WO1991013470A1 - Process for assembling micro-mechanical components by means of a thick-film technique - Google Patents

Process for assembling micro-mechanical components by means of a thick-film technique Download PDF

Info

Publication number
WO1991013470A1
WO1991013470A1 PCT/DE1991/000033 DE9100033W WO9113470A1 WO 1991013470 A1 WO1991013470 A1 WO 1991013470A1 DE 9100033 W DE9100033 W DE 9100033W WO 9113470 A1 WO9113470 A1 WO 9113470A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
silicon
thick
wafer
glass
Prior art date
Application number
PCT/DE1991/000033
Other languages
German (de)
French (fr)
Inventor
Horst Muenzel
Helmut Baumann
Original Assignee
Robert Bosch Gmbh
Roethlingshoefer, Walter
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh, Roethlingshoefer, Walter filed Critical Robert Bosch Gmbh
Publication of WO1991013470A1 publication Critical patent/WO1991013470A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/001Bonding of two components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • B81C1/0038Processes for creating layers of materials not provided for in groups B81C1/00357 - B81C1/00373
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0073Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a semiconductive diaphragm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2007Bonding of semiconductor wafers to insulating substrates or to semiconducting substrates using an intermediate insulating layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/031Anodic bondings

Definitions

  • the invention is based on a method for layer-by-layer construction of micromechanical components according to the preamble of the main claim.
  • a thin-film glass film is applied to a wafer in the sputtering process and then a second wafer is counter-bonded. Since the thickness of the glass layer is small compared to the thicknesses of the silicon plates, the mechanical stresses caused by the different coefficients of thermal expansion are not as pronounced. This is also ensured by the symmetrical structure of the sensors. With the thin, sputtered glass layers, however, problems arise with regard to the maximum achievable layer thicknesses, the defect densities and the composition of the glass layers. The achievable sputtering rate of the glasses is too low to produce glass layers of 5 to 10 pounds thick. At higher sputtering rates, the composition of the sputtered layers from the target material is sufficient, which in turn affects the bond quality.
  • a method is also presented in which the two wafers are glued together using a glass paste which has to be fired at temperatures of 320 ° C. to 650 ° C. and a pressure of 7 to 700 kPa (“glass frit seals”). ). Since solvents of the glass paste escape in gaseous form during the firing process, no evacuated cavities, for example for pressure sensors, can be produced with this method. A further difficulty of this method lies in the limited adjustment of the two silicon wafers to one another.
  • the invention is based on the object of depositing thicker glass layers of typically 10 to 50 m in a cost-effective simple and reliable manufacturing process and with a composition geared to the needs of anodic bonding on silicon wafers.
  • the process according to the invention with the characterizing features of the main claim has the advantage over the process known as prior art that the glass layers achievable in thick-film technology with thicknesses of typically 10 to 50 m with several layers up to 1,000 lm are reliable and have a lower defect density than previously Have the thin film used.
  • the measures listed in the subclaims allow advantageous developments of the method specified in the main claim.
  • a particular advantage is that the pastes used in the screen printing process can be applied both unstructured and structured. This saves a number of process steps compared to other techniques.
  • the composition of the glass layer applied by means of a paste in the screen printing process can be varied in a targeted manner, for example in such a way that the properties of the glass layer with respect to the bonding process change positively via the composition.
  • Another advantageous possibility of varying the properties of the glass layer consists in the choice of the firing temperature, by means of which the microstructure and the chemical properties of the glass layers can be adjusted.
  • a major advantage of the method presented and the components manufactured with it is the possibility that, in addition to the silicon wafer carrying the micromechanical structures, the counter wafer to which the thick-film film is applied can also be structured. This creates a new degree of freedom for the design of the sensor structures, which can advantageously be used to implement buried contact bushings. It is also advantageous that the assembly method can be applied to wafers in which electrical components are already integrated. Drawing
  • Figures 1 to 4 show four different embodiments of a micromechanical component.
  • 10 denotes a silicon wafer with a micro-mechanical structure, in this case a membrane with a seismic mass 11.
  • the silicon wafer 10 is bonded via a bonding surface 21 of a thick layer 20, which is applied to a silicon counter wafer 25.
  • the wafer is thermally treated to improve the adhesion and / or coated with an adhesion promoter layer.
  • the adhesion promoter layer is designated by 30.
  • a thick-film paste is then applied to the wafer by screen printing. In the simplest case, it is a closed film, but the layer can also be applied in a structured manner by appropriate design of the sieve.
  • Glass pastes which are dried and fired after application are preferably used as thick-film pastes.
  • Typical firing temperatures used in hybrid technology are in the range from 800 ° C to 900 ° C.
  • the burning process can also be carried out at lower temperatures of 500 ° C to 800 ° C. In this case, the layer is not completely glazed, which affects the properties with regard to the bonding process. Firing at higher temperatures between 900 ° C and 1,100 ° C is also possible.
  • the burned-in layer of the thick-film paste forms a connection layer for anodic bonding. This is designated by 20 in FIGS. 1 to 4.
  • the prerequisite for reliable bonding in the electrostatic bonding process is a smooth surface of the plates to be bonded. Depending on the quality of the thick layer, polishing, grinding and / or cleaning of the surface is necessary. The silicon wafers are then bonded together under standard conditions.
  • connection layer 20 is formed by a closed thick-film film.
  • the thick-film paste was applied in a structured manner, so that a connecting layer 20 with a recess was created in the area of the sensor structure.
  • FIG. 3 shows a structure in the production of which two thick layers, an unstructured layer 202 and a structured layer 201, were applied. Together, they form the connection layer 20, which has a depression in the sensor area.
  • the counter wafer 25 of the component shown in FIG. 4 has a structure in the form of two electrode bases 28 and 29.
  • the thick film 20 is applied in such a way that the electrode bases 28 and 29 are not covered by it, but rather form islands in the thick film 20.
  • Metallizations 26 and 27 are applied to these islands and serve as electrodes or electrical connections of the sensor structure.
  • the seismic mass 11 and the metalization 26 of the electrode base 28 form a capacitance.
  • the silicon wafer with micromechanical structure 10 is isolated from the counter wafer 25 by the thick layer 20.
  • the electrode 26 can be electrically contacted via the counter wafer 25 or else from the top side via the metallization 27 forming a connection.
  • the structuring of the counter wafer 25 in this case allows the electrode 26 to be buried through a contact.
  • a thickness of typically 10 up to 50 LL of the connection layer 20, a parasitic capacitance in the area of the bond area is kept small in comparison to sputtered thin-film glass films.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)
  • Micromachines (AREA)

