WO1991015608A1 - Iron-copper alloy plate with alloy structure excellent in homogeneity - Google Patents

Iron-copper alloy plate with alloy structure excellent in homogeneity Download PDF

Info

Publication number
WO1991015608A1
WO1991015608A1 PCT/JP1991/000463 JP9100463W WO9115608A1 WO 1991015608 A1 WO1991015608 A1 WO 1991015608A1 JP 9100463 W JP9100463 W JP 9100463W WO 9115608 A1 WO9115608 A1 WO 9115608A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
amount
elements
homogeneity
plate
Prior art date
Application number
PCT/JP1991/000463
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiyuki Ueshima
Toshiaki Mizoguchi
Kenichi Miyazawa
Satoshi Nishimura
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to KR1019910701810A priority Critical patent/KR940008939B1/en
Priority to DE69116965T priority patent/DE69116965T2/en
Priority to EP91906694A priority patent/EP0477383B1/en
Publication of WO1991015608A1 publication Critical patent/WO1991015608A1/en
Priority to US08/252,424 priority patent/US5445686A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Definitions

  • the present invention relates to a Fe—Cu-based alloy plate having excellent uniformity and used as a material for electronic and magnetic parts.
  • the Cu-based alloy has a Cu concentration of 90% or more and low strength. Therefore, in order to further improve the corrosion resistance by adding Fe as a strengthening element, it has been disclosed in, for example, Japanese Patent Application Laid-Open No. 49-91025 (alloys for sliding contacts of electric equipment). It is effective to add Cr as described above. In addition, as disclosed in the Iron and Steel Handbook, 3rd edition, volume 1, p. 211 to 212 (edited by the Iron and Steel Institute of Japan), the corrosion resistance is improved by adding Mo. It is known to improve. However, the addition of these alloying elements has a problem in that the homogenization of the alloy is impaired.
  • the alloy is disclosed in Japanese Patent Application Laid-Open No. 49-91025, the disclosed alloy is not for use in electronic and magnetic parts materials.
  • the stainless steel for electronic materials disclosed in Japanese Patent Application Laid-Open No. 63-293431 is clearly different in components even though the application is the same.
  • the method for manufacturing an alloy strip disclosed in Japanese Patent Application Publication No. 0-152526 the range of components, the limitation of other elements to be added, and the effective concentration range are unclear.
  • none of these prior arts has provided any information on the production of the Fe—C ⁇ alloy with excellent homogeneity aimed at by the present invention, and it may be possible to produce the alloy. No power.
  • a homogeneous liquid phase can be obtained if Cr is not included. And a melt separated into a liquid phase rich in Fe and a liquid phase rich in Cu. Even if the production is carried out in such a state that the liquid phase rich in Fe and the liquid phase rich in Cu are separated, a homogeneous product cannot be obtained. That is, after the Fe-rich liquid phase particles and the Cu-rich liquid phase particles that have grown in size during melting have solidified, cracks occur during cold working at the interface between both phases, Problems such as poor bending characteristics occur. Disclosure of the invention
  • an object of the present invention is to provide an Fe—Cu—Cr alloy or a Fe—Cu—Cr—Mo alloy with the above-mentioned Fe-enriched liquid phase particles and C
  • a special element is further added to the alloy, and fine and homogeneous steel is produced by a continuous thin-plate manufacturing method.
  • the purpose is to provide an alloy sheet having a structure.
  • An alloy sheet manufactured by a continuous thin-plate manufacturing method in which, by weight%, Cu: 20 to 90%, Cr: 1 to 10%, Mo: 0 to 1 0%, one or two or more elements selected from the group consisting of A, Sc, Y, La, Si, Ti, Zr and Hf, and their amounts or total
  • the quantity is:
  • Fe—Cu-based alloy plate containing one or more elements that is not less than the calculated value and not more than 10%, and the balance is substantially Fe, and the alloy structure is excellent in homogeneity.
  • Fe-Cu-based alloy sheet having an alloy structure with excellent homogeneity, containing the following elements and the balance being Fe in effect.
  • An alloy plate manufactured by a continuous thin-plate manufacturing method which is expressed in terms of% by weight.
  • the alloy plate of the present invention is used as a material for electronic and magnetic components, and is formed of an alloy containing Fe and Cu as basic alloy components and containing Cu in the range of 20% to 90%.
  • This alloy requires at least 20% or more Cu to increase electrical conductivity.
  • Fe is added to improve the strength of the alloy.
  • the addition range is determined based on the balance between electrical conductivity and strength according to the application, and is determined based on the balance with other addition elements.However, if the addition amount is too large, corrosion resistance may be impaired.
  • Cr is added in the range of 1 to 10% in order to improve corrosion resistance.However, Cr in the molten metal strengthens repulsion between atoms that are alloy components, so that a liquid phase rich in Fe, Cu Causes a two-phase separation of the rich liquid phase.
  • one or more selected from the group consisting of A, Sc, Y (yttrium), La, Si, Ti, Zr, and Hf are used as the basic components. Is added, This has the effect of preventing the base alloy from becoming coarse and two-phase. That is, when each of these elements is added to the molten metal, the attraction of each element is increased at the time of melting, and the liquid phase acts so as not to separate into two phases. Therefore, the following equation:
  • boron (B) and carbon (C) also have the same effect as the element group of X, so that at least one of them (hereinafter, these are referred to as element X 2 ) in the above formula is Add the value obtained as 0 1 as the lower limit.
  • element X 2 the element group of X
  • the content of boron alone or the simultaneous addition of two types of boron and carbon should not exceed 1%, and the addition of carbon alone should not exceed 3%.
  • the X, element, and X 2 elements may be added to each group or both groups together.
  • FIG. 1 is a schematic view of a twin-roll continuous forming apparatus for carrying out the present invention.
  • FIGS. 2a and 2b are graphs showing the relationship between the amount of the additive component of the present invention and the size of the structure.
  • the Fe—Cu-based alloy containing each of the above-described elements is manufactured by a continuous thin-plate manufacturing method.
  • a thin piece having a plate thickness of 10 or less and adopt a twin-roll method as the manufacturing method. That is, as schematically shown in FIG. 1, a single-side pressure reduction device 3 is installed on the cooling twin rolls 1 and 2, The molten metal from the molten metal pool 4 formed by the rolls 1 and 2 and the side dam 5 is cooled by the twin rolls 1 and 2 to form a solidified shell 6. ⁇ It is pulled out as a piece 7. The pieces manufactured in this manner are cooled rapidly, and can be obtained with a thickness of 5 m or less.
  • the pieces are extremely fine.
  • a homogeneous structure In addition to containing the elements X, X2, the pieces are extremely fine. A homogeneous structure.
  • the present invention is not limited to the twin-roll manufacturing method, and other methods (for example, the single-roll method, Needless to say, the belt cast method, the caster billet cast method, etc.) may be used.
  • the thin strip can be directly cold-rolled without hot rolling to obtain a desired product thickness or an intermediate material.
  • the alloy of the present invention is hot-rolled, for example, heating to 100 ° C. or more may cause embrittlement, which may make rolling difficult. Therefore, in the present invention, the size of the piece is 10 or less, which can be directly cold-rolled. In the case of the twin roll method, a piece of 5 mm or less is obtained as described above, which is convenient for cold rolling.
  • the desired product for example, thin material such as electromagnetic materials and lead frames, and various uses such as wire and foil Can be used for Example 1
  • the basic alloy materials (Fe-Cu-based alloys) 1 to 5 shown in Table 1 have various types of X! , X 2 elements were added in different amounts, and 1 kg was melted in a magnesia crucible at 1510, then contacted with a Cu cooling piece and quenched to obtain multiple samples. . The cross section of each quenched sample (4 thigh thickness) obtained was observed with an optical microscope, and the tissue size was measured to examine the tissue uniformity.
  • Tables 2 to 6 show the tissue sizes according to the addition ratios defined in (1).
  • structure size refers to the maximum coarse particle size.
  • Example 2 Each of the above basic alloy materials (samples) is also X! When the addition amount of each element of X and X 2 becomes 1 respectively, the fine structure rapidly becomes, and the two phase (Fe-rich phase and Cu-rich phase) coarse structure disappears. Are shown.
  • Example 2 When the addition amount of each element of X and X 2 becomes 1 respectively, the fine structure rapidly becomes, and the two phase (Fe-rich phase and Cu-rich phase) coarse structure disappears.
  • a £ and T i were added in six levels, each in the range of 0.1 to 5%, and the 50% Cu-6% Cr-Fe alloy was melted.
  • a piece was manufactured by the twin-roll method shown in FIG.
  • the twin cooling rolls 1 and 2 in the twin-roll method continuous forming apparatus copper rolls each having a diameter of 3 O mm and a width of 10 mm were used. Fabrication was performed at a fabrication temperature of 1510 ° C and a roll rotation speed of 20 rpm to obtain pieces having a thickness of 2.2. ⁇ Observation of the cross section of the piece with an optical microscope and measurement of the tissue size are shown in Figs. 2a and 2b (marked with A ⁇ added, with Kunimark Ti added).
  • Example 1 the measurement results (shaded area) of X and the components of Example 1 are also shown in FIGS. 2a and 2b.
  • the basic alloy materials 1 to 3 of Example 1 showed the same tendency as that of Example 2.
  • the basic alloy materials 4 and 5 of Example 1 a shift was observed in the horizontal axis direction.
  • the correction factor S was introduced into the denominator of, and integration was performed as shown in Fig. 2b.
  • Table 7 shows the results of investigations on the processing characteristics of the obtained alloy (judgment of the cold-rolled sheet) and the material properties as a lead frame material (limit number of breaks and shochu resistance). . That is, first, the 2.2 mm-thick pieces of Sample Nos. 1 to 12 were subjected to softening annealing at 800 ° C. for one hour, and then heated to 50 ° C. The iron phase was selectively etched by passing through a 1.5 m tank containing a 0% by volume nitric acid aqueous solution at a speed of 1 mZmin. After that, the primary cold rolling of the obtained sample was performed at 85%, and the cold rolled sheet cracking was judged.
  • the sample after cracking judgment was annealed at a temperature of 550 ° C for 3 hours, and during the subsequent cooling process, aging was performed at a temperature of 480 ° C for 3 hours, and then to a temperature of 100 ° C. After cooling at 50 ° C, secondary cold rolling was performed 8% to obtain a 0.3 mm thick product plate.
  • the product plate obtained in this manner was subjected to a repeated bending test in the following manner, and the maximum number of fractures was obtained.
  • the center of the product plate with a width of 10 m and a length of 50 thighs is sandwiched by a vice, and repeatedly bent to an angle of 90 ° with an arc of 0.25 thighs, leading to fracture.
  • the number of breaks was measured, and this was defined as the breaking limit.
  • the corrosion resistance was evaluated to be higher than the Fe-42Ni level by the salt spray test for 48 hours. No.
  • the translation Blifc is equal to the translation amount [% x].
  • the alloy material obtained by the present invention has excellent cold working properties and material properties, does not cause two-phase separation upon melting, has an extremely fine structure, and can be used as an electronic or magnetic material. It is preferably used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

An iron-copper alloy plate with an alloy structure excellent in homogeneity, produced by the continuous thin plate casting process, and usable as the material of electronic and magnetic components, said alloy comprising 20 to 90 % of Cu, 1 to 10 % of Cr, 0 to 10 % of Mo, and at least one element selected from the group consisting of Al, Sc, Y, La, Si, Ti, Zr and Hf in an amount ranging from the value calculated according to formula (I) up to 10 %, the balance being substantially Fe wherein $g(a) = 1, and $g(b) = 51 - [% Cu] when Cu = 20 - 50 %, or $g(b) = -19 + 0.4 [% Cu] when Cu = 50 - 90 %. Also boron and/or carbon can exhibit a similar effect to that of the abovementioned aluminum and the like.

Description

明 細 発明の名称  Description Title of invention
均質性に優れた合金組織を有する F e 一 C u系合金板 技術分野  Fe-Cu alloy sheet with alloy structure excellent in homogeneity
本発明は電子、 磁気部品等の材料と して用いられる均 質性に優れた F e — C u系合金板に関する ものである。  The present invention relates to a Fe—Cu-based alloy plate having excellent uniformity and used as a material for electronic and magnetic parts.
背景技術 Background art
従来、 半導体機器等の電子、 磁気部品材料と してコバ —ル ( F e — 2 9 N i — 1 6 C o ) や 4 2合金 ( F e — 4 2 %N i ) 、 さ らに特開昭 6 3 — 2 9 3 1 4 3号公報 に開示されているステン レス鋼などが用いられてきたが これらの合金は高価である と共に導電性や放熱性におい て劣る点が問題であった。 そこで、 これらを改良するた めに、 近時、 銅 ( C u ) 基合金が使用される よ う になつ てきた。  Conventionally, Kovar (Fe-29Ni-16Co), 42 alloy (Fe-42% Ni), and other specialty materials for electronic and magnetic parts such as semiconductor devices have been used. The stainless steels disclosed in Japanese Unexamined Patent Publication No. 63-2929343 have been used, but these alloys are expensive and have problems in that they are inferior in conductivity and heat dissipation. . Therefore, copper (Cu) -based alloys have recently been used to improve these properties.
該 C u基合金は、 C u濃度が 9 0 %以上であ り、 強度 が低い。 そのため、 強化元素と して F eを加え、 更に耐 食性を向上させるために、 例えば特開昭 4 9 — 9 1 0 2 5号公報 (電気機器の摺動接触子用合金) に開示されて いる よ う に C r を添加する こ とが有効である。 また、 鉄 鋼便覧第 3版第 1 巻 P . 2 1 1 〜 2 1 2 (日本鉄鋼協会 編) に開示されている よ う に、 M oを添加 して耐食性を 向上させる こ とが知られている。 しかし、 これら合金元 素の添加は、 合金の均質化を損なう 点で問題がある。 The Cu-based alloy has a Cu concentration of 90% or more and low strength. Therefore, in order to further improve the corrosion resistance by adding Fe as a strengthening element, it has been disclosed in, for example, Japanese Patent Application Laid-Open No. 49-91025 (alloys for sliding contacts of electric equipment). It is effective to add Cr as described above. In addition, as disclosed in the Iron and Steel Handbook, 3rd edition, volume 1, p. 211 to 212 (edited by the Iron and Steel Institute of Japan), the corrosion resistance is improved by adding Mo. It is known to improve. However, the addition of these alloying elements has a problem in that the homogenization of the alloy is impaired.
なお、 6 — じ 11 ー ( 1: 合金にっぃては、 特開昭 4 9 - 9 1 0 2 5 号公報に開示されているが、 その開示合金 は、 電子、 磁気部品材料用ではない。 特開昭 6 3 - 2 9 3 1 4 3 号公報に開示されている電子材料用ステ ン レス 鋼は、 用途は同 じであって も成分が明らかに異なる。 ま た、 特開昭 6 0 — 1 5 2 6 4 0 号公報に開示されている 合金ス ト リ ッ プ製造方法は、 成分範囲、 並びに他に添加 する元素の限定、 有効とする濃度範囲が不明確である。 さ らに、 これら先行技術はいずれも、 本発明が目的とす る均質性に優れた F e - C υ合金についてその製造に関 する情報は一切提示されておらず、 その製造が可能か否 かもわ力、らない。  It should be noted that, although the alloy is disclosed in Japanese Patent Application Laid-Open No. 49-91025, the disclosed alloy is not for use in electronic and magnetic parts materials. The stainless steel for electronic materials disclosed in Japanese Patent Application Laid-Open No. 63-293431 is clearly different in components even though the application is the same. In the method for manufacturing an alloy strip disclosed in Japanese Patent Application Publication No. 0-152526, the range of components, the limitation of other elements to be added, and the effective concentration range are unclear. In addition, none of these prior arts has provided any information on the production of the Fe—Cυ alloy with excellent homogeneity aimed at by the present invention, and it may be possible to produce the alloy. No power.
F e — C u系合金において、 例えば 5 0 % C uを含む 合金では、 C r を含まなければ、 均一な液相が得られる が、 3 %以上の C r を含有させる と、 溶融状態において、 F e に富む液相と C u に富む液相とに分離した融液にな る。 このよ うな F e に富む液相と、 C u に富む液相との 2相に分離したま まの状態で鐯造を行なっても均質な製 品は得られない。 すなわち、 溶融中にそのサイ ズが大き く 成長した F e に富む液相粒子と C u に富む液相粒子が 凝固した後、 両相の界面で冷間加工時に割れが生じた り、 成品の曲げ特性不良な どの不具合が生じる。 発明の開示 In a Fe-Cu-based alloy, for example, an alloy containing 50% Cu, a homogeneous liquid phase can be obtained if Cr is not included. And a melt separated into a liquid phase rich in Fe and a liquid phase rich in Cu. Even if the production is carried out in such a state that the liquid phase rich in Fe and the liquid phase rich in Cu are separated, a homogeneous product cannot be obtained. That is, after the Fe-rich liquid phase particles and the Cu-rich liquid phase particles that have grown in size during melting have solidified, cracks occur during cold working at the interface between both phases, Problems such as poor bending characteristics occur. Disclosure of the invention
か く て、 本発明の目的は、 F e — C u — C r 合金ある いは F e — C u — C r — M o合金につき、 前記した溶融 中に F e に富む液相粒子と C u に富む液相粒子とが粗大 に成長する現象に起因する合金組織の不均質性を解消す ベ く 、 該合金に更に特殊元素を添加 し、 薄板連続铸造法 によ り、 微細かつ均質な組織をも った合金板を提供する こ とである。  Thus, an object of the present invention is to provide an Fe—Cu—Cr alloy or a Fe—Cu—Cr—Mo alloy with the above-mentioned Fe-enriched liquid phase particles and C In order to eliminate the inhomogeneity of the alloy structure caused by the phenomenon that the liquid-phase particles rich in u grow coarsely, a special element is further added to the alloy, and fine and homogeneous steel is produced by a continuous thin-plate manufacturing method. The purpose is to provide an alloy sheet having a structure.
上記目的に対して、 下記の合金板が提供される。  For the above purpose, the following alloy plate is provided.
(1) 薄板連続铸造法によ って製造された合金板であ つ て、 重量%で、 C u : 2 0 〜 9 0 %、 C r : 1 〜 1 0 %、 M o : 0 〜 1 0 %、 A , S c , Y , L a , S i , T i , Z r および H f から成る群から選ばれた 1 種の元素また は 2 種以上の元素であって、 その量または合計量が、 次 式 :  (1) An alloy sheet manufactured by a continuous thin-plate manufacturing method, in which, by weight%, Cu: 20 to 90%, Cr: 1 to 10%, Mo: 0 to 1 0%, one or two or more elements selected from the group consisting of A, Sc, Y, La, Si, Ti, Zr and Hf, and their amounts or total The quantity is:
〔%Cr〕 +2 讓 o〕 一 3 I 〔%Cu〕 -50 [% Cr] +2 benzene o 1 3 I [% Cu] -50
I β一  I β
3 300  3 300
ただし、 α = 1 、 Where α = 1,
/3 = 5 1 - { % C u ) ( C u = 2 0 〜 5 0 % の場合) 、  / 3 = 5 1-{% C u) (for C u = 20-50%),
β = - I 9 + 0 . 4 〔% C u 〕 ( C υ = 5 0 〜 9 0 %の場合) 又、 I 〔% C u〕 — 5 0 l ¾、 〔% C u〕 — 5 0 の絶 対値である。 β = -I 9 +0.4 [% Cu] (C υ = 50 to 90%) Also, it is the absolute value of I [% Cu]-50 l¾ and [% Cu]-50.
の計算値以上、 1 0 %以下である該 1 種の元素または 2 種以上の元素を含み、 残部が事実上 F eである均質性に 優れた合金組織を有する F e — C u系合金板。 Fe—Cu-based alloy plate containing one or more elements that is not less than the calculated value and not more than 10%, and the balance is substantially Fe, and the alloy structure is excellent in homogeneity. .
(2) 薄板連続铸造法によ って製造された合金板であつ て、 重量%で、 C u : 2 0 〜 9 0 %、 C r : 1 〜 1 0 % M o : 0 〜 1 0 %、 硼素(B) および炭素(C) のう ちの 1 種または 2種の元素であって、 その量または合計量が、 次式 :  (2) An alloy sheet manufactured by a continuous thin-plate manufacturing method, in which, by weight%, Cu: 20 to 90%, Cr: 1 to 10% Mo: 0 to 10% , Boron (B) and carbon (C), one or two of which are represented by the following formula:
Figure imgf000006_0001
Figure imgf000006_0001
ただし、 = 0 . 0 1 、 Where = 0.01,
/3 = 5 1 - 〔% C u〕 ( C u = 2 0 〜 5 0 % の場合) 、  / 3 = 51-[% Cu] (when Cu = 20-50%),
β = - I 9 + 0 . 4 ί % C u ( C υ = 5 0 〜 9 0 %の場合)  β =-I 9 + 0.4 ί% Cu (C υ = 50 to 90%)
の計算値を下限値と し、 上限値が、 Β単独添加の場合お よび B、 C 2種添加の場合には 1 %、 C単独添加の場合 には 3 %である該 1 種または 2種の元素を含み、 残部が 事実上 F e である均質性に優れた合金組織を有する F e 一 C u系合金板。 (3) 薄板連続铸造法によ って製造された合金板であつ て、 重量%で、 Is the lower limit, and the upper limit is 1% for Β alone, 2% for B and C, and 3% for C alone. Fe-Cu-based alloy sheet having an alloy structure with excellent homogeneity, containing the following elements and the balance being Fe in effect. (3) An alloy plate manufactured by a continuous thin-plate manufacturing method, which is expressed in terms of% by weight.
C u : 2 0〜 9 0 %、  C u: 20 to 90%,
C r : 1 〜 1 0 %、  Cr: 1 to 10%,
M 0 : 0〜 1 0 %、  M 0: 0 to 10%,
A £ , S c, Y, L a , S i , T i , Z r および H f から成る群から選ばれた 1 種の元素または 2種以上の元 素であって、 その量または合計量が、 下式の計算値以上 1 0 %以下である該 1 種の元素または 2種以上の元素、 Bおよび Cのう ちの 1 種または 2種の元素であって、 その量または合計量が、 下式の計算値以上であ り、 上限 値が、 B単独添加の場合および B、 C 2 種添加の場合に は 1 %、 C単独添加の場合には 3 %である該 1 種または 2種の元素を含み、 残部が事実上 F e である均質性に優 れた合金組織を有する F e 一 C u系合金板。  A single element or two or more elements selected from the group consisting of A £, S c, Y, La, S i, T i, Z r, and H f, wherein the amount or the total amount is One or two or more of the above elements calculated from the following formula and not more than 10%, one or two of B and C, and the amount or the total amount thereof is It is equal to or more than the calculated value of the formula, and the upper limit is 1% for B alone and 2% for B and C, 3% for C alone. A Fe-Cu-based alloy sheet containing an element and having an alloy structure with excellent homogeneity with the balance being Fe in effect.
式 : t96Cr +2 麵 o〕 一 3 I 〔%Cu〕 一 50 な1 β一  Formula: t96Cr + 2 麵 o] 1 3 I [% Cu] 1 50 1 1 β
3 300  3 300
ただし、 α = 1 ( Α ^ 等の群に属する元素量を算出す る場合) 、 However, α = 1 (when calculating the amount of elements belonging to groups such as Α ^),
= 0 . 0 1 ( Bおよび Cの量を算出する場 合) 、 β = 1 - ί % C ( C u = 2 0 〜 5 0 % の場合) 、 = 0.01 (when calculating the amounts of B and C), β = 1-ί% C (for Cu = 20-50%),
β = - I 9 + 0 . 4 % C u ( C u = 5 0 〜 9 0 %の場合)  β =-I 9 + 0.4% Cu (for Cu = 50 to 90%)
本発明合金板は、 電子および磁気部品材料と して使用 され、 F e および C uを基本合金成分と し、 2 0 %から 9 0 %の範囲の C uを含む合金で形成される。 この合金 では、 電気伝導率を高めるために、 少な く と も 2 0 %以 上の C uが必要である。 また F e は合金の強度を向上さ せるために添加される。 その添加範囲は用途に応じて電 気伝導率と強度とのバラ ンスをとつた上で、 他の添加元 素との兼ね合いから決めるが、 これが多 く なる と耐食性 を損な う こ とがある。 C r は耐食性を向上させるために 1 〜 1 0 %の範囲で添加するが、 溶融金属中において C r は合金成分である各原子間の反発を強めるため、 F e に富む液相、 C u に富む液相の 2相分離をひき起こ す。 M o は必要に応じて添加するが、 C r と同様な現象 が起こ り う る。 前述したよ う に、 溶融状態で 2相分離さ れた金属をそのま ま铸造する と、 铸片には F e に富む相、 C u に富む相がそれぞれ粗大結晶粒となって存在する こ とになる。 そのため、 電子機器材料などへの加工が困難 とな り、 また成品の特性にも不具合が生じる。  The alloy plate of the present invention is used as a material for electronic and magnetic components, and is formed of an alloy containing Fe and Cu as basic alloy components and containing Cu in the range of 20% to 90%. This alloy requires at least 20% or more Cu to increase electrical conductivity. Fe is added to improve the strength of the alloy. The addition range is determined based on the balance between electrical conductivity and strength according to the application, and is determined based on the balance with other addition elements.However, if the addition amount is too large, corrosion resistance may be impaired. . Cr is added in the range of 1 to 10% in order to improve corrosion resistance.However, Cr in the molten metal strengthens repulsion between atoms that are alloy components, so that a liquid phase rich in Fe, Cu Causes a two-phase separation of the rich liquid phase. Mo is added as needed, but the same phenomenon as Cr occurs. As described above, when a metal that has been separated into two phases in the molten state is produced as it is, the piece has a phase rich in Fe and a phase rich in Cu in the form of coarse crystal grains. And As a result, it becomes difficult to process them into electronic equipment materials and the like, and there is a defect in the properties of the products.
本発明においては、 上記基本成分に、 A , S c , Y (イ ッ ト リ ウム) , L a , S i , T i , Z r , H f なる 群から選ばれた 1 種又は 2種以上を添加するのであるが、 これは前記ベース合金の粗大 2相化を抑制する効果を有 する。 すなわち、 これらの各元素を溶融金属中に添加す る と、 溶融時に各元素の引力を高め、 液相が 2 相に分離 しないよ う に作用する。 そのために、 次式 : In the present invention, one or more selected from the group consisting of A, Sc, Y (yttrium), La, Si, Ti, Zr, and Hf are used as the basic components. Is added, This has the effect of preventing the base alloy from becoming coarse and two-phase. That is, when each of these elements is added to the molten metal, the attraction of each element is increased at the time of melting, and the liquid phase acts so as not to separate into two phases. Therefore, the following equation:
Figure imgf000009_0001
Figure imgf000009_0001
ただし、 = 1 、Where = 1,
= 5 1 - 〔% C u〕 ( C u = 2 0〜 5 0 % の場合) 、  = 51-[% Cu] (when Cu = 20-50%),
β = - I 9 + 0 . 4 〔% C u〕 ( C u = 5 0 〜 9 0 %の場合)  β =-I 9 +0.4 [% Cu] (Cu = 50 to 90%)
の計算値以上の、 前記群から選ばれた 1 種または 2 種以 上の元素の添加が必要となる。 なお、 前記式の値が負に なる場合には、 添加量下限値を零とする。 上記式は、 A £ , S c, Y, L a , S i , T i , Z r および H f から 成る群から選ばれた少な く と も 1 種 (以下、 これらを X ! 元素と称する) を添加 した とき、 2 相分離を促進する C r および M o含有量と、 C u含有量 ( 5 0 %から離れ るほ ど 2 相に分離し難 く なる) に対する、 X : 元素の添 加下限値の関係を本発明者らの実験によ って定量化した ものである。 また、 X , 元素を多量に添加する と C u に 富む相中に固溶し、 導電性を阻害する。 そのため 1 種の 添加量あるいは 2種以上の合計添加量が 1 0 %を超えな レ、よ う にする必要がある。 It is necessary to add one or more elements selected from the above group, which are equal to or greater than the calculated value of. When the value of the above expression is negative, the lower limit of the amount of addition is set to zero. The above formula is at least one selected from the group consisting of A £, Sc, Y, La, Si, Ti, Zr, and Hf (hereinafter, these are referred to as X! Elements). Addition of X: element to Cr and Mo content that promotes two-phase separation and Cu content (the more away from 50%, the more difficult it is to separate into two phases) The relationship between the lower limits is quantified by experiments of the present inventors. Also, when a large amount of X or element is added, it forms a solid solution in the Cu-rich phase and inhibits conductivity. So one kind of It is necessary that the added amount or the total added amount of two or more types does not exceed 10%.
一方、 硼素(B) , 炭素(C) も前記 X , 元素群と同様の 効果を奏するので、 この少な く と も 1 種 (以下、 これら を X 2 元素と称する) を前記式においてひ = 0 . 0 1 と して求めた値を下限値と して添加する。 しかし、 これを 多量に含有させる と粗大析出物 (例えば、 F e 2 B , F e 3 C ) が生成し、 組織を脆化させる。 そのために硼 素単独または硼素および炭素の 2種同時添加では 1 %、 炭素単独添加では 3 %を超えないよ う にする。 X , 元素、 X 2 元素は各群毎に、 あるいは両群を共に添加 してもよ レヽ o On the other hand, boron (B) and carbon (C) also have the same effect as the element group of X, so that at least one of them (hereinafter, these are referred to as element X 2 ) in the above formula is Add the value obtained as 0 1 as the lower limit. However, if it is contained in a large amount, coarse precipitates (for example, Fe 2 B, Fe 3 C) are formed, which embrittles the structure. Therefore, the content of boron alone or the simultaneous addition of two types of boron and carbon should not exceed 1%, and the addition of carbon alone should not exceed 3%. The X, element, and X 2 elements may be added to each group or both groups together.
本発明のその他の特徵は、 表および添付図面を引用 し た以下の記述によって明確になされる。 図面の簡単な説明  Other features of the present invention will be made clear by the following description with reference to the tables and the accompanying drawings. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は本発明を実施する双ロール連続鐯造装置の概 略図を示す。  FIG. 1 is a schematic view of a twin-roll continuous forming apparatus for carrying out the present invention.
第 2 a 図および第 2 b図は本発明添加成分量と組織サ ィズの関係を示すグラ フである。  FIGS. 2a and 2b are graphs showing the relationship between the amount of the additive component of the present invention and the size of the structure.
本発明では、 上述した各元素を含有する F e — C u系 合金を、 薄板連続鐯造法によって製造する。 特に、 板厚 1 0腿以下の薄铸片と し、 該铸造法と しては、 双ロール 法の採用が好ま しい。 すなわち、 第 1 図に概要を示すよ う に冷却双ロール 1 , 2 に鐯片圧下装置 3 が設置され、 該ロール 1 , 2 とサイ ドダム 5 によ って形成される溶湯 プール 4 からの溶融金属が、 双ロール 1 , 2 に冷却され て凝固シェル 6 を生成し、 圧下装置 3 で加圧しながら薄 肉鐯片 7 となって引出される。 このよ う に して製造され る铸片は急速に冷却され、 しかも厚み 5 m以下の ものが 得られる こ とに加えて、 前記 X , , X 2 の元素を含有し ているため、 極めて微細な均質組織となる。 しか しなが ら、 本発明においてはこの双ロール鐯造法に限定する も のではな く 、 1 0 匪以下の薄板鐯片が得られれば、 他の 方法 (例えば、 単ロ ール法、 ベル ト キ ャ ス ト法、 キヤ 夕 ビラ一キャ ス ト法等) によ って も よいこ とは言う までも ない。 In the present invention, the Fe—Cu-based alloy containing each of the above-described elements is manufactured by a continuous thin-plate manufacturing method. In particular, it is preferable to use a thin piece having a plate thickness of 10 or less and adopt a twin-roll method as the manufacturing method. That is, as schematically shown in FIG. 1, a single-side pressure reduction device 3 is installed on the cooling twin rolls 1 and 2, The molten metal from the molten metal pool 4 formed by the rolls 1 and 2 and the side dam 5 is cooled by the twin rolls 1 and 2 to form a solidified shell 6.鐯 It is pulled out as a piece 7. The pieces manufactured in this manner are cooled rapidly, and can be obtained with a thickness of 5 m or less. In addition to containing the elements X, X2, the pieces are extremely fine. A homogeneous structure. However, the present invention is not limited to the twin-roll manufacturing method, and other methods (for example, the single-roll method, Needless to say, the belt cast method, the caster billet cast method, etc.) may be used.
上記薄铸片は、 熱間圧延を行う こ とな く 、 直接冷間圧 延を行い、 所望の成品厚、 あるいは中間素材とする こ と ができ る。 本発明合金を熱間圧延する と、 例えば 1 0 0 0 °C以上に加熱する こ とで脆化が起こ り、 圧延困難とな る場合がある。 従って、 本発明では、 錶片を直接冷間圧 延可能な 1 0 匪以下とする。 また、 双ロール法であれば 前記したよ う に 5 mm以下の铸片が得られ、 冷間圧延する 上で都合がよい。 冷間圧延後は焼鈍等を行い、 あるいは 必要に応じてメ ツ キや打抜き加工等を施して所望の成品、 例えば、 電磁材料、 リ ー ドフ レーム等の薄板成品や線、 箔等各種の用途に供する こ とができ る。 実施例 1 第 1 表に示す基本合金材 ( F e - C u系合金) 1 〜 5 に各種 X! , X 2 元素を添加量を変えて添加し、 1 kgを マグネ シア坩堝内で 1 5 1 0 でで溶融させた後、 C u冷 却片に接触させて急冷し、 複数の試料を得た。 得られた 各急冷試料 ( 4腿厚) の断面を光学顕微鏡で観察し、 組 織均一性を検討するために組織サイ ズを測定した。 The thin strip can be directly cold-rolled without hot rolling to obtain a desired product thickness or an intermediate material. When the alloy of the present invention is hot-rolled, for example, heating to 100 ° C. or more may cause embrittlement, which may make rolling difficult. Therefore, in the present invention, the size of the piece is 10 or less, which can be directly cold-rolled. In the case of the twin roll method, a piece of 5 mm or less is obtained as described above, which is convenient for cold rolling. After cold rolling, annealing or the like, or applying plating or punching as necessary, the desired product, for example, thin material such as electromagnetic materials and lead frames, and various uses such as wire and foil Can be used for Example 1 The basic alloy materials (Fe-Cu-based alloys) 1 to 5 shown in Table 1 have various types of X! , X 2 elements were added in different amounts, and 1 kg was melted in a magnesia crucible at 1510, then contacted with a Cu cooling piece and quenched to obtain multiple samples. . The cross section of each quenched sample (4 thigh thickness) obtained was observed with an optical microscope, and the tissue size was measured to examine the tissue uniformity.
A. 1 Ϊ Λ. 2 兀: ¾ feにゝ  A. 1 Ϊ Λ. 2 兀: ¾ fe に ゝ
Figure imgf000012_0001
Figure imgf000012_0001
で定義される添加量比による組織サイズを第 2表〜第 6 表に示した。 なお、 こ こで言う組織サイズとは、 最大の 粗粒粒径を指す。 Tables 2 to 6 show the tissue sizes according to the addition ratios defined in (1). Here, the term “structure size” refers to the maximum coarse particle size.
第 1 表 Table 1
Figure imgf000013_0001
Figure imgf000013_0001
2 Two
組^ィズ (  Gumi ^ (
0.1 U. O Ό.1 1 Ό 10 n  0.1 U.O Ό.1 1 Ό 10 n
A£ 1500 1400 480 70 50 40 30  A £ 1500 1400 480 70 50 40 30
X. S c 1500 1420 520 80 60 40 30  X. S c 1500 1420 520 80 60 40 30
Y 1600 1450 530 100 70 50 40  Y 1600 1450 530 100 70 50 40
成 La 1450 1380 520 90 80 60 40  La 1450 1380 520 90 80 60 40
S i 1480 1410 510 100 70 50 40  S i 1480 1410 510 100 70 50 40
分 T i 1520 1390 480 80 60 40 30  Min T i 1520 1390 480 80 60 40 30
Zr 1510 1420 520 90 80 50 40  Zr 1510 1420 520 90 80 50 40
Hf 1460 1390 500 90 70 50 40  Hf 1460 1390 500 90 70 50 40
* i£3 1480 1400 490 80 60 40 40  * i £ 3 1480 1400 490 80 60 40 40
B 1520 1300 550 70 50 30 30 B 1520 1300 550 70 50 30 30
C 1480 1400 650 90 70 40 40  C 1480 1400 650 90 70 40 40
*注 4 1500 1380 530 70 50 40 30  * Note 4 1500 1380 530 70 50 40 30
* 1470 1390 500 70 50 30 30  * 1470 1390 500 70 50 30 30
* ¾1 :こ { 合金材 1 (50¾) Cu- 6%C r -F e) に Xfi¾3~を加えて得た合金を とした^^ c ife 果を^ "。  * ¾1: An alloy obtained by adding Xfi¾3 ~ to this {alloy material 1 (50¾) Cu-6% Cr-F e) ^ ^ c ife result ^ ".
* . :翻ロ は、 〔%x〕 され * .: The conversion is [% x]
Figure imgf000014_0001
Figure imgf000014_0001
る。 ただし、 Xi の ί»合には = 1、 X2 fi¾9^¾mの場合には α=0. 01、 そして /3-1であ る。 You. However, for Xi = 1, α = 0.01 for X 2 fi 29 ^ ¾m, and / 3-1.
* m :全 X, を等 »^οπした場合。  * m: When all X, are equal to ^^ π.
* 注 4 :全 χ2 ^を等 J^fraした * Note 4: J ^ fra equal to all χ 2 ^
* :全 X, , χ2 ^^を等 *¾¾ι卩した * &。 *: All X,, χ 2 ^^ etc. * ¾¾ι 卩 * &.
3 表 3 Table
組齡ィズ( m)  Group age (m)
Figure imgf000015_0001
Figure imgf000015_0001
* m :こ 2fe^^ 2 (50¾Cu-3%Cr-0.3 %Mo-Fe)に X ^^を加えて得た合金を と  * m: An alloy obtained by adding X ^^ to 2fe ^^ 2 (50¾Cu-3% Cr-0.3% Mo-Fe)
* :灘 〔%X a( 〔 〕 。〕 -3 — 〔 〕 *: Nada [ % X a ([]].] -3 — []
3 300 5QI され る。ただし、 Xi成分^ flBの場合には α=1、 Χ2成分翻 Πの場合には =0. 01、そして /3=1であ る。 3 300 5QI . However, in the case of the Xi component ^ flB, α = 1, in the case of the Χ two- component translation, = 0.01, and / 3 = 1.
第 4 the 4th
組織サイズ( m)  Tissue size (m)
Figure imgf000016_0001
Figure imgf000016_0001
t m :こ©¾ 合鎌 3 (70%Cu— 3%Cr-Fe)に Χβ^を加えて得た合金を纖とし囊 t m: This alloy is obtained by adding Χβ ^ to this sickle 3 (70% Cu-3% Cr-Fe).
* ¾2 : w itl , ί6Χ + a\ β Τ Iで^!され * ¾2: w itl, ί6Χ + a \ β Τ I ^! Is
3 300 る。ただし、 Xi 劂 Bの にはな =1、 X2 の には α=0. 01、そして ;3=9であ る 3 300 Where Xi 劂 B has = 1, X 2 has α = 0.01, and; 3 = 9
No.
組 ¾ t "ズ( m)  Group ¾ t "(m)
0.1 0.5 0.7 1 2 5 10 0.1 0.5 0.7 1 2 5 10
A£ 1620 1550 490 70 50 40 40 A £ 1620 1550 490 70 50 40 40
Xl Sc 1510 1520 510 100 70 30 40  Xl Sc 1510 1520 510 100 70 30 40
Y 1630 1610 500 80 60 40 30  Y 1630 1610 500 80 60 40 30
成 La 1600 1550 420 75 60 50 40  La 1600 1550 420 75 60 50 40
Si 1580 1530 390 80 50 40 30  Si 1580 1530 390 80 50 40 30
分 Ti 1390 1410 350 70 50 40 30  Min Ti 1390 1410 350 70 50 40 30
Zr 1400 1510 400 90 70 50 40  Zr 1400 1510 400 90 70 50 40
Hf 1450 1490 520 70 70 30 40  Hf 1450 1490 520 70 70 30 40
B 1510 1470 530 80 70 40 30 B 1510 1470 530 80 70 40 30
C 1480 1450 430 90 80 50 40  C 1480 1450 430 90 80 50 40
* m :こ c ^ -¾*^†4 (20%Cu-9%Cr-0.05% o-F e)に Χβ¾^·を加えて得た^^を ¾mと した繊 果を^"。 * m: This is ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ^^
〔%Cr〕 +2 〔籠 o〕一 3 Cu〕 —50  [% Cr] +2 [cage o] 1 3 Cu] —50
* ^2 :满 Hfti (MX) ÷ a p」一〔% * ^ 2: 满 Hfti (MX) ÷ a p ”[%
τ¾¾さ τ¾¾
3 300 3 300
れる。ただし、 X! の には α=1、 2 »の ¾ ^には £ϊ=0. 01、 そして =31 である。 It is. However, X! Has α = 1, 2 »¾ ^ has £ ϊ = 0.01, and = 31.
第 6 表 Table 6
ィズ( m)  Size (m)
0.1 0.5 0.7 1 2 5 10 0.1 0.5 0.7 1 2 5 10
AS 1620 1600 500 80 50 40 30AS 1620 1600 500 80 50 40 30
Xl Sc 1630 1650 610 90 50 30 30 Xl Sc 1630 1650 610 90 50 30 30
Y 1550 1500 410 100 80 40 40 成 La 1620 1610 520 90 70 40 40  Y 1550 1500 410 100 80 40 40 La 1620 1610 520 90 70 40 40
S i 1610 1520 390 100 60 50 30 分 Ti 1610 1530 410 70 80 40 40  S i 1610 1520 390 100 60 50 30 min Ti 1610 1530 410 70 80 40 40
Zr 1540 1540 420 80 70 40 30 Zr 1540 1540 420 80 70 40 30
Hf 1380 1410 380 70 50 30 40 Hf 1380 1410 380 70 50 30 40
B 1430 1380 370 90 70 50 30B 1430 1380 370 90 70 50 30
C 1440 1410 430 80 70 40 30 C 1440 1410 430 80 70 40 30
* :こ ©¾{ 合^ 15 (90% C u— 9 % C r— 0.05%M o-Fe)に Xfi¾^を加えて得た を赚と a, ^CrJ +2 (¾Mo) -3 ! - 5。 I、 され *: This is obtained by adding Xfi¾ ^ to this ¾ {合 ^ 15 (90% Cu-9% Cr-0.05% Mo-Fe) and a and a, ^ CrJ + 2 ( ¾ Mo) -3 ! - Five. I,
3 300  3 300
る。 ただし、 i ^3^&Βの にはな =1、 Χ25¾^1卩の ¾ ^にはな =0. 01、 そして =17で める。 You. However, Mel in i ^ 3 ^ & in Β of the Do = 1, Χ 2 5¾ ^ 1 = 0 Do the ¾ ^ of卩. 01, and = 17.
上記各基本合金材 (試料) と も、 X ! および X 2 の各 元素の添加量がそれぞれ添加量比で 1 になる と、 急激に 微細組織とな り、 2相 ( F e に富む相および C u に富む 相) 粗大組織がな く なる こ とを示している。 実施例 2 Each of the above basic alloy materials (samples) is also X! When the addition amount of each element of X and X 2 becomes 1 respectively, the fine structure rapidly becomes, and the two phase (Fe-rich phase and Cu-rich phase) coarse structure disappears. Are shown. Example 2
A £ , T i を第 7表に示すよ う に 0 . 1 〜 5 %の範囲 でそれぞれ 6 水準に分けて添加 した 5 0 % C u - 6 % C r ー F e 合金を溶解し、 これから第 1 図に示す双ロ ー ル法によ って鐯片を製造した。 こ の双ロール法連続铸造 装置おける冷却双ロール 1 , 2 には、 各ロールと も直径 3 O mm、 幅 1 0 mmの銅合金製の ものを用いた。 鐯造温度 1 5 1 0 °C、 ロール回転速度 2 0 rpm で鐯造し、 厚さ 2 . 2 隨の铸片を得た。 铸片断面を光学顕微鏡で観察し、 組 織サイズを測定した結果を第 2 a 図および第 2 b 図に示 す (□印 A ^ 添加、 國印 T i 添加) 。  As shown in Table 7, A £ and T i were added in six levels, each in the range of 0.1 to 5%, and the 50% Cu-6% Cr-Fe alloy was melted. A piece was manufactured by the twin-roll method shown in FIG. As the twin cooling rolls 1 and 2 in the twin-roll method continuous forming apparatus, copper rolls each having a diameter of 3 O mm and a width of 10 mm were used. Fabrication was performed at a fabrication temperature of 1510 ° C and a roll rotation speed of 20 rpm to obtain pieces having a thickness of 2.2.铸 Observation of the cross section of the piece with an optical microscope and measurement of the tissue size are shown in Figs. 2a and 2b (marked with A ^ added, with Kunimark Ti added).
これら第 2 a 図および第 2 b図から明らかなよ う に、 X 1 元素添加が添加量比 1 未満では 2 相粗大分離組織で あるのに対し、 1 以上になる と急激に微細化している。  As is evident from Figs. 2a and 2b, when the addition ratio of element X1 is less than 1, a two-phase coarsely separated structure is obtained, whereas when the addition ratio is 1 or more, the microstructure sharply decreases. .
なお、 第 2 a 図および第 2 b図中に実施例 1 の X , 成 分についての測定結果 (斜線部分) も併記した。 こ こ で、 第 2 a 図からわかる よ う に、 実施例 1 の基本合金材 1 〜 3 については実施例 2 と同様の傾向を示した。 しか し、 実施例 1 の基本合金材 4 および 5 については横軸方向で のシフ トが見られたので、 横軸指標である添加量比の式 の分母に補正係数 Sを導入し、 第 2 b 図のよ う に統合を 図った。 In addition, the measurement results (shaded area) of X and the components of Example 1 are also shown in FIGS. 2a and 2b. Here, as can be seen from FIG. 2a, the basic alloy materials 1 to 3 of Example 1 showed the same tendency as that of Example 2. However, for the basic alloy materials 4 and 5 of Example 1, a shift was observed in the horizontal axis direction. The correction factor S was introduced into the denominator of, and integration was performed as shown in Fig. 2b.
第 7表には得られた合金の加工特性 (冷間圧延板の割 れ判定) およびリ ー ドフ レ ー ム材と しての材質特性 (破 断限界回数と酎食性) の調査結果を示す。 すなわち、 ま ず、 試料番号 1〜 1 2 の前記板厚 2 . 2 mmの铸片に、 温 度 8 0 0 °Cで 1 時間の軟化焼鈍を施してから、 温度 5 0 でに加熱した 1 0 体積%の硝酸水溶液がはいっている 1 . 5 mの槽中を l mZmin の速度で通板して鉄相を選 択エッ チング処理した。 そのあ と、 得られた試料の一次 冷間圧延を 8 5 %行い、 冷間圧延板割れ判定を実施した。 次いで、 割れ判定後の試料の焼鈍を温度 5 5 0 °Cで 3 時 間行い、 引続く 冷却過程の途中で時効を温度 4 8 0 °Cで 3 時間行った後、 温度 1 0 0 でまで 5 0 °C 時間で冷却 し、 さ らに二次冷間圧延を 8 %行って板厚 0 . 3 mmの成 品板を得た。  Table 7 shows the results of investigations on the processing characteristics of the obtained alloy (judgment of the cold-rolled sheet) and the material properties as a lead frame material (limit number of breaks and shochu resistance). . That is, first, the 2.2 mm-thick pieces of Sample Nos. 1 to 12 were subjected to softening annealing at 800 ° C. for one hour, and then heated to 50 ° C. The iron phase was selectively etched by passing through a 1.5 m tank containing a 0% by volume nitric acid aqueous solution at a speed of 1 mZmin. After that, the primary cold rolling of the obtained sample was performed at 85%, and the cold rolled sheet cracking was judged. Next, the sample after cracking judgment was annealed at a temperature of 550 ° C for 3 hours, and during the subsequent cooling process, aging was performed at a temperature of 480 ° C for 3 hours, and then to a temperature of 100 ° C. After cooling at 50 ° C, secondary cold rolling was performed 8% to obtain a 0.3 mm thick product plate.
このよ う に して得られた成品板に対して、 次の要領で 繰返し曲げ試験を実施し、 破断限界回数を求めた。 すな わち、 巾 1 0 m、 長さ 5 0 腿の成品板の中央を万力で挟 み、 半径 0 . 2 5 腿の円弧で 9 0 ° の角度まで曲げを繰 返し、 破断に至る までの回数を計測して、 これを破断限 界回数と した。  The product plate obtained in this manner was subjected to a repeated bending test in the following manner, and the maximum number of fractures was obtained. In other words, the center of the product plate with a width of 10 m and a length of 50 thighs is sandwiched by a vice, and repeatedly bent to an angle of 90 ° with an arc of 0.25 thighs, leading to fracture. The number of breaks was measured, and this was defined as the breaking limit.
また、 耐食性は、 塩水噴霧試験 4 8 時間による赤锖発 生率で F e 一 4 2 N i レベルの基準以上を合格と した。 第 In addition, the corrosion resistance was evaluated to be higher than the Fe-42Ni level by the salt spray test for 48 hours. No.
Figure imgf000021_0001
Figure imgf000021_0001
* m とし T50%Cu - 6%Cr - Feを用い?^  * m and use T50% Cu-6% Cr-Fe? ^
* :判 ひ面她の良否を、 格、 X不合格として示した *: The quality of the mask was indicated as a case and X failed.
* m :この では翻 Blifcは翻 Π量〔%x〕 と等しい。 * m: In this case, the translation Blifc is equal to the translation amount [% x].
第 7表の結果よ り A , T i 添加材は添加量が 1 %以 上で冷間圧延板割れ判定、 破断限界回数、 および耐食性 共良好とな り (本発明範囲) 、 それ以下の試料 1 〜 3 お よび 7〜 9 は、 何れも不合格となっている。 産業上の利用可能性 From the results in Table 7, it can be seen from the results in Tables 1 and 2 that the addition of 1% or more of A and Ti results in good cold rolled sheet cracking judgment, the maximum number of fractures, and corrosion resistance (range of the present invention). 1 to 3 and 7 to 9 all failed. Industrial applicability
本発明によ って得られる合金材は、 冷間加工特性およ び材質特性に優れかつ、 溶融時に 2相分離を起こ さず、 極めて微細な組織となって、 電子、 磁気材料等と して好 適に使用される。  The alloy material obtained by the present invention has excellent cold working properties and material properties, does not cause two-phase separation upon melting, has an extremely fine structure, and can be used as an electronic or magnetic material. It is preferably used.

Claims

請求の範囲 The scope of the claims
1. 薄板連続鐯造法によ って製造された合金板であつ て、 重量 で、 C u : 2 0〜 9 0 %、 C r : 1 〜 1 0 % M o : 0〜 1 0 %、 A ^, S c, Y , L a , S i , T i Z r および H f から成る群から選ばれた 1 種の元素また は 2 種以上の元素であって、 その量または合計量が、 次 式 :
Figure imgf000023_0001
1. An alloy sheet manufactured by a continuous thin-plate manufacturing method, in which, by weight, Cu: 20 to 90%, Cr: 1 to 10% Mo: 0 to 10%, A single element or two or more elements selected from the group consisting of A ^, Sc, Y, La, Si, TiZr, and Hf, wherein the amount or the total amount is The following formula:
Figure imgf000023_0001
ただし、 = 0 . 0 1 、 Where = 0.01,
β = 1 - C % C u ) ( C u = 2 0〜 5 0 % の場合) 、  β = 1-C% C u) (for C u = 20-50%),
β = - I 9 + 0 . 4 ί % C ) ( C u = 5 0 〜 9 0 %の場合)  β =-I 9 + 0.4 ί% C) (Cu = 50 to 90%)
の計算値以上、 1 0 %以下である該 1 種の元素または 2 種以上の元素を含み、 残部が事実上 F e である均質性に 優れた合金組織を有する F e 一 C u系合金板。 Fe-Cu alloy plate containing the one or more elements that is not less than the calculated value and not more than 10%, and the balance is substantially Fe, and the alloy structure is excellent in homogeneity. .
2. 薄板連続鐯造法によ って製造された合金板であつ て、 重量%で、 C u : 2 0〜 9 0 %、 C r : 1 〜 1 0 %、 2. An alloy sheet manufactured by a continuous thin-plate manufacturing method, in which, by weight%, Cu: 20 to 90%, Cr: 1 to 10%,
M 0 : 0〜 1 0 %、 Bおよび Cのう ちの 1 種または 2 種 の元素であって、 その量または合計量が、 次式 :
Figure imgf000024_0001
M 0: 0 to 10%, one or two of B and C, whose amount or total amount is represented by the following formula:
Figure imgf000024_0001
ただし、 ひ = 0 . 0 1 、Where hi = 0.01,
S = 5 1 — 〔% C u〕 ( C u = 2 0〜 5 0 % の場合) 、  S = 5 1 — [% Cu] (when Cu = 20 to 50%),
1 9 + 0 . 4 C % C u ) ( C u = 5 0 〜 9 0 %の場合)  1 9 + 0.4 C% C u) (when C u = 50 to 90%)
の計算値を下限値と し、 上限値が、 B単独添加の場合お よび B、 C 2種添加の場合には 1 %、 C単独添加の場合 には 3 %である該 1 種または 2種の元素を含み、 残部が 事実上 F e である均質性に優れた合金組織を有する F e 一 C u系合金板。 Is the lower limit, and the upper limit is 1% when B is added alone, 1% when B and C are added 2 types, and 3% when C is added alone. Fe-Cu-based alloy sheet having an alloy structure with excellent homogeneity, containing the following elements and the balance being Fe in effect.
3. 薄板連続铸造法によ って製造された合金板であつ て、 重量%で、  3. An alloy plate manufactured by a continuous thin-plate manufacturing method,
C u : 2 0〜 9 0 %、  C u: 20 to 90%,
C r : 卜 1 0 %、  Cr: 10%,
M 0 : 0〜 1 0 %、  M 0: 0 to 10%,
A £ , S c, Y , L a , S i , T i , Z r および H f から成る群から選ばれた 1 種の元素または 2種以上の元 素であって、 その量または合計量が、 下式の計算値以上 1 0 %以下である該 1 種の元素または 2種以上の元素、 Bおよび Cのう ちの 1 種または 2種の元素であって、 その量または合計量が、 下式の計算値以上であ り、 上限 値が、 B単独添加の場合および B、 C 2種添加の場合に は 1 %、 C単独添加の場合には 3 %である該 1 種または 2種の元素を含み、 残部が事実上 F e である均質性に優 れた合金組織を有する F e — C u系合金板。 式 : A single element or two or more elements selected from the group consisting of A £, S c, Y, La, S i, T i, Z r, and H f, wherein the amount or the total amount is One or more of the one or two or more of B and C elements which are not less than the calculated value of the following formula and not more than 10%, The amount or total amount is equal to or greater than the calculated value of the following formula, and the upper limit is 1% for B alone and 2% for B and C, and 3% for C alone. An Fe—Cu-based alloy sheet containing one or two kinds of said elements, and having an alloy structure excellent in homogeneity with the balance being Fe in fact. Expression:
/ 〔 Cr〕 十 2 〔 o〕 一 3 I 〔%Cu〕 一 50 な β / [Cr] Ten 2 [o] one 3 I [% Cu] one 50 of β
3 300 /  3 300 /
ただし、 α = 1 ( Α ^ 等の群に属する元素量を算出す る場合) 、 However, α = 1 (when calculating the amount of elements belonging to groups such as Α ^),
α = 0 . 0 1 ( Βおよび Cの量を算出する場 合) 、  α = 0.01 (when calculating the amount of Β and C),
/5 = 5 1 — 〔% C u 〕 ( C u = 2 0〜 5 0 % の場合) 、  / 5 = 5 1 — [% Cu] (if Cu = 20-50%),
β = - \ 9 + 0 . 4 〔% C u 〕 ( C u = 5 0 〜 9 0 %の場合)  β =-\ 9 + 0.4 [% Cu] (When Cu = 50 to 90%)
PCT/JP1991/000463 1990-04-09 1991-04-08 Iron-copper alloy plate with alloy structure excellent in homogeneity WO1991015608A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1019910701810A KR940008939B1 (en) 1990-04-09 1991-04-08 Iron-copper alloy plate with alloy structure excellent in homogeneity
DE69116965T DE69116965T2 (en) 1990-04-09 1991-04-08 IRON-COPPER BAND WITH EXCELLENT HOMOGENEOUS STRUCTURE
EP91906694A EP0477383B1 (en) 1990-04-09 1991-04-08 Iron-copper alloy plate with alloy structure excellent in homogeneity
US08/252,424 US5445686A (en) 1990-04-09 1994-06-01 Fe-Cu alloy sheet having an alloy structure of high uniformity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9344090 1990-04-09
JP2/93440 1990-04-09

Publications (1)

Publication Number Publication Date
WO1991015608A1 true WO1991015608A1 (en) 1991-10-17

Family

ID=14082387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/000463 WO1991015608A1 (en) 1990-04-09 1991-04-08 Iron-copper alloy plate with alloy structure excellent in homogeneity

Country Status (5)

Country Link
EP (1) EP0477383B1 (en)
KR (1) KR940008939B1 (en)
CA (1) CA2058437C (en)
DE (1) DE69116965T2 (en)
WO (1) WO1991015608A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270541A (en) * 1985-09-20 1987-04-01 Mitsubishi Metal Corp Cu-alloy lead material for semiconductor device
JPS63149344A (en) * 1986-12-12 1988-06-22 Nippon Mining Co Ltd High strength copper alloy having high electrical conductivity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270541A (en) * 1985-09-20 1987-04-01 Mitsubishi Metal Corp Cu-alloy lead material for semiconductor device
JPS63149344A (en) * 1986-12-12 1988-06-22 Nippon Mining Co Ltd High strength copper alloy having high electrical conductivity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0477383A4 *

Also Published As

Publication number Publication date
CA2058437A1 (en) 1991-10-10
CA2058437C (en) 1999-02-23
EP0477383B1 (en) 1996-02-07
KR920701496A (en) 1992-08-11
DE69116965D1 (en) 1996-03-21
EP0477383A4 (en) 1992-08-19
KR940008939B1 (en) 1994-09-28
EP0477383A1 (en) 1992-04-01
DE69116965T2 (en) 1996-09-12

Similar Documents

Publication Publication Date Title
JP6226097B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet material for electronic and electrical equipment, electronic and electrical equipment parts, terminals, bus bars, and movable pieces for relays
JP4837697B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP7180101B2 (en) Copper alloys for electronic and electrical equipment, copper alloy sheet materials for electronic and electrical equipment, parts for electronic and electrical equipment, terminals and bus bars
TWI695075B (en) Copper alloy material and its manufacturing method
JP5907320B1 (en) Material for stainless cold-rolled steel sheet and manufacturing method thereof
JP3977376B2 (en) Copper alloy
WO2017043577A1 (en) Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
KR20110039372A (en) Copper alloy material for electrical/electronic component
JP2019178397A (en) Copper alloy for electronic and electric device, copper ally stripe material for electronic and electric device, component for electronic and electric device, terminal, and bus bar
JP2017179492A (en) Copper alloy for electric and electronic device, copper alloy plastic processing material for electric and electronic device, component for electric and electronic device, terminal and bus bar
JP5098096B2 (en) Copper alloy, terminal or bus bar, and method for producing copper alloy
JP2007136467A (en) Cast ingot of copper alloy, method for producing cast ingot of copper alloy, method for producing copper alloy strip and production device for cast ingot of copper alloy
WO1991015608A1 (en) Iron-copper alloy plate with alloy structure excellent in homogeneity
JP2001271143A (en) Ferritic stainless steel excellent in ridging resistance and its production method
JP4130593B2 (en) High strength and high conductivity copper alloy with excellent fatigue and intermediate temperature characteristics
JP4304425B2 (en) Cold rolled titanium alloy sheet and method for producing cold rolled titanium alloy sheet
JP4469269B2 (en) Electrical steel sheet with excellent high-frequency magnetic properties and manufacturing method thereof
JP7304715B2 (en) Ferritic stainless steel plate
US5445686A (en) Fe-Cu alloy sheet having an alloy structure of high uniformity
JP2016211053A (en) Copper alloy excellent in heat resistance
JP2559914B2 (en) Method for producing Fe-Cu alloy plate excellent in homogeneity
JP4444143B2 (en) Copper alloy strip manufacturing method
JP2018204115A (en) Copper alloy having excellent heat resistance
TW416873B (en) Process for manufacturing a strip made of an alloy of the iron-nickel type from a continuously cast thin strip
JP4761308B2 (en) High-strength Al alloy and manufacturing method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 2058437

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1991906694

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991906694

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991906694

Country of ref document: EP