WO1991019832A1 - Method for producing glyoxylic acid by electroreduction with cathodic reactivation of oxalic acid - Google Patents

Method for producing glyoxylic acid by electroreduction with cathodic reactivation of oxalic acid Download PDF

Info

Publication number
WO1991019832A1
WO1991019832A1 PCT/ES1991/000035 ES9100035W WO9119832A1 WO 1991019832 A1 WO1991019832 A1 WO 1991019832A1 ES 9100035 W ES9100035 W ES 9100035W WO 9119832 A1 WO9119832 A1 WO 9119832A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
acid
cathode
anode
oxalic acid
Prior art date
Application number
PCT/ES1991/000035
Other languages
Spanish (es)
French (fr)
Inventor
José Ramón OCHOA GOMEZ
Asunción de Diego Zori
José María GARRIDO FRUTOS
Original Assignee
Ercros S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ercros S.A. filed Critical Ercros S.A.
Publication of WO1991019832A1 publication Critical patent/WO1991019832A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction

Definitions

  • the invention relates, in general, to a process for synthesizing glyoxylic acid by electroreduction of oxalic acid by using a divided cell by means of a cation exchange membrane.
  • the invention proposes the use of high purity Pb cathodes, high stability anodes in strongly acidic media and the addition of Pb (II) salts either to the anolyte or to the catholyte to easily prevent deactivation of the cathode. and keep the efficiency of the current constant and high over time, so it is not necessary to continuously disassemble the electrolytic cells to clean the cathode.
  • Glioxylic acid is an intermediate in the industrial synthesis of various products such as p-hydroxydandic acid, p-hydroxyphenylglycine and vanillin.
  • the synthesis of glyoxylic acid by electroreduction of oxalic acid using high-voltage cathodes of hydrogen is known since 1903 (German patent 163,842) and can be carried out both in the presence of sulfuric acid and electrolyte (German patents 163,842 and 204,787) and in the absence thereof , that is, using oxalic acid itself as an electrolyte (French patents 2151150 and 2587039 and British patents 1411371 and 1319151).
  • the anolyte is an aqueous solution of a strong mineral acid
  • the stability of a lead oxide anode decreases with the operating time, according to our own experience and Pourbaix diagrams.
  • both the efficiency of the current and the selectivity of the reaction are inferior to those obtained by the process of this invention.
  • Another proposed solution to prevent deactivation of the cathode is mentioned in Japanese Patent 79 / 93,677, in which it is proposed to reactivate a lead cathode used in electroreduction of oxalic acid by washing with an alkaline solution, specifically NaOH.
  • an object of the present invention is to provide a process for obtaining glyoxylic acid by electroreduction of oxalic acid that overcomes the aforementioned drawbacks.
  • the process of the invention it is possible to keep the efficiency of the current constant and high throughout the operation time, the deactivation of the cathode is avoided and it is not necessary to disassemble the electrolytic cells to clean the cathode.
  • Figure 1 shows the variation of Ees against F using an anode consisting of a noble metal oxide supported on Ti (DSA-0 2 ), specifically iridium oxide on Ti;
  • Figure 2 shows the variation of Ees against F using a Pt / Ti anode with polarity inversion (under different conditions) and without polarity inversion;
  • Figure 3 shows the variation of Ees against F using a deteriorated anode of iridium oxide on Titanium and using demineralized water in one case and tap water in another;
  • - Figure 4 shows the variation of Ees against F using a Pb / Ti anode, and addition of Pb (II) salts to the anolyte;
  • Figure 5 shows the variation of Ees against F using an anode of Pb0 2
  • the invention relates to a process for obtaining glyoxylic acid by electroreduction of oxalic acid in a divided electrolytic cell.
  • the process of the invention further allows reactivation of the cathode in a simple and economical manner.
  • the electroreduction of oxalic acid according to the process of this invention is carried out in a divided cell in which the anodic and cathodic compartments are separated by a cation exchange membrane from those usually available in the market.
  • a cation exchange membrane should be understood as any selective membrane that allows the passage of cations but does not allow the passage of anions.
  • the membranes Neosepta CL-25 T, Naphion 117, Nafion 324, Nafion 417 and Sele ion CMV all suitable for carrying out the process of the invention, can be cited.
  • the cathode to be used in the electrolytic cell must be of a high hydrogen overvoltage metal, preferably high purity lead (greater than 99.97% pure).
  • a high hydrogen overvoltage metal preferably high purity lead (greater than 99.97% pure).
  • both platinum and a noble metal oxide supported on titanium (DSA) can be used.
  • DSA dimensionally stable anode
  • oxygen preferably iridium oxide on titanium.
  • the current density to be applied can be between 100 A / m 2 and 6000 A / m 2 . However, for practical reasons and from an economic point of view it is preferable to work with current densities between 1000 and 3000 A / m 2 .
  • the electrosynthesized glyoxylic acid according to the process of the invention can be purified simply by evaporation of water and crystallization of excess oxalic acid to obtain an aqueous solution. 50% by weight, directly marketable.
  • the previously described way of operating leads to excellent results during the first electrolysis.
  • the deactivation of the cathode is generally associated with the electrodeposition on its surface of low hydrogen overvoltage metals (F. Goodridge et al.
  • the cathode can be kept active using high purity oxalic acid, demineralized water and a very stable anode such as the oxygen DSA mentioned above (iridium oxide on titanium). Indeed, this aspect is demonstrated in example 1 that accompanies the present description.
  • the activity of the cathode is highly dependent on the anode used and its condition.
  • a platinum anode supported on titanium it produces a 'rapid decrease of both the current efficiency and the selectivity of the process (see Example 2).
  • an iridium oxide supported on deteriorated titanium for example, by operating time
  • there is also a decrease in current efficiency and selectivity see example 3.
  • a method frequently used in electroorganic processes to regenerate the activity of a electrode consists of reversing its polarity for a certain time. In our case, this would only be possible with a platinum anode, since the reversal of polarity when a metal oxide is used as an anode supposes its destruction (see example 3). Additionally, in Example 2 that accompanies this description, it is demonstrated that the polarity inversion using a platinum anode on titanium does not regenerate the activity of the cathode. However, surprising manner it has been found and constitutes one of the novel aspects of this invention.
  • any salt of Pb (II) seems adequate, although it has been found that the salts of lead sulfate (II), lead carbonate (II) and lead oxalate (II) are salts of Pb (II) especially suitable for carrying out the process of the invention, for its ability to reactivate the cathode.
  • the concentration of these salts of Pb (II) either in the anolyte or in the catholyte is minimal since according to its solubility product, the concentration of Pb (II) in a 1 M aqueous solution of S0 BitcoinH 2 , Typical concentration of the anolyte is 5'56.10 ' ⁇ g / 1 at room temperature; and in a 0.5 M aqueous solution in oxalic acid, typical concentration of the catholyte, it is of the order of 1.3'10 '8 g / 1, whereby said Pb (II) salt is added to the catholyte, the concentration of Pb (II) present in the commercial glyoxylic acid solution obtained is depreciable.
  • Nitric acid may have a concentration between 2% by weight and 15% by weight, preferably 10% by weight.
  • the temperature of the anolyte and the catholyte was kept constant at 132C, recirculating a mixture between the electrolyte tanks containing a mixture ethylene glycol / HgO from a cryostat.
  • the electrolytes were recirculated through the corresponding compartments of the cell, so that the linear velocity of the catholyte was 0.31 / sg.
  • a PROMAX FAC-365 direct current power supply a current of 4 amps was applied, stopping electrolysis when 86.5% of the theoretical amount of electricity needed to reduce all the oxalic acid present was passed.
  • the level of the anolyte was kept constant by adding the necessary amount of water during each experiment (approximately 45 ml H 2 0 / faraday is transferred from the anolyte to the catholyte).
  • the catholyte was collected, the tank and the cathodic compartment were washed with water, adding said water to the catholyte, and the whole was weighed once homogenized.
  • the oxalic acid concentration was determined by visible spectroscopy at 440 nm by measuring the absorbance produced by the complex formed between oxalic acid and Fe (III) in acidic medium (E. Szetey et al. Acta Chimica Acad. Sci. Hungaricae, .98. (4), 367-373, 1978).
  • the glyoxylic acid was determined by differential pulse polarography using a mercury drip electrode in 0.25 N NaOH (peak potential -131 volts vs Ag / AgCl electrode (sat)), using a Polaroprocesseur Tacussel.
  • the cell voltage was between 5'8 and 8 volts, and the specific energy consumption between 5 and 6'5 K h / g. These values can be lowered by decreasing the inter-electrode distance.
  • Example 2 In this case a platinum anode deposited on titanium was used in addition to demineralized water. As can be seen in Figure 2, the Ees decreases rapidly. Successive reversals of polarity did not restore cathode activity. These investments were made in the final moments of the experiment The precedent in such a way that in case of redisolving the metallic impurities deposited in the cathode would be eliminated when removing the already electrolyzed catholyte.
  • lead (II) sulfate to the catholyte improves the activity of the cathode but to a lesser extent than adding lead (II) carbonate and lead (II) oxalate (example 8) also to the catholyte or lead sulfate ( II) to the anolyte (example 4). After 52 hours of operation the Ees had decreased to 74%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Method for producing glyoxylic acid by electroreduction, with cathodic reactivation, of oxalic acid in a divided eletrolytic cell comprised of an anodic compartment formed of an anode and an aqueous solution of a strong mineral acid as anolite and of a cathodic compartment formed of a lead cathod and an aqueous solution saturated with oxalic acid, the two compartments being separated by a cationic exchange membrane. The method comprises the addition of Pb(II) salts to the catholite or to the anolite in order to keep at high and constant levels throughout the operation both the current efficiency and the selectivity of the process. The effect of Pb (II) salts may be potentiated by washing the cathode with nitric acid. The glyoxylic acid is an intermediary in the industrial synthesis of p-hydroxyphenylglycine and vanillin, inter alia.

Description

PROCEDIMIENTO DE OBTENCIÓN DE ACIDO GLIOXILICO POR ELECTROREDUCCIO , CON REACTIVACIÓN CATÓDICA, DE ACIDO OXÁLICO.PROCEDURE FOR OBTAINING GLIOXYLIC ACID BY ELECTRICAL EDUCATION, WITH CATHODICAL REACTIVATION, OF OXALIC ACID.
CAMPO DE LA INVENCIÓNFIELD OF THE INVENTION
La invención se refiere, en general, a un procedimiento para sintetizar ácido glioxilico por electroreducción de ácido oxálico mediante el empleo de una celda dividida por medio de una membrana de intercambio catiónico. En particular, la invención propone el empleo de cátodos de Pb de gran pureza, ánodos de elevada estabilidad en medios fuertemente ácidos y la adición de sales de Pb (II) bien aJ anolito o bien al catolito para evitar de manera sencilla la desactivación del cátodo y mantener constante y elevada la eficacia de la corriente a lo largo del tiempo, con lo que no es preciso desmontar continuamente las celdas electrolíticas para limpiar el cátodo.The invention relates, in general, to a process for synthesizing glyoxylic acid by electroreduction of oxalic acid by using a divided cell by means of a cation exchange membrane. In particular, the invention proposes the use of high purity Pb cathodes, high stability anodes in strongly acidic media and the addition of Pb (II) salts either to the anolyte or to the catholyte to easily prevent deactivation of the cathode. and keep the efficiency of the current constant and high over time, so it is not necessary to continuously disassemble the electrolytic cells to clean the cathode.
ANTECEDENTES DE LA INVENCIÓN El ácido glioxilico es un intermedio en la síntesis industrial de diversos productos tales como el ácido p- hidroximandélico, la p-hidroxifenilglicina y la vainillina. La síntesis de ácido glioxílico por electroreducción del ácido oxálico utilizando cátodos de alto sobrevoltaje de hidrógeno, es conocida desde 1903 (Patente alemana 163,842) y puede realizarse tanto en presencia de ácido sulfúrico como electrolito (Patentes alemanas 163,842 y 204.787) como en ausencia del mismo, esto es, utilizando el propio ácido oxálico como electrolito (Patentes francesas 2151150 y 2587039 y Patentes británicas 1411371 y 1319151) .BACKGROUND OF THE INVENTION Glioxylic acid is an intermediate in the industrial synthesis of various products such as p-hydroxydandic acid, p-hydroxyphenylglycine and vanillin. The synthesis of glyoxylic acid by electroreduction of oxalic acid using high-voltage cathodes of hydrogen is known since 1903 (German patent 163,842) and can be carried out both in the presence of sulfuric acid and electrolyte (German patents 163,842 and 204,787) and in the absence thereof , that is, using oxalic acid itself as an electrolyte (French patents 2151150 and 2587039 and British patents 1411371 and 1319151).
Sin embargo, desde un punto de vista industrial todos estos procedimientos presentan un grave problema ya que conforme aumenta el tiempo de electrólisis se produce una disminución gradual de la eficacia de la corriente por desactivación del cátodo. Un porcentaje importante de la corriente se utiliza en reducir el agua, generándose gran cantidad de hidrógeno, lo que hace inviable el proceso industrialmente desde un punto de vista económico, salvo que se desmonten frecuentemente las celdas electrolíticas al objeto de limpiar el cátodo, procedimiento sumamente costoso.However, from an industrial point of view all these procedures present a serious problem since as the electrolysis time increases, a Gradual decrease in current efficiency by deactivation of the cathode. An important percentage of the current is used to reduce the water, generating a large amount of hydrogen, which makes the process industrially economically unfeasible, unless the electrolytic cells are frequently disassembled in order to clean the cathode, a procedure that is highly expensive.
Para evitar este problema se han propuesto diversas soluciones. Así, en la Patente británica 1.446.179 se adicionan al catolito compuestos nitrogenados (aminas terciarias, sales de amonio cuaternario) en concentraciones comprendidas entre el 0,00005% y el 1% en peso. Los autores de esta invención han comprobado dicho procedimiento mediante la adición de bromuro de tetrabutilamonio al catolito constatando que, efectivamente, durante las primeras horas de electrólisis se suprime el desprendimiento de hidrógeno, pero posteriormente éste se produce en cantidad ingente. Otra solución propuesta para evitar la desactivación del cátodo se menciona en la Patente francesa 2587039 en la que se reivindica que el problema de desactivación del cátodo queda eliminado mediante la utilización de un ánodo de óxido de plomo soportado sobre un material adecuado. Sin embargo, en medio fuertemente ácido (el anolito es una disolución ' acuosa de un ácido mineral fuerte) la estabilidad de un ánodo de óxido de plomo disminuye con el tiempo de operación, de acuerdo a nuestra propia experiencia y a los diagramas de Pourbaix. Por otra parte, tanto la eficacia de la corriente como la selectividad de la reacción son inferiores a las obtenidas mediante el procedimiento de esta invención. Otra solución propuesta para evitar la desactivación del cátodo se menciona en la Patente japonesa 79/93.677, en la que se propone reactivar un cátodo de plomo utilizado en la electroreduccción del ácido oxálico mediante un lavado con una solución alcalina, concretamente NaOH. Por tanto, un objeto de la presente invención es proporcionar un procedimiento de obtención de ácido glioxílico por electroreducción de ácido oxálico que supere los inconvenientes señalados . Con el procedimiento de la invención es posible mantener constante y elevada la eficacia de la corriente a lo largo del tiempo de operación, se evita la desactivación del cátodo y no es preciso desmontar las celdas electrolíticas para efectuar la limpieza, del cátodo.To avoid this problem, various solutions have been proposed. Thus, in the British Patent 1,446,179 nitrogen compounds (tertiary amines, quaternary ammonium salts) are added to the catholyte at concentrations between 0.00005% and 1% by weight. The authors of this invention have verified said process by adding tetrabutylammonium bromide to the catholyte, verifying that, during the first hours of electrolysis, the evolution of hydrogen is suppressed, but subsequently it is produced in an enormous amount. Another proposed solution to prevent deactivation of the cathode is mentioned in French Patent 2587039 in which it is claimed that the problem of deactivation of the cathode is eliminated by the use of a lead oxide anode supported on a suitable material. However, in a strongly acidic medium (the anolyte is an aqueous solution of a strong mineral acid) the stability of a lead oxide anode decreases with the operating time, according to our own experience and Pourbaix diagrams. On the other hand, both the efficiency of the current and the selectivity of the reaction are inferior to those obtained by the process of this invention. Another proposed solution to prevent deactivation of the cathode is mentioned in Japanese Patent 79 / 93,677, in which it is proposed to reactivate a lead cathode used in electroreduction of oxalic acid by washing with an alkaline solution, specifically NaOH. Therefore, an object of the present invention is to provide a process for obtaining glyoxylic acid by electroreduction of oxalic acid that overcomes the aforementioned drawbacks. With the process of the invention it is possible to keep the efficiency of the current constant and high throughout the operation time, the deactivation of the cathode is avoided and it is not necessary to disassemble the electrolytic cells to clean the cathode.
BREVE DESCRIPCIÓN DE LAS FIGURASBRIEF DESCRIPTION OF THE FIGURES
Todas las figuras representan la variación de la eficacia de la corriente respecto al ácido oxálico (Ees, en ordenadas) frente al ne de faradays (F, en abscisas), en diferentes condiciones de operación. Así, la figura 1 muestra la variación de Ees frente a F utilizando un ánodo constituido por un óxido de metal noble soportado sobre Ti (DSA-02), concretamente el óxido de iridio sobre Ti; la figura 2 muestra la variación de Ees frente a F utilizando un ánodo de Pt/Ti con inversión de polaridad (en distintas condiciones) y sin inversión de polaridad; la figura 3 muestra la variación de Ees frente a F utilizando un ánodo deteriorado de óxido de iridio sobre Titanio y utilizando agua desmineralizada en un caso y agua del grifo en otro; - la figura 4 muestra la variación de Ees frente a F utilizando un ánodo de Pb/Ti, y adición de sales de Pb (II) al anolito; la figura 5 muestra la variación de Ees frente a F utilizando un ánodo de Pb02/Pb y adición de sales de Pb (II) al anolito; la figura 6 muestra la variación de Ees frente a F utilizando un ánodo deteriorado de óxido de iridio sobre titanio y adición de sales de Pb (II) al anolito y al catolito; - la figura 7 muestra la variación de Ees frente a F utilizando un ánodo de Pt/Ti, adición de sales de Pb (II) al catolito y lavado del cátodo con N03H; y la figura 8 muestra la variación de Ees frente a F utilizando un ánodo deteriorado de óxido de iridio sobre titanio con adición de sales de Pb (II) al catolito y sin adición de las mismas .All the figures represent the variation of the efficiency of the current with respect to oxalic acid (Ees, in ordinates) against the ne of faradays (F, in abscissa), under different operating conditions. Thus, Figure 1 shows the variation of Ees against F using an anode consisting of a noble metal oxide supported on Ti (DSA-0 2 ), specifically iridium oxide on Ti; Figure 2 shows the variation of Ees against F using a Pt / Ti anode with polarity inversion (under different conditions) and without polarity inversion; Figure 3 shows the variation of Ees against F using a deteriorated anode of iridium oxide on Titanium and using demineralized water in one case and tap water in another; - Figure 4 shows the variation of Ees against F using a Pb / Ti anode, and addition of Pb (II) salts to the anolyte; Figure 5 shows the variation of Ees against F using an anode of Pb0 2 / Pb and addition of salts of Pb (II) to the anolyte; Figure 6 shows the variation of Ees against F using a deteriorated anode of iridium oxide on titanium and addition of salts of Pb (II) to the anolyte and the catholyte; - Figure 7 shows the variation of Ees against F using a Pt / Ti anode, addition of salts of Pb (II) to the catholyte and washing of the cathode with N0 3 H; and Figure 8 shows the variation of Ees against F using a deteriorated anode of iridium oxide on titanium with addition of salts of Pb (II) to the catholyte and without addition thereof.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓNDETAILED DESCRIPTION OF THE INVENTION
La invención se refiere a un procedimiento de obtención de ácido glioxílico por electroreducción de ácido oxálico en una celda electrolítica dividida. El procedimiento de la invención permite adicionalmente reactivar el cátodo de una manera simple y económica. La electroreducción del ácido oxálico según el procedimiento de esta invención se realiza en una celda dividida en la que los compartimentos anódico y catódico se encuentran separados por una membrana de intercambio catiónico de las habitualmente disponibles en el mercado. Por membrana de intercambio catiónico debe entenderse cualquier membrana selectiva que permite el paso de cationes pero que no permite el paso de aniones. A título de ejemplo se pueden citar las membranas Neosepta CL-25 T, Nafión 117, Nafión 324, Nafión 417 y Sele ión CMV, todas ellas adecuadas para la realización del procedimiento de la invención.The invention relates to a process for obtaining glyoxylic acid by electroreduction of oxalic acid in a divided electrolytic cell. The process of the invention further allows reactivation of the cathode in a simple and economical manner. The electroreduction of oxalic acid according to the process of this invention is carried out in a divided cell in which the anodic and cathodic compartments are separated by a cation exchange membrane from those usually available in the market. A cation exchange membrane should be understood as any selective membrane that allows the passage of cations but does not allow the passage of anions. By way of example, the membranes Neosepta CL-25 T, Naphion 117, Nafion 324, Nafion 417 and Sele ion CMV, all suitable for carrying out the process of the invention, can be cited.
El cátodo a utilizar en la celda electrolítica debe ser de un metal de alto sobrevolt je de hidrógeno, preferentemente plomo de alta pureza (mayor del 99 '97% de pureza). Como ánodo puede utilizarse tanto platino como un óxido de metal noble soportado sobre titanio (DSA) . Por razones prácticas y debido a su elevada estabilidad en un medio fuertemente ácido, es conveniente utilizar un DSA (dimensionally stable anode) de oxígeno, preferentemente óxido de iridio sobre titanio. Una vez preparada la celda electrolítica se hace circular el anolito por el compartimento anódico y el catolito por el compartimento catódico. El anolito es una disolución acuosa de un ácido mineral fuerte, preferentemente ácido sulfúrico de una concentración comprendida entre el 2% en peso y el 25% en peso. El catolito es una disolución acuosa saturada de ácido oxálico a la temperatura de trabajo.The cathode to be used in the electrolytic cell must be of a high hydrogen overvoltage metal, preferably high purity lead (greater than 99.97% pure). As the anode, both platinum and a noble metal oxide supported on titanium (DSA) can be used. For practical reasons and due to its high stability in a strongly acidic medium, it is convenient to use a DSA (dimensionally stable anode) of oxygen, preferably iridium oxide on titanium. Once the electrolytic cell is prepared, the anolyte is circulated through the anodic compartment and the catholyte through the cathodic compartment. The anolyte is an aqueous solution of a strong mineral acid, preferably sulfuric acid of a concentration between 2% by weight and 25% by weight. The catholyte is a saturated aqueous solution of oxalic acid at the working temperature.
La densidad de corriente a aplicar puede estar comprendida entre 100 A/m2 y 6000 A/m2. No obstante, por razones prácticas y desde un punto de vista económico es preferible trabajar con densidades de corriente comprendidas entre 1000 y 3000 A/m2.The current density to be applied can be between 100 A / m 2 and 6000 A / m 2 . However, for practical reasons and from an economic point of view it is preferable to work with current densities between 1000 and 3000 A / m 2 .
Con objeto de obtener buenos resultados es conveniente mantener constante la concentración de oxálico a lo largo de toda la electrólisis, mantener una elevada velocidad lineal del catolito en la celda para facilitar la transferencia de materia en la interfase disolución- cátodo, una temperatura de trabajo comprendida entre lO^c y 152C y pasar una cantidad de electricidad máxima correspondiente al 86 '5% de la teórica, ya que de esta forma es posible obtener una selectividad igual o superior al 95% y una eficacia de corriente superior al 85%, junto con una concentración de ácido glioxílico aceptablemente elevada (de aproximadamente unos 100 g/1) lo que simplifica su purificación. En estas condiciones la conversión de oxálico es de, al menos, el 82%. El ácido glioxílico electrosintetizado según el procedimiento de la invención puede purificarse de manera simple por evaporación del agua y cristalización del exceso de ácido oxálico para obtener una disolución acuosa al 50% en peso, directamente comercializable. La forma de operar previamente descrita conduce a unos resultados excelentes durante la primera electrólisis . Posteriormente, a medida que se va acumulando el número de electrólisis realizadas, se produce una disminución de la eficacia de la corriente y de la selectividad como consecuencia de la desactivación del cátodo. Paralelamente, se produce un fuerte aumento del hidrógeno electrogenerado. La desactivación del cátodo se asocia generalmente con la electrodeposición sobre su superficie de metales de bajo sobrevoltaje de hidrógeno (F. Goodridge et al. Journal of Applied Electrochemistry JL0_, 55-60, 1980) procedentes bien de una paulatina corrosión del ánodo (especialmente en el caso de utilizar un ánodo de platino, por ejemplo) o bien de impurezas contenidas en el ácido oxálico o en el anolito, o bien por la presencia de dichos metales disueltos en el agua.In order to obtain good results it is convenient to keep the concentration of oxalic constant throughout the entire electrolysis, to maintain a high linear velocity of the catholyte in the cell to facilitate the transfer of matter at the dissolution-cathode interface, a working temperature included between 10 ° C and 152C and pass a maximum amount of electricity corresponding to 86.5% of the theoretical, since in this way it is possible to obtain a selectivity equal to or greater than 95% and a current efficiency greater than 85%, together with an acceptably high concentration of glyoxylic acid (approximately 100 g / 1) which simplifies its purification. Under these conditions the conversion of oxalic is at least 82%. The electrosynthesized glyoxylic acid according to the process of the invention can be purified simply by evaporation of water and crystallization of excess oxalic acid to obtain an aqueous solution. 50% by weight, directly marketable. The previously described way of operating leads to excellent results during the first electrolysis. Subsequently, as the number of electrolysis performed accumulates, there is a decrease in current efficiency and selectivity as a consequence of the deactivation of the cathode. In parallel, there is a sharp increase in electrogenerated hydrogen. The deactivation of the cathode is generally associated with the electrodeposition on its surface of low hydrogen overvoltage metals (F. Goodridge et al. Journal of Applied Electrochemistry JL0_, 55-60, 1980) originating well from a gradual corrosion of the anode (especially in the case of using a platinum anode, for example) either of impurities contained in the oxalic acid or in the anolyte, or by the presence of said metals dissolved in the water.
Por tanto, en principio, se puede conseguir mantener activo el cátodo utilizando ácido oxálico de alta pureza, agua desmineralizada y un ánodo muy estable tal como el DSA de oxígeno mencionado antes (óxido de iridio sobre titanio) . Efectivamente, en el ejemplo 1 que acompaña a la presente descripción se demuestra este aspecto. No obstante, la actividad del cátodo depende mucho del ánodo utilizado y de su estado. Así, en el caso de utilizar un ánodo de platino soportado sobre titanio, se produce un ' rápido descenso tanto de la eficacia de la corriente como de la selectividad del proceso (veáse ejemplo 2). En el caso de utilizar como ánodo un óxido de iridio soportado sobre titanio deteriorado (por ejemplo, por tiempo de funcionamiento) se produce asimismo un descenso en la eficacia de la corriente y en la selectividad (veáse ejemplo 3).Therefore, in principle, the cathode can be kept active using high purity oxalic acid, demineralized water and a very stable anode such as the oxygen DSA mentioned above (iridium oxide on titanium). Indeed, this aspect is demonstrated in example 1 that accompanies the present description. However, the activity of the cathode is highly dependent on the anode used and its condition. Thus, in the case of using a platinum anode supported on titanium, it produces a 'rapid decrease of both the current efficiency and the selectivity of the process (see Example 2). In the case of using an iridium oxide supported on deteriorated titanium as an anode (for example, by operating time) there is also a decrease in current efficiency and selectivity (see example 3).
Un método frecuentemente utilizado en procesos electroorgánicos para regenerar la actividad de un electrodo consiste en invertir su polaridad durante un tiempo determinado. En nuestro caso, ésto sólo sería posible de realizar con un ánodo de platino, ya que la inversión de polaridad cuando se utiliza un óxido metálico como ánodo supone su destrucción (veáse ejemplo 3) . Adicionalmente, en el ejemplo 2 que acompaña a esta descripción, se demuestra que la inversión de polaridad utilizando un ánodo de platino sobre titanio no regenera la actividad del cátodo. Sin embargo, de manera sorprendente se ha comprobado y constituye uno de los aspectos novedosos de esta invención, . que la adición de una sal de plomo, especialmente de una sal de plomo (II) bien al anolito o bien al catolito permite mantener elevadas y constantes en el tiempo tanto la eficacia de la corriente como la selectividad del proceso (veáse ejemplos 4 a 8 de esta descripción). En principio, cualquier sal de Pb (II) parece adecuada, si bien se ha encontrado que las sales de sulfato de plomo (II), carbonato de plomo (II) y oxalato de plomo (II) son sales de Pb (II) especialmente adecuadas para la realización del procedimiento de la invención, por su capacidad para reactivar el cátodo.A method frequently used in electroorganic processes to regenerate the activity of a electrode consists of reversing its polarity for a certain time. In our case, this would only be possible with a platinum anode, since the reversal of polarity when a metal oxide is used as an anode supposes its destruction (see example 3). Additionally, in Example 2 that accompanies this description, it is demonstrated that the polarity inversion using a platinum anode on titanium does not regenerate the activity of the cathode. However, surprising manner it has been found and constitutes one of the novel aspects of this invention. that the addition of a lead salt, especially a lead salt (II) either to the anolyte or to the catholyte allows both the efficiency of the current and the selectivity of the process to be high and constant over time (see examples 4 to 8 of this description). In principle, any salt of Pb (II) seems adequate, although it has been found that the salts of lead sulfate (II), lead carbonate (II) and lead oxalate (II) are salts of Pb (II) especially suitable for carrying out the process of the invention, for its ability to reactivate the cathode.
La concentración de estas sales de Pb (II) bien en el anolito o bien en el catolito es mínima ya que de acuerdo con su producto de solubilidad, la concentración de Pb (II) en una disolución acuosa 1 M de S0„H2, típica concentración del anolito, es de 5'56.10 g/1 a temperatura ambiente; y en una disolución acuosa 0'5 M en ácido oxálico, típica concentración del catolito, es del orden de 1'3.10'8 g/1, con lo que de adicionarse dicha sal de Pb (II) al catolito, la concentración de Pb (II) presente en la disolución de ácido glioxílico comercial obtenida es depreciable. En consecuencia, se ha comprobado que la adición de trazas de sales de Pb (II) son suficientes para mantener la actividad del cátodo. El efecto de estas sales es realmente espectacular tal y como se puede apreciar en los ejemplos 4 y siguientes de esta descripción, ya que no sólo se mantiene, constante el rendimiento del proceso a lo largo del tiempo, sino además se puede regenerar la actividad de un cátodo completamente desactivado, incrementando la eficacia de la corriente con respecto al sustrato de una manera drástica, desde un 54% a un 94% (veáse el ejemplo 4). En base a los resultados obtenidos, parece razonable pensar que los iones Pb2+ presentes en la disolución del catolito (bien porque la sal de Pb (II) se haya adicionado al catolito o bien porque se haya adicionado al anolito y los iones Pb2+ hayan atravesado la membrana de intercambio catiónico en el curso de la electrólisis) se electrodepositan en el cátodo de plomo, y por tanto, regeneran continuamente su superficie, por lo que la eficacia de la corriente está asegurada durante largos períodos de tiempos de operación sin afectar para nada a la pureza de las disoluciones comerciales de ácido glioxílico obtenidas .The concentration of these salts of Pb (II) either in the anolyte or in the catholyte is minimal since according to its solubility product, the concentration of Pb (II) in a 1 M aqueous solution of S0 „H 2 , Typical concentration of the anolyte is 5'56.10 g / 1 at room temperature; and in a 0.5 M aqueous solution in oxalic acid, typical concentration of the catholyte, it is of the order of 1.3'10 '8 g / 1, whereby said Pb (II) salt is added to the catholyte, the concentration of Pb (II) present in the commercial glyoxylic acid solution obtained is depreciable. Consequently, it has been proven that the addition of traces of Pb (II) salts are sufficient to maintain the cathode activity. The effect of these salts is really spectacular as can be seen in examples 4 and following of this description, since not only is the process performance maintained over time, but also the activity of the process can be regenerated. a cathode completely deactivated, increasing the efficiency of the current with respect to the substrate in a drastic way, from 54% to 94% (see example 4). Based on the results obtained, it seems reasonable to think that the Pb 2+ ions present in the catholyte solution (either because the Pb (II) salt has been added to the catholyte or because it has been added to the anolyte and Pb 2 ions + have crossed the cation exchange membrane in the course of electrolysis) are electrodeposited in the lead cathode, and therefore, continuously regenerate its surface, so that the efficiency of the current is ensured for long periods of operating time without affect at all the purity of the commercial glyoxylic acid solutions obtained.
La electrodeposición de los iones Pb2+ sobre el cátodo de plomo quedó de manifiesto al desmontar las celdas, ya que sobre el cátodo se apreció un precipitado de plomo. La adherencia del plomo electrodepositado no es buena, por lo que tras varias electrólisis comienza a acumularse un depósito de plomo sobre el cátodo que hace que se produzca una disminución lenta de la eficacia de la corriente con el tiempo. Para solucionar este problema basta con realizar un lavado del cátodo, sin desmontar la celda, con ácido nítrico a temperatura ambiente, con lo que la eficacia de la corriente se regenera (veáse ejemplos 7 yThe electrodeposition of the Pb 2+ ions on the lead cathode was evident when the cells were dismantled, since a lead precipitate was visible on the cathode. The adhesion of electrodeposited lead is not good, so after several electrolysis a deposit of lead begins to accumulate on the cathode which causes a slow decrease in the efficiency of the current over time. To solve this problem, simply wash the cathode, without disassembling the cell, with nitric acid at room temperature, so that the efficiency of the current is regenerated (see examples 7 and
8). Consecuentemente, el lavado del cátodo con ácido nítrico potencia el efecto de la adición de sales de Pb (II) en el curso de la electrólisis. El ácido nítrico de lavado del cátodo puede tener una concentración comprendida entre el 2% en peso y el 15% en peso, preferentemente del 10% en peso.8). Consequently, washing the cathode with nitric acid enhances the effect of the addition of salts of Pb (II) in the course of electrolysis. Nitric acid The cathode wash may have a concentration between 2% by weight and 15% by weight, preferably 10% by weight.
Por tanto, según el procedimiento de esta invención, se logra mantener la actividad del cátodo durante varias electrólisis mediante la adición de trazas de sales de Pb (II) bien al catolito o bien al anolito, y opcionalmente, si se desea este efecto puede potenciarse mediante el lavado del cátodo con ácido nítrico, con lo que no es preciso desmontar la celda electrolítica nada más que para las revisiones rutinarias de mantenimiento una o dos veces por año.Therefore, according to the process of this invention, it is possible to maintain the activity of the cathode during several electrolysis by adding traces of salts of Pb (II) either to the catholyte or to the anolyte, and optionally, if this effect is desired it can be enhanced by washing the cathode with nitric acid, so it is not necessary to disassemble the electrolytic cell only for routine maintenance checks once or twice a year.
Los ejemplos que siguen, sirven para ilustrar esta invención sin que deban considerarse limitativos de la misma.The following examples serve to illustrate this invention without being considered limiting thereof.
EJEMPLOSEXAMPLES
* Modo general de operación* General mode of operation
Todos los ejemplos se realizaron en una celda filtro prensa dotada de un cátodo de plomo (de pureza > 99 '97%) de 20 cm2 de área geométrica y de un ánodo de la misma área y cuyo material se especifica en cada ejemplo. Las membranas utilizadas fueron indistintamente Selemión CMV, Nafión 417 y Nafión 324. La distancia interelectródica era de 0'9 cm. El anolito estaba formado por una disolución acuosa de ácido sulfúrico del 10% en peso, y el catolito por una disolución acuosa saturada de ácido oxálico, manteniéndose constante la concentración de ácido oxálico a lo largo de toda la electrólisis mediante adición periódica del mismo. Por cada kilogramo de ácido oxálico (de una pureza superior al 99,5% en peso) se utilizaron 3'31 Kg. de agua.All examples were performed in a press filter cell equipped with a lead cathode (of purity> 99 '97%) of 20 cm 2 of geometric area and an anode of the same area and whose material is specified in each example. The membranes used were indiscriminately Selemión CMV, Nafión 417 and Nafión 324. The interelectrodic distance was 0.9 cm. The anolyte was formed by an aqueous solution of sulfuric acid of 10% by weight, and the catholyte by a saturated aqueous solution of oxalic acid, the concentration of oxalic acid being maintained throughout the entire electrolysis by periodic addition thereof. For each kilogram of oxalic acid (of a purity greater than 99.5% by weight), 3.31 kg of water were used.
La temperatura del anolito y del catolito se mantuvo constante en 132C, recirculando por las camisas de los depósitos que contenían ambos electrolitos una mezcla etilenglicol/HgO procedente de un criostato. Mediante sendas bombas de desplazamiento magnético I AKI MD-20R se recircularon los electrolitos a través de los correspondientes compartimentos de la celda, de tal forma que la velocidad lineal del catolito fuera de 0'31 /sg. Mediante una fuente de alimentación de corriente continua PROMAX FAC-365 se aplicó una corriente de 4 amperios, parándose la electrólisis cuando se hubo pasado el 86 '5% de la cantidad teórica de electricidad necesaria para reducir todo el ácido oxálico presente. El nivel del anolito se mantuvo constante añadiendo la cantidad necesaria de agua durante cada experimento (aproximadamente se transfieren 45 mi H20/faraday desde el anolito al catolito) . Finalizada la electrólisis se recogió el catolito, se lavó con agua el depósito y el compartimento catódico añadiendo dicha agua al catolito, y el conjunto se pesó una vez homogeneizado. La concentración de ácido oxálico se determinó por espectroscopia visible a 440 nm mediante la medición de la absorbancia producida por el complejo formado entre el ácido oxálico y el Fe (III) en medio ácido (E. Szetey et al. Acta Chimica Acad. Sci. Hungaricae, .98. (4), 367-373, 1978).The temperature of the anolyte and the catholyte was kept constant at 132C, recirculating a mixture between the electrolyte tanks containing a mixture ethylene glycol / HgO from a cryostat. By means of two magnetic displacement pumps I AKI MD-20R the electrolytes were recirculated through the corresponding compartments of the cell, so that the linear velocity of the catholyte was 0.31 / sg. Using a PROMAX FAC-365 direct current power supply, a current of 4 amps was applied, stopping electrolysis when 86.5% of the theoretical amount of electricity needed to reduce all the oxalic acid present was passed. The level of the anolyte was kept constant by adding the necessary amount of water during each experiment (approximately 45 ml H 2 0 / faraday is transferred from the anolyte to the catholyte). After the electrolysis, the catholyte was collected, the tank and the cathodic compartment were washed with water, adding said water to the catholyte, and the whole was weighed once homogenized. The oxalic acid concentration was determined by visible spectroscopy at 440 nm by measuring the absorbance produced by the complex formed between oxalic acid and Fe (III) in acidic medium (E. Szetey et al. Acta Chimica Acad. Sci. Hungaricae, .98. (4), 367-373, 1978).
El ácido glioxílico se determinó por polarografía diferencial de impulsos mediante un electrodo de goteo de mercurio en NaOH 0'25 N (potencial de pico -1'31 voltios vs electrodo Ag/AgCl (sat)), utilizando un Polaroprocesseur Tacussel.The glyoxylic acid was determined by differential pulse polarography using a mercury drip electrode in 0.25 N NaOH (peak potential -131 volts vs Ag / AgCl electrode (sat)), using a Polaroprocesseur Tacussel.
En todos los casos el voltaje de celda estuvo comprendido entre 5'8 y 8 voltios, y el consumo específico de energía entre 5 y 6 '5 K h/ g. Estos valores pueden rebajarse disminuyendo la distancia interelectródica.In all cases the cell voltage was between 5'8 and 8 volts, and the specific energy consumption between 5 and 6'5 K h / g. These values can be lowered by decreasing the inter-electrode distance.
Los resultados obtenidos en cada ejemplo se reflejan en las figuras que acompañan a esta descripción. En las figuras se representa la Ees o eficacia de la corriente con respecto al ácido oxálico (ordenadas) frente a F o el ne de faradays (abscisas). Cada uno de los puntos que aparecen en las gráficas de las figuras corresponde a una electrólisis. Cada Faraday corresponde a 6'7 horas de funcionamiento. Asimismo, en los ejemplos que siguen se utiliza la siguiente notación:The results obtained in each example are reflected in the figures that accompany this description. In the The figures represent the Ees or efficiency of the current with respect to oxalic acid (ordinate) against F or ne of faradays (abscissa). Each of the points that appear in the graphs of the figures corresponds to an electrolysis. Each Faraday corresponds to 6'7 hours of operation. Also, the following notation is used in the following examples:
Ees: Eficacia de la corriente con respecto al ácido oxálico;Ees: Efficiency of the current with respect to oxalic acid;
Ec: Eficacia de la corriente con respecto al ácido glioxílico; S: Selectividad; F: ne de Faradays. Ejemplo 1Ec: Efficacy of the current with respect to glyoxylic acid; S: Selectivity; F: ne de Faradays. Example 1
Siguiendo el modo general de operación anteriormente descrito se realizaron una serie de electrólisis con agua desmineralizada y un DSA de oxígeno como ánodo (óxido de iridio depositado sobre titanio). Tal y como puede verse en la figura 1, la Ees se mantuvo constante en torno al 89%. La selectividad media de todos los experimentos fue del 98%. La eficacia de la corriente respecto al ácido glioxílico Ec se mantuvo constante en torno al 87%. Este ejemplo demuestra cómo trabajando con sustancias puras, agua desmineralizada y un ánodo estable a la oxidación es posible mantener la eficacia de la corriente y la selectividad constantes en el tiempo.Following the general mode of operation described above, a series of electrolysis were carried out with demineralized water and an oxygen DSA as an anode (iridium oxide deposited on titanium). As can be seen in Figure 1, the Ees remained constant at around 89%. The average selectivity of all experiments was 98%. The efficiency of the current with respect to Ec glyoxylic acid remained constant at around 87%. This example demonstrates how working with pure substances, demineralized water and an oxidation stable anode it is possible to maintain the efficiency of the current and the selectivity constant over time.
Ejemplo 2 En este caso se utilizó además de agua desmineralizada un ánodo de platino depositado sobre titanio. Tal y como puede observarse en la figura 2, la Ees disminuye rápidamente. Inversiones sucesivas de la polaridad no restauraron la actividad del cátodo. Dichas inversiones se realizaron en los momentos finales del experimento precedente de tal forma que en caso de redisolver las impurezas metálicas depositadas en el cátodo se eliminarían al retirar el catolito ya electrolizado.Example 2 In this case a platinum anode deposited on titanium was used in addition to demineralized water. As can be seen in Figure 2, the Ees decreases rapidly. Successive reversals of polarity did not restore cathode activity. These investments were made in the final moments of the experiment The precedent in such a way that in case of redisolving the metallic impurities deposited in the cathode would be eliminated when removing the already electrolyzed catholyte.
Ejemplo 3Example 3
En este caso se utilizó un ánodo de óxido de iridio depositado sobre titanio. El mismo utilizado en el ejemplo 1 pero al que previamente se le hizo funcionar como cátodo durante 1 hora, tras la cual s.e desmontó la celda, se lavó dicho electrodo con abundante agua para eliminar el óxido no adherido sobre el titanio y nuevamente se montó la celda realizando los experimentos correspondientes utilizando este DSA deteriorado como ánodo. En la figura 3 se representa la variación de Ees en función de los faradayε pasados tanto para el caso de utilizar agua desmineralizada como agua del grifo (31 ppm como CaC03) . Los resultados ponen claramente de manifiesto el efecto pernicioso de un DSA deteriorado sobre la eficacia del proceso. Asimismo, se demuestra el efecto positivo del agua desmineralizada.In this case an iridium oxide anode deposited on titanium was used. The same one used in Example 1 but which was previously operated as a cathode for 1 hour, after which the cell was disassembled, said electrode was washed with abundant water to remove the non-adhered oxide on the titanium and again the cell performing the corresponding experiments using this deteriorated DSA as an anode. Figure 3 shows the variation of Ees as a function of the faradayε passed both for the case of using demineralized water and tap water (31 ppm as CaC0 3 ). The results clearly show the pernicious effect of a deteriorated DSA on the effectiveness of the process. Likewise, the positive effect of demineralized water is demonstrated.
Ejemplo 4Example 4
En este caso se utilizó un ánodo de platino depositado sobre titanio. En la figura 4 puede verse como la Ees disminuye drásticamente desde un 88% a un 54% tras el paso de 4 faradays . En ese momento se adicionó sulfato de plomo (II) al anolito produciéndose un rápido incremento de la eficacia de la corriente hasta un 94% para después disminuir lentamente y estabilizarse en torno al 88%, el valor original. La selectividad se mantuvo constante en torno al 95%.In this case a platinum anode deposited on titanium was used. In Figure 4 it can be seen how the Ees decreases dramatically from 88% to 54% after the passage of 4 faradays. At that time, lead (II) sulfate was added to the anolyte producing a rapid increase in current efficiency up to 94% and then slowly decreasing and stabilizing around 88%, the original value. The selectivity remained constant at around 95%.
Los resultados son claramente significativos y demuestran de una forma tajante el efecto positivo de la adición de sulfato de plomo (II) al anolito sobre la actividad del cátodo de plomo. Ejemplo 5The results are clearly significant and clearly demonstrate the positive effect of the addition of lead (II) sulfate to the anolyte on the activity of the lead cathode. Example 5
En este caso se utilizó un ánodo de Pb02 depositado sobre plomo. El ánodo se formó in εitu, utilizando H2S04 10% como anolito, mediante la aplicación de una corriente de 0'2 A (100 A/m2) durante 30 minutos a temperatura ambiente. Seguidamente tras ajustar la temperatura a 13eC se iniciaron los experimentos. En la figura 5 se aprecia claramente cómo la adición de sulfato de plomo (II) al anolito regenera rápidamente la actividad del cátodo. La selectividad se mantuvo comprendida entre el 93% y el 97%.In this case a Pb0 2 anode deposited on lead was used. The anode was formed in situ, using H 2 S0 4 10% as an anolyte, by applying a current of 0.2 A (100 A / m 2 ) for 30 minutes at room temperature. Then after adjusting the temperature to 13 e C the experiments were started. Figure 5 clearly shows how the addition of lead (II) sulfate to the anolyte rapidly regenerates the activity of the cathode. The selectivity remained between 93% and 97%.
Ejemplo 6Example 6
En este caso se utilizó el DSA deteriorado utilizado en el ejemplo 3. Desde el inicio de los experimentos se adicionó sulfato de plomo (II) al anolito pero en este caso esta forma de actuar fue completamente ineficaz . Además se produjo un aumento de 2 voltios en el voltaje de celda. Por la razón que fuere la adición de sulfato de plomo (II) al anolito utilizando un ánodo de óxido de iridio es ineficaz. Sin embargo, al adicionar 100 g de carbonato de plomo al catolito se produjo, tal y como puede verse en la figura 6, un aumento espectacular de la eficacia de la corriente con respecto al sustrato, pasando del 65% al 91%, para mantenerse en torno a este valor. El ejemplo demuestra de una forma inequívoca el efecto positivo que tiene la adición de carbonato de plomo (II) al catolito sobre la actividad del cátodo. La selectividad se mantuvo constante en torno al 95%.In this case, the damaged DSA used in example 3 was used. Since the beginning of the experiments, lead (II) sulfate was added to the anolyte but in this case this way of acting was completely ineffective. In addition there was a 2 volt increase in cell voltage. For the reason that the addition of lead (II) sulfate to the anolyte using an iridium oxide anode is ineffective. However, adding 100 g of lead carbonate to the catholyte produced, as can be seen in Figure 6, a dramatic increase in the efficiency of the current with respect to the substrate, going from 65% to 91%, to maintain around this value. The example unequivocally demonstrates the positive effect of the addition of lead (II) carbonate to the catholyte on the activity of the cathode. The selectivity remained constant at around 95%.
Ejemplo 7Example 7
En este caso se utilizó un ánodo de platino depositado sobre titanio, el mismo que en los ejemplos 2 y 4, adicionándose 38 mg de sulfato de plomo (II) en el catolito por faraday. Los resultados se representan en la figura 7. Tal y como puede verse la Ees se mantuvo muy por encima de los valores obtenidos sin adicionar sulfato de plomo (II) (ver figuras 2 y 4 antes de la adición de sulfato de plomo (II)). Sin embargo, la disminución de Ees es mucho más acusada que cuando se adiciona dicha sal al anolito (figura 2). En consecuencia, la adición de sulfato de plomo (II) al catolito mejora la actividad del cátodo pero en menor grado que adicionando carbonato de plomo (II) y oxalato de plomo (II) (ejemplo 8) también al catolito o sulfato de plomo (II) al anolito (ejemplo 4). Tras 52 horas de funcionamiento la Ees había decrecido hasta el 74%.In this case a platinum anode deposited on titanium was used, the same as in examples 2 and 4, with 38 mg of lead (II) sulfate being added to the faraday catholyte. The results are represented in the Figure 7. As can be seen, the Ees remained well above the values obtained without adding lead sulfate (II) (see figures 2 and 4 before the addition of lead sulfate (II)). However, the decrease in Ees is much more pronounced than when this salt is added to the anolyte (Figure 2). Consequently, the addition of lead (II) sulfate to the catholyte improves the activity of the cathode but to a lesser extent than adding lead (II) carbonate and lead (II) oxalate (example 8) also to the catholyte or lead sulfate ( II) to the anolyte (example 4). After 52 hours of operation the Ees had decreased to 74%.
En ese momento se procedió a lavar el cátodo, sin desmontar la celda, tres veces con HN03 10% durante 15 minutos a temperatura ambiente. Tras lavar el cátodo con abundante agua desmineralizada para eliminar los restos de ácido nítrico se realizó una nueva electrólisis, aumentando la eficacia de la corriente con respecto al sustrato hasta el 90%. La selectividad fue del 96%. Al desmontar la celda no se apreció ningún depósito sobre el cátodo, al contrario que en los ejemplos anteriores.At that time the cathode was washed, without disassembling the cell, three times with 10% HN0 3 for 15 minutes at room temperature. After washing the cathode with abundant demineralized water to remove the remains of nitric acid, a new electrolysis was carried out, increasing the efficiency of the current with respect to the substrate to 90%. The selectivity was 96%. When dismantling the cell, no deposit was seen on the cathode, unlike in the previous examples.
Ejemplo 8Example 8
En este caso se utilizó como ánodo un DSA de oxígeno (óxido de iridio sobre titanio) deteriorado. El mismo que en los ejemplos 3 y 6 adicionándose oxalato de plomo (II) en cantidades variables a lo largo de las diferentes eletrolisis y lavando el cátodo una vez durante 15 minutos con HN0310%' cuando la Ees disminuía hasta un valor próximo al 90%. Los resultados pueden verse en la figura 8, donde se comparan con los obtenidos en las mismas condiciones pero sin adición de oxalato de plomo (II), quedando patente de una manera rotunda el efecto beneficioso sobre la actividad del cátodo de la adición de oxalato de plomo (II) al catolito. También puede apreciarse cómo a medida que disminuye la cantidad añadida por faraday es posible mantener la actividad del cátodo durante un tiempo mayor, de tal forma que se espacian más en el tiempo los lavados con HN03 10%. Se ve también en la figura 8 como tras cada lavado con HN03 al 10% se incrementa la Ees. Así, mediante la adición conjunta de oxalato de plomo (II) al catolito y el lavado periódico con ácido nítrico 10% del cátodo sin desmontar la celda, es posible mantener la Ees en un valor medio del (94-95)%. En todos los casos la selectividad de la electrólisis estuvo comprendida en torno al 96% de tal forma que la eficacia de la corriente respecto al ácido glioxílico Ec fue del (90-91)%.In this case, an impaired oxygen DSA (iridium oxide on titanium) was used as the anode. The same as in Examples 3 and 6, adding lead (II) oxalate in varying amounts throughout the different electrolysis and washing the cathode once for 15 minutes with HN0 3 10% ' when the Ees decreased to a value close to 90% The results can be seen in Figure 8, where they are compared with those obtained under the same conditions but without the addition of lead (II) oxalate, the beneficial effect on the cathode activity of the addition of oxalate addition being clearly demonstrated. lead (II) to the catholyte. You can also see how to measure which decreases the amount added per faraday and it is possible to maintain the activity of the cathode for a longer time, so that the washings with 10% HN0 3 are spaced more in time. It is also seen in Figure 8 how after each wash with 10% HN0 3 the Ees is increased. Thus, by the joint addition of lead (II) oxalate to the catholyte and periodic washing with 10% nitric acid of the cathode without disassembling the cell, it is possible to keep the Ees at an average value of (94-95)%. In all cases the electrolysis selectivity was around 96% so that the efficiency of the current with respect to Ec glyoxylic acid was (90-91)%.
TRADUCCIÓN DE LAS LEYENDAS DE LAS FIGURAS - Figuras 1 a 8TRANSLATION OF THE LEGENDS OF THE FIGURES - Figures 1 to 8
(a) Eficacia de la corriente con respecto al ácido oxálico en % (Ees %).(a) Efficiency of the current with respect to oxalic acid in% (Ees%).
(b) n2 Faradays (F).(b) n2 Faradays (F).
- Figura 1 (c) Ánodo DSA - 02.- Figure 1 (c) DSA anode - 0 2 .
- Figura 2- Figure 2
(c) Ánodo Pt/Ti.(c) Pt / Ti anode.
(d) Sin inversión de polaridad.(d) Without polarity inversion.
(e) Inversión de polaridad : 30 seg. a 2000 A/m2. (f) Inversión de polaridad : 10 min. a 100 A/m2 2(e) Polarity inversion: 30 sec. at 2000 A / m 2 . (f) Polarity inversion: 10 min. at 100 A / m 2 2
- Figura 3- Figure 3
(c) nodo DSA-02 deteriorado.(c) damaged DSA-0 2 node.
(d) Agua desmineralizada.(d) Demineralized water.
(e) Agua del grifo (31 pp como Ca C03) . - Figura 4(e) Tap water (31 pp as Ca C0 3 ). - Figure 4
(c) Ánodo Pt/Ti.(c) Pt / Ti anode.
(d) Adición PbS04 al anolito.(d) Addition PbS0 4 to the anolyte.
- Figura 5 (c) nodo PbOa / Pb. (d) Adición PbS04 al anolito. - Figura 6- Figure 5 (c) PbO a / Pb node. (d) Addition PbS0 4 to the anolyte. - Figure 6
(c) Ánodo DSA-02 deteriorado.(c) Damaged DSA-0 2 anode.
(d) Adición PbS04 al anolito.(d) Addition PbS0 4 to the anolyte.
(e) Adición PbC03 al catolito (100 mg) - Figura 7(e) Addition PbC0 3 to the catholyte (100 mg) - Figure 7
(c) Lavado del cátodo con HN03 al 10%(c) Washing the cathode with 10% HN0 3
- Figura 8- Figure 8
(c) Ánodo DSA-02 deteriorado.(c) Damaged DSA-0 2 anode.
(d) Adición de oxalato de plomo (II) al catolito en las cantidades indicadas en (g),(h) e (i).(d) Addition of lead oxalate (II) to the catholyte in the amounts indicated in (g), (h) and (i).
(e) Sin adición de oxalato de plomo.(e) No addition of lead oxalate.
(f) Lavado del cátodo con HN03 al 10%.(f) Washing the cathode with 10% HN0 3 .
(g) 33'5 mg/F. ' (h) 1'67 mg/F. (i) 0'75 mg/F. (g) 33.5 mg / F. ' (h) 1.67 mg / F. (i) 0.75 mg / F.

Claims

REIVINDICACIONES
1. Procedimiento de obtención de ácido glioxílico por electroreducción, con reactivación catódica, de ácido oxálico a una temperatura comprendida entre ÍO^C y 15sc en una celda electrolítica dividida mediante una membrana de intercambio catiónico, que comprende un compartimento anódico formado por un ánodo y un anolito constituido por una disolución acuosa de un ácido mineral fuerte, y un compartimento catódico formado por un cátodo de plomo y un catolito constituido por una disolución acuosa saturada de ácido oxálico, estando dicho procedimiento caracterizado porque se mantiene constante la eficacia de la corriente y la selectividad del proceso durante largos periodos de .operación, mediante la adición de sales de plomo bien al anolito o bien al catolito.1. Procedure for obtaining glyoxylic acid by electroreduction, with cathodic reactivation, of oxalic acid at a temperature between IO ^ C and 15sc in an electrolytic cell divided by a cation exchange membrane, comprising an anode compartment formed by an anode and an anolyte constituted by an aqueous solution of a strong mineral acid, and a cathodic compartment formed by a lead cathode and a catholyte constituted by a saturated aqueous solution of oxalic acid, said process being characterized in that the efficiency of the current is kept constant and the selectivity of the process during long periods of operation, by adding lead salts either to the anolyte or to the catholyte.
2. Procedimiento según la reivindicación 1, caracterizado porque dichas sales de plomo son sales de plomo (II) que se seleccionan entre sulfato de plomo (II), carbonato de plomo (II) y oxalato de plomo (II) .2. Method according to claim 1, characterized in that said lead salts are lead (II) salts which are selected from lead sulfate (II), lead carbonate (II) and lead oxalate (II).
3. Procedimiento según la reivindicación 1, caracterizado porque el ácido mineral fuerte utilizado como anolito es ácido sulfúrico de concentración comprendida entre el 2% en peso y el 25% en peso, preferentemente del 10% en peso.3. Method according to claim 1, characterized in that the strong mineral acid used as an anolyte is sulfuric acid of a concentration between 2% by weight and 25% by weight, preferably 10% by weight.
4. Procedimiento según las reivindicaciones anteriores, caracterizado porque se potencia la acción de las sales de plomo mediante el lavado periódico del cátodo con ácido nítrico.4. Method according to the preceding claims, characterized in that the action of the lead salts is enhanced by periodic washing of the cathode with nitric acid.
5. Procedimiento según la reivindicación 1, caracterizado porque el ánodo está constituido por platino soportado sobre titanio, o por óxido de iridio soportado sobre titanio. 5. Method according to claim 1, characterized in that the anode is constituted by platinum supported on titanium, or by iridium oxide supported on titanium.
6. Procedimiento según la reivindicación 1, caracterizado porque el cátodo está constituido por plomo de pureza superior al 99,97%.Method according to claim 1, characterized in that the cathode is constituted by lead of purity greater than 99.97%.
7. Procedimiento según la reivindicación 1, caracterizado porque para una conversión por carga de, al menos, el 82% de ácido oxálico, se obtiene una selectividad igual o superior al 95%. 7. Method according to claim 1, characterized in that for a charge conversion of at least 82% oxalic acid, a selectivity equal to or greater than 95% is obtained.
PCT/ES1991/000035 1990-06-12 1991-06-11 Method for producing glyoxylic acid by electroreduction with cathodic reactivation of oxalic acid WO1991019832A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP9001621 1990-06-12
ES9001621A ES2020475A6 (en) 1990-06-12 1990-06-12 Method for producing glyoxylic acid by electroreduction with cathodic reactivation of oxalic acid

Publications (1)

Publication Number Publication Date
WO1991019832A1 true WO1991019832A1 (en) 1991-12-26

Family

ID=8267720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1991/000035 WO1991019832A1 (en) 1990-06-12 1991-06-11 Method for producing glyoxylic acid by electroreduction with cathodic reactivation of oxalic acid

Country Status (3)

Country Link
AU (1) AU7965291A (en)
ES (1) ES2020475A6 (en)
WO (1) WO1991019832A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993017151A1 (en) * 1992-02-22 1993-09-02 Hoechst Aktiengesellschaft Electrochemical process for preparing glyoxylic acid
DE4217338A1 (en) * 1992-05-26 1993-12-02 Hoechst Ag Electrochemical process for the reduction of oxalic acid to glyoxylic acid

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Volume 112, No. 2, 8 January 1990, (Columbus, Ohio, US), E.M. BELGSIR et al., "A Kinetic Study of the Oxidation of Glyoxal on Platinum-Based Electrodes by Chromatographic Techniques", page 375, Summary 13251p; & J. ELECTROANAL. CHEM. INTERFACIAL ELECTROCHEM., 1989, 270(1-2), 151-62. *
JOURNAL OF APPLIED ELECTROCHEMISTRY, Vol. 10, No. 1, January 1980, CHAPMAN and HALL LTD, (London, GB), F. GOODRIDGE et al., "Scale-Up Studies of the Electrolytic Reduction of Oxalic to Glyoxylic Acid", pages 55-60. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993017151A1 (en) * 1992-02-22 1993-09-02 Hoechst Aktiengesellschaft Electrochemical process for preparing glyoxylic acid
US5474658A (en) * 1992-02-22 1995-12-12 Hoechst Ag Electrochemical process for preparing glyoxylic acid
DE4217338A1 (en) * 1992-05-26 1993-12-02 Hoechst Ag Electrochemical process for the reduction of oxalic acid to glyoxylic acid
EP0578946A2 (en) * 1992-05-26 1994-01-19 Hoechst Aktiengesellschaft Electrochemical process for reducing oxatic acid to glyoxylic acid
EP0578946A3 (en) * 1992-05-26 1994-02-09 Hoechst Aktiengesellschaft Electrochemical process for reducing oxatic acid to glyoxylic acid
US5395488A (en) * 1992-05-26 1995-03-07 Hoechst Aktiengesellschaft Electrochemical process for reducing oxalic acid to glyoxylic acid

Also Published As

Publication number Publication date
AU7965291A (en) 1992-01-07
ES2020475A6 (en) 1991-08-01

Similar Documents

Publication Publication Date Title
US4088550A (en) Periodic removal of cathodic deposits by intermittent reversal of the polarity of the cathodes
US4306952A (en) Electrolytic process and apparatus
US4316782A (en) Electrolytic process for the production of ozone
ES2237414T3 (en) WATER PURIFICATION PROCEDURE.
JP3785219B2 (en) Method for producing acidic water and alkaline water
JP2003293177A (en) Electrolytic cell for generating ozone
JP5654457B2 (en) Method for producing reduced glutathione
CN1261817A (en) Electrochemical methods for recovery of ascorbic acid
WO2012137824A1 (en) Process for producing reduced glutathione
CA1107677A (en) Rejuvenation of the efficiency of seawater electrolysis cells by periodic removal of anodic deposits
JPH0343351B2 (en)
CA1169020A (en) Aqueous electrowinning of metals using fuel oxidizable at the anode
US4539083A (en) Method for preventing degradation in activity of a low hydrogen overvoltage cathode
WO1991019832A1 (en) Method for producing glyoxylic acid by electroreduction with cathodic reactivation of oxalic acid
JP2704629B2 (en) Electrodialysis machine
JP3380658B2 (en) Purification method of alkaline solution
EP0063420A1 (en) Electrolyzers for the production of hydrogen
US6780293B2 (en) Floatable sanitizer apparatus
JPH07155765A (en) Production of electrolyzed water and device therefor
JP2004010904A (en) Electrolytic cell for manufacturing hydrogen peroxide
JPH0780253A (en) Electrodialytic purifying method
GB2113718A (en) Electrolytic cell
JPS558413A (en) Protecting method of stop electrolytic cell
RU2153540C1 (en) Method of electrolysis of aqueous solution of alkali metal chloride
EP0041365B1 (en) Improved electrolytic process for the production of ozone

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR CA CH DE DK FI GB HU JP KP KR LK LU MC MG MW NL NO PL RO SD SE SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BF BJ CF CG CH CI CM DE DK ES FR GA GB GN GR IT LU ML MR NL SE SN TD TG

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase