et Vero. Avant le marquage, les cellules sont lavées à deux reprises et incubées dans un milieu exempt de méthionine pendant 60 minutes. Les cellules Sf9 sont radiomarquées pendant 180 minutes à 27 heures après l'infection (h p.i) avec 100 pCi de [35S] méthionine par ml. Les cellules Vero (lignées cellulaires de reins de singe vert d'Afrique) infectées par le VFJ sont prétraitées à 8 h p.i avec 5 Mg/ml d'actinomycine D (act D) et marquées à 25 h p.i pendant 3 heures avec ιoo ci de [35S] méthionine par ml en présence d'actinomycine D. Lorsqu'elles sont marquées en présence de tunicamycine (5 Ug/ml), les cellules sont prétraitrées pendant 60 min. avec cette drogue.
Pour les essais de marquage avec chasse ("pulse-chase"), on marque des cellules infectées pendant 30 minutes avec 200 (JCi/ml de [35S] méthionine par ml. Après la période de marquage, les cellules sont lavées et incubées avec un excès de méthionine froide pendant des durées variables.
Après marquage ou chasse, les protéines présentes dans le surnageant sont précipitées par addition de 9 volumes d'éthanol à 95% et incubation à - 20βC pendant 18 heures comme décrit par Desprès et coll, (4). Pour analyser les protéines intracellu¬ laires, les cellules sont lavées à deux reprises avec une solution saline de tampon phosphate (PBS) froide et lysées avec un tampon RIPA froid (50 mM tris HCl pH 7,5; 150 mM NaCl; 10 mM EDTA; 0,1 % SDS; 1% Triton X 100; 1% deoxycholate) contenant 25 ϋg/ml d'aprotinine (Sigma). Après 5 mn d'incubation à 0*C, les extraits cellulaires sont clarifiés par centrifugation pendant 5 min. dans une minicentrifugeuse. Les protéines sont immunoprécipitées en utilisant le protocole décrit par Ruiz-Linarès et coll, (7) et résolues sur des gels SDS-polyacrylamide à 12%. b) Analyse Western-blot
Les protéines séparées sur gel de SDS-poly- acrylamide sont transférées par électrophorèse sur des filtres de nitrocellulose (Schleicher et Schuell, RFA). La membrane est saturée avec le tampon de lavage (20 mM Tris HCl pH 7,5; 500 mM NaCl) contenant 3% de sérum foetal de bovin et mise à incuber pendant 1 nuit à 4CC avec un immunsérum de lapin dilué au 1/50 dirigé contre la protéine NSI (Schlesinger et coll, (1)) ou une protéine de fusion TrpE-E obtenue par insertion de l'ADNc codant pour la protéine E dans la région 3' du gène TrpE de l'opéron tryptophane dans le plasmide PATH décrit par C. Dieckmann et A. Tzagoloff (J. Biol. Chem. 1985, 260, p. 1513-20). Après plusieurs lavages, la membrane est mise à incuber successivement à tempé¬ rature ambiante avec un sérum de cheval anti-Ig de lapin biotinylé dilué au 1/500 et avec un complexe dilué au 1/500 de Streptavidine-péroxydase de raifort biotinylée (Amersham). Après lavage, les anticorps liés sont visualisés en mettant à réagir la membrane avec du 4-chloro-l-naphtol à 0,06% (Sigma) et du peroxyde d'hydrogène à 0,015%.
c) Traitement par les Endo-(3-N-acêtyl-D- glucosaminidases H (Endo-H) et F (Endo-F)
Des cellules Sf9 infectées avec le baculo¬ virus recombinant ou des cellules Vero infectées avec le VFJ sont marquées comme décrit ci-dessus et des ex¬ traits cellulaires immuno-précipités à l'aide d'anti- corps dirigés contre les protéines du VFJ. Les com¬ plexes immuns sont traités avec l'Endo-H (20 mU/ml) ou Endo-F (lU/ml) (Boehringer) en utilisant la technique décrite par Jarvis et Summers (22).
d) Extraction par le Triton X 114 Les cellules sont rincées avec du PBS, mises en suspension dans une solution de Triton X 114 à 2% (BDH) dans 50 mM de tris-HCl pH 7, 5 contenant 25 ug/ml d'aprotinine et incubées pendant 10 min à 0βC. Les phases aqueuse et détergent sont obtenues par incubation dans un bain marie à 37βC puis par cen¬ trifugation à 37'C dans une minicentrifugeuse à 3000 t/min. La phase aqueuse est récupérée et après plu¬ sieurs lavages avec du tampon E (10 mM de tris-HCl pH 7,5; 150 mM NaCl; 5 mM EDTA), la phase détergent est obtenue. Les phases aqueuse et détergent diluées avec 5 volumes de tampon E sont précipitées pendant une nuit à l'aide de 9 volumes d'éthanol à 95% à - 20βC. Les protéines sont analysées sur des gels de polyacrylamide.
e) Essais d'immunofluorescence Des cellules de S.frugiperda cultivées sur des lamelles sont infectées avec AcNPV ou le virus recombinant pendant 24 heures à 27βC. Les cellules sont fixées avec du formaldéhyde et, si nécessaire, perméabiUsées avec du Triton X 100 à 0,1% dans du PBS comme décrit précédemment (Desprès et coll, (8)). Les cellules fixées perméabilisées ou non sont mises à in- cuber pendant 20 min. à température ambiante avec un immunsérum de souris anti VFJ (dilution 1 : 40) ou avec une dilution au 1 : 20, de soit l'anticorps mono¬ clonal (AcMc) 864 spécifique de E (Goulά et coll. (9)), soit l'anticorps monoclonal 8G4 spécifique de NSI (Schleslnger et coll.(10)). Une immunoglobuline anti-souris conjuguée à 1'isothiocyanate de fluores- céine (Silenius) est utilisée comme second anticorps.
2/ Expression des protéines E et NSI recom- binantes du baculovirus Ac-E.NSl Le plasmide recombinant Ac-E.NSl contient 1'ADNc du VFJ qui code pour une polyprotéine précur¬ seur des protéines E et NSI, ayant un poids molécu¬ laire théorique de 100 kDa (865 résidus d'aminoaci- des). Pour confirmer que ces protéines sont exprimées et subissent des maturations correctes dans les cel-lules Sf9, on marque des cellules infectées avec Ac-E.NSl à l'aide de [35S] méthionine pendant 3 heures à 27 h p.i. Cette durée s'est avérée être optimale pour le marquage des protéines recombinantes.
Lorsque les protéines virales sont immuno¬ précipitées avec un immunsérum de souris dirigé contre le VFJ ou avec des anticorps monoclonaux spécifiques de E et de NSI, les protéines recombinantes E et NSI migrent avec les mêmes mobilités que les protéines authentiques obtenues à partir de cellules Vero in¬ fectées avec le VFJ. Lorsque les cellules sont trai¬ tées avec la tunicamycine, un inhibiteur de N-glyco- sylation des protéines, la protéine NSI authentique et la protéine NSI recombinante co-migrent avec un poids moléculaire apparent de 43 kDa. Ni la protéine recom¬ binante, ni la protéine E authentique ne sont glyco- sylées comme il a pu en être jugé d'après l'absence d'effets de la drogue sur leur mobilité électropho- rétique.
L'antigénicité des protéines recombinantes est analysée en utilisant des anticorps monoclonaux dirigés contre les protéines E et NSI. Les anticorps monoclonaux neutralisant 2C9 (Schleslnger et coll, (10)) et 864 (ci-dessus mentionné) reconnaissent la protéine d'enveloppe synthétisée par la souche vacci¬ nale 17D-204 du VFJ et réagissent avec la protéine E recombinante exprimée par le virus hybride SV40-VFJ (Desprès et coll, (4)). Les deux types d'anticorps monoclonaux réagissent également avec la protéine E recombinante synthétisée dans les cellules d'insectes. Comme ces anticorps monoclonaux reconnaissent la forme native mais non la forme dénaturée de la protéine E (Desprès et coll, (4)), on peut en conclure que le repliement de la protéine recombinante est similaire à celui de la protéine authentique. Les deux types d'anticorps monoclonaux immunoprécipitent des poly¬ peptides supplémentaires qui migrent plus vite que la protéine E et pourraient être similaires aux produits de dégradation déjà trouvés dans les cellules infec¬ tées avec le VFJ, comme décrit par Schleslnger et coll, (11) et Cane et Gould (12).
L'anticorps monoclonal 8G4 immunoprécipi e la protéine NSI du VFJ produite dans les cellules Vero infectées aussi bien que la forme non glycosylée syn¬ thétisée en présence de tunicamycine. La reconnais¬ sance par l'anticorps monoclonal 8G4 est considéra¬ blement affectée lorsque, la protéine est traitée par du SDS et du dithiotréitol, ce qui indique que l'épi- tope est dépendant de la conformation. L'anticorps monoclonal 8G4 réagit également avec la protéine NSI recombinante obtenue à partir de cell les Sf9 infec¬ tées par Ac-E.NSl. En plus de la protéine recombinante de 48 kDa, un polypeptide mineur avec un poids moléculaire apparent de 47 kDa est immuno-précipité à partir d'un lysat de cellules d'insectes infectées par Ac-E.NSl.
Les analyses détaillées de cellules de Sf9 infectées avec le baculovirus recombinant Ac-E.NSl ont révélé l'existence de deux grands polypeptides ayant des poids moléculaires apparents d'approximativement 100 kDa, ce qui représente la taille attendue pour le précurseur non clivé. Ces polypeptides réagissent avec un immunsérum de souris dirigé contre les protéines structurales et non structurales du VFJ aussi bien qu'avec les anticorps monoclonaux spécifiques de E et de NSI. Le plus grand polypeptide (105 kDa) migre avec la même mobilité que la protéine NS5 non structurale du VFJ. Lorsque la synthèse est effectuée en présence de tunicamycine, seule la bande migrant le plus rapi¬ dement est détectée ce qui suggère que les polypepti¬ des ayant des mobilités plus rapides et plus lentes représentent les formes non glycosylées et glycosylées respectivement. Ces résultats indiquent que le poly- peptide de 100 kDa est en fait le précurseur non clivé des protéines E et NSI recombinantes.