Abstract

The process provides for film assembly of micro-mechanical components, particularly sensors and actuators. A silicon wafer with micro-mechanical structures is joined by means of at least one connecting film to at least one counterpart silicon wafer. The connecting film consists of thick films, preferably of glass, that have been applied to at least one of the silicon wafers by means of a screen printing process. The silicon wafers are then joined together by anodic bonding.

Description

Verfahren zum Aufbau von rnikrornechanischeri Bauelementen in DickschichttechnikProcess for the construction of rnikrornechanischeri components in thick film technology
Stand der TechnikState of the art
Die Erfindung geht aus von einem Verfahren zum schichtweisen Aufbau mikromechanischer Bauelemente nach der Gattung des Hauptanspruchs.The invention is based on a method for layer-by-layer construction of micromechanical components according to the preamble of the main claim.
In Albaugh, K.B., "Mechanism of Anodic Bonding of Silicon to PYREX- Glass" wird ein Verfahren beschrieben, bei dem Glasplatten aus Cor¬ ning 7740, bei Temperaturen von 250°C bis 330°C unter Spannungen von 500 bis 1 000 V gegen Siliziumscheiben gebondet werden. Die Zusam¬ mensetzung des Glases muß so gewählt sein, daß der, thermische Aus¬ dehnungskoeffizient dem von Silizium nahekommt.In Albaugh, KB, "Mechanism of Anodic Bonding of Silicon to PYREX-Glass" a method is described in which glass plates made of 7740 coring, at temperatures of 250 ° C to 330 ° C under voltages of 500 to 1000 V against Silicon wafers are bonded. The composition of the glass must be selected so that the thermal expansion coefficient comes close to that of silicon.
Aus Younger, P.R. , "Her etic Glass Sealing by Electrostatic Bonding" ist ferner bekannt, daß der Ausdehnungskoeffizient von Corning 7070 Glas sich im Temperaturbereich 20°C bis 150°C nicht wesentlich von dem von Corning 7740 Glas unterscheidet, für höhere Temperaturen aber besser an den Ausdehnungskoeffizienten von Silizium angepaßt ist. Trotz guter Anpassung an die Eigenschaften des Siliziums ent¬ stehen durch den unsymmetrischen Aufbau der mikromechanischen Bau¬ elemente mechanische Spannungen, die sich z. B. bei piezoresistiven Drucksensoren in Form von Offsets und Temperaturgängen der Kenn¬ linien bemerkbar machen. In Knecht, T.A., "Bonding Technigues for Solid State Pressure Sensors" wird ein Sandwich-Aufbau für Drucksensoren aus Silizium/ Glas/Silizium vorgestellt. Hierfür wird im Sputterverfahren auf einen Wafer ein Dunnschichtglasfilm aufgetragen und anschließend ein zweiter Wafer gegengebondet. Da die Dicke der Glasschicht klein gegenüber den Dicken der Siliziumplatten ist, kommen die durch die unterschiedlichen thermischen Ausdehnungskoeffizienten verursachten mechanischen Spannungen nicht so stark zum Tragen. Dafür sorgt auch der symmetrische Aufbau der Sensoren. Bei den dünnen, aufgesputter- ten Glasschichten ergeben sich jedoch Probleme hinsichtlich der maximal erreichbaren Schichtdicken, der Defektdichten sowie der Zusammensetzung der Glasschichten. Die erzielbare Sputterrate der Gläser ist zu niedrig, um im Fertigungsmaßstab Glasschichten von 5 bis 10 £_.m Dicke zu erzeugen. Bei höheren Sputterraten reicht die Zusammensetzung der aufgestäubten Schichten vom Targetmaterial ab, was wiederum die Bondgualität beeinträchtigt.From Younger, PR, "Her etic Glass Sealing by Electrostatic Bonding" it is also known that the expansion coefficient of Corning 7070 glass does not differ significantly from that of Corning 7740 glass in the temperature range from 20 ° C. to 150 ° C., but better for higher temperatures is adapted to the coefficient of expansion of silicon. Despite the good adaptation to the properties of the silicon, the asymmetrical structure of the micromechanical components results in mechanical stresses which, for example, B. in piezoresistive pressure sensors in the form of offsets and temperature responses of the characteristics. In Knecht, TA, "Bonding Technigues for Solid State Pressure Sensors", a sandwich structure for pressure sensors made of silicon / glass / silicon is presented. For this purpose, a thin-film glass film is applied to a wafer in the sputtering process and then a second wafer is counter-bonded. Since the thickness of the glass layer is small compared to the thicknesses of the silicon plates, the mechanical stresses caused by the different coefficients of thermal expansion are not as pronounced. This is also ensured by the symmetrical structure of the sensors. With the thin, sputtered glass layers, however, problems arise with regard to the maximum achievable layer thicknesses, the defect densities and the composition of the glass layers. The achievable sputtering rate of the glasses is too low to produce glass layers of 5 to 10 pounds thick. At higher sputtering rates, the composition of the sputtered layers from the target material is sufficient, which in turn affects the bond quality.
