WO1991018048A1 - Use of a nucleation agent in a process for the production of loose-fill packing material - Google Patents

Use of a nucleation agent in a process for the production of loose-fill packing material Download PDF

Info

Publication number
WO1991018048A1
WO1991018048A1 PCT/EP1990/002150 EP9002150W WO9118048A1 WO 1991018048 A1 WO1991018048 A1 WO 1991018048A1 EP 9002150 W EP9002150 W EP 9002150W WO 9118048 A1 WO9118048 A1 WO 9118048A1
Authority
WO
WIPO (PCT)
Prior art keywords
starch
nucleating agent
extruder
granules
material body
Prior art date
Application number
PCT/EP1990/002150
Other languages
German (de)
French (fr)
Inventor
Hans Reichenecker
Original Assignee
Storopack Hans Reichenecker Gmbh + Co.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6407028&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1991018048(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Storopack Hans Reichenecker Gmbh + Co. filed Critical Storopack Hans Reichenecker Gmbh + Co.
Priority to BR9008025A priority Critical patent/BR9008025A/en
Priority to JP91502046A priority patent/JPH05506675A/en
Publication of WO1991018048A1 publication Critical patent/WO1991018048A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/08Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles using several expanding or moulding steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/02Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage
    • B65D81/05Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents
    • B65D81/09Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents using flowable discrete elements of shock-absorbing material, e.g. pellets or popcorn
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the invention relates to the use of a nucleating agent in a method for producing pourable packaging material bodies.
  • Such packaging material bodies are known. These loose-fill, spherical segment-shaped packaging material bodies, which are referred to as "loose-fill", are widely used for packaging transport goods.
  • the known packaging material bodies have the disadvantageous property that they are made of plastic material - such as polystyrene or other polymerization products of the benzene derivative styrene - which can only be disposed of with difficulty after use. This fact is perceived as an eminent disadvantage, especially from the point of view of the constantly increasing environmental and environmental protection awareness.
  • the object of the invention is to provide a method which enables the efficient and economical production of biodegradable "loose-fill" packaging material bodies.
  • the technologies that are suitable for plastic packaging material bodies should be applicable, which is not to be expected, particularly for reasons of simple production.
  • nucleating agent is applied to the surface of granules of starch finely distributed in an amount of 0.1-0.2% based on the weight of the granules and in a grain size of approximately 50 u, that the such granules with nucleating agent are fed to an extruder in which they are converted from their solid to a viscous-liquid state, and that one by the decomposition of the nucleating agent under
  • Starch foam which arises in the extruder, is extruded from the mold opening of an extruder and immediately at the mold opening, before significant expansion has taken place, is cut off, and that the starch particles formed in this way are taken up in a storage container "and after an intermediate storage in a post-expansion unit are expanded to their final dimensions.
  • the measures according to the invention allow, in a particularly advantageous manner, the production of a ' biodegradable' loose-fill 'packaging material body which is distinguished by its high environmental compatibility.
  • the starch used as the base material is a natural product and can be degraded by environmentally occurring microorganisms and / or by its natural aging process without environmentally harmful residues.
  • Figure 1 is a schematic side view of a
  • Figure 2 is a partial side view of the
  • Figure 3 is a broken partial plan view of the
  • Figure 4 is a partially enlarged portion of a
  • FIG. 5 shows a section along the line V-V in FIG. 4,
  • FIG. 6 shows the development of the screw helix of the grooves
  • Figure 7 shows an embodiment of a
  • Figure 8 shows a second embodiment of a
  • Figure 9 shows a third embodiment of a
  • the device required to carry out the method is shown schematically in FIG. 1.
  • Its essential functional complexes consist of a drum 5, an extrusion device 10, a storage container 22, a post-expansion unit 23 and a further storage container
  • the drum 5 has openings 6 and 7 through which starch granules and a nucleating agent (bubble form) are added.
  • the starch granules used here consist of pure starch material. However, it is also possible to use the starch method described Granules which contain admixtures but which do not interfere with the process described below. In the following description the term "starch granules" is used for both types.
  • the nucleating agent was ground extremely finely before being introduced into the drum 5 and has a grain size of approximately 40 ⁇ .
  • the nucleating agent added in an amount of approximately 0.1-0.2 percent by weight is drummed onto the starch granules in the drum 5. This drumming of the nucleating agent onto the starch granules has the effect that they are coated with a layer of the nucleating agent which is firmly adhered by adhesive forces and is uniformly distributed over the surface.
  • the nucleating agent tumbled onto the starch granules serves as an initiator of bubble nucleation in the subsequent extrusion process: this is done by the solid nucleating agent in the extruder 14 decomposing with gas formation.
  • the released gas forms in the viscous-liquid starch mass (see below) a large number of vesicles, which act as "germ cells" of the expanded cell structure Starch material function and thus influence the fine porosity of the resulting starch packaging material body.
  • the amount of nucleating agent introduced into the drum 5 is essentially determined by the decomposition behavior of the nucleating agent under the action of heat taking place in the subsequent extrusion process.
  • the nucleating agent can particularly advantageously consist of a carbonate and an acid component.
  • the acid component then enables, in addition to the decomposition of the carbonate component due to the heat of the extrusion process, a chemical reaction with the carbonate component, which reinforces it
  • the starch granules treated in this way are fed into a filling funnel 17 connected to the extrusion device 10 by means of a conveying device 8 and a conveying line 9.
  • Color pigments or other desired additives may also be added in the filling funnel 17.
  • the extrusion device 10 consists of a drive motor 11, a gear 12, a material feed zone 13 and an extruder 14 and a cutting device 16 which is arranged in front of a mold opening 15 of the extruder 14.
  • the tumbled starch granules reach the material inlet zone 13 via the filling funnel 17 arranged at the end of the conveying line 9.
  • the mixture consisting of the starch granules with the tumbled nucleating agent and any additives added is fed by an extruder screw (not shown in FIG. 1) drawn into the material feed zone 13 of the extruder 14.
  • the starch granules with the Tumbled nucleating agents are carried along by the driving flanks of the extruder screw rotating at a suitably selected speed and are thereby conveyed in the axial direction from the material feed zone 13 of the extruder 14 to the mold opening 15 arranged at the other end of the extruder 14.
  • the continuously increasing core diameter of the extruder screw in the extruder direction causes the starch granules to be subjected to a constantly increasing pressure as they move forward through the extruder 14.
  • the mixture formed from the compacted starch granules and the nucleating agent tumbled thereon is heated to a higher temperature until it melts and thereby changes into a viscous-liquid state.
  • the nucleating agent is evenly and finely distributed in the viscous-liquid starch-nucleating agent mixture. This is necessary in order to obtain a regular and fine cell structure of the expanded starch material after extrusion.
  • the drumming of the nucleating agent onto the starch granules has the effect that when the individual granules are rubbed against one another, there is only extremely little abrasion of the nucleating agent due to the pushing or rotating movement of the extruder screw. This prevents the nucleating agent from passing through the starch granules Material feed zone 13, in which no phase transition takes place yet, accumulates in the spaces between the individual granules.
  • the squeezing and shearing of the starch granules caused by the rotary movement of the extruder screw also improves the mixing of starch and nucleating agent without the "short-range order" caused by the tumbling of the nucleating agent being destroyed in the microscopic range of the starch-nucleating agent mixture.
  • This has the advantage that even after the starch granules have passed from their solid phase to their viscous-liquid phase, there is still a very fine and very regular spatial distribution of the solid nucleating agent. However, this means that a volume element contains a large number of finely divided nucleating agent granules which act as bubble nucleating agents.
  • the finely divided nucleating agent decomposes due to the heat with the formation of gas.
  • the heat input caused by the temperature prevailing in the extruder of approx. 110 ° -130 ⁇ C results, in conjunction with the frictional heat generated by the friction of the starch granules, in a thermal splitting of the carbonate component of the nucleating agent, as a result of which carbon dioxide gas is released.
  • This gas release of the nucleating agent leads to the above-mentioned formation of bubble nuclei in the viscous liquid starch material. Because of the fine and almost homogeneous Distribution of the nucleating agent is achieved - seen over the entire volume - even distribution of bubble germs. This extensive homogeneity in the spatial distribution of the bubble nuclei caused by the decomposing nucleating agent represents an essential basis for the fine porosity of the packaging material bodies to be produced.
  • a so-called direct gassing with a suitably selected blowing agent gas is carried out while the starch mixture is being heated. This causes the blowing agent to get into the viscous liquid starch mass and to be dissolved therein. This is due to the pressure and temperature conditions prevailing in the extruder 14
  • Starch-nucleating agent mixture supersaturated with propellant gas, i.e. more propellant gas dissolves than under normal conditions.
  • propellant gas i.e. more propellant gas dissolves than under normal conditions.
  • starch granules in which the propellant gas is contained right from the start.
  • the dissolved propellant gas now diffuses into the bubble nuclei caused by the decomposition of the nucleating agent and causes them to expand.
  • the growth of the bubbles is essentially dependent on the
  • Starch-nucleating agent mixture and the pressure difference between the pressure prevailing in the extruder and the Partial pressure of the blowing agent dissolved in the viscous-liquid starch-nucleating agent mixture is determined.
  • the starch-nucleation mixture emerges from the mold opening 15 of the extruder 14 in the form of a mass of melted starch foam.
  • the starch strand emerging from the mold opening 15 is cut off by the cutting device 16 immediately after it emerges.
  • the cut-off starch particles then expand in free fall into a first expanded state, where they already assume their shape. This expansion is accompanied by simultaneous cooling, so that the bodies solidify shortly behind the mold opening 15 or the cutting device 16 - and before they have reached the collecting container 19.
  • the cooled and solidified starch particles 18, which are in their first expanded state, are collected in the collecting container 19 and conveyed by a blower 20 through a collecting line 21 to the storage container 22.
  • the starch particles 18 produced in this way can be used for various purposes - such as Packing material.
  • the starch particles 18 can be conveyed out of the storage container 23 into a post-expansion unit 23.
  • the starch particles 18 expand again after exposure to heat, so that "loose-fill” packaging material bodies of lower mass density are formed, which advantageously have a substantially lower bulk density. It is essential in this post-expansion step that the heat required for renewed expansion is introduced “dry”. It is therefore not allowed to use hot steam to introduce heat. A "wet" treatment would lead to the destruction of the starch packaging material bodies.
  • the re-expanded starch particles 18 are fed to a further storage container 24.
  • This preferably consists of screen fabric or another open-mesh material, so that free air circulation and thus easy drying of the re-expanded starch particles 18 is made possible.
  • starch granules are fed to a specially designed material feed zone 13 of the extruder 14.
  • This "slot entry zone" shown in detail in FIGS. 2-6 has the effect that the material throughput can be approximately doubled with the same speed of rotation of the extruder screw. This increased throughput of starch material brings about an increased production rate of the process in a particularly advantageous manner.
  • the material feed zone 13 is connected on the right-hand side to a reduction gear 25 which is driven by a motor 11.
  • the melting zone 26 adjoins the material feed zone 13, in which the starch material changes from its solid to the viscous-liquid state. It is essential here that the melting zone 26 and the material feed zone 13 are thermally insulated along their connection 27.
  • the extruder screw extends through the material feed zone 13 and the melting zone 26 and is driven by the motor 11 via the reduction gear 25.
  • the extruder screw is guided in the material feed zone 13 in a bushing 28 which is held by a carrier 29.
  • the bushing 28 is provided with an opening 30 through which the starch material is drawn from the hopper 17 into the extruder 14.
  • the underside 31 of the filling funnel 17 is connected to a flange 32 of the carrier 29.
  • the area of the bushing delimited by the opening 30 forms the groove entry zone 33.
  • the area of the bushing 28 adjoining this groove entry zone 33 in the conveying direction of the extruder screw comprises a transition zone 34.
  • the grooves 35 In the area of the groove entrance zone 33, the grooves 35 have a constant incision depth 36.
  • the incision depth 36 decreases to zero in the conveying direction.
  • the opening 30 in the socket 28 has a length of approximately 80 mm and a width of 50 mm.
  • the transition zone 34 has a length of approximately 185 mm.
  • the socket 28 has a wall thickness 37 of approximately 13 mm.
  • FIG. 4 shows an enlarged section of a bushing 28 in the area of the groove entry zone 33 with grooves 35 which have a constant depth of cut 36.
  • the grooves 35 have a cross-sectionally U-shaped profile 38, the two legs 39 of which are inclined outward by an angle Ct.
  • the angle of inclination 0 is 15 ° in the present exemplary embodiment.
  • the depth of cut 36 of the grooves 35 is approximately 1.5 mm.
  • the width 40 of the grooves 35 is approximately 10 mm.
  • the grooves in the exemplary embodiment described here have a constant distance 41 from one another which is approximately 15.5 mm.
  • the distance between the grooves is determined by the diameter of the bushing 28 and the number of incised grooves 35 and their width is determined.
  • FIG. 5 shows a section along the line V-V in FIG. 4, which runs through a groove 35.
  • the grooves 35 viewed in the direction of transport of the extruder screw, have an initial region 42 at the start of the bush 28, after which they reach their maximum incision depth 36, which is then constant in the groove input zone 33.
  • FIG. 6 shows the development of the groove helix in the material feed zone 13.
  • the bushing 28 is cut open in the longitudinal direction and has a rectangular contour in the rolled-out state.
  • Eight grooves 35 are cut at regular intervals around a circumference 43 of the socket 28.
  • the helix helix has made a full 360 "turn in the transport direction after a section 44.
  • the section 44 is approximately 203 mm.
  • “Loose-fill" packaging material body using the device just described is carried out as follows: The starch material is drawn through the opening 30 into the socket 28. The extruder screw pulls the starch granules into the space between the extruder screw and the groove entry zone 33, which is provided with grooves 35 with a constant depth of cut 36. The starch granules, which have an average core diameter of 0.5 mm, for example, can escape into the grooves 35 in the groove entrance zone 33. As a result of this mobility and the possibility of evasion, fewer starch granules simultaneously rotate in a circle with the extruder screw, so that more starch material can be brought into the transition zone 34 through the extruder screw in the direction of transport.
  • the starch granules are packed and consolidated more tightly.
  • cooling fins 45 are arranged around the bushing 28 in the transition zone 34 in order to allow heat to be dissipated.
  • the transition zone 34 is thermally insulated from the melting zone 26.
  • the core size of the starch granules to be processed can be varied within a certain range without significantly reducing the advantageous effect of the method and the device described.
  • the bushing 28 in the groove input zone 33 can also be provided with cooling fins, so that it is always ensured that the starch material does not change into the viscous-liquid state in the entire material feed zone 13. Such a phase transition of the solid starch granules would "smear" the grooves 35 and would not allow their advantageous effect to come into play.
  • Figure 7 shows a preferred form of a
  • Starch packing material body 50 It has the shape of a 25-28 mm long block or rod with the cross-section of two hollow tubes 51, 52 connected via a short web 53. The shape arises with a corresponding design of the mold opening 15. As indicated, the The surface of the starch packaging material body 50 still exhibits a certain irregularity due to the homogenization of the starch extrusion process by using the nucleating agent, but this leads to an increased friction of such Packing material body leads to each other and can therefore be quite advantageous.

Abstract

The description relates to the use of a nucleation agent in a process for the production of loose-fill packing from starch. The nucleation agent is applied to the surface of starch granulates in finely divided form in quantities of 0.1 to 0.2 % of the weight of the granulates and in a grain size of about 50 ν. The granulates thus coated with nucleation agent are taken to an extruder (14) in which they are converted from their solid to a viscous fluid state so that a starch foam produced by the decomposition of the nucleation agent with the action of heat in the extruder (14) is extruded from the moulding aperture (15) of an extruder (14) and cut off directly at the moulding aperture (15) even before any substantial expansion has taken place. The starch particles (18) thus formed are taken into a storage container and, after intermediate storage, expanded to their final size in a post-expansion unit (23).

Description

Titel: Verwendung eines Nukleierungsmittels bei einem Verfahren zur Herstellung schüttfähiger PackmaterialkörperTitle: Use of a nucleating agent in a process for producing pourable packaging material bodies
Beschreibungdescription
Die Erfindung betrifft die Verwendung eines Nukleierungsmittels bei einem Verfahren zur Herstellung schüttfähiger Packmaterialkörper.The invention relates to the use of a nucleating agent in a method for producing pourable packaging material bodies.
Derartige Packmaterialkörper sind bekannt. Diese als "Loose-fill" bezeichneten schüttfähigen, kugelsegmentförmigen Packmaterialkörper werden weit verbreitet zum Verpacken von Transportgut verwendet. Die bekannten Packmaterialkörper besitzen die nachteilige Eigenschaft, daß sie aus Plastikmaterial - wie z.B. Polystyrol oder anderen Polymerisationsprodukten des Benzolabkömmlings Styrol - hergestellt sind, welches nach Gebrauch nur schwer entsorgt werden kann. Dieser Umstand wird besonders unter dem Gesichtspunkt des ständig steigenden Umwelt- und Umweltschutzbewußtseins als eminenter Nachteil empfunden.Such packaging material bodies are known. These loose-fill, spherical segment-shaped packaging material bodies, which are referred to as "loose-fill", are widely used for packaging transport goods. The known packaging material bodies have the disadvantageous property that they are made of plastic material - such as polystyrene or other polymerization products of the benzene derivative styrene - which can only be disposed of with difficulty after use. This fact is perceived as an eminent disadvantage, especially from the point of view of the constantly increasing environmental and environmental protection awareness.
Zur Vermeidung dieser Nachteile stellt sich die Erfindung die Aufgabe, ein Verfahren zu schaffen, welches eine effiziente und wirtschaftliche Herstellung biologisch abbaubarer "Loose-fill"-Packmaterialkörper ermöglicht. Dabei sollten insbesondere aus Gründen einfacher Herstellung die für Kunststoff-Packmaterialkörper in Frage kommenden Technologien anwendbar sein, was nicht zu erwarten ist.To avoid these disadvantages, the object of the invention is to provide a method which enables the efficient and economical production of biodegradable "loose-fill" packaging material bodies. The technologies that are suitable for plastic packaging material bodies should be applicable, which is not to be expected, particularly for reasons of simple production.
Diese Aufgabe wird dadurch gelöst, daß das Nukleierungsmittel auf die Oberfläche von Granalien aus Stärke fein verteilt in einer Menge von 0,1-0,2% bezgl. des Gewichts der Granalien und in einer Korngröße von ca. 50 u aufgebracht wird, daß die derart mit Nukleierungsmittel behafteten Granalien einem Extruder zugeführt werden, in dem sie von ihrem festen in einen viskos-flüssigen Zustand übergeführt werden, und daß ein durch die Zersetzung des Nukleierungsmittels unterThis object is achieved in that the nucleating agent is applied to the surface of granules of starch finely distributed in an amount of 0.1-0.2% based on the weight of the granules and in a grain size of approximately 50 u, that the such granules with nucleating agent are fed to an extruder in which they are converted from their solid to a viscous-liquid state, and that one by the decomposition of the nucleating agent under
Wärmeeintrag im Extruder entstehender Stärke-Schaum aus der Formöffnung eines Extruders extrudiert und unmittelbar an der Formöffnung, noch bevor eine erhebliche Expansion stattgefunden hat, abgeschnitten wird, und daß die derart entstandenen Stärke-Partikel in einem Speicherbehälter" aufgenommen und nach einer Zwischenlagerung in einer Nachexpansionseinheit auf ihre endgültigen Abmessungen expandiert werden.Starch foam, which arises in the extruder, is extruded from the mold opening of an extruder and immediately at the mold opening, before significant expansion has taken place, is cut off, and that the starch particles formed in this way are taken up in a storage container "and after an intermediate storage in a post-expansion unit are expanded to their final dimensions.
Die erfindungsgemäßen Maßnahmen erlauben in besonders vorteilhafter Art und Weise die Herstellung eines' biologisch abbaubaren "Loose-fill"-Packmaterialkörpers, der sich durch seine hohe Umweltverträglichkeit auszeichnet. Die als Grundmaterial verwendete Stärke ist ein Naturprodukt und durch in der Natur vorkommende Mikroorganismen und/oder durch ihren natürlichen Alterungsprozeß ohne umweltbelastende Rückstände abbaubar.The measures according to the invention allow, in a particularly advantageous manner, the production of a ' biodegradable' loose-fill 'packaging material body which is distinguished by its high environmental compatibility. The starch used as the base material is a natural product and can be degraded by environmentally occurring microorganisms and / or by its natural aging process without environmentally harmful residues.
Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und betreffen insbesondere für das Handling besonders zweckmäßige Formen der Stärke-Packmaterialkörper.Advantageous developments of the invention emerge from the subclaims and relate in particular to shapes of the starch packaging material bodies which are particularly expedient for handling.
Weitere Einzelheiten der Erfindung sind denFurther details of the invention are the
Ausführungsbeispielen zu entnehmen, welche im folgenden anhand der Zeichnungen beschrieben werden. Es zeigen:Examples can be found, which are described below with reference to the drawings. Show it:
Figur 1 eine schematische Seitenansicht einerFigure 1 is a schematic side view of a
Vorrichtung zur Erzeugung Packmaterialkörper, Figur 2 eine teilweise Seitenansicht derDevice for producing packaging material bodies, Figure 2 is a partial side view of the
Extrudiereinrichtung mit Materialeinzugszone,Extrusion device with material feed zone,
Figur 3 eine gebrochene teilweise Draufsicht auf dieFigure 3 is a broken partial plan view of the
Materialeinzugszone,Material feed zone,
Figur 4 einen teilweise vergrößerten Abschnitt einerFigure 4 is a partially enlarged portion of a
Extruderbuchse mit Nuten,Extruder sleeve with grooves,
Figur 5 einen Schnitt entlang der Linie V-V in Fig. 4,FIG. 5 shows a section along the line V-V in FIG. 4,
Figur 6 die Entwicklung der Schraubenhelix der Nuten,FIG. 6 shows the development of the screw helix of the grooves,
Figur 7 ein Ausführungsbeispiel einesFigure 7 shows an embodiment of a
Stärke-Packmaterialkörpers,Starch packaging material body,
Figur 8 ein 2. Ausführungsbeispiel einesFigure 8 shows a second embodiment of a
Stärke-Packmaterialkörpers , undStarch packaging material body, and
Figur 9 ein 3. Ausführungsbeispiel einesFigure 9 shows a third embodiment of a
Stärke-Packmaterialkörpers.Starch packaging material body.
Die zur Durchführung des Verfahrens benötigte Vorrichtung ist schematisch in Fig. 1 dargestellt. Ihre wesentlichen Funktionskomplexe bestehen aus einer Trommel 5, einer Extrusionseinrichtung 10, einem Speicherbehälter 22, einer Nachexpansionseinheit 23 und einem weiteren Speieherbehälter Die Trommel 5 weist Öffnungen 6 und 7 auf, durch welche Stärke-Granalien und-ein Nukleierungsmittel (-Bläschenbildne ^ zugegeben werden. Die hierbei verwendeten Stärke-Granalien bestehen aus reinem Stärke-Material. Es ist aber auch möglich, das beschriebene Verfahren mit Stärke-Granalien durchzuführen, die Beimischungen enthalten, die den im folgenden beschriebenen Prozeß jedoch nicht stören. In der folgenden Beschreibung wird der Begriff "Stärke-Granalien" für beide Arten verwendet.The device required to carry out the method is shown schematically in FIG. 1. Its essential functional complexes consist of a drum 5, an extrusion device 10, a storage container 22, a post-expansion unit 23 and a further storage container The drum 5 has openings 6 and 7 through which starch granules and a nucleating agent (bubble form) are added. The starch granules used here consist of pure starch material. However, it is also possible to use the starch method described Granules which contain admixtures but which do not interfere with the process described below. In the following description the term "starch granules" is used for both types.
Das Nukleierungsmittel wurde vor dem Einbringen in die Trommel 5 äußerst fein gemahlen und weist eine Korngröße von ca. 40 μ auf. Das in einer Menge von ca. 0,1 - 0,2 Gewichtsprozent zugegebene Nukleierungsmittel wird in der Trommel 5 auf die Stärke-Granalien aufgetrommelt. Dieses Auftrommeln des Nukleierungsmittels auf die Stärke-Granalien bewirkt, daß diese mit einer durch Adhäsionskräfte fest haftenden, gleichmäßig über die Oberfläche verteilten Schicht des Nukleierungsmittels überzogen sind.The nucleating agent was ground extremely finely before being introduced into the drum 5 and has a grain size of approximately 40 μ. The nucleating agent added in an amount of approximately 0.1-0.2 percent by weight is drummed onto the starch granules in the drum 5. This drumming of the nucleating agent onto the starch granules has the effect that they are coated with a layer of the nucleating agent which is firmly adhered by adhesive forces and is uniformly distributed over the surface.
Das auf die Stärke-Granalien aufgetrommelte Nukleierungsmittel dient als Initiator einer Bläschenkeimbildung im nachfolgenden Extrusionsprozeß: Dies geschieht dadurch, daß sich das feste • Nukleierungsmittel im Extruder 14 unter Gasbildung zersetzt. Das freiwerdende Gas bildet in der viskos-flüssigen Stärke-Masse (s.u.) eine Vielzahl von Bläschenkeimen aus, welche als "Keimzellen" der Zellstruktur des expandierten Stärke-Materials fungieren und somit die Feinporigkeit der entstehenden Stärke-Packmaterialkörper beeinflußen.The nucleating agent tumbled onto the starch granules serves as an initiator of bubble nucleation in the subsequent extrusion process: this is done by the solid nucleating agent in the extruder 14 decomposing with gas formation. The released gas forms in the viscous-liquid starch mass (see below) a large number of vesicles, which act as "germ cells" of the expanded cell structure Starch material function and thus influence the fine porosity of the resulting starch packaging material body.
Die in die Trommel 5 eingebrachte Menge an Nukleierungsmittel wird im wesentlichen durch das Zersetzungsverhalten des Nukleierungsmittels unter der im nachfolgenden Extrudiervorgang stattfindenden Wärmeeinwirkung bestimmt. Eine wichtige und die Zuschlagmenge entscheidend beeinflußende Kenngröße des Nukleierungsmittels stellt dabei die "theroretische Gasausbeute" dar, d.h. die pro Gewichtseinheit des Nukleierungsmittels bei einer bestimmten Temperatur freigesetzte Gasmenge (z.B. Kohlendioxid). Dem Fachmann ist aus diesen Überlegungen klar ersichtlich, wie er die Zuschlagmenge an Nukleierungsmittel zu bemessen hat, um bei einer bestimmten Temperatur im Extruder 14 das gewünschte Maß an Feinporigkeit des expandierten Stärke-Materials zu erreichen.The amount of nucleating agent introduced into the drum 5 is essentially determined by the decomposition behavior of the nucleating agent under the action of heat taking place in the subsequent extrusion process. An important parameter of the nucleating agent, which has a decisive influence on the amount added, is the "theoretical gas yield", i.e. the amount of gas released (e.g. carbon dioxide) per unit weight of nucleating agent at a certain temperature. From these considerations, the person skilled in the art can clearly see how he has to measure the addition amount of nucleating agent in order to achieve the desired degree of fine porosity of the expanded starch material at a certain temperature in the extruder 14.
Das Nukleierungsmittel kann besonders vorteilhaft aus eine Carbonat- und einer Säure-Komponente bestehen. Die Säure-Komponente ermöglicht dann zusätzlich zur Zersetzung der Carbonat-Komponente durch die Wärmeeinwirkung des Extrudiervorgangs eine chemische Reaktion mit der Carbonat-Komponente, die eine verstärkteThe nucleating agent can particularly advantageously consist of a carbonate and an acid component. The acid component then enables, in addition to the decomposition of the carbonate component due to the heat of the extrusion process, a chemical reaction with the carbonate component, which reinforces it
Kohlendioxid-Entwicklung mit sich bringt. Es ist auch möglich, das unter dem geschützten Markennamen "Hydrocerol" bekannt gewordene Mehrkomponenten-Nukleierungsmittel zu verwenden: Dessen Säure-Komponente besteht entweder aus hydrophobierter Anhydrozitronensäure oder aus Zitronensäuremonohydrat. Diese Komponente ist derart behandelt, daß sie wasserabweisend ist und somit mit der Carbonat-Komponente - z.B. Natriumhydrogencarbonat - vermischbar und auf Dauer lagerbar ist, ohne aus der Umgebung Feuchtigkeit anzuziehen. Ein weiters bekanntes und für das beschriebene Verfahren geeignetes Nukleierungsmittel ist unter der Bezeichnung CF 0556 bekannt.Carbon dioxide development. It is also possible to use the multicomponent nucleating agent known under the protected brand name "Hydrocerol": Its acid component consists either of hydrophobicized anhydrocitric acid or of citric acid monohydrate. This component is treated in such a way that it is water-repellent and therefore miscible with the carbonate component - for example sodium hydrogen carbonate - and can be stored in the long term without attracting moisture from the environment. Another nucleating agent known and suitable for the described method is known under the designation CF 0556.
Die derart behandelten Stärke-Granalien werden mittels einer Fördereinrichtung 8 und einer Förderleitung 9 in einen mit der Extrusionseinrichtung 10 verbundenen Fülltrichter 17 eingegeben. Im Fülltrichter 17 können noch evtl. Farbpigmente oder andere gewünschte Zusätze zugegeben werden.The starch granules treated in this way are fed into a filling funnel 17 connected to the extrusion device 10 by means of a conveying device 8 and a conveying line 9. Color pigments or other desired additives may also be added in the filling funnel 17.
Die Extrusionseinrichtung 10 besteht aus einem Antriebsmotor 11, einem Getriebe 12, einer Materialeinzugszone 13 und einem Extruder 14 sowie einer Schneideeinrichtung 16, die vor einer Formöffnung 15 des Extruders 14 angeordnet ist. Die aufgetrommelten Stärke-Granalien gelangen über den am Ende der Förderleitung 9 angeordneten Fülltrichter 17 zur Materialeingangszone 13. Die aus den Stärke-Granalien mit dem aufgetrommelten Nukleierungsmittel und den evtl. beigebenen Zusätzen bestehende Mischung wird von einer - in Fig. 1 nicht gezeigten - Extruderschnecke in die Materialeinzugszone 13 des Extruders 14 eingezogen. Die Stärke-Granalien mit dem aufgetrommelten Nukleierungsmittel werden von den Vortriebsflanken der sich mit einer geeignet gewählten Geschwindigkeit drehenden Extruderschnecke mitgenommen und dadurch in axialer Richtung von der Materialeinzugszone 13 des Extruders 14 zu der am anderen Ende des Extruders 14 angeordneten Formöffnung 15 befördert. Der in Extruderrichtung stetig zunehmende Kerndurchmesser der Extruderschnecke bewirkt, daß die Stärke-Granalien bei ihrer Vorwärtsbewegung durch den Extruder 14 einem ständig wachsendem Druck unterworfen werden. Gleichzeitig wird das aus dem kompaktifizierten Stärke-Granalien und den darauf aufgetrommelten Nukleierungsmittel gebildete Gemisch auf eine höhere Temperatur erwärmt, bis es schmilzt und dabei in einem viskos-flüssigem Zustand übergeht.The extrusion device 10 consists of a drive motor 11, a gear 12, a material feed zone 13 and an extruder 14 and a cutting device 16 which is arranged in front of a mold opening 15 of the extruder 14. The tumbled starch granules reach the material inlet zone 13 via the filling funnel 17 arranged at the end of the conveying line 9. The mixture consisting of the starch granules with the tumbled nucleating agent and any additives added is fed by an extruder screw (not shown in FIG. 1) drawn into the material feed zone 13 of the extruder 14. The starch granules with the Tumbled nucleating agents are carried along by the driving flanks of the extruder screw rotating at a suitably selected speed and are thereby conveyed in the axial direction from the material feed zone 13 of the extruder 14 to the mold opening 15 arranged at the other end of the extruder 14. The continuously increasing core diameter of the extruder screw in the extruder direction causes the starch granules to be subjected to a constantly increasing pressure as they move forward through the extruder 14. At the same time, the mixture formed from the compacted starch granules and the nucleating agent tumbled thereon is heated to a higher temperature until it melts and thereby changes into a viscous-liquid state.
Wesentlich für den ExtrusionsVorgang ist, daß das Nukleierungsmittel in dem viskos-flüssigen Stärke-Nukleierungsmittel-Gemisch gleichmäßig und fein verteilt ist. Dies ist erforderlich, um nach dem Extrudieren eine regelmäßige und feine Zellstruktur des expandierten Stärke-Materials zu erhalten. Das Auftrommeln des Nukleierungsmittels auf die Stärke-Granalien bewirkt, daß beim Aneinanderreiben der einzelnen Granalien aufgrund der Schub¬ bzw. Drehbewegung der Extruderschnecke nur ein äußerst geringer Abrieb des Nukleierungsmittels stattfindet. Dadurch wird verhindert, daß sich das Nukleierungsmittel während des Durchlaufens der Stärke-Granalien durch die Materialeinzugszone 13, in der noch kein Phasenübergang stattfindet, in den Zwischenräumen der einzelnen Granulatkörner ansammelt. Das durch die Drehbewegung der Extruderschnecke hervorgerufene Quetschen und Scheren der Stärke-Granalien verbessert außerdem die Durchmischung von Stärke und Nukleierungsmittel, ohne daß die durch das Auftrommeln des Nukleierungsmittels bewirkte "Nahordnung" im mikroskopischen Bereich des Stärke-Nukleierungsmittel-Gemisch zerstört wird. Dies bringt in vorteilhafter Art und Weise mit sich, daß auch nach dem Übergang der Stärke-Granalien von ihrer festen Phase in ihre viskos-flüssige Phase immer noch eine sehr feine und sehr regelmäßige räumliche Verteilung des festen Nukleierungsmittels gegeben ist. Dies bedeutet aber, daß in einem Volumenelement sehr viele, fein verteilte Nukleierungsmittel-Körnchen vorhanden sind, die als Bläschenkeimbildner wirken.It is essential for the extrusion process that the nucleating agent is evenly and finely distributed in the viscous-liquid starch-nucleating agent mixture. This is necessary in order to obtain a regular and fine cell structure of the expanded starch material after extrusion. The drumming of the nucleating agent onto the starch granules has the effect that when the individual granules are rubbed against one another, there is only extremely little abrasion of the nucleating agent due to the pushing or rotating movement of the extruder screw. This prevents the nucleating agent from passing through the starch granules Material feed zone 13, in which no phase transition takes place yet, accumulates in the spaces between the individual granules. The squeezing and shearing of the starch granules caused by the rotary movement of the extruder screw also improves the mixing of starch and nucleating agent without the "short-range order" caused by the tumbling of the nucleating agent being destroyed in the microscopic range of the starch-nucleating agent mixture. This has the advantage that even after the starch granules have passed from their solid phase to their viscous-liquid phase, there is still a very fine and very regular spatial distribution of the solid nucleating agent. However, this means that a volume element contains a large number of finely divided nucleating agent granules which act as bubble nucleating agents.
Das feinverteilte Nukleierungsmittel zersetzt sich durch die Hitzeinwirkung unter Gasbildung. Der durch die im Extruder herrschende Temperatur von ca. 110°-130βC bewirkte Hitzeeintrag resultiert in Verbindung mit der durch die Reibung der Stärke-Granalien entstehenden Reibungswärme in einer thermischen Aufspaltung der Carbonat-Komponente des Nukleierungsmittels, wodurch Kohlendioxid-Gas freigesetzt wird. Diese Gasfreisetzung des Nukleierungsmittels führt zu der o.g. Bildung von Bläschenkeimen im viskos-flüssigen Stärkematerial. Aufgrund der feinen und annähernd homogenen Verteilung des Nukleierungsmittels wird eine - über das gesamte Volumen gesehen - gleichmäßige Verteilung von Bläschenkeimen erreicht. Diese weitgehende Homogenität in der räumlichen Verteilung der durch das sich zersetzende Nukleierungsmittel hervorgerufenen Bläschenkeime stellt eine wesentliche Grundlage für die zu erzielende Feinporigkeit der herzustellenden Packmaterialkörper dar.The finely divided nucleating agent decomposes due to the heat with the formation of gas. The heat input caused by the temperature prevailing in the extruder of approx. 110 ° -130 β C results, in conjunction with the frictional heat generated by the friction of the starch granules, in a thermal splitting of the carbonate component of the nucleating agent, as a result of which carbon dioxide gas is released. This gas release of the nucleating agent leads to the above-mentioned formation of bubble nuclei in the viscous liquid starch material. Because of the fine and almost homogeneous Distribution of the nucleating agent is achieved - seen over the entire volume - even distribution of bubble germs. This extensive homogeneity in the spatial distribution of the bubble nuclei caused by the decomposing nucleating agent represents an essential basis for the fine porosity of the packaging material bodies to be produced.
Im Extruder 14 wird während des Erhitzens des Stärke-Gemisches eine sogenannte Direktbegasung mit einem geeignet gewählten Treibmittelgas durchgeführt. Dies bewirkt, daß das Treibmittel in die viskos-flüssige Stärke-Masse gelangt und darin gelöst wird. Aufgrund der im Extruder 14 herrschenden Druck- und Temperaturbedingungen ist dasIn the extruder 14, a so-called direct gassing with a suitably selected blowing agent gas is carried out while the starch mixture is being heated. This causes the blowing agent to get into the viscous liquid starch mass and to be dissolved therein. This is due to the pressure and temperature conditions prevailing in the extruder 14
Stärke-Nukleierungsmittel-Gemisch an Treibgas übersättigt, d.h. es löst sich mehr Treibgas als bei Normalbedingungen. Alternativ ist es möglich, Stärke-Granalien zu verwenden, in welchen das Treibgas bereits von Anfang an enthalten ist.Starch-nucleating agent mixture supersaturated with propellant gas, i.e. more propellant gas dissolves than under normal conditions. Alternatively, it is possible to use starch granules in which the propellant gas is contained right from the start.
Das gelöste Treibmittelgas diffundiert nun in die durch das Zersetzen des Nukleierungsmittels hervorgerufenen Bläschenkeime hinein und bewirkt deren Expansion. Das Wachstum der Blasen wird hierbei wesentlich von derThe dissolved propellant gas now diffuses into the bubble nuclei caused by the decomposition of the nucleating agent and causes them to expand. The growth of the bubbles is essentially dependent on the
Diffusionsgeschwindigkeit und der Übersättigung des gelösten Treibmittels in der viskos-flüssigenDiffusion rate and the supersaturation of the dissolved blowing agent in the viscous liquid
Stärke-Nukleierungsmittel-Gemisch und von der Druckdifferenz zwischen dem im Extruder herrschenden Druck und dem Partialdruck des in dem viskos-flüssigen Stärke-Nukleierungsmittel-Gemisch gelösten Treibmittels bestimmt. Das Stärke-Nukleierungs-Gemisch tritt in Form einer Masse geschmolzenen Stärke-Schaums aus der Formöffnung 15 des Extruders 14 aus.Starch-nucleating agent mixture and the pressure difference between the pressure prevailing in the extruder and the Partial pressure of the blowing agent dissolved in the viscous-liquid starch-nucleating agent mixture is determined. The starch-nucleation mixture emerges from the mold opening 15 of the extruder 14 in the form of a mass of melted starch foam.
Der aus der Formöffnung 15 heraustretende Stärke-Strang wird unmittelbar nach dessen Austreten von der Schneideeinrichtung 16 abgeschnitten.The starch strand emerging from the mold opening 15 is cut off by the cutting device 16 immediately after it emerges.
Der Druckunterschied zwischen dem im Inneren des Extruders herrschenden Überdruck und dem - niedrigeren - Druck der umgebenden Raumatmosphäre bewirkt, daß das im Stärkematerial gebundene Treibgas sich ausdehnt. Die abgeschnittenen Stärke-Partikel expandieren dann im freien Fall in einen ersten expandierten Zustand, wobei sie bereits ihre Form einnehmen. Diese Expansion ist von einer gleichzeitigen Abkühlung begleitet, so daß die Körper sich kurz hinter der Formöffnung 15 bzw. der Schneideeinrichtung 16 - und bevor sie den Sammelbehälter 19 erreicht haben - verfestigen. Die abgekühlten und gefestigten, sich in ihrem ersten expandierten Zustand befindlichen Stärke-Partikel 18 werden im Sammelbehälter 19 aufgefangen und von einem Gebläse 20 durch eine Sammelleitung 21 zu dem Speicherbehälter 22 befördert.The pressure difference between the excess pressure prevailing inside the extruder and the - lower - pressure of the surrounding room atmosphere causes the propellant gas bound in the starch material to expand. The cut-off starch particles then expand in free fall into a first expanded state, where they already assume their shape. This expansion is accompanied by simultaneous cooling, so that the bodies solidify shortly behind the mold opening 15 or the cutting device 16 - and before they have reached the collecting container 19. The cooled and solidified starch particles 18, which are in their first expanded state, are collected in the collecting container 19 and conveyed by a blower 20 through a collecting line 21 to the storage container 22.
Die auf diese Weise hergestellten Stärke-Partikel 18 lassen sich für verschiedene Zwecke verwenden - wie bspw. als Verpackungsmaterial.The starch particles 18 produced in this way can be used for various purposes - such as Packing material.
Die Stärke-Partikel 18 können nach einer gewissen Lagerzeit aus dem Speicherbehälter 23 in eine Nachexpansionseinheit 23 gefördert werden. In diesen expandieren die Stärke-Partikel 18 können nach Hitzeeinwirkung von neuem, so daß "Loose-fill"-Packmaterialkörper geringerer Massendichte entstehen, die in vorteilhafter Weise ein wesentlich geringeres Schüttgewicht aufweisen. Wesentlich bei diesem Nachexpansions-Schritt ist, daß die zur erneuten Expansion erforderliche Wärme "trocken" eingebracht wird. Es darf also kein heißer Wasserdampf zum Wärmeeintrag verwendet werden. Eine "feuchte" Behandlung würde zu einer Zerstörung der Stärke-Packmaterialkörper führen.After a certain storage time, the starch particles 18 can be conveyed out of the storage container 23 into a post-expansion unit 23. In this, the starch particles 18 expand again after exposure to heat, so that "loose-fill" packaging material bodies of lower mass density are formed, which advantageously have a substantially lower bulk density. It is essential in this post-expansion step that the heat required for renewed expansion is introduced "dry". It is therefore not allowed to use hot steam to introduce heat. A "wet" treatment would lead to the destruction of the starch packaging material bodies.
Nach dem Verlassen der Nachexpansionseinheit 23 werden die erneut expandierten Stärke-Partikel 18 einem weiteren Speicherbehälter 24 zugeführt. Dieser besteht vorzugsweise aus Siebgewebe oder einem anderen offenmaschigem Material, so daß eine freie LuftZirkulation und damit eine leichte Trocknung der erneut expandierten Stärke-Partikel 18 ermöglicht wird.After leaving the post-expansion unit 23, the re-expanded starch particles 18 are fed to a further storage container 24. This preferably consists of screen fabric or another open-mesh material, so that free air circulation and thus easy drying of the re-expanded starch particles 18 is made possible.
Eine alternative Lösung der der Erfindung zugrunde liegenden Aufgabe wird im folgenden anhand eines zweiten Ausführungsbeispiels beschrieben. Dieses Verfahren wird mit einer Vorrichtung durchgeführt, die im wesentlichen der in Fig. 1 gezeigten und vorstehend eingehend beschriebenen Vorrichtung erreicht.An alternative solution to the object on which the invention is based is described below with reference to a second exemplary embodiment. This method is carried out with a device which is essentially that shown in FIG. 1 and described in detail above Device reached.
Ein gegenüber dem oben beschriebenen Verfahren wesentlicher Unterschied der beiden Verfahren - und somit der zur Durchführung des Verfahrens verwendeten Vorrichtungen - besteht darin, daß die Stärke-Granalien einer speziell ausgebildeten Materialeinzugszone 13 des Extruders 14 zugeführt werden. Diese in den Fig. 2 - 6 im einzelnen dargestellten "Nuteneingangszone" bewirkt, daß der Materialdurchsatz bei einer gleichen Umdrehungsgeschwindigkeit der Extruderschnecke ungefähr verdoppelt werden kann. Dieser erhöhte Durchsatz von Stärke-Material bringt in besonders vorteilhafter Art und Weise eine erhöhte Produktionsrate des Verfahrens mit sich.A significant difference between the two processes and the devices used to carry out the process, as compared to the process described above, is that the starch granules are fed to a specially designed material feed zone 13 of the extruder 14. This "slot entry zone" shown in detail in FIGS. 2-6 has the effect that the material throughput can be approximately doubled with the same speed of rotation of the extruder screw. This increased throughput of starch material brings about an increased production rate of the process in a particularly advantageous manner.
Die Fig. 2 zeigt in vergrößertem Maßstab die Materialeinzugszone 13 mit aufgesetztem Fülltrichter 17. Die Materialeinzugszone 13 ist auf der rechten Seite mit einem Reduziergetriebe 25 verbunden, das durch einen Motor 11 angetrieben wird.2 shows, on an enlarged scale, the material feed zone 13 with the filling funnel 17 attached. The material feed zone 13 is connected on the right-hand side to a reduction gear 25 which is driven by a motor 11.
An die Materialeinzugszone 13 schließt sich in der Förderrichtung der Extruderschnecke die Schmelzzone 26 an, in der das Stärke-Material von seinem festen in den viskos-flüssigen Zustand übergeht. Wesentlich hierbei ist, daß die Schmelzzone 26 und die Materialeinzugszone 13 längs ihrer Verbindung 27 thermisch isoliert sind. Die Extruderschnecke reicht durch die Materialeinzugszone 13 und die Schmelzzone 26 hindurch und wird durch den Motor 11 über das Reduziergetriebe 25 angetrieben. Die Extruderschnecke wird in der Materialeinzugszone 13 in einer Buchse 28 geführt, die von einem Träger 29 gehalten wird. Die Buchse 28 ist mit einer Öffnung 30 versehen, durch die das Stärke-Material aus dem Fülltrichter 17 in den Extruder 14 eingezogen wird. Der Fülltrichter 17 ist mit seiner Unterseite 31 mit einem Flansch 32 des Trägers 29 verbunden. Der durch die Öffnung 30 umgrenzte Bereich der Buchse bildet die Nuteneingangszone 33. Der in Förderrichtung der Extruderschnecke an diese Nuteneingangszone 33 anschließende Bereich der Buchse 28 umfaßt eine Übergangszone 34. Wie am besten aus Fig. 3 zu entnehmen ist, sind in die Buchse 28 mehrere längsverlaufende Nuten 35 eingeschnitten. Im Bereich der Nuteneingangszone 33 besitzen die Nuten 35 eine konstante Einschnittiefe 36. In der in Förderrichtung an die Nuteneingangszone 33 anschließenden Übergangszone 34 nimmt die Einschnittiefe 36 in Förderrichtung bis auf Null ab.In the direction of conveyance of the extruder screw, the melting zone 26 adjoins the material feed zone 13, in which the starch material changes from its solid to the viscous-liquid state. It is essential here that the melting zone 26 and the material feed zone 13 are thermally insulated along their connection 27. The extruder screw extends through the material feed zone 13 and the melting zone 26 and is driven by the motor 11 via the reduction gear 25. The extruder screw is guided in the material feed zone 13 in a bushing 28 which is held by a carrier 29. The bushing 28 is provided with an opening 30 through which the starch material is drawn from the hopper 17 into the extruder 14. The underside 31 of the filling funnel 17 is connected to a flange 32 of the carrier 29. The area of the bushing delimited by the opening 30 forms the groove entry zone 33. The area of the bushing 28 adjoining this groove entry zone 33 in the conveying direction of the extruder screw comprises a transition zone 34. As can best be seen from FIG. 3, there are several in the bushing 28 longitudinal grooves 35 cut. In the area of the groove entrance zone 33, the grooves 35 have a constant incision depth 36. In the transition zone 34 adjoining the groove entrance zone 33 in the conveying direction, the incision depth 36 decreases to zero in the conveying direction.
Der wesentliche Effekt dieser Nuten 35 in der Buchse 28 ist, daß diese Nuten für eine gewisse Anzahl von Stärke-Granalien über eine bestimmte Querschnittscheibe durch den Extruder in 'der Materialeingangszone 13 eine Art "Ausweichnische" bilden. Dadurch wird in besonders vorteilhafter Art und Weise verhindert, daß der Materialtransport der Stärke-Granalien in axialer Richtung durch an den Vertriebsflanken der spiralförmigen Extruderschnecke anhaftenden Stärke-Granalien nicht behindert werden kann. Außerdem wird dadurch eine Stetigkeit des von der Extruderschnecke nachgezogenen Materials gew&irleistet, wodurch eine gleichbleibende Qualität des aus der Formöffnung 15 des Extruders 14 austretenden Stärke-Schaums gewährleistet ist.The main effect of these grooves 35 in the sleeve 28 so that these grooves form a kind of a certain number of starch granules above a certain cross-sectional slice through the extruder in 'the material input zone 13 "escape niche". This prevents in a particularly advantageous manner that the material transport of the starch granules in the axial direction by on the sales flanks spiral-shaped extruder screw adhering starch granules cannot be hindered. In addition, this ensures a continuity of the material drawn by the extruder screw, thereby ensuring a constant quality of the starch foam emerging from the mold opening 15 of the extruder 14.
Bei der Ausbildung der eben beschriebenen Bauteile ist vorgesehen, daß die Öffnung 30 in der Buchse 28 eine Länge von ca. 80 mm und eine Breite von 50 mm aufweist. Die Übergangszone 34 besitzt eine Länge von ca. 185 mm. Die Buchse 28 besitzt eine Wandstärke 37 von ca. 13 mm.In the construction of the components just described, it is provided that the opening 30 in the socket 28 has a length of approximately 80 mm and a width of 50 mm. The transition zone 34 has a length of approximately 185 mm. The socket 28 has a wall thickness 37 of approximately 13 mm.
Die Fig. 4 zeigt einen vergrößerten Ausschnitt einer Buchse 28 im Bereich der Nuteneingangszone 33 mit Nuten 35, welche eine konstante Einschnittiefe 36 aufweisen.4 shows an enlarged section of a bushing 28 in the area of the groove entry zone 33 with grooves 35 which have a constant depth of cut 36.
Die Nuten 35 besitzen einen im Querschnitt U-förmiges Profil 38, dessen beide Schenkel 39 um einen Winkel Ct nach außen geneigt sind. Der Neigungswinkel 0 beträgt in dem vorliegenden Ausführungsbeispiel 15°. Die Einschnittiefe 36 der Nuten 35 beträgt ca. 1,5 mm. Die Breite 40 der Nuten 35 beträgt ca. 10 mm. Die Nuten in dem hier beschriebenen Ausführungsbeispiel besitzen einen konstanten Abstand 41 voneinander, der ca. 15,5 mm beträgt.The grooves 35 have a cross-sectionally U-shaped profile 38, the two legs 39 of which are inclined outward by an angle Ct. The angle of inclination 0 is 15 ° in the present exemplary embodiment. The depth of cut 36 of the grooves 35 is approximately 1.5 mm. The width 40 of the grooves 35 is approximately 10 mm. The grooves in the exemplary embodiment described here have a constant distance 41 from one another which is approximately 15.5 mm.
Der Abstand der Nuten wird durch den Durchmesser der Buchse 28 und der Anzahl der eingeschnittenen Nuten 35 sowie deren Breite bestimmt.The distance between the grooves is determined by the diameter of the bushing 28 and the number of incised grooves 35 and their width is determined.
Die Fig. 5 zeigt einen Schnitt längs der Linie V-V in Fig. 4, welcher durch eine Nut 35 verläuft. Die Nuten 35 weisen in Transportrichtung der Extruderschnecke gesehen am Beginn der Buchse 28 einen Anfangsbereich 42 auf, nach dem sie ihre maximale Einschnittiefe 36 erreichen, die anschließend in der Nuteneingangszone 33 konstant ist.FIG. 5 shows a section along the line V-V in FIG. 4, which runs through a groove 35. The grooves 35, viewed in the direction of transport of the extruder screw, have an initial region 42 at the start of the bush 28, after which they reach their maximum incision depth 36, which is then constant in the groove input zone 33.
Die Fig. 6 stellt die Entwicklung der Nutenhelix in der Materialeinzugszone 13 dar. Die Buchse 28 ist in Längsrichtung aufgeschnitten und weist im ausgewalzten Zustand eine rechteckförmige Kontur auf. Um einen Umfang 43 der Buchse 28 sind in regelmäßigem Abstand acht Nuten 35 eingeschnitten. Die Helixwendel hat nach einer Strecke 44 in Transportrichtung eine volle 360"-Drehung durchgeführt. Die Strecke 44 beträgt im vorliegenden Ausführungsbeispiel ca. 203 mm.FIG. 6 shows the development of the groove helix in the material feed zone 13. The bushing 28 is cut open in the longitudinal direction and has a rectangular contour in the rolled-out state. Eight grooves 35 are cut at regular intervals around a circumference 43 of the socket 28. The helix helix has made a full 360 "turn in the transport direction after a section 44. In the present exemplary embodiment, the section 44 is approximately 203 mm.
Das Verfahren zur Herstellung vonThe process of making
"Loose-fill"-Packmaterialkörper mittels der eben beschriebenen Vorrichtung wird wie folgt durchgeführt: Das Stärke-Material wird durch die Öffnung 30 in die Buchse 28 eingezogen. Die Extruderschnecke zieht die Stärke-Granalien in den Raum zwischen der Extruderschnecke und der mit Nuten 35 mit konstanter Einschnittiefe 36 versehenen Nuteneingangszone 33. Die Stärke-Granalien, die z.B. einen mittleren Kerndurchmesser von 0,5 mm aufweisen, können in der Nuteneingangszone 33 in die Nuten 35 ausweichen. Durch diese Beweglichkeit und die Ausweichmöglichkeit drehen sich weniger Stärke-Granalien simultan kreisförmig mit der Extruderschnecke mit, so daß mehr Stärke-Material in Transportrichtung durch die Extruderschecke in die Übergangszone 34 gebracht werden kann."Loose-fill" packaging material body using the device just described is carried out as follows: The starch material is drawn through the opening 30 into the socket 28. The extruder screw pulls the starch granules into the space between the extruder screw and the groove entry zone 33, which is provided with grooves 35 with a constant depth of cut 36. The starch granules, which have an average core diameter of 0.5 mm, for example, can escape into the grooves 35 in the groove entrance zone 33. As a result of this mobility and the possibility of evasion, fewer starch granules simultaneously rotate in a circle with the extruder screw, so that more starch material can be brought into the transition zone 34 through the extruder screw in the direction of transport.
Durch den Eigendruck des Stärke-Materials und die Beweglichkeit in der Nuteneingangszone 33 kann insgesamt mehr Material von der Extruderschnecke in Axialrichtung des Extruders 14 befördert werden. Durch den schnelleren Abtransport und die größere Beweglichkeit "sperren" weniger Stärke-Partikel den Raum für die aus dem Fülltrichter 17 nachdrängende Stärke-Granalien.Due to the intrinsic pressure of the starch material and the mobility in the groove input zone 33, more material can be transported from the extruder screw in the axial direction of the extruder 14. Due to the faster removal and the greater mobility, fewer starch particles "block" the space for the starch granules pushing out of the hopper 17.
In der Übergangszone 34 nimmt die Einschnittiefe 36 der Nuten in T=snsportrichtung bis auf Null ab. Die Stärke-Granalien werden dadurch dichter gepackt und verstätigt.In the transition zone 34, the depth of cut 36 of the grooves decreases to zero in the T = sport direction. The starch granules are packed and consolidated more tightly.
Die dabei auftretende Reibungswärme darf nicht ausreichen, um die Stärke-Granalien in ihren viskos-flüssigen Zustand überzuführen. Deshalb sind um die Buchse 28 in der Übergangszone 34 Kühlrippen 45 (s. Fig. 2) angeordnet, um eine Wärmeabfuhr zu ermöglichen.The resulting frictional heat must not be sufficient to convert the starch granules into their viscous, liquid state. Therefore, cooling fins 45 (see FIG. 2) are arranged around the bushing 28 in the transition zone 34 in order to allow heat to be dissipated.
Um zu erreichen, daß die Stärke-Granalien erst in der Schmelzzone 26 in ihren viskos-flüssigen Zustand übergeführt werden, ist die Übergangszone 34 von der Schmelzzone 26 thermisch isoliert.To achieve that the starch granules only in the Melting zone 26 are converted into their viscous-liquid state, the transition zone 34 is thermally insulated from the melting zone 26.
Die Kerngröße der zu verarbeitenden Stärke-Granalien kann in einer gewissen Bandbreite variiert werden, ohne daß die vorteilhafte Wirkung des beschriebenen Verfahrens und der erläuterten Vorrichtung wesentlich eingeschränkt wird.The core size of the starch granules to be processed can be varied within a certain range without significantly reducing the advantageous effect of the method and the device described.
Je nach Einzugsgeschwindigkeit kann die Buchse 28 in der Nuteneingangszone 33 ebenfalls mit Kühlrippen versehen sein, damit immer gewährleistet ist, daß das Stärke-Material in der gesamten Materialeinzugszone 13 nicht in den viskos-flüssigen Zustand übergeht. Ein derartiger Phasenübergang der festen Stärke-Granalien würde die Nuten 35 "zuschmieren" und deren vorteilhaften Effekt nicht zum Tragen kommen lassen.Depending on the feed speed, the bushing 28 in the groove input zone 33 can also be provided with cooling fins, so that it is always ensured that the starch material does not change into the viscous-liquid state in the entire material feed zone 13. Such a phase transition of the solid starch granules would "smear" the grooves 35 and would not allow their advantageous effect to come into play.
Figur 7 zeigt eine bevorzugte Form einesFigure 7 shows a preferred form of a
Stärke-Packmaterialkörpers 50. Er hat die Form eines 25-28 mm langen Blocks oder Stabes mit dem Querschnitt zweier über einen kurzen Steg 53 verbundener innen hohler Rohre 51, 52. Die Form entsteht bei entsprechender Gestaltung der Formöffnung 15. Wie angedeutet, weist die Oberfläche des Stärke-Packmaterialkörpers 50 tortz der Vergleichmäßigung des Stärke-Extrusionsvorganges durch Verwendung des Nukleierungsmittels noch eine gewisse Unregelmäßigkeit auf, die jedoch zu einer erhöhten Reibung derartiger Packmaterialkörper aneinander führt und damit durchaus vorteilhaft sein kann.Starch packing material body 50. It has the shape of a 25-28 mm long block or rod with the cross-section of two hollow tubes 51, 52 connected via a short web 53. The shape arises with a corresponding design of the mold opening 15. As indicated, the The surface of the starch packaging material body 50 still exhibits a certain irregularity due to the homogenization of the starch extrusion process by using the nucleating agent, but this leads to an increased friction of such Packing material body leads to each other and can therefore be quite advantageous.
Alternative Formen sind durchaus denkbar, so z.B. etwa Stäbe mit dem Querschnitt eines vierblättrigen Kleeblattes - vgl. Figur 8 - oder eines dünneren spiralig gewundenen Stäbchens - vgl. Figur 9 -, wie sie durch entsprechende Gestaltung der . Formöffnungen erhalten werden können. Alternative forms are quite conceivable, e.g. about rods with the cross-section of a four-leaf clover - cf. Figure 8 - or a thinner spirally wound stick - cf. Figure 9 -, as by appropriate design of the. Mold openings can be obtained.

Claims

Patentansprüche Claims
1. Verwendung eines Nukleierungsmittels bei einem Verfahren zur Herstellung schüttfähiger Packmaterialkörper aus Stärke, dadurch gekennzeichnet, daß das Nukleierungsmittel auf die Oberfläche von Granalien aus Stärke fein verteilt in einer Menge von 0,1-0,2% bezgl. des Gewichts der Granalien und in einer Korngröße von ca. 50 μ aufgebracht wird, daß die derart mit Nukleierungsmittel behafteten Granalien einem Extruder (14) zugeführt werden, in dem sie von ihrem festen in einen viskos-flüssigen Zustand übergeführt werden, und daß ein durch die Zersetzung des Nukleierungsmittels unter Wärmeeintrag im Extruder (14) entstehender Stärke-Schaum aus der Formöffnung (15) eines Extruders (14) extrudiert und unmittelbar an der Formöffnung (15), noch bevor eine erhebliche Expansion stattgefunden hat, abgeschnitten wird, und daß die derart entstandenen Stärke-Partikel (18) in einem Speicherbehälter (22) aufgenommen und nach einer Zwischenlagerung in einer Nachexpansionseinheit (23) auf ihre endgültigen Abmessungen expandiert werden.1. Use of a nucleating agent in a process for the production of pourable packing material bodies made of starch, characterized in that the nucleating agent is finely distributed on the surface of granules of starch in an amount of 0.1-0.2% based on the weight of the granules and in a grain size of about 50 microns is applied that the granules so contaminated with nucleating agent are fed to an extruder (14) in which they are converted from their solid to a viscous-liquid state, and that by the decomposition of the nucleating agent with heat input Starch foam produced in the extruder (14) is extruded from the mold opening (15) of an extruder (14) and cut off directly at the mold opening (15), even before considerable expansion has taken place, and that the starch particles formed in this way ( 18) in a storage container (22) and after an intermediate storage in a post-expansion unit (23) to their final dimensions can be expanded.
2. Verwendung eines Nukleierungsmittels nach Anspruch 1, dadurch gekennzeichnet, daß das Überziehen der Stärke-Granalien mit dem Nukleierungsmittel in einer Trommel erfolgt. 2. Use of a nucleating agent according to claim 1, characterized in that the coating of the starch granules with the nucleating agent takes place in a drum.
3. Verwendung eines Nukleierungsmittels nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Verarbeitungstemperatur im Extruder ca. 110°C-130°C beträgt.3. Use of a nucleating agent according to claim 1 or 2, characterized in that the processing temperature in the extruder is approximately 110 ° C-130 ° C.
4. Verwendung eines Nukleierungsmittels nach Anspruch 1 - 3, dadurch gekennzeichnet, daß das Nukleierungsmittel aus einer Carbonat- und einer Säure-Komponente ohne Haftzustätze besteht.4. Use of a nucleating agent according to claims 1-3, characterized in that the nucleating agent consists of a carbonate and an acid component without adhesion.
5. Schüttfähiger Stärke-Packmaterialkörper, hergestellt nach Anspruch 1 oder einem der folgenden unter Verwendung eines Nukleierungsmittels, dadurch gekennzeichnet, daß das der aus der Formöffnung (15) des Extruders austretende Stärke-Schaum-Strang in einer Länge abgeschnitten wird, die nach der Expansion eine Länge des5. Pourable starch packaging material body, produced according to claim 1 or one of the following using a nucleating agent, characterized in that the starch foam strand emerging from the mold opening (15) of the extruder is cut to a length which after expansion a length of
Stärke-Packmaterialkörpers von ca. 15-30 mm ergibt und die Formöffnung (15) so geformt ist, daß der Stärke-Packmaterialkörper (50) die Form zweier paralleler hohlen und durch einen schmalen Steg (53) miteinander verbundener Röhren (51,52) hat.15-30 mm and the shaped opening (15) is shaped such that the starch packing material body (50) has the shape of two parallel hollow tubes (51, 52) connected to one another by a narrow web (53). Has.
6. Schüttfähiger Stärke-Packmaterialkörper hergestellt nach Anspruch 1 oder einem der folgenden unter Verwendung eines Nukleierungsmittels, dadurch gekennzeichnet, daß der Stärke-Packmaterialkörper (60) den Querschnitt etwa eines vierstrahligen Sternes oder eines vierblättrigen Kleeblattes hat.6. pourable starch packaging material body produced according to claim 1 or one of the following using a nucleating agent, characterized in that the starch packaging material body (60) has the cross section of about a four-pointed star or a four-bladed Clover leaf.
7. Schüttfähiger Stärke-Packmaterialkörper hergestellt nach Anspruch 1 oder einem der folgenden unter Verwendung eines Nukleierungsmittels, dadurch gekennzeichnet, daß der Stärke-Packmaterialkörper (70) die Form einer Spirale hat. 7. pourable starch packing material body produced according to claim 1 or one of the following using a nucleating agent, characterized in that the starch packing material body (70) has the shape of a spiral.
PCT/EP1990/002150 1990-05-23 1990-12-11 Use of a nucleation agent in a process for the production of loose-fill packing material WO1991018048A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR9008025A BR9008025A (en) 1990-05-23 1990-12-11 EMPLOYMENT OF A NUCLEATION AGENT IN A PROCESS FOR THE PRODUCTION OF BODIES OF PACKING MATERIAL DISCHARGEABLE IN BULK
JP91502046A JPH05506675A (en) 1990-05-23 1990-12-11 Use of nucleating agents in methods for producing bulk fillings

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19904016597 DE4016597A1 (en) 1990-05-23 1990-05-23 METHOD FOR THE PRODUCTION OF SHELL-CAPABLE, SPHERICAL SEGMENT-SHAPED PACK MATERIAL BODY WITH EXTERIOR CONVEXER AND INTERNAL CONCAVER SURFACE
DEP4016597.3 1990-05-23

Publications (1)

Publication Number Publication Date
WO1991018048A1 true WO1991018048A1 (en) 1991-11-28

Family

ID=6407028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1990/002150 WO1991018048A1 (en) 1990-05-23 1990-12-11 Use of a nucleation agent in a process for the production of loose-fill packing material

Country Status (6)

Country Link
EP (1) EP0530194A1 (en)
JP (1) JPH05506675A (en)
AU (1) AU645285B2 (en)
BR (1) BR9008025A (en)
DE (3) DE4016597A1 (en)
WO (1) WO1991018048A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4317694A1 (en) * 1993-05-27 1994-12-01 Biotec Biolog Naturverpack Molded part made of starch foam
EP0712883A1 (en) * 1994-11-10 1996-05-22 National Starch and Chemical Investment Holding Corporation Expanded starch-based shaped products and the method of preparation thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4317693C2 (en) * 1993-05-27 1998-07-16 Biotec Biolog Naturverpack Variable molded part, especially from renewable raw materials
DE4333909A1 (en) * 1993-10-05 1995-04-06 Helmut Nonnenmacher Process for the manufacture of enveloping or filling materials
DE10052543A1 (en) * 2000-10-23 2002-04-25 Artur Fischer Tip Gmbh & Co Kg Shaping tool for creation of a cylindrical deformable play block of rigid foam comprises tool parts with a rough surface for rolling the foam
DE20019715U1 (en) 2000-11-20 2001-02-22 Artur Fischer Tip Gmbh & Co Kg Shaping tool for the round shaping of a plastically deformable toy block consisting of a solid foam
DE10154469A1 (en) 2001-11-08 2003-05-22 Artur Fischer Tip Gmbh & Co Kg Method of making a game and construction board
DE10321616A1 (en) * 2003-05-13 2004-12-02 Artur Fischer Tip Gmbh & Co. Kg Process for the production of paint
DE102004048748A1 (en) * 2004-10-05 2006-04-06 Artur Fischer Tip Gmbh & Co. Kg Color palette for children, has color holders formed from base pigments that is made of foaming starch, which is wet by dipping holders in water so that holders become sticky

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2941965A (en) * 1954-11-16 1960-06-21 Koppers Co Inc Foamable polystyrene composition containing an aliphatic hydrocarbon, a carbon dioxide liberating agent and boric acid; and method of foaming
US3481455A (en) * 1968-10-10 1969-12-02 Free Flow Packaging Corp Free-flowing packing material of low bulk density
DE2309577A1 (en) * 1973-02-26 1974-09-05 Urban Manurba Plastik Substitute wood fibre made from plastics - by coiled extrusion of polystyrene contg. expanding agent
DE2420280B1 (en) * 1972-01-31 1975-09-18 Free Flow Packaging Corp., Redwood City, Calif. (V.St.A.) Process for the production of a packing material from foamed plastic
US3961000A (en) * 1972-11-28 1976-06-01 Altainer Incorporated Method of manufacturing a nesting or interlocking loose-fill cellular packing material
EP0087847A1 (en) * 1982-02-25 1983-09-07 Zetmeelbedrijven De Bijenkorf B.V A process for preparing foamed gelatinized starch products
US4627947A (en) * 1984-06-16 1986-12-09 Storopack, Hans Reichenecker Gmbh & Co. Process for producing pourable spherical-segment-shaped packing material particles made of plastic
US4863655A (en) * 1988-12-30 1989-09-05 National Starch And Chemical Corporation Biodegradable packaging material and the method of preparation thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1504212A1 (en) * 1964-04-27 1969-09-25 Ernst Eisenmenger Device for pulling curved bodies
FR1462389A (en) * 1965-11-03 1966-04-15 Cie Generale Des Produits Ind Method and apparatus for the manufacture by extrusion of plastic articles
DE3421364A1 (en) * 1984-06-08 1985-12-12 Bayer Ag, 5090 Leverkusen METHOD AND DEVICE FOR THE CONTINUOUS PRODUCTION OF LONELY HOLLOW BODIES, ESPECIALLY HOSES, TUBES OR INTERNAL LINERS FOR SUCH, FROM A LIQUID MATERIAL, LIKE REACTION MIXTURE OR MELT

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2941965A (en) * 1954-11-16 1960-06-21 Koppers Co Inc Foamable polystyrene composition containing an aliphatic hydrocarbon, a carbon dioxide liberating agent and boric acid; and method of foaming
US3481455A (en) * 1968-10-10 1969-12-02 Free Flow Packaging Corp Free-flowing packing material of low bulk density
DE2420280B1 (en) * 1972-01-31 1975-09-18 Free Flow Packaging Corp., Redwood City, Calif. (V.St.A.) Process for the production of a packing material from foamed plastic
US3961000A (en) * 1972-11-28 1976-06-01 Altainer Incorporated Method of manufacturing a nesting or interlocking loose-fill cellular packing material
DE2309577A1 (en) * 1973-02-26 1974-09-05 Urban Manurba Plastik Substitute wood fibre made from plastics - by coiled extrusion of polystyrene contg. expanding agent
EP0087847A1 (en) * 1982-02-25 1983-09-07 Zetmeelbedrijven De Bijenkorf B.V A process for preparing foamed gelatinized starch products
US4627947A (en) * 1984-06-16 1986-12-09 Storopack, Hans Reichenecker Gmbh & Co. Process for producing pourable spherical-segment-shaped packing material particles made of plastic
US4863655A (en) * 1988-12-30 1989-09-05 National Starch And Chemical Corporation Biodegradable packaging material and the method of preparation thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4317694A1 (en) * 1993-05-27 1994-12-01 Biotec Biolog Naturverpack Molded part made of starch foam
EP0712883A1 (en) * 1994-11-10 1996-05-22 National Starch and Chemical Investment Holding Corporation Expanded starch-based shaped products and the method of preparation thereof

Also Published As

Publication number Publication date
DE9017904U1 (en) 1993-01-21
BR9008025A (en) 1993-05-18
EP0530194A1 (en) 1993-03-10
AU645285B2 (en) 1994-01-13
AU7050691A (en) 1991-12-10
JPH05506675A (en) 1993-09-30
DE9017926U1 (en) 1993-02-25
DE4016597A1 (en) 1991-11-28
DE4016597C2 (en) 1992-04-16

Similar Documents

Publication Publication Date Title
EP0518888B1 (en) Process for manufacturing granules of a washing or cleaning agent
DE4236717C1 (en) Molded body made of granulate beads
DE1694595C3 (en) Process for extruding polystyrene foam
DE4400330C2 (en) Process for producing a foamed product or foam material from unmodified starch and device for carrying out the process
DD151184A5 (en) METHOD FOR PRODUCING PANCREATIN PELLETS
EP0417405B1 (en) Process for producing a thermoplastic polymeric foam
DE3119840A1 (en) "METHOD AND DEVICE FOR RECOVERING PLASTIC FROM PLASTIC WASTE"
EP0143335A1 (en) Apparatus for the production of crinkled strands from reconstituted tobacco
DE2421652B2 (en) PROCESS FOR MANUFACTURING TOBACCO FILM AND DEVICE FOR CARRYING OUT THE PROCESS
WO1991018048A1 (en) Use of a nucleation agent in a process for the production of loose-fill packing material
DE2350619C2 (en) Process and apparatus for the continuous production of crystallized sorbitol
DE1454757A1 (en) Granulating device, especially for thermoplastics
DE2404631C2 (en) Method and device for the production of porous plaster of paris granules
DE2740758A1 (en) ARTIFICIAL STRAW FOR THE MAKING OF LITTERS
DE3422425A1 (en) METHOD FOR PRODUCING BALL-CAPABLE BALL SEGMENT-SHAPED PACKING MATERIAL BODIES FROM PLASTIC
DE2422336A1 (en) PROCESS FOR PRODUCING A MOLDING MATERIAL FROM A THERMOPLASTIC, SYNTHETIC RESIN
WO2005108316A1 (en) Antimicrobial glass particles, and use of a method for producing such particles
DE2546870A1 (en) PROCESS AND DEVICE FOR THE PRODUCTION OF HIGH DENSITY FOAM POLYMERIZATE
DE3722539A1 (en) Foamed moulded article
DE4039505A1 (en) Starch packing material prodn. - in which particles are finely coated with nucleating agent, fused in extruder, expanded, cut, dry expanded again, and cut to final size
DE69732919T2 (en) ELASTIC, BIODEGRADABLE PACKAGING MATERIAL
DE3421634A1 (en) Process for producing packing material bodies
DE2311856C3 (en) Glass fiber reinforced thermoplastic sheet and process for its manufacture
EP0340396B1 (en) Process and apparatus for the preparation of caseinates
DE4025256C1 (en) Prodn. of balls for packing filler material - comprises cutting, grinding and extruding stalk-type material with granular adhesive

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991901743

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991901743

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1991901743

Country of ref document: EP