Détection des formes oligomériques et asso¬ ciées à la membrane de la protéine NSI L'oligomérisation de NSI dans les cellules de moustiques et de mammifères infectés par différents flavivirus a été décrite par inkler et coll, (13, 14), Mason (15) et Schleslnger et coll, (16). La ques¬ tion est posée de savoir si la protéine NSI forme également des oligomères dans les cellules de lépidop¬ tères infectées avec le virus Ac-E.NSl. Il était ainsi nécessaire d'établir les conditions pour détecter les oligomères de NSI dans les cellules de mammifères infectés avec le VFJ. Les dimères NSI formés pendant l'infection par le virus de la Dengue sont résistants à des trai¬ tements réducteurs et par le SDS mais sensibles à la denaturation par la chaleur. Les cellules de primates infectés avec la souche 17D-204 du VFJ sont marquées pendant 30 min à 25 h p.i en présence d'actinomycine D et chassées pendant des durées variables. Les protéi¬ nes obtenues à partir des lysats cellulaires sont dis¬ soutes dans un tampon de Laemmli et analysées sur gel de polyacrylamide avant et après denaturation par la chaleur. Dans les échantillons dénaturés, la protéine NSI de 48 kDa est détectée sous la forme d'une bande faible après une période de marquage de 30 min., et devient de plus en plus importante après une incuba¬ tion de 60 min. Lorsque les échantillons ne sont pas dénaturés par la chaleur, la protéine de 48 kDa est détectée à la fin du marquage sans qu'elle s'accumule pendant la chasse. De manière concomittante, une nouvelle bande virale avec un poids moléculaire appa¬ rent de 72 kDa apparaît, qui devient de plus en plus intense durant la chasse.
Le polypeptide de 72 kDa est élue à partir du gel et on montre qu'il représente une forme oli- gomérique de la protéine NSI. Le polypeptide isolé est analysé par estern-blot en utilisant un immunsérum de lapin dirigé contre la protéine NSI du VFJ (Schlesln¬ ger et coll, (1)). Le polypeptide de 72 kDa réagit avec le sérum spécifique et après denaturation par la chaleur se dissocie pour former la protéine NSI de 48 kDa. Après traitement des extraits cellulaires avec du Triton X 114, les protéines transmembranaires ayant des séquences d'ancrage hydrophobes se répartis¬ sent de manière efficace dans la phase détergent, tan¬ dis que les protéines plus hydrophiles, cytosoliques et sécrétées restent dans la phase aqueuse. La présence de la protéine d'enveloppe du VFJ ou de la protéine recombinante E exprimée par le virus Ac-E.NSl dans la phase détergent est révélée par analyse di¬ recte de l'extrait cytoplasmique marqué et confirmée par analyse de type Western-blot au moyen d'un immun¬ sérum de lapin dirigé contre la protéine E du VFJ. La protéine E est extrait*- de manière complète et totale dans la phase détergent comme attendu pour une pro¬ téine transmembranaire.
La présence dOligomères NSI dans la phase de détergent est révélée clairement. Cependant des analyses de Wertern-blot avec un •immunsérum de lapin dirigé contre la protéine NSI du VFJ montre que l'oligomère NSI de 72 kDa est extrait à la fois dans la phase aqueuse et dans la phase détergent. Après denaturation par la chaleur, la forme oligomérique est dissociée et convertie en une protéine de 48 kDa. En l'absence de chauffage, la plupart des produits appa¬ raissent sous forme d'oligomères. Lorsque la N-glyco- sylation est bloquée avec de la tunicamycine, on ob¬ serve la présence d'un polypeptide de 62 kDa dans l'échantillon non chauffé. Lorsque l'échantillon est chauffé, ce polypeptide disparait tandis qu'apparaît le forme non glycosylée de NSI (poids moléculaire apparent de 43 kDa). Ce résultat suggère que la protéine de 62 kDa est la forme non glycosylée de la protéine de 72 kDa et que 1'oligomérisation de NSI a lieu sans que soient nécessairement présents des groupes oligosaccharidiques fixés sur les sites NXT/S ou ASN X Thr/Ser présents sur la glycoprotéine. Aucune bande distincte autre que celle correspondant à NSI n'apparaît après le chauffage, ce qui suggère que le polypeptide de 72 kDa est un homo-oligomère. La dif¬ férence de poids moléculaire diffèrent entre 72 et 62 kDa correspond vraisemblablement au poids moléculaire de 4 oligosaccharides, étant donné que le monomère NSI possède des résidus glycans sur les deux sites de N-glycosylation qui ensemble contribuent à 5 kDa (Desprès et coll, (4)). a protéine NSI exprimée par le baculovirus recombinant Ac-E.NSl est détectée par Western-blot avec l'immun sérum dirigé contre la protéine NSI du VFJ aussi bien sous la forme monomerique gp48 que sous la forme oligomérique gp72. Si la forme monomerique est spécifiquement détectée dans la phase aqueuse, la forme oligomérique est retrouvée dans les phases aqueuse et détergent de Triton 'X114. Ces résultats signifient que 1'oligomérisation et l'association aux membranes de la protéine recombinante NSI ont lieu dans les cellules d'insectes infectées par le bacu¬ lovirus recombinant Ac-E.NSl et à une température de 27βC.
Ces expériences confirment que la protéine d'enveloppe E du VFJ ou du virus Ac-E.NSl possède les propriétés d'une protéine membranaire intégrale et montrent que la glycoprotéine NSI de 48 kDa du VFJ ou du virus Ac-E.NSl nouvellement synthétisée peut être convertie en une ->rme oligomérique thermolabile gp 72 qui peut être retrouvée associée aux membranes. Le polypeptide de 100 kDa synthétisé par
Ac-E.NSl est complètement extrait dans la phase déter¬ gent et réagit avec des immunsérums de lapin dirigés contre les protéines E ou NSI. Le résultat confirme que le polypeptide représente le précurseur non clivé de E et NSI recombinantes et indique qu'il est forte¬ ment associé aux membranes intracellulaires. Des ana¬ lyses de marquage avec chasse montrent que le clivage destiné à générer les protéines recombinantes E et NSI a lieu après que le précurseur ait été complètement transféré dans la lumière du RE (réticulum endoplas- mique). On a également trouvé que la maturation du précurseur n'était pas modifiée par la tunicamycine, dans la mesure où les protéines E et NSI non glycosy¬ lées étaient produites en présence de cette drogue.
Transport et sécrétion des protéines NSI authentiques et recombinantes dans des cellules infectées
Comme les protéines NSI de différents flavivirus ont été décrites comme étant les antigènes solubles fixant le complément et plus tard comme une protéine sécrétée dans le milieu de culture cellulai¬ re, il était intéressant de déterminer si les protéi¬ nes NSI authentique et recombinante synthétisées dans des cellules Vero infectées par le VFJ ou dans des cellules Sf9 infectées par le baculovirus étaient également sécrétées dans le milieu.
Les cellules Vero infectées avec le VFJ sont radiomarquées avec de la [35S] méthionine pendant 30 min. puis chassées avec un excès de méthionine froide pendant 0 à 5 heures. La protéine NSI authentique est présente dans le surnageant cellulaire après 2 heures de chasse, après quoi un plateau est rapidement atteint. La forme sécrétée de NSI migre sous forme d'une bande diffuse avec un poids moléculaire apparent légèrement supérieur à sa contrepartie cellulaire. Bien que la proportion de NSI dans les fractions extra- et intracellulaires n'ait pas été quantifiée, des analyses par autoradiographie indiquent clairement qu'une grande partie reste sous forme intracellulaire. A partir de analyses de marquage avec chasse, on peut conclure que la sécrétion de NSI est un processus plutôt lent dans la mesure où plus de 5 heures sont nécessaires pour que la moitié des protéines NSI radiomarquées soit libérée dans le milieu de culture cellulaire. On montre également que la forme extracel¬ lulaire correspond à l'oligomère gp 72 et que celui-ci migre sous forme d'une bande plus large que -L'oligomè¬ re intracellulaire. Il disparait après chauffage tan¬ dis que la forme monomerique de NSI sécrétée apparaît. Un traitement par la tunicamycine ne fait pas disparaître la sécrétion de NSI comme cela ressort de la présence de l'oligomère non glycosylé p62 de NSI, dans le milieu de culture.
A l'opposé, des cellules Vero infectées avec le VFJ, la protéine recombinante NSI obtenue à partir de cellules Sf9 infectées par Ac-E.NSl n'est pas sé¬ crétée car aucun des polypeptides recombinants n'a pu être détecté dans la fraction extra-cellulaire après un marquage de 30 min. suivi par une chasse de 3 heures. La durée de la chasse n'excédait pas des périodes trop longues en raison d'une éventuelle lyse cellulaire due à l'infection par le baculovirus. Les cellules Sf9 infectées par Ac-E.NSl non perméabilisées montrent une réaction clairement pos-1 ~ive lorsqu'elles sont testées avec l'anticorps 8G4 spécifique de NSI, par immunofluorescence à 24 heures après l'infection, ce qui suggère que, bien que les oligomères de NSI re¬ combinants ne soient pas sécrétés, ils ont pénétré dans le réticulum endoplasmique et dans 1'appareil de Golgi et ont été transportés vers la membrane plasma- tique avec laquelle ils se sont associés.
N-glycosylation des protéines NSI authenti¬ ques et recombinantes on sait que 1'endoglycosidase H hydrolyse les résidus oligosaccharîdiques à haute teneur en mannose liés à l'asparagine de la glycoprotéine, mais non les types complexes de glycans, tandis que l'endo-F clive de la même manière les oligosaccharides à haute teneur en mannose et les oligosaccharides complexes. La résistance à 1'élimination des chaînes latérales hydroσarbonées par l'Endo-H est acquise après la conversion de GlcNAc2- an en GlcNAc2~Man3- GlcNAc, un événement qui a lieu dans la région médiane de l'appareil de Golgi. Ainsi la sensibilité ou la ré¬ sistance aux traitements par 1'endoglycosidase H, des groupes oligosaccharides liés aux aspargines présents sur la protéine NSI exprimée par le VFJ ou par le virus Ac-E.NSl devrait donner des indications sur son transport dans le trajet secrétoire intracellulaire et une indication quant au compartiment où a lieu l'oli- gomérisation.
Les échantillons intra- et extracellulaires obtenus à partir des expériences de marquage suivi de 2 heures de chasse sont analysés quant à leur réacti¬ vité à l'égard des endoglycosidases. La protéine NSI extracellulaire du VFJ apparaît être presque complète¬ ment résistante à l'Endo-H et montre la même hétéro¬ généité que la forme non traitée; mais comme on s'y attendait, est sensible à l'Endo-F. Ceci indique que NSI doit traverser le compartiment secrétoire où les oligosaccharides à haute teneur en mannose sont mo¬ difiés en sucres complexes résistants à l'Endo-H. L'hétérogénéité de la protéine NSI libérée est pro- bablement due à des modifications multiples des oli¬ gosaccharides liés aux résidus Asparagine. Au con¬ traire de la forme sécrétée, la protéine NSI intra¬ cellulaire est totalement sensible à l'Endo-H, ce qui indique qu'elle ne migre pas vers le complexe de Golgi mais reste dans le réticulum endoplasmique. Dans la mesure où la majorité de NSI est présente sous la forme oligomérique, ces résultats suggèrent fortement que le repliement et l'oligomérisation ont lieu pro¬ bablement dans le réticulum endoplasmique ou dans un compartiment qui précède le trans-Golgi.
Pour caractériser la nature des N-glycans sur la protéine recombinante NSI, les protéines mar¬ quées obtenues à partir de cellules Sf9 infectées par Ac-E.NSl et traitées avec le Triton X 114 sont répar- ties entre dans les phases aqueuse et détergent puis la protéine NSI de chaque phase est immunoprécipitée. Des résultats similaires sont obtenus avec l'une ou l'autre phase. Lorsque la protéine recombinante NSI composée des deux formes gp 48 et gp 47 est traitée avec 1'endoglycosidase H, deux bandes sont observées qui migrent avec la forme p 43 non glycosylée et la forme gp 47 respectivement. Les deux bandes sont sensibles à l'Endo-F qui réduit leur taille à 43 kDa. Ces résultats suggèrent que gp 48 est la forme sensible à l'Endo-H tandis que gp 47 représente la forme résistante à l'Endo-H. L'existence de la pro¬ téine gp 47 résistante à l'Endo-H suggère que, bien que la majorité des protéines NSI possèdent des gly- cans à haute teneur en mannose, certains des oligo¬ saccharides sont raccourcis sans élongation supplé¬ mentaire. Ceci signifie que la protéine a été trans¬ portée à partir de réticulum endoplasmique vers l'appareil de Golgi où des séquences riches en man- noses ont vraisemblablement été modifiés en an3GlcNAc2. Ce phénomène est observé dans les cellules d'insectes. De pi s, de tels glycans sont connus pour être de pauvres substrats pour 1'Endo-H. Ainsi, il apparaît que la glycosylation de la protéine NSI recombinante exprimée dans les cellules d'insectes est différente de celle de la protéine NSI authentique synthétisée dans les cellules de mammifères.
B/ Expression des baculovirus recombinants Ac-E 1 et Ac-NSl L'étude de l'expression des protéines recom¬ binantes E et NSI en cellules Sf9 a été réalisée 30 h après infection par les baculovirus Ac-E 1 ou Ac-NSl.
1 ) Expression de la protéine E tronquée Le baculovirus recombinant Ac-E 1 exprime la protéine d'enveloppe E du virus de la Fièvre Jaune délétée de son domaine d'ancrage transmembranalre C terminal. La protéine recombinante E a un poids mo¬ léculaire théorique de 52 kDa (96% de la protéine E du virus 17D). * Antigénicité de la protéine recombinante E La protéine E exprimée par le virus Ac-E 1 a un profil de migration électrophorêtique très similai¬ re à celles synthétisées par le virus 17D ou par le baculovirus recombinant Ac-E.NSl. Cette protéine re¬ combinante réagit avec un immunsérum de souris anti- 17D ainsi qu'avec les anticorps monoclonaux neutrali¬ sants 4E8,2C9,2E10,2D12 et 5E3 (Schleslnger et coll, (10)). L'AcMc neutralisant 864 (Gould et coll, (9)), spécifique des souches vaccinales 17D-204, reconnaît la protéine E recombinante.
* Taux de production en cellules Sf9
La protéine E tronquée dans les cellules d'insecte infectées par le virus Ac-E 1 est visualisée par coloration au bleu de Coomassie à partir des protéines totales d'un lysat de 10° cellules après l'analyse sur un gel de polyacrylamide-SDS (PAGE-SDS). On estime la production de E à 10
Figure imgf000038_0001
pour 10° cellu¬ les. * Propriétés physicochimiques de la protéine recombinante E
Si le baculovirus recombinant Ac-E synthéti¬ se la protéine E en grande quantité, les essais de pu¬ rification montrent qu'elle parait relativement inso- lubie;
* Sécrétion de la protéine E
La protéine recombinante E n'est pas détec¬ tée dans le surnageant des cellules Sf9 infectées par le virus Ac-E.l L'absence de sécrétion, malgré la dé- létion de son domaine d'ancrage transmembranalre, se-rait corrélée à sa propriété d'insolubilité dans le compartiment intracellulaire.
* Localisation cellulaire de la protéine E par immunofluorescence
Par immunofluorescence indirecte, la pr- téine E n'est retrouvée que dans le compartiment in¬ tracellulaire, on ne la détecte pas à la surface de la cellule.
Le baculovirus recombinant Ac-El exprime la protéine E du virus de la Fièvre Jaune, souche vacci¬ nale 17D-204 France, qui présente correctement les épitopes de neutralisation.
2 ) Expression de la protéine NSI Le baculovirus recombinant Ac-NSl exprime la glycoprotéine non structurale NSI (aa 779 à 1129) du virus de la Fièvre Jaune en présence des acides aminés MSMSMILVGVIMMFLSLGVGA (aa 758 à 778) qui composeraient son peptide signal interne. * Antigénicité de la protéine recombinante
NSI
La protéine recombinante NSI synthétisée par le virus Ac-NSl migre sous forme d'un doublet (PM apparents de 48 et 47 kDa) avec un profil de migration électrophorétique très similaire à celui de la protéine exprimée par le virus 17D ou par le baculovirus recombinant Ac-E.NSl. Le doublet de NSI réagit avec un immunsérum de souris anti-17D et avec le AcMc 1A5,4E3,2D10,2G2 et 8G4 (Schleslnger et al, 10).
Les AcMc 1A5 et 8G4 ont une activité cyto- lytique en présence de complément et peuvent protéger passivement la souris et le primate contre le virus 17D injecté en intracérébral. * Glycosylation
En présence de tunicamycine, un inhibiteur de la N-glycosylation des glycoprotéines ou après traitement avec l'endoglycosidase F, le doublet de NSI de 48 et 47 kDa disparaît alors qu'apparaît un poly¬ peptide de 43 kDa qui a un profil de migration éle- trophorétique très comparable à la forme non glycosy¬ lée de la protéine NSI du virus amaril. Ce résultat indique que le doublet 48-47 kDa correspond à deux formes majeures de la protéine recombinante NSI qui se différencient par la nature de leurs oligosaccharides.
* Taux de production en cellules Sf9
La protéine NSI dans les cellules d'insecte infectées par le virus Ac-NSl est visualisée par colo¬ ration au bleu de Coomassie à partir d'un lysat de 10^ cellules après analyse sur un PAGE-SDS. On estime qu'environ 10 )g de protéine NSI sont produits par 10° cellules.
* Oligomérisation et association aux membra¬ nes de la protéine NSI La forme oligomérique de la protéine NSI (gp
72 kDa), préalablement décrite pour le virus 17D et pour le baculovirus recombinant Ac-E.NSl, est observée dans les cellules d'insecte infectées par le virus Ac-NSl après coloration au bleu de Coomassie des protéines totales d'un lysat cellulaire non dénaturé analysé sur un PAGE-SDS. L'existence de la forme oligomérique gp 72 kDa de la protéine NSI exprimée par le virus Ac-NSl a été confirmée par Western blot avec un immunsérum de lapin anti-NSI. La forme oligomérique e la protéine NSI est retrouvée associée aux membra¬ nes d'après les expériences de fractionnement au dé¬ tergent non ionique Triton X 114.
* Sécrétion de la protéine NSI
La protéine recombinante NSI n'est pas dé¬ tectée dans la surnageant des cellules Sf9 infectées par le virus Ac-NSl. L'absence d'excrétion de la pro¬ téine NSI par les cellules de lépidoptère a été préa¬ lablement observée dans les cellules infectées par le baculovirus recombinant Ac-E.NSl.
* Localisation cellulaire de la protéine NSI par immunofluorescence
Par immunofluorescence indirecte avec l'AcMc 8G4, la protéine recombinante NSI est retrouvée à la surface de la cellule Sf9 infectée. C/ Expression du baculovirus recombinant
AC-E2
Le virus Ac-E2 exprime la protéine E tronquée (poids moléculaire apparent 52 kDa). Son taux de production est d'environ 5 )g/1.000.000 de cellules Sf9 après 48 heures d'infection. La protéine E est reconnue par les anticorps monoclonaux dirigés contre la protéine d'enveloppe du VFJ : 2C9,2E10,5E3,2D12, 864. La protéine E tronquée exprimée par le virus Ac-E2 est sécrétée par les cellules de Spodoptera frugiperda infectées dans le milieu de culture. Ce phénomène est confirmé par marquage des cellules infectées en présence de méthionine [""S] suivi d'une chasse ainsi que par immunofluorescence indirecte où une fluorescence membranaire est observée. En absence de son domaine d'ancrage transmembranalre, la protéine E exprimée par le virus Ac-E2 est excrétée comme celle synthétisée par le recombinant SV40 SV-E dans les cellules de primate (Desprès et coll., (4)).
D/ Expression du baculovirus recombinant Ac-E NSI
Le virus Ac-EΔNSI synthétise une protéine sous la forme d'un doublet ayant un poids moléculaire apparent approximatif de 100 kDa. L'hétérogénéité, qui disparait en présence de tunicamycine de cette protéine est due à son degré de glycosylation (dans la gp 100, seul le polypeptide représentant NSI est glycos? é); ce phénomène a déjà été décrit pour la gp 100 exprimé par Ac-E.NSl. La gplOO exprimée par Ac-EΔNSl est reconnue par les anticorps monoclonaux spécifiques de E (2C9,2E10,2D12, 864) aussi bien que par les anticorps monoclonaux spécifiques de NSI (1A5,8G4,2G12). Ce résultat -est confirmé par immunofluorescence indirecte. Le taux de production est estimé à 10 pg/1.000.000 de cellules de Spodoptera frugiperda à 2 jours après l'infection. Aucun clivage en E et NSI n'est observé à partir de la gplOO.
L'expression des protéines E et NSI en tandem n'affecte ni leur conformation ni leur antigénicité respectives.
III - Immunité protectrice anti-VFJ induite par les protéines recombinantes E et NSI chez la sou¬ ris
L'immunogénicité et le pouvoir protecteur des protéines recombinantes E et NSI exprimées en cellules d'insecte Sf9 infectées par les différents baculovirus ont été testés chez la souris qui est le modèle animal de référence pour étudier la pathogénèse du VFJ. En effet, si les souches sauvages tuent le rongeur adulte après injection par les voies intracé- rébrale ou intrapéritonéale, les souches vaccinales 17D sont létales uniquement lorsque le virus est in¬ jecté par voie intracerebrale. Les souriceaux sont sensibles au virus sauvage ou vaccinal quelque soit la voie d'inoculation. Ainsi, pour tester le pouvoir immunogene des protéines recombinantes E et/ou NSI, on a inoculé des lysats cellulaires à des souris Swiss de trois semaines. L'épreuve par le virus virulent se fait en injectant le virus par voie intracerebrale.
La détection d'anticorps dirigés contre les protéines E et NSI dans les sérums de souris immuni¬ sées a été réalisée avant que les animaux ne reçoivent une injection intracerebrale du virus infectieux 17D (épreuve ou challenge au VFJ). a) préparation des lysats cellulaires Des cellules Sf9 infectées par le baculovi¬ rus sauvage (AcNPV) ont été utilisées comme contrôle négatif et deux types de contrôle positif ont été choisis : le virus 17D inoculé par voie intrapérito- néale et les cellules Vero infectées par le virus 17D. Toutes les cellules Sf9 ou Vero ont été prélevées à la 30ème heure après le début de l'infection. Elles ont été mises en suspension dans du PBS et l'extrait cel- lulaire a été obtenu par une simple étape de congéla¬ tion-décongélation.
Chaque souris Swiss reçoit une injection intrapéritonéale (i.p.) de 5 x 10^ cellules (sauf 2,5 x 10^ cellules infectées par Ac-E.NSl) contenues dans 0,3 ml, sans adjuvant, ou de 10° ufp de virus 17D, aux temps J O et J 15. Trois semaines après le début de l'inoculation, à J 19, les sérums des souris immuni¬ sées sont prélevés et à J 21 les animaux reçoivent une dose de 100 DL50 de virus 17D contenu dans un volume de 30 pi par voie intracerebrale (i.c. ). La mortalité des souris est comptabilisée jusqu'au 21ème jour qui suit l'épreuve soit 6 semaines après le début de 1'immunisation.
b) protection des souris immunisées
Les résultats sont présentés dans le tableau
I.
TABLEAU I
Virus ou lysat Nombre de souris protégées Titre Ac NI cellulaire sur nombre total de souris des sérums injecté immunisées (% de protection) avant épreuve
17D i.p£ 16/19 (85%) 40-80 Vero/17D§ 20/20 (100%) 10 AcNPV§ 1/19 (5%) <10
Ac-E.NS1+ 25/25 (100%) 10 Ac-E 1§ 17/19 (90%) 20 Ac-NS 1§ 5/25 (20%) <10
( : dilution du sérum pour obtenir 50% de réduction du titre viral) (£ : 106 ufp de VFJ) (§ : 0,5 x 10° cellules infectées) (+ : 2,5 x 106 cellules infectées)
Les souris Swiss inoculées par le virus 17D en intrapéritonéale ou celles qui ont reçu un lysat de cellules Vero infectées par le virus 17D sont proté¬ gées tandis que les souris immunisées par le lysat de cellule Sf9 infectées par le baculovirus AcNPV sont décédêes 15 jours après le début de l'épreuve avec le virus infectieux (Figure 6) . Lorsque les souris Swiss sont inoculées par le lysat cellulaire Ac-E.NSl, la protection est totale.
Pour établir le rôle respectif de E et NSI dans 1'induction d'une réponse immunitaire protectrice anti-virale, les souris Swiss ont reçu soit un lysat de cellules infectées par le baculovirus recombinant Ac-El, soit un lysat de cellules infectées par le baculovirus recombinant Ac-NSl. Les souris immunisées contre la protéine E tronquée de son extrémité C terminale (virus Ac-El) sont protégées contre le virus infectieux (Figure 7), celles immunisées contre la protéine NSI (virus Ac-NSl) restant sensibles au VFJ à 80% malgré un retard de 2 jours dans l'apparition des signes cliniques par rapport aux souris ayant reçu seulement les protéines du baculovirus (virus AcNPV) (Figure 7). Cette protection faible (20%) mais réelle suggère que la protéine NSI seule joue un rôle non négligeable dans l'immunité anti-virale.
c) présence d'anticorps dirigés contre les protéines E et NSI
Les sérums prélevés chez les souris immuni¬ sées avant l'injection du virus 17D en intracerebrale (J21) sont testés pour la présence d'anticorps dirigés contre les protéines E ou NSI. Par radioimmunoprécipi- tation d'un lysat de cellules Vero infectées par le VFJ et marquées à la méthionine \_35sJ, on confirme que les sérums de souris immunisées avec le baculovirus AcNPV ne réagissent avec aucune des protéines du VFJ. Les sérums de souris ayant reçu le virus 17D en i.p. ou les protéines des cellules Vero infectées par le
VFJ immunoprécipitent avec des intensités variables les protéines E et NSI (Figure 8).
Les sérums des souris immunisées avec le lysat de cellules Sf9 infectées par le virus Ac.E-NSl immunoprécipitent très bien la protéine NSI et dans une moindre mesure la protéine E du VFJ (Figure 8). Les sérums des souris immunisées avec le lysat de cellules Sf9 infectées par les virus Ac-El ou Ac-NSl immunoprécipitent très faiblement ou pas avec les protéines E ou NSI respectivement (Figure 8). Deux hypothèses peuvent être proposées pour répondre à ce phénomène; soit les protéines recombinantes E et NSI exprimées par le virus Ac-E.NSl sont plus immunosti- mulantes que celles synthétisées respectivement par les virus Ac-El et Ac-NSl, soit les anticorps dirigés contre les protéines E et NSI individualisées appar¬ tiennent à des classes d'isotypes qui réagissent très mal avec la protéine A qui est spécifique des Ig 2a. La deuxième explication peut être argumentée par le fait que le titre en Ac NI contre la protéine E ex¬ primée par le virus Ac-El est supérieur à celui de la protéine E exprimée par le virus Ac-E.NSl bien que rien ne soit détecté par immunoprécipitation; en défi¬ nitif, on peut imaginer que les protéines E et NSI synthétisées par le virus Ac-El et Ac-NSl respective¬ ment stimulent préférentiellement certaines classes d'immunoglobulines non reconnues par la protéine A, phénomène qui n'aurait pas lieu lorsque les protéines recombinantes sont exprimées par le virus Ac-E.NSl. la réponse antigenique semble différente pour les mêmes protéines selon leur mode de présentation au système immunitaire de 1'animal.
Par le test de séroneutralisation in vitro, le titre en anticorps neutralisants (AcNI) présents dans les sérums a été utilisé. Le test de séroneutra¬ lisation in vitro est réalisé de la façon suivante; cent unités formant plages (ufp) du VFJ, souche vac¬ cinale 17D-204 France, sont incubées pendant 2 heures avec des dilutions successives de sérums puis mises en contact avec des cellules de reins de porc (PS) en présence de carboxyméthylcellulose (CMC) . Au bout de 5 jours, les cellules sont colorées et on détermine la dilution du sérum qui permet d'obtenir 50 plages envi¬ ron soit une réduction de 50% du titre viral (titre du sérum en séroneutralisation) . Le titre obtenu est de 40-80 pour les sérums de souris ayant reçu le virus 17D en i.p. et de 10 pour ceux des animaux immunisés contre le lysat de cellules Vero infectées par le VFJ (tableau 1) . Comme attendu, on ne détecte pas d'Ac NI dans les sérums de souris immunisées contre les protéines du baculovirus AcNPV ou contre la protéine recombinante NSI exprimée par le baculovirus recombinant Ac-NSl (titre <10). Les sérums de souris immunisées avec les baculovirus Ac-E.NSl ou Ac-E 1 ont des titres en anticorps neutralisants de 10 et 20 respectivement (tableau 1 ) .
d) conclusion
Les protéines E et NSI du virus de la fièvre jaune, souche vaccinale 17D-204 France, exprimées par le baculovirus recombinant Ac-E.NSl induisent une ré¬ ponse immunitaire protectrice complète (100%) contre 1'agent infectieux avec un titre en anticorps neutra¬ lisants de 10. La protéine d'enveloppe (E) délétée de son domaine d'ancrage transmembranalre carboxylique exprimée par le virus Ac-El, immunise efficacement contre le VFJ (90% de protection) avec un titre en Ac NI de 20. Si la protéine recombinante NSI synthétisée par le virus Ac-NSl n'induit pas une immunité protec- trice efficace contre le VFJ (20% de protection), la réponse immunitaire humorale et/ou cellulaire thymo- dépendante induite par elle paraît retarder 1'appa¬ rition des signes cliniques, (généralement une para¬ lysie des membres inférieurs) et peuvent protéger certains individus probablement en relation avec l'haplotype du complexe majeur d'histocomptabilité (CM.H. ) de la sour.s Swiss immunisée.
De l'ensemble de ces résultats, il apparaît que la protéine d'enveloppe a un rôle primordial dans la réponse immunitaire protectrice anti-virale, certainement par l'induction d'anticorps neutrali¬ sants. Cependant, il semblerait que la réponse immu¬ nitaire dirigée contre les protéines E et NSI expri¬ mées par le virus Ac-E.NSl soit encore plus perfor- mante pour les raisons suivantes :
- existence d'une protection totale contre le VFJ après seulement deux injections espacées de 15 jours d'un simple lysat cellulaire;
- le taux en anticorps neutralisants (titre 10) est suffisant pour une complète protection anti¬ virale (titre comparable à celui obtenu pour les souris protégées avec le lysat de cellules Vero infectées par le virus 17D);
- observation d'un haut pouvoir immunogene de la protéine NSI produite par Ac-E.NSl. intervention des deux compartiments de l'immunité anti-virale protectrice, la séroneutrali¬ sation du virus et la c totoxicité dirigée contre les cellules infectées, 1'ensemble permettant une double protection contre la diffusion de 1'agent pathogène dans l'organisme (par les AcNI) ainsi que pour pré¬ venir l'apparition de mutants d'échappement aux anti¬ corps neutralisants en bloquant précocement la repli- cation virale en bloquant précisément la replication virale par 1'intervention 'une réponse immunitaire humorale et/ou cellulaire thymodépendante dirigée contre la protéine NSI.
Cette double réponse antigenique pourrait, dans le cas de la dengue, prévenir l'apparition de complications sévères telles que les fièvres hémorragiques qui ont été décrites être liées à la présence d'une immunité préexistante vis-à-vis d'un sérotype hétérologue du virus de la dengue.
L'utilisation d'un vaccin sous-unité composé des protéines recombinantes E et NSI apparaît comme une réponse efficace et originale pour le développe¬ ment d'une prophylaxie anti-flaviyirus ou anti-flavi- like. Dans le cas de la fièvre jaune, on pourrait immuniser efficacement les enfants de moins de 6 mois, ce qui n'est pas possible avec le vaccin vivant 17D actuel à cause de son niveau non négligeable de neurovirulence (recommandation de 1'0.M.S. ).
S mboles des acides amniés
10
15
20
Figure imgf000050_0001
25
30 REFERENCES
1. Schleslnger, J.J. Brandriss, M.W. and Walsh, E.E.(1985). Protection against 17D yellow fever encephalitis in mice by passive transfer of monoclonal antibodies to the non structural glycoprotein gp 48 and by active i munization with gp 48 J. Immunol. 135,2805-2809
2. Gould, E.A. Buckley, A. Barrett, A.D.T. and Cammack., N (1986). Neutralizing (54K) and non-neu- tralizing (54K and 48K) monoclonal antibodies against structural and non-structural yellow fever virus proteins confer immuni y in mice. J. Gen. Virol. 67,591-595
3. Maniatis, T., Fritsch, E.F. and Sambrook, J. (1982). Molecular Cloning : A laboratory manual. Cold Spring Harbor Laboratory, New-York
4. Desprès, P., Ruiz-Linarès, A., Cahour, A., Girard, M., Wychowski C, and Bouloy, M. (1990). The 15 amino acid residues preceding the amino terminus of the enveloppe protein in the yellow fever virus polyprotein precursor --. ts as a signal peptide. Virus Res. 16,59-76
5. Luckow, V.A. and Summers, M.D. (1989). High level expression of non fused foreign gènes with Autographa californica nuclear polyhedrosis virus expression vec- tors. Virology. 170, 31-39
6. Summers, M.D. and Smith, G.E. (1987). A manual of methods for baculovirus vectors and insect cell cul-ture procédure. In : "Texas Agricultural Experiment Station Bulletin" Collège Station TX, Bull. n° 1555
7. Ruiz-Linarès, A., Cahour, A., Desprès, P., Girard, M. and Boloy, M. (1989). Processing of yellow fever virus polyprotein : rôle of cellular protéases in ma¬ turation of the structural proteins. J. Virol. 63, 4199-4209
8. Desprès, P., Cahour, A., Wychowski, C. , Girard, M. and Bouloy, M. (1988). Expression of yellow fever virus enveloppe protein using hydrid SV40/yellow fever viruses. Ann.Inst.Pasteur/Virol.139,59-67
9. Gould, E.A., Buckley, A., Cammack, N. Barrett, A.D.T., Clegg, J.C.S., Ishak, R. and Varma, M.G.R. (1985). Examination of the immunological relationships between flaviviruses using yellow fever virus mono¬ clonal antibodies. J.Gen.Virol.66:1369-1382
10. Schleslnger, J.J. Brandriss, M. . and Monath, T.P. (1983). Monoclonal antibodies distinguish between wild and vaccine strains of yellow fever virus by neutrali- zation, hemagglutination inhibition and immune preci- pitation of the virus envelope. Virology.125.8-17
11. Schlesinger, J.J. Brandriss, M.W., Walsh, E.E., Eckels, K. Zhang, Y.M. and Laî, C.J. (1988). Develop¬ ment of candidate subunit flavivirus vaccines : immu- nogenic characterization of yellow fever and dengue virus structural and non structural proteins. In : "Technological Advances in Vaccine Development" (Alan R. Less,Inc. ). pp 11-20
12. Cane, P.A. and Gould, E.A. (1989). Immunobloting reveals différences in the ace ..ulation of envelope protein by wild-type and vaccine strains of yellow fever virus. J.Gen.Virol. 70,557-564
13. Winkler, G. Randolph, V.B., Cleaves, G.R., Ryan, T.E. and Stollar, V. (1988). Evidence that the mature form of the flavivirus nonstructural protein NSI is a dimer. Virology. 162, 187-196
14. Winkler, G., Maxwell, S.E., Ruemmler, C. , and Stollar, V (1989). Newly synthesized dengue-2 virus nonstructural protein NSI is a soluble protein bu becomes partially hydrophobic and membrane-associated after dimerization. Virology.171,302-305
15. FAN, W. and MASON, P.W. (1990). Membrane association and sécrétion of the japanese encephalitis virus NSI protein from cells expressing NSI c DNA, Virology 177, 470-476
16. Schlesinger, J.J. Brandriss, M.W., Putnak, J.R. and Walsh E.E. (1990). Cell surface expression of yellow fever virus non-structural glycoprotein NSI : conséquences of interaction with antibody J.Gen.Virol. 71,593-599
17. Desprès, P., Deubel, V., Bouloy, M. and Girard, M. (1986). Identification and characterization of intra- cellular yellow fever virus-specific RNA : absence of subgenomic RNA. Ann.Inst. Pasteur/Virol.137E, 1 204
18. Rice, CM., Lenches, E.M., Eddy, S.R., Shin, S.H., Sheet R. and -.trauss, J.H. (1985) Nucléotide séquence of yellow fever virus : implications for flavivirus gène expression and évolution. Science. 229, 726-733 19. Desprès, P., Cahour, A., Dupuy, A., Deubel, V., Bouloy, M. Digoutte, J.P. and Girard, M. (1987). High genetic stability of the région coding for the struc¬ tural proteins of yellow fever virus strain 17D;J. Gen.virol. 68, 2245-2247
20. Hahn, Y.S., Dalrymple, J.M., Strauss, J.H. and Rice, CM. (1987). Comparison of the virulent Asibi strain of yellow fever virus with the 17D vaccine strain derived from it. Proc.Natl.Acad.Sci (USA) 84, 2019-2023
21. Dupuy, A., Desprès, P., Cahour, A., Girard, M and Bouloy, M. (1989). Nucléotide séquence comparison of the génome of two 17D-204 yellow fever vaccines. Nucleic.Acids.Res.17, 3929
22. Jarvis, D.L. and Summers, M.D. (1989). Glycosylation and sécrétion of human tissue plasmino- gen activator in recombinant baculovirus-infected insect cells.Mol.Cell. Biol.9, 214-223
23. Von Heijne, (1986), Nucleic Acids Research
(N.A.R), 14, 4683-4690.

Claims

REVENDICATIONS
1 - Baculovirus recombinant, caractérisé en ce qu'il comporte un ADNc codant pour tout ou partie de la protéine antigenique d'enveloppe E et/ou un ADNc codant pour tout ou partie de la protéine antigenique non structurale NSI d'un virus appartenant aux Flaviviridae ou d'un virus apparenté aux FIavivir1dae, inséré dans le gène de la polyédrine entre le nucléotide + 35 et le nucléotide de + 170, le A du codon d'initiation modifié de la polyédrine étant numéroté + 1.
2 - Baculovirus recombinant selon la reven¬ dication 1, caractérisé en ce qu'il comporte en tant que segment d'insertion un ADNc codant pour tout ou partie de E ou un ADNc codant pour tout ou partie de E et NSI, et en ce qu'il comporte, en outre, en amont de l'ADNc une séquence leader qui correspond à l'ex¬ trémité 3' de la région 5' non codante du gène de la protéine VPl du virus SV40 comportant 11 nucléotides en 3' du site Hind III et le codon d'initiation ATG de la protéine VPl.
3 - Baculovirus recombinant selon la reven¬ dication 1, caractérisé en ce qu'il comporte en tant que segment d'insertion un ADNc codant pour tout ou partie de E, et en ce qu'il comporte, en outre, à l'extrémité 3' un codon de terminaison introduit préalablement à l'insertion dans le baculovirus.
4 - Baculovir s recombinant selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il est obtenu à partir de Autographa California Nuclear Polyhedrosis Virus.
5 - Baculovirus recombinant selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le virus appartenant aux Flaviviridae ou apparenté aux Flaviviridae est le virus de la fièvre jaune (VFJ).
6 - Plasmide recombinant pour l'obtention d'un baculovirus selon la revendication 1, dénommé pAc-E.NSl comprenant l'ADNc codant pour E et NSI délé¬ tée de son aminoacide C terminal potentiel, caracté¬ risé en ce qu'il est obtenu par les étapes suivantes : a) digestion d'un plasmide recombinant SV40-VFJ comportant l'ADNc codant pour E et NSI, afin d'introduire un codon de terminaison à l'extrémité carboxylique de NSI de façon à ce que la protéine exprimée résultante soit délétée de son aminoacide C-terminal; b) digestion de ce plasmide par Hind III et ou Bgl II; c) traitement des extrémités avec le frag¬ ment de Klenow en présence des 4 désoxynucléotides triphosphate, de manière à rendre les extrémités fran¬ ches; ) digestion des ADN obtenus par Apa I; e) isolement et ligation des fragments d'ADN obtenus avec le plasmide pVL 941-poly préalablement linéarisé avec Bam HI et traité par le fragment de Klenow en présence des 4 désoxynucléotides triphos- phate, puis par la phosphatase alcaline pour générer un plasmide comportant l'ATG initiateur de la protéine VPl du virus SV40 précédé des 11 nucléotides adjacents en 5' délimités par un site Hind III.
7 - Plasmide recombinant pour l'obtention d'un baculovirus selon la revendication 1, dénommé pAc-NSl comprenant l'ADNc codant pour la protéine NSI délétée de son aminoacide C terminal potentiel, ca¬ ractérisé en ce qu'il est obtenu par les étapes sui¬ vantes : a) digestion d'un plasmide recombinant SV40-VFJ comportant l'ADNc codant pour E et NSI délétée de son aminoacide C terminal avec Xba I; b) remplissage avec le fragment de Klenow en présence des 4 désoxynucléotides triphosphate et liga¬ tion des fragments obtenus pour générer un plasmide comportant une séquence leader correspondant à l'ex¬ trémité 3' de la région 5' non codante du gène de la protéine VPl du virus SV 40 comportant les 11 nu¬ cléotides en 3' du site Hind III et le codon d'initia¬ tion ATG de la protéine VPl ainsi que la séquence exo¬ gène GGG GGA TCC TCT AGC TAG en aval de l'ADNc codant pour E et NSI délétée de son aminoacide C terminal; c) digestion du plasmide obtenu à 1'étape b) avec Tth 111 I, Mlul et Pst 1, d) ligation des fragments obtenus à l'étape c) après remplissage du site Tth 1111 par le fragment de Klenow en présence des 4 désoxynucléotides triphos¬ phate avec un vecteur de transfert pVL 941-poly obtenu à partir de pVL 941 par insertion d'un multilinker à l'extrémité 3' du site Bam HI, digéré par Bam HI et remplissage du site Bam HI par le fragment de Klenow en présence des 4 désoxynucléotides triphosphate.
8 - Plasmide recombinant pour l'obtention d'un baculovirus selon la revendication 1, dénommé pAc-El comprenant l'ADNc codant pour le peptide signal de la protéine E suivie de la protéine E tronquée, dé¬ létée de son extrémité C terminale (aminoacide-? 286 à 720) , caractérisé en ce qu'il est obtenu par les étapes suivantes : a) digestion du plasmide pAc-E.NSl selon la revendication 6 par Xho I et Apa I et d'un plasmide recombinant SV40-VFJ comportant 1'ADNc codant pour la protéine E avec Apa I et Bgl II, et b) ligation des fragments fxho I - Apa j du plasmide pAc-E.NSl obtenu précédemment et [Apa I - Bgl II] du plasmide recombinant SV40-VEJ comportant l'ADNc codant pour la protéine E tronquée avec un vecteur de transfert PVL 941-poly obtenu à partir de pVL 941 par insertion d'un multilinker à 1'extrémité 3' du site Bam HI et digéré par Xho I et Bam H I.
9 - Plasmide recombinant pour l'obtention d'un baculovirus selon la revendication 1, dénommé pAc-E2 comprenant l'ADNC codant pour le peptide signal de la protéine E suivie de la protéine E tronquée, délétée de son extrémité C terminale (aminoacides 286 à 720) est obtenu par les étapes suivantes : a) création de sites Bam HI et Sma I aux extrémités des régions non codantes 5' et 3' respectivement de l'ADNc par mutagénèse dirigée par PCR (Polymérase Chain Reaction) au moyen de la Taq-polymérase à partir du plasmide pSV-E en utilisant comme amorces respectivement les oligodésoxynucléoti- des E-5' et E-3' de séquences : E-5' : c.GTCGACCTGTACGGATCCGTTACTTCTGCTCTA .
E-3' : =ιTCAATGATCACGCTAGTCCCGGGCAAGCTTCT
CTCT3., la ligne en pointillés représentant respectivement les sites Bam HI et Sma I; b) digestion de l'ADN obtenu à l'étape pré¬ cédente par Bam HI et Sma I; c) ligation des fragments d'ADN obtenus dans le plasmide pVL 941-poly obtenu à partir de pVL941 par insertion d'un multilinker à 1'extrémité 3' du site Bam HI, et digéré par Bam HI et Sma I pour obtenir un plasmide intermédiaire ; d) substitution du fragment d'ADN compris entre le site Hind III (nucléotide -13 dans la région 5' non codante du virus appartenant à ou apparenté aux Flaviviridae et le site Pst-I (nucléotide 1964 du virus appartenant à ou apparenté aux Flaviviridae) du plasmide intermédiaire par le fragment homologue du plasmide pSV-E..
10 - Plasmide recombinant pour l'obtention d'un baculovirus selon la revendication 1, dénommé pAc-EWNSl comprenant l'ADNc codant pour la protéine E suivie de la protéine NSI sous la forme d'une polyprotéine non clivée, caractérisé en ce qu'il est obtenu par mutagénèse dirigée, notamment par PCR de la séquence VXA (aminoacide 776 à 778), située en amont du premier aminoacide de NSI, dans laquelle X représente les aminoacides G, H ou Q notamment G, en FYV.
11 - Plasmide recombinant pour l'obtention d'un baculovirus selon la revendication 1, dénommé pAc-E&NSl comprenant l'ADNc codant pour la protéine E liée par une liaison de covalence à la protéine NSI délétée de son aminoacide C terminal potentiel, carac¬ térisé en ce qu'il est obtenu par les étapes suivan¬ tes : a) création d'un site Sna BI unique en position 2450, (correspondant à la position entre les aminoacides 777 et 778), de l'ADNc par mutagénèse dirigée par PCR au moyen de la Taq-Polymérase à partir du plasmide pAc-E.NSl, tel que défini à la revendica¬ tion 6, en utilisant comme amorces 1'oligodésoxynu- cléotide SP-NS1 de séquence :
5' TCC GCA CTT GAC CTC TCT CTT GCC AAA GTT GAT GGC GCA TCC TTG ATC TAC GTA AAA TCC TAG AGA CAA
AAA CAT CAT GAT CAC TCC TA3' , la ligne pointillée représentant les codons substitués codant pour FYV, et 1'oligodésoxynucloétide E-5' tel que défini à la revendication 9 ; b) digestion de l'ADN obtenu par Bam HI et Sacl ; c) ligation dans le plasmide pVL 941-poly obtenu à partir de pVL 941 par insertion d'un multilinker à l'extrémité 3' du site Bam HI, et digéré par Bam HI et Sac I, de manière à obtenir un plasmide intermédiaire ; d) ligation des fragments d'ADN suivants :
- [Bam HI-Eco RI] du plasmide pAc-E2, tel que défini à la revendication 9, correspondant à la protéine E tronquée ;
- [Eco RI - Sac I] du plasmide intermédiaire défini précédemment, corespondant aux aminoacides 720 et 790 du Virus appartenant à ou apparenté aux Flaviviridae, comprenant la mutagénèse dirigée FYV ;
- [Sac I-Sma I] du plasmide pAc-E.NSl tel que défini à la revendication 6 correspondant à la protéine NSI, dans le plasmide pVL 941-poly obtenu comme décrit précédemment et digéré par Bam HI et Sma I.
12 - Baculovirus recombinant déposé à la CNCM le 21 mai 1991 sous le n° 1-1097.
13 - Baculovirus recombinant déposé à la CNCM le 21 mai 1991 sous le n° 1-1098.
14 - Polypeptides comprenant tout ou partie des protéines E et/ou NSI, caractérisés en ce qu'ils sont obtenus par un baculovirus recombinant selon l'une quelconque des revendications 1 à 4 ou 12 à 13.
15 - Polypeptides comprenant tout ou partie des protéines E et/ou NSI, caractérisé en ce qu'il sont obtenus par propagation d'un baculovirus recom¬ binant selon l'une des revendications 1 à 4 ou 12 à 13 dans des cellules de Spodoptera frugiperda.
16 - Procédé de diagnostic in vitro chez l'homme ou chez l'animal, par mise en évidence des anticorps dirigés contre tout ou partie de la protéine E et/ou la protéine NSI immunogene telle qu'obtenue par un baculovirus recombinant suivant l'une des revendications 1 à 4 ou 12 à 13, dans un prélèvement biologique de 1'homme ou de 1'animal dans lequel on met en contact la ou les protéines immunogènes E et NSI avec le prélèvement biologique de 1'homme ou de 1'animal pouvant contenir lesdits anticorps et on révèle la présence des anticorps fixés.
17 - Trousse de diagnostic in vitro des infections causées par les Flaviviridae ou les virus apparentés aux Flaviviridae pour la mise en oeuvre du procédé selon la revendication 16 comprenant tout ou partie de la protéine NSI et/ou la protéine E immuno¬ gènes telle qu'obtenues par un baculovirus recombinant suivant l'une quelconque des revendications 1 à 4 ou 12 à 13 et contenant, en outre, un anticorps spécifi¬ que d'un isotype d'immunoglobuline. 18 - Vaccin destiné au traitement et à la prévention des infections causées par les Flaviviridae ou les virus apparentés aux Flaviviridae chez l'homme ou chez l'animal, dans lequel l'agent vaccinant con¬ siste en tout ou partie de la protéine E et/ou de la protéine NSI, obtenues par un baculovirus recombinant selon 1'une quelconque des revendications 1 à 4 ou 12 à 13.
19 - Anticorps monoclonal dirigé contre tout ou partie d'une protéine E et/ou NSI, obtenue par un baculovirus recombinant selon l'une quelconque des revendications 1 à 4 ou 12 à 13.
PCT/FR1991/000432 1990-08-10 1991-05-30 Baculovirus recombinant exprimant les proteins e et nsi de virus appartenant aux flaviviridae ou de virus apparentes aux flaviviridae WO1992002548A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR90/10263 1990-08-10
FR9010263A FR2665710A1 (fr) 1990-08-10 1990-08-10 Baculovirus recombinant exprimant les proteines e et ns1 de virus appartenant aux flaviviridae ou de virus apparentes aux flaviviridae, applications diagnostiques et therapeutiques.

Publications (1)

Publication Number Publication Date
WO1992002548A1 true WO1992002548A1 (fr) 1992-02-20

Family

ID=9399619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1991/000432 WO1992002548A1 (fr) 1990-08-10 1991-05-30 Baculovirus recombinant exprimant les proteins e et nsi de virus appartenant aux flaviviridae ou de virus apparentes aux flaviviridae

Country Status (2)

Country Link
FR (1) FR2665710A1 (fr)
WO (1) WO1992002548A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0836482A1 (fr) * 1995-05-24 1998-04-22 Hawaii Biotechnology Group, Inc. Vaccin purifie contre une infection par flavivirus
WO2000012128A2 (fr) * 1998-08-28 2000-03-09 Hawaii Biotechnology Group, Inc. Vaccin a sous-unite proteique non structurale recombinante contre les infections a flavivirus
US6117640A (en) * 1995-05-02 2000-09-12 The United States Of America As Represented By The Secretary Of The Army Recombinant vaccine made in E. coli against dengue virus
US6136561A (en) * 1995-05-24 2000-10-24 Hawaii Biotechnology Group, Inc. Methods of preparing carboxy-terminally truncated recombinant flavivirus envelope glycoproteins employing drosophila melanogaster expression systems
US6749857B1 (en) 1997-07-31 2004-06-15 Hawaii Biotechnology Group, Inc. Recombinant dimeric envelope vaccine against flaviviral infection
US7227011B2 (en) 1998-06-04 2007-06-05 United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention Nucleic acid vaccines for prevention of flavivirus infection
US7417136B1 (en) 1998-06-04 2008-08-26 The United States Of America As Represented By The Secretary, Department Of Health And Human Services, Centers For Disease Control And Prevention Nucleic acid vaccines for prevention of flavivirus infection
WO2009088256A3 (fr) * 2008-01-09 2009-10-08 건국대학교 산학협력단 Vaccins à base de baculovirus
CN107488633A (zh) * 2017-03-03 2017-12-19 江苏省农业科学院 高效增殖杆状病毒的昆虫细胞株及其构建方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2767324B1 (fr) * 1997-08-14 2001-04-06 Pasteur Institut Utilisation de proteines d'enveloppe recombinantes pour le diagnostic du virus de la dengue
EP1454988A1 (fr) * 2003-03-03 2004-09-08 Institut National De La Sante Et De La Recherche Medicale (Inserm) Pseudo-particules du flavivirus infectieuses contenant des protéines prM-E d'enveloppe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2218421A (en) * 1988-05-12 1989-11-15 Nippon Zeon Co A recombinant baculovirus, envelope protein of Japanese encephalitis virus using said virus and process for producing the protein.
GB2226031A (en) * 1988-12-09 1990-06-20 Nippon Zeon Co Expression of non-structural protein of Japanese encephalitis virus in insect cells
WO1991002819A1 (fr) * 1989-08-18 1991-03-07 Microgenesys, Inc. Molecules de l'encephalite japonaise de recombinaison et procede d'utilisation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2218421A (en) * 1988-05-12 1989-11-15 Nippon Zeon Co A recombinant baculovirus, envelope protein of Japanese encephalitis virus using said virus and process for producing the protein.
GB2226031A (en) * 1988-12-09 1990-06-20 Nippon Zeon Co Expression of non-structural protein of Japanese encephalitis virus in insect cells
WO1991002819A1 (fr) * 1989-08-18 1991-03-07 Microgenesys, Inc. Molecules de l'encephalite japonaise de recombinaison et procede d'utilisation

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
AM. J. TROP. MED. HYG., Vol. 42, No. 5, 1990, McCOWN J. et al., "Protection of Mice Against Lethal Japanese Encephalitis Virus With a Recombinant Baculovirus Vaccine", pages 491-499. *
ANNALES DE L'INSTITUT PASTEUR/VIROLOGIE, Vol. 139, No. 1, March 1989, Paris, FR, DESPRES P. et al., "Expression of the Yellow Fever Virus Envelope Protein Using Hybrid SV40/Yellow Fever Viruses", pages 59-67. *
JOURNAL OF VIROLOGY, Vol. 63, No. 10, October 1989, RUIZ-LINARES A. et al., "Processing of Yellow Fever Virus Polyprotein: Role of Cellular Proteases in Maturation of the Structural Proteins", pages 4199-4209. *
JOURNAL OF VIROLOGY, Vol. 64, No. 6, June 1990, YASUDA A. et al., "Induction of Protective Immunity in Animals Vaccinated With Recombinant Vaccinia Viruses That Express preM and E Glycoproteins of Japanese Encephalitis Virus", pages 2788-2795. *
VIROLOGY, Vol. 170, 1989, TUCKOW V. & SUMMERS M.D., "High Level Expression of Non Fused Genes With Autographa Californica Nuclear Polyhydrosis Virus Expression Vector", pages 31-39. *
VIROLOGY, Vol. 173, 1989, MATSUURA Y. et al., "Characterization of Japanese Encephalitis Virus Envelope Protein Expressed by Recombinant Baculoviruses", pages 674-682. *
VIRUS RESEARCH, Vol. 16, No. 1, April 1990, Amsterdam, NL., DESPRES P. et al., "The 15 Amino Acid Residues Preceding the Amino Terminus of the Envelope Protein in the Yellow Fever Virus Polyprotein Precursor Act as a Signal Peptide", pages 59-76. *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6117640A (en) * 1995-05-02 2000-09-12 The United States Of America As Represented By The Secretary Of The Army Recombinant vaccine made in E. coli against dengue virus
US6165477A (en) * 1995-05-24 2000-12-26 Hawaii Biotechnology Group, Inc. Subunit immonogenic composition against dengue infection
EP0836482A4 (fr) * 1995-05-24 1999-09-01 Hawaii Biotech Group Vaccin purifie contre une infection par flavivirus
EP0836482A1 (fr) * 1995-05-24 1998-04-22 Hawaii Biotechnology Group, Inc. Vaccin purifie contre une infection par flavivirus
US6136561A (en) * 1995-05-24 2000-10-24 Hawaii Biotechnology Group, Inc. Methods of preparing carboxy-terminally truncated recombinant flavivirus envelope glycoproteins employing drosophila melanogaster expression systems
US6749857B1 (en) 1997-07-31 2004-06-15 Hawaii Biotechnology Group, Inc. Recombinant dimeric envelope vaccine against flaviviral infection
US7227011B2 (en) 1998-06-04 2007-06-05 United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention Nucleic acid vaccines for prevention of flavivirus infection
US7662394B2 (en) 1998-06-04 2010-02-16 The United States Of America As Represented By The Department Of Health And Human Services Nucleic acids encoding chimeric Flavivirus immunogens comprising the Japanese encephalitis virus (JEV) PRM signal sequence
US8728488B2 (en) 1998-06-04 2014-05-20 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services, Centers For Disease Control And Prevention Methods of inducing an immune response in a host by administering flavivirus immunogens comprising extracellular viral particles composed of the premembrane (prM) and envelope (E) antigens
US8232379B2 (en) 1998-06-04 2012-07-31 The United States of America, as represented by the Secretary of the Department of Health and Human Services, Centers for Disease Control and Prevention Nucleic acids encoding chimeric flavivirus immunogens comprising the Japanese encephalitis virus (JEV) prM signal sequence
US8221768B2 (en) 1998-06-04 2012-07-17 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention Chimeric flavivirus immunogens comprising the Japanese encephalitis virus (JEV) prM signal sequence
US7417136B1 (en) 1998-06-04 2008-08-26 The United States Of America As Represented By The Secretary, Department Of Health And Human Services, Centers For Disease Control And Prevention Nucleic acid vaccines for prevention of flavivirus infection
US7521177B2 (en) 1998-06-04 2009-04-21 The United States Of America As Represented By The Department Of Health And Human Services Flavivirus detection methods employing recombinant antigens comprising a Japanese encephalitis (JEV) signal sequence
US8105609B2 (en) 1998-06-04 2012-01-31 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention Flavivirus immunogens comprising extracellular viral particles composed of the premembrane (prM) and envelope (E) antigens
US7632510B2 (en) 1998-06-04 2009-12-15 The United States Of America As Represented By The Department Of Health And Human Services, Centers For Disease Control And Prevention Methods of inducing flavivirus immune responses through the administration of recombinant flaviviruses comprising an engineered japanese encephalitis virus signal sequence
US6416763B1 (en) 1998-08-28 2002-07-09 Hawaii Biotechnology Group, Inc. Recombinant nonstructural protein subunit vaccine against flaviviral infection
WO2000012128A2 (fr) * 1998-08-28 2000-03-09 Hawaii Biotechnology Group, Inc. Vaccin a sous-unite proteique non structurale recombinante contre les infections a flavivirus
WO2000012128A3 (fr) * 1998-08-28 2000-07-13 Hawaii Biotech Group Vaccin a sous-unite proteique non structurale recombinante contre les infections a flavivirus
AU758361B2 (en) * 1998-08-28 2003-03-20 Hawaii Biotech, Inc. Recombinant nonstructural protein subunit vaccine against flaviviral infection
WO2009088256A3 (fr) * 2008-01-09 2009-10-08 건국대학교 산학협력단 Vaccins à base de baculovirus
CN101952436B (zh) * 2008-01-09 2013-03-13 建国大学校产学协力团 基于杆状病毒的疫苗
US9555091B2 (en) 2008-01-09 2017-01-31 Konkuk University Industrial Cooperation Corp. Baculovirus-based vaccines
CN107488633A (zh) * 2017-03-03 2017-12-19 江苏省农业科学院 高效增殖杆状病毒的昆虫细胞株及其构建方法和应用

Also Published As

Publication number Publication date
FR2665710A1 (fr) 1992-02-14

Similar Documents

Publication Publication Date Title
Prehaud et al. Immunogenic and protective properties of rabies virus glycoprotein expressed by baculovirus vectors
US8728488B2 (en) Methods of inducing an immune response in a host by administering flavivirus immunogens comprising extracellular viral particles composed of the premembrane (prM) and envelope (E) antigens
US9579375B2 (en) Chimeric poly peptides and the therapeutic use thereof against a Flaviviridae infection
JP5642672B2 (ja) 弱毒化ペスチウイルス
EP3394085B1 (fr) Vaccin contre le calicivirus félin
HUT65366A (en) Expression of specific immunogens using viral antigens
US10603374B2 (en) Lentiviral vector-based Japanese encephalitis immunogenic composition
WO1992002548A1 (fr) Baculovirus recombinant exprimant les proteins e et nsi de virus appartenant aux flaviviridae ou de virus apparentes aux flaviviridae
Thomas et al. Evaluation of efficacy of mammalian and baculovirus expressed E2 subunit vaccine candidates to bovine viral diarrhoea virus
Crisci et al. Chimeric calicivirus-like particles elicit protective anti-viral cytotoxic responses without adjuvant
KR0179993B1 (ko) 돼지 콜레라 비루스 백신 및 그의 진단방법
FR2741077A1 (fr) Vaccin polyvalent anti-dengue
WO2021178844A1 (fr) Compositions immunogènes anti-zika et anti-flavivirus et leur utilisation
DE60028365T2 (de) Chimäre nukleinsäuren und polypeptide aus lyssavirus
AU2019200943B2 (en) Vaccine against Bovine Viral Diarrhea Virus
Suradhat Doctor of Philosophy in the Department of Veterinary Microbiology

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BF BJ CF CG CH CI CM DE DK ES FR GA GB GN GR IT LU ML MR NL SE SN TD TG

122 Ep: pct application non-entry in european phase