Es wird außerdem ein Verfahren vorgestellt, bei dem die beiden Wafer über eine Glaspaste, die bei Temperaturen von 320°C bis 650°C und einem Druck von 7 bis 700 kPa gebrannt werden muß, miteinander ver¬ klebt werden ("glass frit seals"). Da bei dem Brennprozeß Lösungs¬ mittel der Glaspaste gasförmig entweichen, lassen sich mit dieser Methode keine evakuierten Hohlräume, beispielsweise für Drucksenso¬ ren, herstellen. Eine weitere Schwierigkeit dieses Verfahrens liegt in der beschränkten Justierung der beiden Siliziumwafer gegeneinan¬ der.A method is also presented in which the two wafers are glued together using a glass paste which has to be fired at temperatures of 320 ° C. to 650 ° C. and a pressure of 7 to 700 kPa (“glass frit seals”). ). Since solvents of the glass paste escape in gaseous form during the firing process, no evacuated cavities, for example for pressure sensors, can be produced with this method. A further difficulty of this method lies in the limited adjustment of the two silicon wafers to one another.
Der Erfindung liegt die Aufgabe zugrunde, dickere Glasschichten von typisch 10 bis 50 m in einem kostengünstigen einfachen und zuver¬ lässigen Fertigungsprozeß und mit einer auf die Bedürfnisse des anodischen Bondens ausgerichteten Zusammensetzung auf Siliziumwafern abzuscheiden. Vorteile der ErfindungThe invention is based on the object of depositing thicker glass layers of typically 10 to 50 m in a cost-effective simple and reliable manufacturing process and with a composition geared to the needs of anodic bonding on silicon wafers. Advantages of the invention
Das erfindungsgemäße Verfahren mit den kennzeichnenden Merkmalen des Hauptanspruchs hat gegenüber dem als Stand der Technik bekannten Verfahren den Vorteil, daß die in Dickschichttechnik erzielbaren Glasschichten mit Dicken von typisch 10 bis 50 m bei mehreren Lagen bis 1.000 Lm sich zuverlässig und mit geringerer Defektdichte als die bisher verwendeten Dünnschichtfilme bonden lassen.The process according to the invention with the characterizing features of the main claim has the advantage over the process known as prior art that the glass layers achievable in thick-film technology with thicknesses of typically 10 to 50 m with several layers up to 1,000 lm are reliable and have a lower defect density than previously Have the thin film used.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vor¬ teilhafte Weiterbildungen des im Hauptanspruch angegebenen Verfah¬ rens möglich. Ein besonderer Vorteil ist, daß sich die im Siebdruck¬ verfahren verwendeten Pasten sowohl unstrukturiert als auch struktu¬ riert auftragen lassen. Dies erspart gegenüber anderen Techniken eine Reihe von Prozeßschritten. Besonders vorteilhaft ist, daß sich die Zusammensetzung der im Siebdruckverfahren mittels einer Paste aufgebrachten Glasschicht gezielt variieren läßt, beispielsweise so, daß sich über die Zusammensetzung die Eigenschaften der Glasschicht bezüglich des Bondprozesses positiv verändern. Eine weitere vorteil¬ hafte Möglichkeit der Variation der Eigenschaften der Glasschicht besteht in der Wahl der Brenntemperatur, über die die MikroStruktur und die chemischen Eigenschaften der Glasschichten eingestellt wer¬ den können.The measures listed in the subclaims allow advantageous developments of the method specified in the main claim. A particular advantage is that the pastes used in the screen printing process can be applied both unstructured and structured. This saves a number of process steps compared to other techniques. It is particularly advantageous that the composition of the glass layer applied by means of a paste in the screen printing process can be varied in a targeted manner, for example in such a way that the properties of the glass layer with respect to the bonding process change positively via the composition. Another advantageous possibility of varying the properties of the glass layer consists in the choice of the firing temperature, by means of which the microstructure and the chemical properties of the glass layers can be adjusted.
Ein wesentlicher Vorteil des vorgestellten Verfahrens und der damit gefertigten Bauelemente stellt die Möglichkeit dar, daß neben dem die mikromechanischen Strukturen tragenden Siliziumwafer auch der Gegenwafer, auf den der Dickschichtfilm aufgebracht wird, struktu¬ riert sein kann. Dadurch entsteht ein neuer Freiheitsgrad für das Design der Sensorstrukturen, mit dem sich vorteilhaft vergrabene Kontaktdurchführungen realisieren lassen. Vorteilhaft ist auch, daß sich das Aufbauverfahren auf Wafer anwenden läßt, in die bereits elektrische Bauelemente integriert sind. Ze chnungA major advantage of the method presented and the components manufactured with it is the possibility that, in addition to the silicon wafer carrying the micromechanical structures, the counter wafer to which the thick-film film is applied can also be structured. This creates a new degree of freedom for the design of the sensor structures, which can advantageously be used to implement buried contact bushings. It is also advantageous that the assembly method can be applied to wafers in which electrical components are already integrated. Drawing
Anhand der Zeichnung wird die Erfindung näher erläutert.The invention is explained in more detail with reference to the drawing.
Es zeigen die Figuren 1 bis 4 vier verschiedene Ausführungsformen eines mikromechanischen Bauelements.Figures 1 to 4 show four different embodiments of a micromechanical component.
Beschreibung des AusführungsbeispielsDescription of the embodiment
In den Figuren 1 bis 4 ist mit 10 ein Siliziumwafer mit einer mikro¬ mechanischen Struktur, in diesem Falle einer Membran mit einer seismischen Masse 11, bezeichnet. Der Siliziumwafer 10 ist über eine Bondfläche 21 einer Dickschicht 20, die auf einen Siliziumgegenwafer 25 aufgebracht ist, gebondet. Vor der Abscheidung von Dickschichten auf Siliziumplatten wird der Wafer zur Haftverbesserung thermisch behandelt und/oder mit einer Haftvermittlerschicht überzogen. Bei den in den Figuren 1 bis 3 dargestellten Ausführungsbeispielen ist die Haftvermittlerschicht mit 30 bezeichnet. Im Siebdruck wird dann eine Dickschichtpaste auf den Wafer aufgebracht. Im einfachsten Fall handelt es sich um einen geschlossenen Film, durch entsprechende Auslegung des Siebes kann die Schicht aber auch direkt strukturiert aufgebracht werden. Als Dickschichtpasten werden vorzugsweise Glas¬ pasten verwendet, die nach dem Aufbringen getrocknet und gebrannt werden. Typische, in der Hybridtechnik verwendete Brenntemperaturen liegen im Bereich von 800°C bis 900°C. Der Brennvorgang kann aber auch bei niedrigeren Temperaturen von 500°C bis 800°C durchgeführt werden. In diesem Fall verglast die Schicht nicht vollständig, was die Eigenschaften bezüglich des Bondprozesses beeinflußt. Auch das Brennen bei höheren Temperaturen zwischen 900°C und 1.100°C ist möglich. Hier tritt eine Erweichung der Glasschicht mit entsprechen¬ den Veränderungen der MikroStruktur des Glases ein, die sich auf die Eigenschaften beim anodischen Bonden auswirken. Die eingebrannte Schicht der Dickschichtpaste bildet eine Verbindungsschicht für das anodische Bonden. Diese ist in den Figuren 1 bis 4 mit 20 bezeichnet. Die Voraussetzung für eine zuverlässige Bindung beim elektrosta¬ tischen Bondprozeß ist eine glatte Oberfläche der zu bondenden Plat¬ ten. Je nach Qualität der Dickschicht ist eine Politur, ein Ab¬ schleifen und/oder eine Reinigung der Oberfläche erforderlich. Die Siliziumwafer werden dann unter Standardbedingungen aneinandergebon- det.In FIGS. 1 to 4, 10 denotes a silicon wafer with a micro-mechanical structure, in this case a membrane with a seismic mass 11. The silicon wafer 10 is bonded via a bonding surface 21 of a thick layer 20, which is applied to a silicon counter wafer 25. Before the deposition of thick layers on silicon plates, the wafer is thermally treated to improve the adhesion and / or coated with an adhesion promoter layer. In the exemplary embodiments shown in FIGS. 1 to 3, the adhesion promoter layer is designated by 30. A thick-film paste is then applied to the wafer by screen printing. In the simplest case, it is a closed film, but the layer can also be applied in a structured manner by appropriate design of the sieve. Glass pastes which are dried and fired after application are preferably used as thick-film pastes. Typical firing temperatures used in hybrid technology are in the range from 800 ° C to 900 ° C. The burning process can also be carried out at lower temperatures of 500 ° C to 800 ° C. In this case, the layer is not completely glazed, which affects the properties with regard to the bonding process. Firing at higher temperatures between 900 ° C and 1,100 ° C is also possible. Here there is a softening of the glass layer with corresponding changes in the microstructure of the glass which have an effect on the properties during anodic bonding. The burned-in layer of the thick-film paste forms a connection layer for anodic bonding. This is designated by 20 in FIGS. 1 to 4. The prerequisite for reliable bonding in the electrostatic bonding process is a smooth surface of the plates to be bonded. Depending on the quality of the thick layer, polishing, grinding and / or cleaning of the surface is necessary. The silicon wafers are then bonded together under standard conditions.
In Figur 1 wird die Verbindungsschicht 20 durch einen geschlossenen Dickschichtfilm gebildet. In Figur 2 wurde die Dickschichtpaste strukturiert aufgetragen, so daß eine Verbindungsschicht 20 mit ei¬ ner Ausnehmung im Bereich der Sensorstruktur entstanden ist. Figur 3 zeigt eine Struktur, bei deren Herstellung zwei Dickschichten, eine nichtstrukturierte Schicht 202 und eine strukturierte Schicht 201, aufgebracht wurden. Zusammen bilden sie die Verbindungsschicht 20, die im Sensorbereich eine Vertiefung aufweist. Der Gegenwafer 25 des in Figur 4 dargestellten Bauelements weist eine Struktur in Form zweier Elektrodensockel 28 und 29 auf. Die Dickschicht 20 ist der¬ gestalt aufgebracht, daß die Elektrodensockel 28 und 29 nicht von ihr bedeckt werden, sondern Inseln in der Dickschicht 20 bilden. Auf diese Inseln sind Metallisierungen 26 und 27 aufgebracht, die wahl¬ weise als Elektroden oder elektrische Anschlüsse der Sensorstruktur dienen. So bilden in Figur 4 die seismische Masse 11 und die Metal¬ lisierung 26 des Elektrodensockels 28 eine Kapazität. Der Silizium¬ wafer mit mikromechanischer Struktur 10 wird durch die Dick¬ schicht 20 gegen den Gegenwafer 25 isoliert. Die Elektrode 26 kann über den Gegenwafer 25 elektrisch kontaktiert werden oder aber auch von der Oberseite aus über die einen Anschluß bildende Metallisie¬ rung 27. Die Strukturierung des Gegenwafers 25 erlaubt in diesem Falle eine vergrabene Kontaktdurchführung der Elektrode 26. Durch eine Dicke von typisch 10 bis 50 LL der Verbindungsschicht 20 wird eine parasitäre Kapazität im Bereich der Bondfläche im Vergleich zu aufgesputterten Dünnschichtglasfilmen klein gehalten. In FIG. 1, the connection layer 20 is formed by a closed thick-film film. In FIG. 2, the thick-film paste was applied in a structured manner, so that a connecting layer 20 with a recess was created in the area of the sensor structure. FIG. 3 shows a structure in the production of which two thick layers, an unstructured layer 202 and a structured layer 201, were applied. Together, they form the connection layer 20, which has a depression in the sensor area. The counter wafer 25 of the component shown in FIG. 4 has a structure in the form of two electrode bases 28 and 29. The thick film 20 is applied in such a way that the electrode bases 28 and 29 are not covered by it, but rather form islands in the thick film 20. Metallizations 26 and 27 are applied to these islands and serve as electrodes or electrical connections of the sensor structure. In FIG. 4, the seismic mass 11 and the metalization 26 of the electrode base 28 form a capacitance. The silicon wafer with micromechanical structure 10 is isolated from the counter wafer 25 by the thick layer 20. The electrode 26 can be electrically contacted via the counter wafer 25 or else from the top side via the metallization 27 forming a connection. The structuring of the counter wafer 25 in this case allows the electrode 26 to be buried through a contact. A thickness of typically 10 up to 50 LL of the connection layer 20, a parasitic capacitance in the area of the bond area is kept small in comparison to sputtered thin-film glass films.

Claims

Ansprüche Expectations
1. Verfahren zum schichtweisen Aufbau mikromechanischer Bauelemente, insbesondere von Sensoren und Aktoren, wobei ein Siliziumwafer mit mikromechanischen Strukturen (10) über mindestens eine Verbindungs¬ schicht (20) mit mindestens einem Siliziumgegenwafer (25) verbunden wird, dadurch gekennzeichnet, daß auf mindestens einen Wafer als Verbindungsschicht Dickschichten, vorzugsweise Glasschichten, im Siebdruckverfahren aufgebracht werden und daß die Siliziumwafer durch anodisches Bonden miteinander verbunden werden.1. A method for layer-by-layer construction of micromechanical components, in particular sensors and actuators, a silicon wafer having micromechanical structures (10) being connected to at least one silicon counter-wafer (25) via at least one connecting layer (20), characterized in that at least one Wafers as a connecting layer, thick layers, preferably glass layers, are applied using the screen printing process and the silicon wafers are connected to one another by anodic bonding.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß im Sieb¬ druckverfahren eine Paste strukturiert und/oder unstrukturiert auf¬ gebracht wird.2. The method according to claim 1, characterized in that a paste is structured and / or brought unstructured in the sieve printing process.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch ge¬ kennzeichnet, daß mindestens eine der Dickschichten eine Glasschicht ist, deren thermischer Ausdehnungskoeffizient aufgrund ihrer Zusam¬ mensetzung an den Ausdehnungskoeffizienten von Silizium angepaßt ist, vorzugsweise mit einer Zusammensetzung der Form3. The method according to any one of the preceding claims, characterized ge indicates that at least one of the thick layers is a glass layer whose thermal expansion coefficient is matched to the expansion coefficient of silicon due to their composition, preferably with a composition of the shape
70 % - 95 % SiO ,70% - 95% SiO,
0,5 % 3,5 % L203,0.5% 3.5% L 2 0 3 ,
0,5 % - 10 % Ha 0, 0,5 % - 10 % K 0,0.5% - 10% Ha 0, 0.5% - 10% K 0,
5 % - 30 % B_,0_, und 2 35% - 30% B_, 0_, and 2 3
0 % - 2 % andere Stoffe0% - 2% other substances
und daß die Zusammensetzung der Glasschicht einen anodischen Bond¬ prozeß ermöglicht.and that the composition of the glass layer enables an anodic bonding process.
4. Verfahren nach einem der vorhergenden Ansprüche, dadurch gekenn¬ zeichnet, daß die Dicke der Glasschicht zwischen 3 /_m und 1.000 Ltm liegt.4. The method according to any one of the preceding claims, characterized gekenn¬ characterized in that the thickness of the glass layer is between 3 / _m and 1,000 Ltm.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die auf einen Wafer aufgebrachte Dickschicht, vorzugsweise bei Temperaturen zwischen 500°C und 1.100°C, gebrannt wird.5. The method according to any one of the preceding claims, characterized in that the thick layer applied to a wafer, preferably at temperatures between 500 ° C and 1,100 ° C, is fired.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Ober¬ fläche der Dickschicht nach dem Brennprozeß poliert, abgeschliffen und/oder gereinigt wird.6. The method according to claim 5, characterized in that the upper surface of the thick layer is polished, ground and / or cleaned after the firing process.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß vor dem Aufbringen der Glasdickschicht eine thermische Behandlung des Siliziumwafers erfolgt und/oder eine Haft¬ vermittlerschicht (30) auf den Siliziumwafer aufgebracht wird.7. The method according to any one of the preceding claims, characterized in that a thermal treatment of the silicon wafer is carried out before the application of the thick glass layer and / or an adhesion promoter layer (30) is applied to the silicon wafer.
8. Mikromechanisches Bauelement, dessen Aufbau einen Siliziumwafer mit mikromechanischen Strukturen (10) aufweist, der über mindestens eine Verbindungsschicht (20) mit mindestens einem Siliziumgegenwafer (25) verbunden ist, das nach einem Verfahren nach einem der vorher¬ gehenden Ansprüche aufgebaut ist, dadurch gekennzeichnet, daß der Siliziumgegenwafer (25) strukturiert ist. 8. Micromechanical component, the structure of which has a silicon wafer with micromechanical structures (10), which is connected via at least one connection layer (20) to at least one silicon counterwafer (25), which is constructed according to a method according to one of the preceding claims, thereby characterized in that the silicon counter wafer (25) is structured.
9. Mikromechanisches Bauelement nach Anspruch 8, dadurch gekenn¬ zeichnet, daß durch die Strukturierung des Siliziumgegenwafers (25) mindestens ein Elektrodensockel (28, 29) freigelegt ist, daß um den mindestens einen Elektrodensockel (28, 29) die Dickschicht (20) auf¬ gebracht ist, so daß der mindestens eine Elektrodensockel (28, 29) eine Insel in der Dickschicht bildet und daß auf die Oberfläche des mindestens einen Elektrodensockels (28, 29) mindestens eine Metall¬ schicht (26, 27) aufgebracht ist.9. The micromechanical component according to claim 8, characterized in that the structuring of the silicon counter-wafer (25) exposes at least one electrode base (28, 29), that around the at least one electrode base (28, 29) the thick layer (20) ¬ is brought so that the at least one electrode base (28, 29) forms an island in the thick layer and that at least one metal layer (26, 27) is applied to the surface of the at least one electrode base (28, 29).
10. Mikromechanisches Bauelement, dessen Aufbau einen Siliziumwafer mit mikromechanischen Strukturen (10) aufweist, der über mindestens eine Verbindungsschicht (20) mit mindestens einem Siliziumgegenwafer (25) verbunden ist, das nach einem Verfahren nach einem der An¬ sprüche 1 bis 7 aufgebaut ist, dadurch gekennzeichnet, daß auf min¬ destens einem der Siliziumwafer Bauelemente integriert sind. 10. A micromechanical component, the structure of which has a silicon wafer with micromechanical structures (10), which is connected via at least one connection layer (20) to at least one silicon counterwafer (25), which is constructed according to a method according to one of Claims 1 to 7 , characterized in that components are integrated on at least one of the silicon wafers.
PCT/DE1991/000033 1990-02-27 1991-01-17 Process for assembling micro-mechanical components by means of a thick-film technique WO1991013470A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4006108.6 1990-02-27
DE19904006108 DE4006108A1 (en) 1990-02-27 1990-02-27 METHOD FOR BUILDING MICROMECHANICAL COMPONENTS IN THICK LAYER TECHNOLOGY

Publications (1)

Publication Number Publication Date
WO1991013470A1 true WO1991013470A1 (en) 1991-09-05

Family

ID=6401035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1991/000033 WO1991013470A1 (en) 1990-02-27 1991-01-17 Process for assembling micro-mechanical components by means of a thick-film technique

Country Status (2)

Country Link
DE (1) DE4006108A1 (en)
WO (1) WO1991013470A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2317158A (en) * 1996-09-17 1998-03-18 Deutsche Forsch Luft Raumfahrt Micromechanical tool with functional modules
WO2005123628A1 (en) * 2004-06-15 2005-12-29 Agency For Science, Technology & Research Anodic bonding process for ceramics
EP1780525A1 (en) * 2005-10-31 2007-05-02 Alps Electric Co., Ltd. Capacitive pressure sensor
JP2008183717A (en) * 2001-02-03 2008-08-14 Robert Bosch Gmbh Micromechanical element and its manufacturing method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05169666A (en) * 1991-12-25 1993-07-09 Rohm Co Ltd Manufacturing ink jet print head
DE4439238A1 (en) * 1994-11-03 1996-05-09 Telefunken Microelectron Capacitive acceleration sensor
DE19643318A1 (en) * 1996-10-21 1998-04-30 Klaus Dr Ing Erler Micromechanical component and structures on support plate
DE10350038A1 (en) * 2003-10-27 2005-05-25 Robert Bosch Gmbh Method for anodic bonding of wafers and device
DE10350460B4 (en) * 2003-10-29 2006-07-13 X-Fab Semiconductor Foundries Ag Method for producing semiconductor devices having micromechanical and / or microelectronic structures, which result from the fixed connection of at least two semiconductor wafers, and corresponding arrangement
JP2006047279A (en) 2004-07-02 2006-02-16 Alps Electric Co Ltd Glass substrate, and capacitance-type pressure sensor using the same
ITTO20130838A1 (en) * 2013-10-16 2015-04-17 St Microelectronics Srl MICROELETTROMECHANICAL DEVICE WITH PROTECTION FOR BONDING AND PROCEDURE FOR THE MANUFACTURE OF A MICROELETTROMECANICAL DEVICE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4495820A (en) * 1981-09-30 1985-01-29 Hitachi, Ltd. Capacitive pressure sensor
US4609968A (en) * 1984-05-18 1986-09-02 Becton, Dickinson And Company Glass inlays for use in bonding semiconductor wafers
US4773972A (en) * 1986-10-30 1988-09-27 Ford Motor Company Method of making silicon capacitive pressure sensor with glass layer between silicon wafers
US4802952A (en) * 1987-03-06 1989-02-07 Hitachi, Ltd. Method for manufacturing semiconductor absolute pressure sensor units
DE3900654A1 (en) * 1988-01-18 1989-07-27 Vaisala Oy PRESSURE SENSOR ARRANGEMENT AND METHOD FOR THE PRODUCTION THEREOF

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4495820A (en) * 1981-09-30 1985-01-29 Hitachi, Ltd. Capacitive pressure sensor
US4609968A (en) * 1984-05-18 1986-09-02 Becton, Dickinson And Company Glass inlays for use in bonding semiconductor wafers
US4773972A (en) * 1986-10-30 1988-09-27 Ford Motor Company Method of making silicon capacitive pressure sensor with glass layer between silicon wafers
US4802952A (en) * 1987-03-06 1989-02-07 Hitachi, Ltd. Method for manufacturing semiconductor absolute pressure sensor units
DE3900654A1 (en) * 1988-01-18 1989-07-27 Vaisala Oy PRESSURE SENSOR ARRANGEMENT AND METHOD FOR THE PRODUCTION THEREOF

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2317158A (en) * 1996-09-17 1998-03-18 Deutsche Forsch Luft Raumfahrt Micromechanical tool with functional modules
US6080957A (en) * 1996-09-17 2000-06-27 Deutsche Forschungsanstalt Fuer Luft-Und Raumfahrt E.V. Micromechanical tool
GB2317158B (en) * 1996-09-17 2001-02-14 Deutsche Forsch Luft Raumfahrt Micromechanical tool with functional modules
JP2008183717A (en) * 2001-02-03 2008-08-14 Robert Bosch Gmbh Micromechanical element and its manufacturing method
WO2005123628A1 (en) * 2004-06-15 2005-12-29 Agency For Science, Technology & Research Anodic bonding process for ceramics
EP1780525A1 (en) * 2005-10-31 2007-05-02 Alps Electric Co., Ltd. Capacitive pressure sensor
US7382599B2 (en) 2005-10-31 2008-06-03 Alps Electric Co., Ltd Capacitive pressure sensor

Also Published As

Publication number Publication date
DE4006108A1 (en) 1991-08-29

Similar Documents

Publication Publication Date Title
DE112018000012B4 (en) Connected bodies and acoustic wave devices
DE4244450C2 (en) Method of manufacturing a capacitive pressure sensor
EP1495491B1 (en) Method for connecting substrates and composite element
DE2913772C3 (en) Semiconductor pressure transducer
DE3236848A1 (en) CAPACITIVE PRESSURE SENSOR AND METHOD FOR THE PRODUCTION THEREOF
DE60131745T2 (en) FILTER DEVICE AND METHOD FOR THE PRODUCTION THEREOF
DE69935860T2 (en) METHOD FOR PRODUCING A CAPACITIVE ULTRASOUND TRANSFORMER
WO2007059740A2 (en) Electroacoustic component
DE102007050865A1 (en) Functional component e.g. high frequency sensor, for use in micro electromechanical system, has reaction product layer produced on boundary layer when metal layer and substrate are connected together by anodic connection
EP0585256A1 (en) Direct substrate bonding.
WO2003030358A1 (en) Piezo-electrical component and method for production thereof
DE102007030121A1 (en) Method for producing a component and component
WO1991013470A1 (en) Process for assembling micro-mechanical components by means of a thick-film technique
WO1999035477A1 (en) Micromechanical component
DE3311128A1 (en) PIEZOELECTRIC PRESSURE SENSOR
EP0060436A1 (en) Method of manufacturing noble metal-free thin-film conductors with good bonding and annealing properties
DE19545422C2 (en) Process for anodic bonding of silicon components with glass components
DE112019001648B4 (en) CONNECTION AND ELASTIC WAVE ELEMENT
DE3520064A1 (en) CAPACITIVE PRESSURE SENSOR AND METHOD FOR THE PRODUCTION THEREOF
DE10036284A1 (en) Production of sensor element used as thin film high pressure sensor comprises applying expanded measuring strip to membrane via electrically insulating substrate
EP0645613B1 (en) Method of manufacturing thin-film absolute-pressure sensors
DE102018125378B3 (en) Anodic bonding of a glass substrate with contact bushings to a silicon substrate
DE10350460B4 (en) Method for producing semiconductor devices having micromechanical and / or microelectronic structures, which result from the fixed connection of at least two semiconductor wafers, and corresponding arrangement
DE19851055C2 (en) Process for the production of monolithically integrated sensors
DE10053865C1 (en) Process for anodically bonding materials with glass components used in microsystems for joining glass with silicon comprises using niobium or tantalum phosphate glass having a specified alkali ion conductivity

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE