WO1991014743A1 - Antifouling coating compositions - Google Patents
Antifouling coating compositions Download PDFInfo
- Publication number
- WO1991014743A1 WO1991014743A1 PCT/GB1991/000428 GB9100428W WO9114743A1 WO 1991014743 A1 WO1991014743 A1 WO 1991014743A1 GB 9100428 W GB9100428 W GB 9100428W WO 9114743 A1 WO9114743 A1 WO 9114743A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coating composition
- antifouling coating
- triorganosilyl
- composition according
- amine
- Prior art date
Links
- 239000008199 coating composition Substances 0.000 title claims abstract description 31
- 230000003373 anti-fouling effect Effects 0.000 title claims abstract description 28
- 229920000642 polymer Polymers 0.000 claims abstract description 24
- 230000003115 biocidal effect Effects 0.000 claims abstract description 17
- 239000011230 binding agent Substances 0.000 claims abstract description 16
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 15
- 239000003139 biocide Substances 0.000 claims abstract description 11
- 239000000203 mixture Substances 0.000 claims abstract description 8
- 150000001875 compounds Chemical class 0.000 claims abstract description 7
- 150000007942 carboxylates Chemical group 0.000 claims abstract description 5
- 150000001412 amines Chemical class 0.000 claims description 26
- 239000000049 pigment Substances 0.000 claims description 24
- 150000003856 quaternary ammonium compounds Chemical class 0.000 claims description 14
- 239000013535 sea water Substances 0.000 claims description 14
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 11
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 claims description 10
- 229920001577 copolymer Polymers 0.000 claims description 8
- 229920005596 polymer binder Polymers 0.000 claims description 8
- 239000002491 polymer binding agent Substances 0.000 claims description 8
- 239000000178 monomer Substances 0.000 claims description 6
- 125000000217 alkyl group Chemical group 0.000 claims description 5
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 claims description 5
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical group [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 claims description 5
- 229940112669 cuprous oxide Drugs 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 150000004141 diterpene derivatives Chemical class 0.000 claims description 4
- 230000007062 hydrolysis Effects 0.000 claims description 4
- 238000006460 hydrolysis reaction Methods 0.000 claims description 4
- 125000000962 organic group Chemical group 0.000 claims description 4
- 125000003118 aryl group Chemical group 0.000 claims description 3
- 229930004069 diterpene Natural products 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 2
- 229940063557 methacrylate Drugs 0.000 claims 4
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 claims 1
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- 238000001879 gelation Methods 0.000 abstract description 4
- 239000003973 paint Substances 0.000 description 34
- -1 aminoalkyl acrylate Chemical group 0.000 description 6
- 238000005498 polishing Methods 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 150000003141 primary amines Chemical class 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- 150000003752 zinc compounds Chemical class 0.000 description 3
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- FFWSICBKRCICMR-UHFFFAOYSA-N 5-methyl-2-hexanone Chemical compound CC(C)CCC(C)=O FFWSICBKRCICMR-UHFFFAOYSA-N 0.000 description 2
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 2
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- MJJAGRVJSHKNMG-UHFFFAOYSA-N [dimethyl(phenyl)silyl] prop-2-enoate Chemical compound C=CC(=O)O[Si](C)(C)C1=CC=CC=C1 MJJAGRVJSHKNMG-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- PDZKZMQQDCHTNF-UHFFFAOYSA-M copper(1+);thiocyanate Chemical compound [Cu+].[S-]C#N PDZKZMQQDCHTNF-UHFFFAOYSA-M 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 150000003335 secondary amines Chemical class 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- AMHNZOICSMBGDH-UHFFFAOYSA-L zineb Chemical compound [Zn+2].[S-]C(=S)NCCNC([S-])=S AMHNZOICSMBGDH-UHFFFAOYSA-L 0.000 description 2
- LDVVMCZRFWMZSG-OLQVQODUSA-N (3ar,7as)-2-(trichloromethylsulfanyl)-3a,4,7,7a-tetrahydroisoindole-1,3-dione Chemical compound C1C=CC[C@H]2C(=O)N(SC(Cl)(Cl)Cl)C(=O)[C@H]21 LDVVMCZRFWMZSG-OLQVQODUSA-N 0.000 description 1
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 1
- JLHMJWHSBYZWJJ-UHFFFAOYSA-N 1,2-thiazole 1-oxide Chemical class O=S1C=CC=N1 JLHMJWHSBYZWJJ-UHFFFAOYSA-N 0.000 description 1
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 239000005745 Captan Substances 0.000 description 1
- 241000238586 Cirripedia Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 241000282337 Nasua nasua Species 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- JVVXZOOGOGPDRZ-SLFFLAALSA-N [(1R,4aS,10aR)-1,4a-dimethyl-7-propan-2-yl-2,3,4,9,10,10a-hexahydrophenanthren-1-yl]methanamine Chemical compound NC[C@]1(C)CCC[C@]2(C)C3=CC=C(C(C)C)C=C3CC[C@H]21 JVVXZOOGOGPDRZ-SLFFLAALSA-N 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000004103 aminoalkyl group Chemical group 0.000 description 1
- 150000003974 aralkylamines Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 229940117949 captan Drugs 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- MEGHWIAOTJPCHQ-UHFFFAOYSA-N ethenyl butanoate Chemical compound CCCC(=O)OC=C MEGHWIAOTJPCHQ-UHFFFAOYSA-N 0.000 description 1
- AWYFNIZYMPNGAI-UHFFFAOYSA-L ethylenebis(dithiocarbamate) Chemical compound [S-]C(=S)NCCNC([S-])=S AWYFNIZYMPNGAI-UHFFFAOYSA-L 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000011953 free-radical catalyst Substances 0.000 description 1
- 229920001002 functional polymer Polymers 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- JWZXKXIUSSIAMR-UHFFFAOYSA-N methylene bis(thiocyanate) Chemical compound N#CSCSC#N JWZXKXIUSSIAMR-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 229960002447 thiram Drugs 0.000 description 1
- KUAZQDVKQLNFPE-UHFFFAOYSA-N thiram Chemical compound CN(C)C(=S)SSC(=S)N(C)C KUAZQDVKQLNFPE-UHFFFAOYSA-N 0.000 description 1
- NIBPEHGZRFSWSY-UHFFFAOYSA-N tributylsilyl prop-2-enoate Chemical compound CCCC[Si](CCCC)(CCCC)OC(=O)C=C NIBPEHGZRFSWSY-UHFFFAOYSA-N 0.000 description 1
- PGQNYIRJCLTTOJ-UHFFFAOYSA-N trimethylsilyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)O[Si](C)(C)C PGQNYIRJCLTTOJ-UHFFFAOYSA-N 0.000 description 1
- HVMNIRCQQXUXRP-UHFFFAOYSA-N triphenylsilyl prop-2-enoate Chemical compound C=1C=CC=CC=1[Si](C=1C=CC=CC=1)(OC(=O)C=C)C1=CC=CC=C1 HVMNIRCQQXUXRP-UHFFFAOYSA-N 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- RKQOSDAEEGPRER-UHFFFAOYSA-L zinc diethyldithiocarbamate Chemical compound [Zn+2].CCN(CC)C([S-])=S.CCN(CC)C([S-])=S RKQOSDAEEGPRER-UHFFFAOYSA-L 0.000 description 1
- DUBNHZYBDBBJHD-UHFFFAOYSA-L ziram Chemical compound [Zn+2].CN(C)C([S-])=S.CN(C)C([S-])=S DUBNHZYBDBBJHD-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/16—Antifouling paints; Underwater paints
- C09D5/1687—Use of special additives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D143/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium, or a metal; Coating compositions based on derivatives of such polymers
- C09D143/04—Homopolymers or copolymers of monomers containing silicon
Definitions
- This invention is concerned with antifouling coating compositions used on surfaces likely to come into contact with marine fouling organisms such as algae, seaweed and barnacles, for example on ships or boats or on the outfalls for cooling water from power stations.
- Such coating compositions generally comprise a biocide for marine organisms and a binder polymer. More particularly, i t re l ates to compos i ti ons capab l e of formi ng a coati ng film having an improved binder polymer.
- the only commercially significant self-polishing paints employ binders which comprise triorganotin ester leaving groups.
- the triorganotin provides some of the biocidal action of the paints and the triorganotin ester readily undergoes the hydrolysis on which the self-polishing action is dependant.
- the biocidal activity can be augmented by other antifouling supstances dispersed or dissolved in the paint film.
- R is a substituted alkyl, aryl, aralkyl or triorganosilyl moiety and B is the residue of an ethylenically unsaturated comonomer.
- WO84/02915 describes a wide range of groups R, but it has been found in practice that the less readily hydrolysable groups R such as benzyl, aminoalkyl and haloalkyl groups do not give a polymer which dissolves in seawater.
- hydrolysable groups R which are triorganosilyl groups and these are further described in US Patent 4593055. The triorganosilyl groups undergo rapid hydrolysis, but this can give rise to gelation of the paint composition on storage and undesirably rapid dissolution of the paint from a ship's hull in use.
- 146969 describes an antifouling coating containing a copolymer of 10-90 molar % triorganosilyl acrylate or methacrylate units and 0.1-10 molar % tertiary aminoalkyl acrylate or methacrylate units.
- An antifouling coating composition according to the present invention containing a biocide for marine organisms and comprising as binder a polymer having pendent triorganosilyl carboxylate groups, is characterised in that the coating composition contains a monoamine having at least 4 carbon atoms or a quaternary monoammonium compound.
- the amine or quaternary ammonium compound inhibits gelation of the coating composition curing storage. Paints containing a polymer having pendent triorganosilyl carboxylate groups may be liable to gelation during storage, particularly when the paint contains a metal compound as pigment, for example a copper or zinc compound such as cuprous oxide.
- the amine or quaternary ammonium compound also controls the rate of dissolution of the coating in use on a ship moving through seawater, prolonging the length of time for which the coating is effective.
- the binder polymer is preferably a triorganosilyl acrylate or methacrylate polymer containing repeat units of the formula:
- R represents a triorganosilyl moiety of the formula Si(R') 3 , where the groups R', which can be the same or different, represent straightchain or branched alkyl groups having 1 to 10 carbon atoms or phenyl groups.
- the polymer is preferably produced by addition polymerisation of a triorganosilyl acrylate or methacrylate of the formula:
- R has the above meaning, using a free radical catalyst such as an azo compound or a peroxide, preferably in solution in an organic solvent.
- a free radical catalyst such as an azo compound or a peroxide
- monomers of the formula (I) are tributylsilyl acrylate, triphenylsilyl acrylate, phenyldimethylsilyl acrylate, diphenylmetnylsilyl acrvlate, tri - i sopropyl si l yl acrylate and trimetnylsilyl acrvlate, and the corresponding methacrylates.
- Suitable solvents are an aromatic hydrocarbon such as xylene or toluene, optionally mixed with an aliphatic hydrocarbon such as white spirit, an ester such as butyl acetate, ethoxyethyl acetate or metnoxypropyl acetate, an alcohol such as butanol or butoxy-ethanol, or a ketone such as methyl isobutyl ketone or methyl lsoamyl ketone.
- aromatic hydrocarbon such as xylene or toluene
- an aliphatic hydrocarbon such as white spirit
- an ester such as butyl acetate, ethoxyethyl acetate or metnoxypropyl acetate
- an alcohol such as butanol or butoxy-ethanol
- a ketone such as methyl isobutyl ketone or methyl lsoamyl ketone.
- the triorganosilyl acrylate or methacrylate monomer is generally copolymerised with one or more ethylemcally unsaturated comonomers which do not undergo hydrolysis in seawater, for example acrylic esters such as methyl acrylate, methyl methacrylate, ethyl acrylate. butyl acrylate or 2-ethyl hexyl methacrylate, styrene, acrylonitrile. vinyl acetate, vinyl butyrate, vinyl chloride or vinyl pyridine.
- Units of the triorganosilyl acrylate or methacrylate monomer can for example form 15 to 60 mole % of the resulting copolymer, preferably 20 to 45 mole % .
- the polymer binder can alternatively be formed by reacting a carboxylic-acid-functional polymer, for example a copolymer of acrylic or methacrylic acid with an ethylenically unsaturated comonomer of the type described above, with a triorganosilyl compound such as a hexa-alkyl disilazane or a bis(triorganosilyl) urea.
- the polymer binder can alternatively be a block copolymer of a triorganosilyl acrylate or methacrylatepolymer with polyether or polymethane blocks or blocks of another addition polymer such as polymethyl methacrylate as described in US Patent 4957989.
- the monoamine used in the coating composition is preferably a primary amine, although a secondary or tertiary amine can be used.
- the amine or quaternary ammonium compound preferably includes at least one organic group having at least 8 carbon atoms, more preferably 8 to 20 carbon atoms. Such amines and quaternary ammonium compounds generally have the additional advantage that they are toxic to marine organisms. Primary amines having at least 8 carbon atoms are particularly preferred.
- the monoamine can for example be a diterpene-derived amine of the formula:
- R 1 - N - R 3 where R 1 is a monovalent hydrocarbon group derived from a diterpene and R 2 and R 3 are each independently hydrogen, an alkyl group having 1 to 18 carbon atoms or an aryl group having 6 to 12 carbon atoms. These amines are usually toxic. Such an amine is preferably derived from rosin. A primary amine derived from rosin is dehydroabietylamine sold commercially as "Rosin Amine D" . Its main constituent is
- a corresponding secondary or tertiary amine for example an N-methyl or N,N-dimethyl derivative of Rosin Amine D, can alternatively be used.
- the monoami ne can al ternati ve l y be an al i phati c ami ne containing an organic group of 12 to 20 caroon atoms, for example a straight-chain alkyl or alkenyl amine such as dodecyl amine. hexadecyl amine, octadecyl amine or oleyl amine or mixtures of amines derived from aliphatic groups present in natural fats and oils such as tallow amine or hydrogenated tallow amine or coconut amine. These amines also are usually toxic.
- aralkyl- amines such as these sold commercially as "phenalkamines".
- the quaternary monoammonium compound can for example be a halide salt, e.g. hexadecyl trimethyl ammonium chloride.
- the proportion of triorganosilyl polymer binder to amine or quaternary ammonium compound in the coating composition is preferaply 98:2 to 40:60 by volume, most preferably 90:10 to 50:50.
- Amines naving no film-forming properties are preferably used at no more than 25% based on the combined volume of polymer and amine, whereas film- forming amines such as the diterpene derivatives can be used at a higher proportion if desired.
- the resulting coating composition can be a clear antifouling varnish or can be pigmented. If a non-biocidal amine or quaternary ammonium compound is used the coating composition should contain a marine biocide.
- the coating preferably contains a pigment, and the same material may function simultaneously both as a marine biocide and as a pigment if a biocidal pigment is used.
- the coating composition preferably contains an organic solvent for the triorganosilyl polymer binder; if tne polymer is prepared in solution the polymer solution produced can be used in preparing the paint.
- the amine or quaternary ammonium compound can be premixed with the triorganosilyl polymer binder before addition of other components of the coating composition, or the binder polymer can simultaneously be mixed with the amine or quaternary ammonium compound and a pigment.
- the triorganosilyl polymer binder and the amine or quaternary ammonium compound can be mixed with pigment using conventional paint-blending procedures to provide a composition having a pigment volume concentration of, for example, 25 to 55%.
- the pigment is preferably a sparingly soluble pigment having a solubility in seawater of from 0.5 to 10 parts per million by weight and is preferably a metalliferous pigment.
- the pigment is most preferably a copper or zinc compound, for example cuprous oxide, cuprous thiocyanate, zinc oxide, zinc ethylene bis(dithiocarbamate), zinc dimethyl dithiocarbamate, zinc diethyl dithiocarbamate or cuprous ethylene bis(dithiocarbamate).
- These sparingly soluble pigments which are copper and zinc compounds are generally also marine biocides.
- the sparingly soluble metalliferous pigments produce water-soluble metal compounds on reaction with seawater so that the pigment particles do not survi ve at the paint surface.
- sparingly soluble pigments can be used, for example cuprous oxide, cuprous thiocyanate or zinc ethylene bis(dithiocarbamate), which are highly effective biocical pigments, can be mixed with zinc oxide, which is less effective as a biocide but dissolves slightly more rapidly in seawater.
- the paint composition can additionally or alternatively contain a pigment which is not reactive with seawater and may be highly insoluble in seawater (solubility below 0.5 part per million oy weight) such as titanium dioxide or ferric oxide or an organic pigment such as a phthalocyanine pigment.
- a pigment which is not reactive with seawater such as titanium dioxide or ferric oxide or an organic pigment such as a phthalocyanine pigment.
- Such highly insoluble pigments are preferably used at less than 40% by weight of the total pigment component of the paint, most preferably less than 20%.
- the antifouling paint can also contain a non-metalliferous biocide for marine organisms, for example tetramethyl thiuram disulphide, methylene bis(thiocyanate), captan, a substituted isothiazolone or 2-methyl th ⁇ o-4-t- butylamino-6-cyclopropylamino-s-triazine.
- a non-metalliferous biocide for marine organisms for example tetramethyl thiuram disulphide, methylene bis(thiocyanate), captan, a substituted isothiazolone or 2-methyl th ⁇ o-4-t- butylamino-6-cyclopropylamino-s-triazine.
- the antifouling coating composition of the invention is generally applied from a solution in an organic solvent: for example when the triorganosilyl polymer is prepared in an organic solvent the polymer solution can be used directly in the paint. It can optionally be diluted by further solvent, preferaply selected from the solvents listed above.
- Example 1 The invention is illustrated by the following Example.
- Example 2 The invention is illustrated by the following Example.
- a sample of the paint produced was stored in a can at 45°C for 22 days. A slight skin formed at the surface of the paint but the paint was still sprayable.
- a paint (A) based on the same copolymer ano having the same pigment volume concentration but containing no Rosin Amine D had gelled on storage and was not sprayable.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Paints Or Removers (AREA)
Abstract
An antifouling coating composition containing a biocide for marine organisms comprises as binder a polymer having pendent triorganosilyl carboxylate groups. To inhibit gelation of the composition during storage the coating composition also contains a monoamine having at least four carbon atoms or a quaternary monoammonium compound.
Description
ANTIFOULING COATING COMPOSITIONS
Technical Field
This invention is concerned with antifouling coating compositions used on surfaces likely to come into contact with marine fouling organisms such as algae, seaweed and barnacles, for example on ships or boats or on the outfalls for cooling water from power stations. Such coating compositions generally comprise a biocide for marine organisms and a binder polymer. More particularly, i t re l ates to compos i ti ons capab l e of formi ng a coati ng film having an improved binder polymer.
Background Art
The most successful antifouling paints in recent, years have been self-polishing antifouling paints using binders which are linear polymers containing pendent side groups (hereinafter called "leaving groups") which are liberated from the polymer by reaction with seawater, the residual polymer being sufficiently dispersible or soluble in seawater to be swept away from tne paint surface, exposing a fresh layer of the binder able to undergo a similar reaction with seawater. Such paints are described for examcle in British Patent 1457590. The gradual thinning of the paint film controls the release of a biocide active against fouling. The well-known benefits of such self- polishing paints are that the paint film tends to at least retain its initial smoothness and that the biociσe contained in the paint tends to be delivered from the surface at a more uniform or constant rate.
The only commercially significant self-polishing paints employ binders which comprise triorganotin ester leaving groups. The triorganotin provides some of the biocidal action of the paints and the triorganotin ester readily undergoes the hydrolysis on which the self-polishing action is dependant. The biocidal activity can be augmented by other antifouling supstances dispersed or
dissolved in the paint film. There may be aαvantages in replacing some or all of the triorganotin ester leaving groups by other leaving groups, which are not necessarily biocidal. botn for cost reasons and because the powerful biocidal effects of triorganotin may not be desired.
International Patent Application WO84/02915, for example, discloses an antifouling paint having a hydrolysable film-forming water-insoluble seawater-erodible polymeric binder having recurring groups represented by the formula:
where X is hydrogen or methyl, R is a substituted alkyl, aryl, aralkyl or triorganosilyl moiety and B is the residue of an ethylenically unsaturated comonomer. WO84/02915 describes a wide range of groups R, but it has been found in practice that the less readily hydrolysable groups R such as benzyl, aminoalkyl and haloalkyl groups do not give a polymer which dissolves in seawater. WO84/02915 also describes hydrolysable groups R which are triorganosilyl groups and these are further described in US Patent 4593055. The triorganosilyl groups undergo rapid hydrolysis, but this can give rise to gelation of the paint composition on storage and undesirably rapid dissolution of the paint from a ship's hull in use.
Japanese published unexamined patent application 1-
146969 describes an antifouling coating containing a copolymer of 10-90 molar % triorganosilyl acrylate or methacrylate units and 0.1-10 molar % tertiary aminoalkyl acrylate or methacrylate units.
Disclosure of Invention
An antifouling coating composition according to the present invention containing a biocide for marine organisms
and comprising as binder a polymer having pendent triorganosilyl carboxylate groups, is characterised in that the coating composition contains a monoamine having at least 4 carbon atoms or a quaternary monoammonium compound. The amine or quaternary ammonium compound inhibits gelation of the coating composition curing storage. Paints containing a polymer having pendent triorganosilyl carboxylate groups may be liable to gelation during storage, particularly when the paint contains a metal compound as pigment, for example a copper or zinc compound such as cuprous oxide. The amine or quaternary ammonium compound also controls the rate of dissolution of the coating in use on a ship moving through seawater, prolonging the length of time for which the coating is effective. The binder polymer is preferably a triorganosilyl acrylate or methacrylate polymer containing repeat units of the formula:
where X represents H or CH3 and R represents a triorganosilyl moiety of the formula Si(R')3, where the groups R', which can be the same or different, represent straightchain or branched alkyl groups having 1 to 10 carbon atoms or phenyl groups.
The polymer is preferably produced by addition polymerisation of a triorganosilyl acrylate or methacrylate of the formula:
where R has the above meaning, using a free radical catalyst such as an azo compound or a peroxide, preferably in solution in an organic solvent. Examples of monomers of the formula (I) are tributylsilyl acrylate, triphenylsilyl acrylate, phenyldimethylsilyl acrylate, diphenylmetnylsilyl acrvlate, tri - i sopropyl si l yl acrylate and trimetnylsilyl acrvlate, and the corresponding methacrylates. Examples of suitable solvents are an aromatic hydrocarbon such as xylene or toluene, optionally mixed with an aliphatic hydrocarbon such as white spirit, an ester such as butyl acetate, ethoxyethyl acetate or metnoxypropyl acetate, an alcohol such as butanol or butoxy-ethanol, or a ketone such as methyl isobutyl ketone or methyl lsoamyl ketone.
The triorganosilyl acrylate or methacrylate monomer is generally copolymerised with one or more ethylemcally unsaturated comonomers which do not undergo hydrolysis in seawater, for example acrylic esters such as methyl acrylate, methyl methacrylate, ethyl acrylate. butyl acrylate or 2-ethyl hexyl methacrylate, styrene, acrylonitrile. vinyl acetate, vinyl butyrate, vinyl chloride or vinyl pyridine. Units of the triorganosilyl acrylate or methacrylate monomer can for example form 15 to 60 mole % of the resulting copolymer, preferably 20 to 45 mole % .
The polymer binder can alternatively be formed by reacting a carboxylic-acid-functional polymer, for example a copolymer of acrylic or methacrylic acid with an ethylenically unsaturated comonomer of the type described above, with a triorganosilyl compound such as a hexa-alkyl disilazane or a bis(triorganosilyl) urea. The polymer binder can alternatively be a block copolymer of a triorganosilyl acrylate or methacrylatepolymer with polyether or polymethane blocks or blocks of another addition polymer such as polymethyl methacrylate as described in US Patent 4957989.
The monoamine used in the coating composition is preferably a primary amine, although a secondary or tertiary amine can be used. The amine or quaternary ammonium compound preferably includes at least one organic group having at least 8 carbon atoms, more preferably 8 to 20 carbon atoms. Such amines and quaternary ammonium compounds generally have the additional advantage that they are toxic to marine organisms. Primary amines having at least 8 carbon atoms are particularly preferred. The monoamine can for example be a diterpene-derived amine of the formula:
R2
R1 - N - R3 where R1 is a monovalent hydrocarbon group derived from a diterpene and R2 and R3 are each independently hydrogen, an alkyl group having 1 to 18 carbon atoms or an aryl group having 6 to 12 carbon atoms. These amines are usually toxic. Such an amine is preferably derived from rosin. A primary amine derived from rosin is dehydroabietylamine sold commercially as "Rosin Amine D" . Its main constituent is
A corresponding secondary or tertiary amine, for example an N-methyl or N,N-dimethyl derivative of Rosin Amine D, can alternatively be used.
The monoami ne can al ternati ve l y be an al i phati c ami ne containing an organic group of 12 to 20 caroon atoms, for example a straight-chain alkyl or alkenyl amine such as
dodecyl amine. hexadecyl amine, octadecyl amine or oleyl amine or mixtures of amines derived from aliphatic groups present in natural fats and oils such as tallow amine or hydrogenated tallow amine or coconut amine. These amines also are usually toxic.
Alternative monoamines which can be used are aralkyl- amines such as these sold commercially as "phenalkamines". The quaternary monoammonium compound can for example be a halide salt, e.g. hexadecyl trimethyl ammonium chloride. The proportion of triorganosilyl polymer binder to amine or quaternary ammonium compound in the coating composition is preferaply 98:2 to 40:60 by volume, most preferably 90:10 to 50:50. Amines naving no film-forming properties are preferably used at no more than 25% based on the combined volume of polymer and amine, whereas film- forming amines such as the diterpene derivatives can be used at a higher proportion if desired.
If an amine or quaternary ammonium compound which is biocidal to marine organisms is used the resulting coating composition can be a clear antifouling varnish or can be pigmented. If a non-biocidal amine or quaternary ammonium compound is used the coating composition should contain a marine biocide. The coating preferably contains a pigment, and the same material may function simultaneously both as a marine biocide and as a pigment if a biocidal pigment is used. The coating composition preferably contains an organic solvent for the triorganosilyl polymer binder; if tne polymer is prepared in solution the polymer solution produced can be used in preparing the paint. The amine or quaternary ammonium compound can be premixed with the triorganosilyl polymer binder before addition of other components of the coating composition, or the binder polymer can simultaneously be mixed with the amine or quaternary ammonium compound and a pigment. For
example, the triorganosilyl polymer binder and the amine or quaternary ammonium compound can be mixed with pigment using conventional paint-blending procedures to provide a composition having a pigment volume concentration of, for example, 25 to 55%. The pigment is preferably a sparingly soluble pigment having a solubility in seawater of from 0.5 to 10 parts per million by weight and is preferably a metalliferous pigment. The pigment is most preferably a copper or zinc compound, for example cuprous oxide, cuprous thiocyanate, zinc oxide, zinc ethylene bis(dithiocarbamate), zinc dimethyl dithiocarbamate, zinc diethyl dithiocarbamate or cuprous ethylene bis(dithiocarbamate). These sparingly soluble pigments which are copper and zinc compounds are generally also marine biocides. The sparingly soluble metalliferous pigments produce water-soluble metal compounds on reaction with seawater so that the pigment particles do not survi ve at the paint surface. Mixtures of sparingly soluble pigments can be used, for example cuprous oxide, cuprous thiocyanate or zinc ethylene bis(dithiocarbamate), which are highly effective biocical pigments, can be mixed with zinc oxide, which is less effective as a biocide but dissolves slightly more rapidly in seawater.
The paint composition can additionally or alternatively contain a pigment which is not reactive with seawater and may be highly insoluble in seawater (solubility below 0.5 part per million oy weight) such as titanium dioxide or ferric oxide or an organic pigment such as a phthalocyanine pigment. Such highly insoluble pigments are preferably used at less than 40% by weight of the total pigment component of the paint, most preferably less than 20%.
The antifouling paint can also contain a non-metalliferous biocide for marine organisms, for example tetramethyl thiuram disulphide, methylene bis(thiocyanate), captan, a substituted isothiazolone or 2-methyl thιo-4-t-
butylamino-6-cyclopropylamino-s-triazine.
The antifouling coating composition of the invention is generally applied from a solution in an organic solvent: for example when the triorganosilyl polymer is prepared in an organic solvent the polymer solution can be used directly in the paint. It can optionally be diluted by further solvent, preferaply selected from the solvents listed above.
The invention is illustrated by the following Example. Example
15 molar % phenyldimethylsilyl acrylate, 15 molar % trimethylsilyl methacrylate and 70 molar % butyl methacrylate were copolymerised as a 40% by weight solution in xylene at 70°C using azobisisobutyronitrile as initiator. The resulting triorganosilyl copolymer solution was mixed with pigments, structuring agents. Rosin Amine D and additional solvent in a high-speed disperser and ground to a particle size of 25 microns to produce an antifouling paint having the following formulation:
Per Cent by We i ght
Triorganosilyl copolymer 1 5 . 1
Xylene 31 . 0
Methyl isoamyl ketone 1 4 . 9
Cuprous oxide 28 . 7
Titanium dioxide 3 . 4
Structuring Agents (bentonite clay,
zeolite and silica) 1 . 7
Rosin Amine D 4 . 6
A sample of the paint produced was stored in a can at 45°C for 22 days. A slight skin formed at the surface of the paint but the paint was still sprayable. By comparison, a paint (A) based on the same copolymer ano having
the same pigment volume concentration but containing no Rosin Amine D had gelled on storage and was not sprayable.
Further samples of the paints produced were applied as twe stripes 90 microns thick on a disc. The disc was rotated in seawater for 80 days as a test designed to measure the rate of dissolution of the paints when used as a self-polisning antifouling paint. The thickness of the paint strioes was measured before and after tne trial and the rate of polishing away of paint was calculated. The rate of dissolution of the paint of the invention was only 44% of that of the comparison paint (A).
Claims
1. An antifouling coating composition containing a biocide for marine organisms and comprising as binder a polymer having pendent triorganosilyl carboxylate groups, characterised in that the coating composition contains a monoamine having at least four carbon atoms or a guaternary monoammonium compound.
2. An antifouling coating composition according to claim 1, characterised in that the binder polymer is a triorganosilyl acrylate or methacrylate polymer contai n i ng repeat units of the formula:
where X represents H or CH3 and R represents a triorganosilyl moiety of the formula Si(R')3, where the groups R', which can be the same or different, represent straightchain or branched alkyl groups having 1 to 10 carbon atoms or phenyl groups.
3. An antifouling coating composition according to claim 2, characterised in that the binder polymer is a cooolymer of a triorganosilyl acrylate or methacrylate monomer with one or more ethylenically unsaturated comonomers whicn do not undergo hydrolysis in seawater.
4. An antifouling coating composition according to claim 3, characterised in that units of the triorganosilyl acrylate or methacryl ate monomer form 15 to 60 mole% of the copolymer.
5. An antifouling coating composition according to claim 3, characterised in that units of the triorganosilyl acrylate or methacrylate monomer form 20 to 45 mole% of the copolymer.
6. An antifouling coating composition according to any of claims 1 to 5, characterised in that the amine or quaternary ammonium compound induces at least one organic group having at least 8 carbon atoms.
7. An antifouling coating composition according to claim 6, characterised in that an amine is used which has the formula:
where R1 represents a monovalent hydrocarbon group derived from a diterpene and R2 and R3 each independently represent hydrogen, an alkyl group having 1 to 18 carbon atoms or an aryl group having 6 to 12 carbon atoms.
8. An antifouling coating composition according to claim 6. characterised in that an amine is used which is an aliphatic amine containing an organic group of 12 to 20 carbon atoms.
9. An antifouling coating composition according to any of claims 1 to 8, characterised in that the proportion of triorganosilyl polymer binder to amine or quaternary ammonium compound is 98:2 to 40:60 by volume.
10. An antifouling coating composition according to claim 9, characterised in that the proportion of triorganosilyl polymer binder to amine or quaternary ammonium compound is 90:10 to 50:50 by volume.
11. An antifouling coating composition according to any of claims 1 to 10, characterised in that it contains as pi gment a copper or zi nc compound havi ng a sol ubi l i ty i n sea water of from 0.5 to 10 parts per million by weight.
12. An antifouling coating composition according to claim 11, characterised in that tne pigment is cuprous oxide.
13. A process for preparing an antifouling coating composition containing a biocide for marine organisms and comprising as binder a polymer having pendent triorganosilyl carboxylate groups, characterised in that a monoamine having at least four carbon atoms or a quaternary monoammonium compound is incorporated into the composition.
14. A process according to claim 13, characterised in that the amine or quaternary ammonium compound is premixed with the binder before addition of other components of the coating composition or is mixed simultaneously with the binder and a pigment.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB909006318A GB9006318D0 (en) | 1990-03-21 | 1990-03-21 | Coating compositions |
| GB9006318.1 | 1990-03-21 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1991014743A1 true WO1991014743A1 (en) | 1991-10-03 |
Family
ID=10672973
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB1991/000428 WO1991014743A1 (en) | 1990-03-21 | 1991-03-20 | Antifouling coating compositions |
Country Status (3)
| Country | Link |
|---|---|
| GB (1) | GB9006318D0 (en) |
| PT (1) | PT97105A (en) |
| WO (1) | WO1991014743A1 (en) |
Cited By (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5185033A (en) * | 1992-09-01 | 1993-02-09 | Olin Corporation | Gel-free paint containing copper pyrithione or pyrithione disulfide plus cuprous oxide |
| US5232493A (en) * | 1992-09-01 | 1993-08-03 | Olin Corporation | Process for stabilizing zinc pyrithione plus cuprous oxide in paint |
| US5238490A (en) * | 1992-09-04 | 1993-08-24 | Olin Corporation | Process for generating copper pyrithione in-situ in a paint formulation |
| US5298061A (en) * | 1993-05-14 | 1994-03-29 | Olin Corporation | Gel-free paint containing zinc pyrithione, cuprous oxide, and amine treated rosin |
| US5342437A (en) * | 1993-10-15 | 1994-08-30 | Olin Corporation | Gel-free paint containing zinc pyrithione cuprous oxide and carboxylic acid |
| EP0775733A4 (en) * | 1995-06-01 | 1999-03-31 | Chugoku Marine Paints | ANTI-FOULING PAINT COMPOSITION, COATING FILM OBTAINED THEREFROM, ANTI-FOULING METHOD BASED ON THE COMPOSITION, AND UNDERWATER SHELLS OR STRUCTURES COATED WITH THE FILM OBTAINED |
| US6458878B1 (en) | 1998-12-28 | 2002-10-01 | Chuogoku Marine Paints, Ltd. | Silyl (meth) acrylate copolymers, processes for preparing the same, antifouling paint compositions containing the silyl (meth) acrylate copolymers, antifouling coating films formed from the antifouling paint compositions, antifouling methods using the antifouling paint compositions, and hulls or underwater structures coated with the antifouling coating films |
| US6479566B2 (en) | 2000-07-06 | 2002-11-12 | International Coatings Limited | Antifouling paint |
| US6559202B1 (en) | 1999-01-20 | 2003-05-06 | Akzo Nobel N.V. | Antifouling paint |
| JP2003176443A (en) * | 1996-04-17 | 2003-06-24 | Nippon Yushi Basf Coatings Kk | Method for producing coating composition |
| JP2003211081A (en) * | 1996-04-17 | 2003-07-29 | Nippon Yushi Basf Coatings Kk | Painting method |
| EP1342756A1 (en) * | 2002-03-06 | 2003-09-10 | Chugoku Marine Paints, Ltd. | Antifouling coating composition, coating film therefrom, underwater material covered with the coating film and antifouling method |
| US6627675B1 (en) | 1998-01-27 | 2003-09-30 | International Coatings Limited | Antifouling coatings |
| US6828030B2 (en) | 2000-10-25 | 2004-12-07 | Chugoku Marine Paints, Ltd. | (poly)oxyalkylene block silyl ester copolymer, antifouling coating composition, antifouling coating formed from antifouling coating composition, antifouling method using antifouling coating composition and hull or underwater structure covered with antifouling coating |
| US7001933B2 (en) | 2002-08-09 | 2006-02-21 | Akzo Nobel N.V. | Acid-capped quaternized polymer and compositions comprising such polymer |
| JP2006183059A (en) * | 1996-04-17 | 2006-07-13 | Basf Coatings Japan Ltd | Paint composition |
| US7297727B2 (en) | 2002-05-28 | 2007-11-20 | Arkema Inc. | Triarylsilyl(meth)acryloyl-containing polymers for marine coating compositions |
| US7598299B2 (en) | 2004-02-03 | 2009-10-06 | Akzo Nobel Coatings International B.V. | Anti-fouling compositions comprising a polymer with salt groups |
| WO2016066566A1 (en) * | 2014-10-28 | 2016-05-06 | Akzo Nobel Coatings International B.V. | Fouling control coating compostion comprising a polymer containing silyl ester groups, and a polymer comprising quaternary ammonium/phosphonium sulphonate groups |
| KR101786293B1 (en) | 2016-01-13 | 2017-10-18 | 주식회사 케이씨씨 | Resin for antifouling paint and antifouling paint composition comprising thereof |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1984002915A1 (en) * | 1983-01-17 | 1984-08-02 | M & T Chemicals Inc | Erodible ship-bottom paints for control of marine fouling |
| EP0297505A2 (en) * | 1987-06-28 | 1989-01-04 | Nippon Oil And Fats Company, Limited | Antifouling paint |
| JPH01146969A (en) * | 1987-12-04 | 1989-06-08 | Toshiba Silicone Co Ltd | antifouling paint |
-
1990
- 1990-03-21 GB GB909006318A patent/GB9006318D0/en active Pending
-
1991
- 1991-03-20 WO PCT/GB1991/000428 patent/WO1991014743A1/en unknown
- 1991-03-21 PT PT9710591A patent/PT97105A/en not_active Application Discontinuation
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1984002915A1 (en) * | 1983-01-17 | 1984-08-02 | M & T Chemicals Inc | Erodible ship-bottom paints for control of marine fouling |
| EP0297505A2 (en) * | 1987-06-28 | 1989-01-04 | Nippon Oil And Fats Company, Limited | Antifouling paint |
| JPH01146969A (en) * | 1987-12-04 | 1989-06-08 | Toshiba Silicone Co Ltd | antifouling paint |
Non-Patent Citations (1)
| Title |
|---|
| Patent Abstracts of Japan, volume 13, nr. 402 (C-633)(3750), 6 September 1989; & JP-A-1146969 (TOSHIBA SOLICONE CO), 8 June 1989 * |
Cited By (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5185033A (en) * | 1992-09-01 | 1993-02-09 | Olin Corporation | Gel-free paint containing copper pyrithione or pyrithione disulfide plus cuprous oxide |
| US5232493A (en) * | 1992-09-01 | 1993-08-03 | Olin Corporation | Process for stabilizing zinc pyrithione plus cuprous oxide in paint |
| US5238490A (en) * | 1992-09-04 | 1993-08-24 | Olin Corporation | Process for generating copper pyrithione in-situ in a paint formulation |
| US5298061A (en) * | 1993-05-14 | 1994-03-29 | Olin Corporation | Gel-free paint containing zinc pyrithione, cuprous oxide, and amine treated rosin |
| US5342437A (en) * | 1993-10-15 | 1994-08-30 | Olin Corporation | Gel-free paint containing zinc pyrithione cuprous oxide and carboxylic acid |
| EP0775733A4 (en) * | 1995-06-01 | 1999-03-31 | Chugoku Marine Paints | ANTI-FOULING PAINT COMPOSITION, COATING FILM OBTAINED THEREFROM, ANTI-FOULING METHOD BASED ON THE COMPOSITION, AND UNDERWATER SHELLS OR STRUCTURES COATED WITH THE FILM OBTAINED |
| US6172132B1 (en) | 1995-06-01 | 2001-01-09 | Chugoko Marine Paints Ltd | Antifouling coating composition, coating film formed from said antifoulding coating composition, antifouling method using said antifouling coating composition and hull or underwater structure coated with said coating film |
| JP2003176443A (en) * | 1996-04-17 | 2003-06-24 | Nippon Yushi Basf Coatings Kk | Method for producing coating composition |
| JP2003211081A (en) * | 1996-04-17 | 2003-07-29 | Nippon Yushi Basf Coatings Kk | Painting method |
| JP2006183059A (en) * | 1996-04-17 | 2006-07-13 | Basf Coatings Japan Ltd | Paint composition |
| US6627675B1 (en) | 1998-01-27 | 2003-09-30 | International Coatings Limited | Antifouling coatings |
| US6458878B1 (en) | 1998-12-28 | 2002-10-01 | Chuogoku Marine Paints, Ltd. | Silyl (meth) acrylate copolymers, processes for preparing the same, antifouling paint compositions containing the silyl (meth) acrylate copolymers, antifouling coating films formed from the antifouling paint compositions, antifouling methods using the antifouling paint compositions, and hulls or underwater structures coated with the antifouling coating films |
| US6559202B1 (en) | 1999-01-20 | 2003-05-06 | Akzo Nobel N.V. | Antifouling paint |
| US6479566B2 (en) | 2000-07-06 | 2002-11-12 | International Coatings Limited | Antifouling paint |
| BG65808B1 (en) * | 2000-07-06 | 2009-12-31 | International Coatings Limited | Antifouling paint |
| US6828030B2 (en) | 2000-10-25 | 2004-12-07 | Chugoku Marine Paints, Ltd. | (poly)oxyalkylene block silyl ester copolymer, antifouling coating composition, antifouling coating formed from antifouling coating composition, antifouling method using antifouling coating composition and hull or underwater structure covered with antifouling coating |
| EP1342756A1 (en) * | 2002-03-06 | 2003-09-10 | Chugoku Marine Paints, Ltd. | Antifouling coating composition, coating film therefrom, underwater material covered with the coating film and antifouling method |
| EP1724310A1 (en) | 2002-03-06 | 2006-11-22 | Chugoku Marine Paints, Ltd. | Antifouling coating composition, coating film therefrom, underwater material covered with the coating film and antifouling method |
| US6916860B2 (en) | 2002-03-06 | 2005-07-12 | Chugoku Marine Paints, Ltd. | Antifouling coating composition, coating film therefrom, base material covered with the coating film and antifouling method |
| US7297727B2 (en) | 2002-05-28 | 2007-11-20 | Arkema Inc. | Triarylsilyl(meth)acryloyl-containing polymers for marine coating compositions |
| US7001933B2 (en) | 2002-08-09 | 2006-02-21 | Akzo Nobel N.V. | Acid-capped quaternized polymer and compositions comprising such polymer |
| USRE41208E1 (en) | 2002-08-09 | 2010-04-06 | Akzo Nobel N.V. | Acid-capped quaternized polymer and compositions comprising such polymer |
| US7598299B2 (en) | 2004-02-03 | 2009-10-06 | Akzo Nobel Coatings International B.V. | Anti-fouling compositions comprising a polymer with salt groups |
| WO2016066566A1 (en) * | 2014-10-28 | 2016-05-06 | Akzo Nobel Coatings International B.V. | Fouling control coating compostion comprising a polymer containing silyl ester groups, and a polymer comprising quaternary ammonium/phosphonium sulphonate groups |
| KR101786293B1 (en) | 2016-01-13 | 2017-10-18 | 주식회사 케이씨씨 | Resin for antifouling paint and antifouling paint composition comprising thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| GB9006318D0 (en) | 1990-05-16 |
| PT97105A (en) | 1991-12-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2000495C (en) | Antifouling coatings | |
| WO1991014743A1 (en) | Antifouling coating compositions | |
| EP1641862B1 (en) | Silyl ester copolymer compositions | |
| HK1000670B (en) | Antifouling coatings | |
| EP0526441B1 (en) | Self-polishing antifouling marine paints | |
| CA1264503A (en) | Marine anti-fouling paint | |
| EP0051930A2 (en) | Marine paint | |
| EP1042414B1 (en) | Antifouling coatings | |
| KR100728479B1 (en) | Antifouling paint | |
| JP4795013B2 (en) | Aqueous antifouling composition, antifouling coating, and fishing net covered with the coating | |
| US5236493A (en) | Antifouling coating | |
| EP0530205B1 (en) | Antifouling coating compositions | |
| EP0608131B1 (en) | Resin composition and antifouling paint | |
| EP0218573B1 (en) | Improved antifouling paint compositions | |
| GB2273934A (en) | Improvements in and relating to polymeric resins and binders for antifouling paints | |
| GB2214921A (en) | Self-polishing antifouling paints | |
| WO1989011511A1 (en) | Marine anti-fouling paint |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP KR US |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE |





