WO1991013366A1 - Method and apparatus for magnetic detection - Google Patents

Method and apparatus for magnetic detection Download PDF

Info

Publication number
WO1991013366A1
WO1991013366A1 PCT/JP1991/000250 JP9100250W WO9113366A1 WO 1991013366 A1 WO1991013366 A1 WO 1991013366A1 JP 9100250 W JP9100250 W JP 9100250W WO 9113366 A1 WO9113366 A1 WO 9113366A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
magnetic field
magnetic sensor
signal
waveform
Prior art date
Application number
PCT/JP1991/000250
Other languages
French (fr)
Japanese (ja)
Inventor
Corporation Nkk
Seigo Ando
Original Assignee
Nippon Kokan Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP11528490A external-priority patent/JPH03272483A/en
Priority claimed from JP2278918A external-priority patent/JP2617615B2/en
Application filed by Nippon Kokan Kk filed Critical Nippon Kokan Kk
Publication of WO1991013366A1 publication Critical patent/WO1991013366A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/04Measuring direction or magnitude of magnetic fields or magnetic flux using the flux-gate principle

Definitions

  • the present invention relates to a magnetic detection device and a magnetic detection method using a saturable magnetic sensor.
  • a magnetic leak detection device is used as one of the defect detection devices for detecting defects existing inside or on the surface of a steel sheet.
  • a magnetic leakage device it is necessary to accurately detect the leakage magnetic flux.
  • a magnetic detection device using a saturable magnetic sensor has been proposed as a magnetic detection device for detecting magnetism with high accuracy (Japanese Patent Application Laid-Open No. Hei 13-89082).
  • FIG. 4 is a block diagram showing a schematic configuration of a magnetic detection device using the saturable magnetic sensor.
  • reference numeral 1 denotes a rectangular wave generating circuit that outputs a high-frequency rectangular wave signal.
  • the rectangular wave signal output from the rectangular wave generating circuit 1 is supplied to the following differentiating circuit 2 so that the rising and falling times of the rectangular wave are obtained. Is converted into a pulse signal having a trigger waveform shape synchronized with the timing. Then, the pulse signal of the trigger waveform output from the differentiating circuit 2 is applied as a high-frequency excitation signal to the magnetic sensor 4 via the impedance element 3 composed of a resistor.
  • the magnetic sensor 4 is configured by winding a detection coil 6 around a core 5 of a ferromagnetic material formed in, for example, a rod shape.
  • the high-frequency excitation signal e is applied to one end of the detection coil 6 of the magnetic sensor 4 via the impedance element 3, and the other end is grounded.
  • the terminal voltage of the detection coil 6 is the detection signal e of the magnetic sensor 4.
  • the output voltage V corresponding to the intensity of the magnetic field detected by the magnetic detection device from the voltage detection circuit 7. Is obtained.
  • the voltage of the high-frequency square wave signal output from the square wave generation circuit 1 is controlled to increase the current of the high-frequency excitation signal flowing through the detection coil 6 and magnetize the core 5 to the saturable region. I do. Therefore, in this state, the detection signal e indicated by the terminal voltage of the detection coil 5.
  • Figure 5 shows the amplitude of the waveform So that it becomes constant.
  • the magnetic detection device configured as shown in FIG. 4 still has the following problems.
  • the detection coil 5 wound around the core 5 formed of the ferromagnetic material of the magnetic sensor 4 to magnetize the core 5 to the saturable region.
  • High-frequency excitation applied to the magnetic sensor 4 via the impedance element 3 in order to accurately detect the positive and negative peak values Va and 1 Vb in the detection signal e Q taken out of the magnetic sensor 4
  • the signal ei is a trigger waveform pulse signal. Therefore, the current flowing through the detection coil 5 becomes a high-frequency current due to the trigger waveform. Therefore, in order to magnetize the core 5 to a saturable region with the trigger waveform pulse signal, the voltage of the high-frequency excitation signal ei needs to be significantly increased.
  • the square wave generating circuit 1 also needs to output a square wave signal having a peak value of 15 to 25 V P — P.
  • the detection signal e. Output voltage V corresponding to the external magnetic field applied from the waveform of In the voltage detection circuit 7 for calculating the peak value, a detection circuit for detecting each of the positive and negative peak values Va and one Vb, an addition circuit for adding the obtained peak values Va, — Vb, and the like are incorporated. This complicates the circuit configuration.
  • a high-voltage DC power supply, a detection circuit, an addition circuit, and the like are required, not only does the circuit configuration of the entire magnetic detection device become complicated, but also the overall device becomes large.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to obtain a detection signal by applying an AC exciting current having a predetermined effective value to a detection coil of the magnetic sensor.
  • the external magnetic field strength can be easily detected from the degree of change in the width of the signal waveform in the detection signal, thereby simplifying the circuit configuration of the entire device, It is an object of the present invention to provide a magnetic detection device and a magnetic detection method capable of reducing the size of the entire device and reducing the manufacturing cost.
  • a magnetic detection device includes a saturable magnetic sensor having a detection coil wound around a core formed of a magnetic material, and a detection coil of the magnetic sensor.
  • an excitation signal generating circuit for applying an AC excitation current having a predetermined effective value through an impedance element to magnetize the core to a saturation region, and a detection signal waveform extracted from both ends of the detection coil at a predetermined threshold.
  • a comparator for normalizing with a value, and a counter for measuring the pulse width of the normalized signal output from the comparator.
  • the magnetic detection device of the second invention is provided with a low-pass filter for detecting the pulse width of the normalized signal output from the comparator as an average DC component, instead of the counter.
  • a magnetic sensor formed by winding a detection coil around a core made of a ferromagnetic material is brought close to a magnetic field to be measured, and the detection coil of the magnetic sensor is connected to the detection coil via an impedance element.
  • a pulse voltage is supplied, positive and negative peak values of a voltage generated at both ends of the coil are detected, and the detected positive and negative peak values are added.
  • the added value is compared with a measured value corresponding to the measured magnetic field. It is characterized by doing.
  • an AC excitation current having a predetermined effective value is applied to the detection coil of the magnetic sensor from the excitation signal wave generation circuit. Therefore, the effective current value of the AC exciting current is larger than the pulse signal of the trigger waveform. Therefore, the voltage of the AC exciting current required to magnetize the core of the magnetic sensor to the saturable region can be set low.
  • the core is magnetized in the positive and negative directions by the AC voltage applied to the detection coil, but saturates when the current exceeds a certain current value.
  • the waveform of the detection signal extracted from both ends of the signal has a predetermined width.
  • the detection coil crosses the magnetic field excited by the AC excitation current.
  • the external magnetic field is applied, the external magnetic field is added to or subtracted from the magnetic field of the AC exciting current, so that a part of the waveform of the detection signal is deformed.
  • the deformed detection signal waveform is normalized by a predetermined threshold value in a comparator. Then, the degree of deformation of the detection signal waveform is detected by the pulse width of the normalized signal. Therefore, the external magnetic field strength is detected from the change in the pulse width.
  • the pulse width is directly measured at the counter, and according to the second magnetic detection device of the present invention, the pulse width is normally measured by the low-pass filter.
  • the pulse width is measured by detecting the average DC component of the digitized signal.
  • a positive or negative pulse voltage is supplied from the pulse voltage supply source to the coil of the magnetic sensor that is close to the magnetic field to be measured, whereby the positive or negative voltage of the voltage generated between both ends of the coil is supplied.
  • a peak value is detected by a pair of peak value detection means, and the change of the magnetic field to be measured (external magnetic field) detected by the magnetic sensor is measured as a change of a voltage level by adding each peak value by an adder. Can be.
  • a detection signal is obtained by applying an AC exciting current having a predetermined effective value to the detection coil of the magnetic sensor, and a part of the waveform of the obtained detection signal is an external magnetic field. Is detected. Therefore, the voltage value of the AC excitation signal applied to the magnetic sensor can be significantly reduced, and the external magnetic field strength can be easily detected from the degree of deformation of the signal waveform of the detection signal. As a result, each circuit configuration can be simplified, and the entire detection device can be reduced in size and manufacturing cost can be reduced ⁇ Further, according to the magnetic detection method of the present invention, detection sensitivity to a minute magnetic field can be improved, and power can be saved by driving the coil of the magnetic sensor with a pulse voltage. Therefore, for example, it is very effective in realizing the magnetic measurement method of the present invention by battery operation.
  • FIG. 1 is a block diagram showing a schematic configuration of the magnetic detection device of the embodiment.
  • reference numeral 11 denotes an excitation signal generation circuit which outputs, for example, a high-frequency excitation signal having a triangular waveform as an AC excitation signal having a predetermined effective value.
  • the excitation signal wave generation circuit 11 includes a high-frequency oscillator 1 2 and a frequency divider 13 and a triangular wave generation circuit 14.
  • the high-frequency oscillator 12 outputs a clock signal d having a high frequency, for example, 10 MHz. This clock signal d is divided into, for example, 1 by the next frequency divider 13 and then input to the triangular wave generation circuit 14.
  • This triangular wave generation circuit 14 converts a high frequency excitation signal a as an AC excitation signal having a triangular wave shape with a period T 0 as shown in FIG. 3 through an impedance element 15 composed of a resistor, for example, through a magnetic sensor 1. Send to 6.
  • the magnetic sensor 16 is configured by winding a detection coil 18 around a ferromagnetic core 17 formed in, for example, a rod shape.
  • the high frequency excitation signal a via the impedance element 15 is applied to one end of the detection coil 18 of the magnetic sensor 16, and the other end is grounded.
  • the terminal voltage of the detection coil 18 is extracted as a detection signal b of the magnetic sensor 16 and input to the (+) side input terminal of the comparator 19 as a waveform shaping circuit.
  • the (1) side input terminal of this comparator 19 is grounded.
  • Comparator 19 outputs a normalized signal c having a H (high) level when the detection signal b is higher than the ground potential (0 V) and an L (low) level when the detection signal b is lower than the ground potential (0 V). Output.
  • the voltage level of the normalized signal c is a constant level signal of 5 V at H level and 0 V at L level.
  • the normalized signal c having a constant level output from the comparator 19 is input to the control terminal G of the counter 20 and to the low-pass filter 21.
  • the clock signal d output from the high-frequency oscillator 12 is input to the clock terminal CP of the counter 20.
  • the counter 20 is activated before being applied to the control terminal G.
  • the counting operation of the number of clocks of the clock signal d is started, and the normalized signal c is changed from the H level to the L level.
  • the count operation ends in synchronization with the falling timing. That is, the counter 20 measures the pulse width T indicated by the H level period of the normalized signal c.
  • the digital pulse width T measured by the counter 20 is sent to an arithmetic circuit 22 composed of, for example, a microcomputer or the like.
  • the low-pass filter 21 has a relatively large time constant, and cuts off the high-frequency components among the frequency components included in the pulse-like waveform of the normalized signal c, and removes only the low-frequency components. Let it pass. Therefore, this low-pass filter 21 outputs an average DC voltage proportional to the effective average voltage of the normalized signal c. Since the average DC voltage of the normalized signal c corresponds to the pulse width T of the normalized signal c, as a result, the voltage of the analog output signal f of the low-pass filter 21 becomes equal to the pulse of the normalized signal c. Corresponds to the width. Then, the output ftf having a voltage value corresponding to the pulse width T is input to the analog arithmetic circuit 23.
  • an excitation signal generating circuit 11 As shown in FIG. 6, an excitation signal generating circuit 11, an impedance element 15, and a detection coil 18 wound around the outer periphery of a ferromagnetic core 17 are connected in series.
  • the magnet 25 is for applying an external magnetic field to the magnetic sensor 16 including the core 17 and the detection coil 18.
  • the excitation signal generation circuit 11 generates an AC power supply voltage waveform (high-frequency excitation signal) as shown in Fig. 7A.
  • the resistance value R is constant
  • the detection signal b is changed in accordance with the I impedance Z s of the detection coil 1 8.
  • the impedance Z s of the detection coil 1 8 which is ⁇ core 1 7 of the ferromagnetic material is proportional to the permeability of the core 1 7.
  • the voltage waveform of FIG. 7A is entirely shifted by the DC component to the positive side as shown in FIG. 7B due to the effect of the external magnetic field.
  • the voltage waveform in FIG. 7A is shifted to the negative side by the external magnetic field by only the DC component. If the external magnetic field is an alternating magnetic field, the shifts in Figs. 7A and 7B are repeated. Therefore, the output voltage generated across the detection coil 18 has a waveform as shown in FIG. 7D. Then, the waveform of the external magnetic field by the magnet 2 5 with pressurized Erare absence positive, a negative symmetrical waveform, the voltage V 2 in the positive direction of voltage V and the negative direction are equal.
  • the external magnetic field can be indirectly measured by comparing the positive voltage V i and the negative voltage v 2 of the output voltage generated at both ends of the detection coil 18 and obtaining the difference. Therefore, if this principle is applied to the magnetic flux leakage detection method, the external magnetic field is generated by the defect, so that the defect can be detected after all.
  • the impedance Z s is also the excitation current value of the detection coil 1 8, i.e., which changes depending on the value of the high frequency excitation signal a applied to the detection coil 1 8. Therefore, the impedance Z s changes rapidly in the process of increasing the high-frequency excitation signal a shown in FIG. 3, and the detection signal b rapidly rises or falls. Therefore, as shown in FIG.
  • the waveform of the detection signal b is a substantially rectangular waveform extending from 0 V to the positive side and the negative side.
  • the pulse width 1 of this substantially rectangular waveform is the period T of the high-frequency excitation signal a. 1 of 2. That is, the input triangular waveform becomes a substantially rectangular waveform.
  • the threshold value of the comparison circuit 19 is 0 V, so the normalized signal c output from the comparison circuit 19 Has the same pulse width as the pulse width of the detection signal b.
  • the width of the pulse is measured by the counter 20 and sent to the arithmetic circuit 22.
  • the arithmetic circuit 22 has a period T of the known high-frequency excitation signal a. Compared with the detected pulse width and T. In the case of, it is determined that there is no external magnetic field.
  • an output signal f having a DC voltage is input from the low-pass filter 21 to the arithmetic circuit 23. Then, the arithmetic circuit 23 determines from the DC voltage V that no external magnetic field is applied.
  • it changes from even a pulse width T which is input from the counter 20 to the arithmetic circuit 22 to T 2 or T 3.
  • the output signal is the external magnetic field Eta input 2 or pulse width T 2 or T 3 corresponding to an Eta 3 by mouth one pass filter 21 to the arithmetic circuit 23 of the normalized signal c output from the comparator 19 f detected by the DC voltage V 2 or V 3. Therefore, also in the arithmetic circuit 23 of this ⁇ analog, with at comparison with the DC voltage in a state where the external magnetic field is not applied, the applied external magnetic field H 2 or - c the amount of H 3 is thus calculated, The magnitude and direction of the magnetic field externally applied to the magnetic detection device are calculated digitally or analogly by the arithmetic circuits 22, 23.
  • the signal waveform of the high-frequency excitation signal a as the AC excitation current applied to the magnetic sensor 16 has a predetermined effective value as shown in FIG. It has a triangular shape. Since the effective current value of the high-frequency excitation signal a is larger than the trigger signal pulse signal e in the conventional detector shown in FIG. 4, the high-frequency necessary for magnetizing the core 17 of the magnetic sensor 16 to saturable is obtained.
  • the voltage of the excitation signal a can be set low. In the example device, the voltage value of the high-frequency excitation signal a could be reduced to 5 VP-P.
  • the DC power supply for driving the high-frequency oscillator 12, the frequency divider 13, and the triangular wave generation circuit 14 of the excitation signal generation circuit 11 is normally at a constant level of 5 V, which is sufficient. That is, a DC power supply of 15 to 25 V is not required unlike the conventional device. As a result, the circuit configuration of the entire device can be simplified.
  • a circuit for detecting the intensity of the external magnetic field from the detection signal b of the magnetic sensor 16 includes, for example, a waveform shaping circuit composed of a comparator 19 having a simple circuit configuration, a counter 20 and a low-pass filter 21. It can be realized with a low-cost and simple circuit member. Accordingly, the circuit configuration of the excitation signal generation circuit 11 and the signal processing circuits 19, 20 and 21 for the detection signal can be simplified, so that the entire magnetic detection device can be made compact, lightweight and inexpensive. .
  • each of the above-described circuits can be configured by a TTL circuit, IC can be achieved, and the entire device can be further reduced in size.
  • the output signal of the counter 20 is a digital signal of a fixed level, it is hardly affected by external noise. In addition, inspection and repair are easy because of the simple configuration. Therefore, sufficient measurement accuracy can be obtained even under adverse environmental conditions such as a factory production line.
  • the comparator 19 when used as a waveform shaping circuit as in the embodiment, it can be diverted to, for example, a proximity switch or the like only by changing the threshold value.
  • conventional magnetic detectors using a simple pickup coil utilizing the electromagnetic induction effect, etc. could measure only a time-varying magnetic field due to the measurement principle, but a saturable magnetic sensor By using 16, it is possible to accurately measure a magnetic field over a wide frequency range from a DC magnetic field to a high-frequency magnetic field.
  • the degree of deformation (pulse width change) at which a part of the waveform of the detection signal b of the magnetic sensor 16 is deformed due to the external magnetic field is measured, and the external magnetic field strength is determined from the degree of deformation. Has been detected. Therefore, the waveform itself depends on the external environment such as temperature. Since it is hardly affected by the conditions, it is not necessary to take a temperature compensation measure especially for the detection signal b of the magnetic sensor 16.
  • the present invention is not limited to the embodiments described above.
  • the case where the DC external magnetic field + H 2 , —H 3 is measured has been described, but it is needless to say that the AC external magnetic field can also be measured as described above.
  • a high-frequency excitation signal a having a triangular wave shape was used as an AC excitation current applied from the excitation signal generation circuit 11 to the detection coil 18 of the magnetic sensor 16 via the impedance element 15, as in the embodiment.
  • external magnetic field + H 2 DC if you measure an H 3 can be used exciting current of a low frequency to obtain a sufficiently high measurement accuracy. That is, the frequency of the AC excitation current applied to the magnetic sensor 16 is desirably about 10 times or more the frequency of the external magnetic field to be measured, but this condition is not necessarily satisfied depending on the magnetic field to be measured. Even without it, it is possible to obtain sufficiently high measurement accuracy.
  • the waveform of the AC exciting current applied to the detection coil 18 of the magnetic sensor 16 is a triangular wave shape. There may be.
  • FIG. 8 is a block diagram for implementing the magnetic detection method of the present invention.
  • reference numeral 101 denotes a pulse voltage generator, from which positive and negative pulse voltages are generated at fixed intervals.
  • the output terminal of the pulse voltage generator 101 is connected to a series circuit of the impedance element 15 and the detection coil 18 of the magnetic sensor 16.
  • the detection coil 18 is wound around a ferromagnetic core 17.
  • the positive and negative peak values of the voltage generated at both ends of the detection coil 18 are detected by a pair of positive voltage peak detectors 104 and negative voltage peak detectors 105.
  • the peak detection output from each of these peak detectors 104 and 105 is supplied to an adder 106 to be added and processed to obtain a measurement output V. Is sent.
  • a pulse voltage is supplied from the pulse voltage generator 101 to the detection coil 18 of the magnetic sensor 16, and the pulse voltage magnetizes the ferromagnetic material 103 b to a saturated state. Is done. Then, the ferromagnetic material 103 b as the magnetic field to be measured When the external magnetic fields intersect, a positive voltage and a negative voltage are generated in the coil 18 corresponding to the polarity and strength of the external magnetic field.
  • the pulse voltage is supplied to the coil 18 of the magnetic sensor 16 as described above, the power consumption is reduced as compared with the one that supplies the AC power, and power can be saved. For example, if the ratio between the pulse width of the pulse voltage and the pulse period T is (10 to 100) and is -T, the average power supplied to the magnetic sensor 16 becomes about 110 to 1Z100. It is possible to use a battery as a power source.
  • the relative sensitivity of the detection sensitivity of the minute magnetic flux hardly changes even if T / te is changed in a wide range of 2 to 100.
  • the sensitivity sharply decreases and it becomes difficult to save power.
  • FIG. 1 is a block diagram showing a schematic configuration of a magnetic detection device according to an embodiment of the present invention
  • FIG. 2 is a hysteresis characteristic and a magnetic permeability characteristic diagram of a core of a magnetic sensor of the device of the embodiment
  • FIG. 3 is a time chart showing the operation of the embodiment device.
  • FIG. 4 is a block diagram showing a schematic configuration of a conventional magnetic detection device
  • Fig. 5 is a time chart showing the operation of the conventional device.
  • Fig. 6 is a circuit diagram for explaining the measurement principle using a saturable magnetic sensor.
  • FIG. 7 is a diagram showing a power supply waveform to the coil and an output voltage waveform of the coil in FIG.
  • FIG. 8 is a block diagram for implementing the magnetic detection method of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

A magnetic detector comprises a magnetic sensor (16) having a detecting coil (18) on a ferromagnetic core (17), an exciting signal generating circuit (11) which supplies an ac exciting current having a predetermined effective value to the detecting coil (18) of the magnetic sensor (16) via an impedance element (15) to saturate the core (17), a waveform shaping circuit (19) that normalizes the waveform of detected signal taken out from both terminals of the detecting coil (18) using a predetermined threshold value, and a counter (20) that measures the pulse width of normalized signals output from the waveform shaping circuit (19), in order to detect the intensity of the external magnetic field based on a change in the pulse width caused by the external magnetic field that intersects the magnetic sensor (16).

Description

ί 明 細 書  明 Description
磁気検出装置および磁気検出方法  Magnetic detection device and magnetic detection method
[技術分野] [Technical field]
本発明は可飽和型の磁気センサを用いた磁気検出装置および磁気検出方法に関 する。  The present invention relates to a magnetic detection device and a magnetic detection method using a saturable magnetic sensor.
[背景技術]  [Background technology]
例えば鋼板の内部や表面に存在する欠陷を検出する欠陥検出装置の一つとして 磁気漏洩探傷装置が用いられている。 このような磁気漏洩装置においては、 漏洩 磁束を精度よく検出する必要がある。 磁気を精度よく検出する磁気検出装置とし て、 近年、 可飽和型の磁気センサを用いた磁気検出装置が提唱されている (特開 平 1一 3 0 8 9 8 2号公報) 。  For example, a magnetic leak detection device is used as one of the defect detection devices for detecting defects existing inside or on the surface of a steel sheet. In such a magnetic leakage device, it is necessary to accurately detect the leakage magnetic flux. In recent years, a magnetic detection device using a saturable magnetic sensor has been proposed as a magnetic detection device for detecting magnetism with high accuracy (Japanese Patent Application Laid-Open No. Hei 13-89082).
図 4はこの可飽和型の磁気センサを用いた磁気検出装置の概略構成を示すプロ ック図である。 図中 1は高周波の矩形波信号を出力する矩形波発生回路であり、 この矩形波発生回路 1から出力された矩形波信号は次の微分回路 2でもって、 矩 形波の立上りおよび立下りタイミ ングに同期するトリガ波形状を有するパルス信 号に変換される。 そして、 この微分回路 2から出力されたトリガ波形状のパルス 信号が高周波励磁信号 として、 抵抗からなるインピーダンス素子 3を介して 磁気センサ 4に印加される。 この磁気センサ 4は、 例えば棒状に形成された強磁 性体のコア 5に検出コイル 6を巻装して構成されている。 磁気センサ 4の検出コ ィル 6の一端にィンピーダンス素子 3を介して前記高周波励磁信号 e が印加さ れ、 他端は接地されている。 そして、 この検出コイル 6の端子電圧が磁気センサ 4の検出信号 e。 として取出されて電圧検出回路 7へ入力される。 そして、 この 電圧検出回路 7からこの磁気検出装置にて検出された磁界の強度に対応する出力 電圧 V。 が得られる。  FIG. 4 is a block diagram showing a schematic configuration of a magnetic detection device using the saturable magnetic sensor. In the figure, reference numeral 1 denotes a rectangular wave generating circuit that outputs a high-frequency rectangular wave signal. The rectangular wave signal output from the rectangular wave generating circuit 1 is supplied to the following differentiating circuit 2 so that the rising and falling times of the rectangular wave are obtained. Is converted into a pulse signal having a trigger waveform shape synchronized with the timing. Then, the pulse signal of the trigger waveform output from the differentiating circuit 2 is applied as a high-frequency excitation signal to the magnetic sensor 4 via the impedance element 3 composed of a resistor. The magnetic sensor 4 is configured by winding a detection coil 6 around a core 5 of a ferromagnetic material formed in, for example, a rod shape. The high-frequency excitation signal e is applied to one end of the detection coil 6 of the magnetic sensor 4 via the impedance element 3, and the other end is grounded. The terminal voltage of the detection coil 6 is the detection signal e of the magnetic sensor 4. And input to the voltage detection circuit 7. Then, the output voltage V corresponding to the intensity of the magnetic field detected by the magnetic detection device from the voltage detection circuit 7. Is obtained.
このような磁気検出装置において、 矩形波発生回路 1から出力される高周波の 矩形波信号の電圧を制御して検出コイル 6に流れる高周波励磁信号の電流を増大 してコア 5を可飽和域まで磁化する。 したがって、 この状態においては、 この検 出コイル 5の端子電圧で示される検出信号 e。 の波形における振幅は図 5に示す ように一定となる。 In such a magnetic detection device, the voltage of the high-frequency square wave signal output from the square wave generation circuit 1 is controlled to increase the current of the high-frequency excitation signal flowing through the detection coil 6 and magnetize the core 5 to the saturable region. I do. Therefore, in this state, the detection signal e indicated by the terminal voltage of the detection coil 5. Figure 5 shows the amplitude of the waveform So that it becomes constant.
そして、 外部磁界がこの検出コイル 6による飽和磁界と交差しない状態におい ては、 図 5の左側の検出信号 e QAに示すように、 波形の正側の波高値 V aと負側 の波高値— Vbは等しい。 し力、し、 このような可飽和域まで励磁されたコア 5に 外部磁界が接近して検出コイル 6による飽和磁界と交差すると、 図 5の右側の検 出信号 e。Bに示すように、 振幅値は変化しないが、 正負の各波高値 V a, -Vb が変化する。 そこで、 この各波高値 V a, — Vbを検波器で検波して直流に変換' して、 加算器で加算することによって、 差電圧 (V a— Vb) を求める。 そして、 この差電圧 (V a— Vb) を出力電圧 V。 として電圧検出回路 7から出力すれば、 この出力 圧 V。 がこの磁気センサ 4に加えられた外部磁界に対応する。 よって、 この磁気検出装置で磁界強度を検出できる。 When the external magnetic field does not intersect with the saturation magnetic field generated by the detection coil 6, as shown in the detection signal e Q A on the left side of FIG. 5, the peak value Va on the positive side and the peak value on the negative side of the waveform are obtained. — Vb is equal. When an external magnetic field approaches the core 5 excited to such a saturable region and crosses the saturation magnetic field generated by the detection coil 6, the detection signal e on the right side of FIG. As shown in B , the amplitude value does not change, but the positive and negative peak values Va, -Vb change. Therefore, each peak value Va, — Vb is detected by a detector, converted to direct current, and added by an adder to obtain a difference voltage (Va−Vb). And this difference voltage (Va-Vb) is output voltage V. If output from the voltage detection circuit 7 as Corresponds to the external magnetic field applied to the magnetic sensor 4. Therefore, the magnetic field intensity can be detected by this magnetic detection device.
しかしながら、 図 4に示すように構成された磁気検出装置においてもまだ次の ような問題があった。  However, the magnetic detection device configured as shown in FIG. 4 still has the following problems.
すなわち、 前述したように、 磁気センサ 4の強磁性体で形成されたコア 5に卷 装された検出コイル 5に高周波励磁電流を流して、 コア 5を可飽和域まで磁化す る必要がある。 し力、し、 磁気センサ 4から取出された検出信号 e Q における正負 の各波高値 V a, 一 Vbを精度良く検出するために、 インピーダンス素子 3を介 して磁気センサ 4に印加する高周波励磁信号 e i をトリガ波形状のパルス信号と している。 したがって、 このトリガ波形状のため検出コイル 5に流れる電流は高 周波電流となる。 よって、 このトリガ波形状のパルス信号でもってコア 5を可飽 和域まで磁化するためには、 高周波励磁信号 e i の電圧を大幅に上昇させる必要 がある。 例えば、 小型の磁気センサ 4においても、 前記電圧は 15〜25 VP-P を必要とする。 したがって、 矩形波発生回路 1においても、 15〜25VP— P の 波高値を有した矩形波信号を出力する必要があるので、 通常の TTL回路にて使 用される 5 Vの直流電源の他に 15〜25Vの高電圧の直流電源が必要となる。 また、 検出信号 e。 の波形から印加された外部磁界に対応する出力電圧 V。 を 算出するための電圧検出回路 7内には、 正負の各波高値 V a, 一 Vbを検出する 検波回路や得られた各波高値 V a, — V bを加算する加算回路等が組込まれてい るので、 回路構成が複雑化する。 このように、 高電圧の直流電源, 検波回路, 加算回路等が必要となるので、 磁 気検出装置全体の回路構成が複雑化するのみならず、 装置全体が大型化する問題 がある。 That is, as described above, it is necessary to supply a high-frequency excitation current to the detection coil 5 wound around the core 5 formed of the ferromagnetic material of the magnetic sensor 4 to magnetize the core 5 to the saturable region. High-frequency excitation applied to the magnetic sensor 4 via the impedance element 3 in order to accurately detect the positive and negative peak values Va and 1 Vb in the detection signal e Q taken out of the magnetic sensor 4 The signal ei is a trigger waveform pulse signal. Therefore, the current flowing through the detection coil 5 becomes a high-frequency current due to the trigger waveform. Therefore, in order to magnetize the core 5 to a saturable region with the trigger waveform pulse signal, the voltage of the high-frequency excitation signal ei needs to be significantly increased. For example, even in a small magnetic sensor 4, the voltage is 15-25 V P - require P. Therefore, the square wave generating circuit 1 also needs to output a square wave signal having a peak value of 15 to 25 V P — P. In addition to the 5 V DC power supply used in a normal TTL circuit, Requires a high-voltage DC power supply of 15 to 25V. Also, the detection signal e. Output voltage V corresponding to the external magnetic field applied from the waveform of In the voltage detection circuit 7 for calculating the peak value, a detection circuit for detecting each of the positive and negative peak values Va and one Vb, an addition circuit for adding the obtained peak values Va, — Vb, and the like are incorporated. This complicates the circuit configuration. As described above, since a high-voltage DC power supply, a detection circuit, an addition circuit, and the like are required, not only does the circuit configuration of the entire magnetic detection device become complicated, but also the overall device becomes large.
[発明の開示]  [Disclosure of the Invention]
本発明はこのような事情に鑑みてなされたものであり、 本発明の目的は、 磁気 センサの検出コイルに所定実効値を有する交流励磁電流を印加して検出信号を得 ることによって、 磁気センサに印加する交流励磁信号の電圧値を大幅に低減でき、 また、 この検出信号における信号波形の幅の変化度合いから簡単に外部磁界強度 を検出でき、 もって、 装置全体の回路構成を簡素化でき、 装置全体の小型化およ び低製造費化を図ることができる磁気検出装置および磁気検出方法を提供するこ とを目的とする。  The present invention has been made in view of such circumstances, and an object of the present invention is to obtain a detection signal by applying an AC exciting current having a predetermined effective value to a detection coil of the magnetic sensor. The external magnetic field strength can be easily detected from the degree of change in the width of the signal waveform in the detection signal, thereby simplifying the circuit configuration of the entire device, It is an object of the present invention to provide a magnetic detection device and a magnetic detection method capable of reducing the size of the entire device and reducing the manufacturing cost.
上記課題を解消するために、 第 1の発明の磁気検出装置は、 ¾磁性体で形成さ れたコアに検出コイルを卷装してなる可飽和磁気センサと、 この磁気センサの検 出コイルに対してインピーダンス素子を介して所定実効値を有する交流励磁電流 を印加してコアを飽和域まで磁化する励磁信号発生回路と、 検出コィルの両端か ら取出された検出信号の波形を所定のしきい値で正規化する比較器と、 この比較 器から出力された正規化信号のパルス幅を計測するカウンタとを備えたものであ o  In order to solve the above-mentioned problems, a magnetic detection device according to a first aspect of the present invention includes a saturable magnetic sensor having a detection coil wound around a core formed of a magnetic material, and a detection coil of the magnetic sensor. On the other hand, an excitation signal generating circuit for applying an AC excitation current having a predetermined effective value through an impedance element to magnetize the core to a saturation region, and a detection signal waveform extracted from both ends of the detection coil at a predetermined threshold. A comparator for normalizing with a value, and a counter for measuring the pulse width of the normalized signal output from the comparator.
また、 第 2の発明の磁気検出装置は、 上記カウンタに代えて、 比較器から出力 された正規化信号のパルス幅を平均直流成分として検出するためのローパスフィ ルタを備たものである。  Further, the magnetic detection device of the second invention is provided with a low-pass filter for detecting the pulse width of the normalized signal output from the comparator as an average DC component, instead of the counter.
さらに、 本発明の磁気検出方法は、 強磁性体からなるコアに検出コイルを巻回 してなる磁気センサを被測定磁界に近接させ、 この磁気センサの検出コイルにィ ンピーダンス素子を介して正負のパルス電圧を供給し、 前記コイルの両端に発生 する電圧の正負のピーク値をそれぞれ検出し、 この検出された正負のピーク値を 加算し、 この加算値を前記被測定磁界に対応する測定値とすることを特徴とする。 本発明の第 1および第 2の磁気検出装置によれば、 磁気センサの検出コィルに は励磁信号波発生回路から所定実効値を有した交流励磁電流が印加される。 よつ て、 この交流励磁電流の実効電流値は先のトリガ波形状のパルス信号より大きい ので、 磁気センサのコアを可飽和域まで磁化するに必要な交流励磁電流の電圧を 低く設定できる。 Further, in the magnetic detection method of the present invention, a magnetic sensor formed by winding a detection coil around a core made of a ferromagnetic material is brought close to a magnetic field to be measured, and the detection coil of the magnetic sensor is connected to the detection coil via an impedance element. A pulse voltage is supplied, positive and negative peak values of a voltage generated at both ends of the coil are detected, and the detected positive and negative peak values are added. The added value is compared with a measured value corresponding to the measured magnetic field. It is characterized by doing. According to the first and second magnetic detection devices of the present invention, an AC excitation current having a predetermined effective value is applied to the detection coil of the magnetic sensor from the excitation signal wave generation circuit. Therefore, the effective current value of the AC exciting current is larger than the pulse signal of the trigger waveform. Therefore, the voltage of the AC exciting current required to magnetize the core of the magnetic sensor to the saturable region can be set low.
また、 本発明の第 1および第 2の磁気検出装置によれば、 コアは検出コイルに 印加される交流電圧で正負方向に磁化されるが、 一定の電流値以上になると飽和 するので、 検出コイルの両端から取出された検出信号の波形は所定幅を有した形 波となる。 このように可飽和域まで磁化されたコアに卷装された検出コイルから 所定幅を有した波形の検出信号が出力されている状態において、 交流励磁電流に て励磁されている磁界に対して交差する外部磁界が印加されると、 交流励磁電流 の磁界に外部磁界が加算または減算されるので、 前記検出信号における波形の一 部が変形する。  According to the first and second magnetic detection devices of the present invention, the core is magnetized in the positive and negative directions by the AC voltage applied to the detection coil, but saturates when the current exceeds a certain current value. The waveform of the detection signal extracted from both ends of the signal has a predetermined width. In a state where a detection signal having a waveform having a predetermined width is output from the detection coil wound around the core magnetized to the saturable region in this way, the detection coil crosses the magnetic field excited by the AC excitation current. When the external magnetic field is applied, the external magnetic field is added to or subtracted from the magnetic field of the AC exciting current, so that a part of the waveform of the detection signal is deformed.
そして、 この変形された検出信号波形を比較器において所定のしき"値でもつ て正規化する。 そして、 正規化された正規化信号のパルス幅でもって前記検出信 号波形の変形度合が検出される。 よって、 このパルス幅変化から外部磁界強度が 検出される。  Then, the deformed detection signal waveform is normalized by a predetermined threshold value in a comparator. Then, the degree of deformation of the detection signal waveform is detected by the pulse width of the normalized signal. Therefore, the external magnetic field strength is detected from the change in the pulse width.
なお、 本発明の第 1の磁気検出装置によれば、 パルス幅を、 カウン夕で直接そ のパルス幅を計測し、 また本発明の第 2の磁気検出装置によれば、 ローパスフィ ルタでもつて正規化信号の平均直流成分を検出することによつて前記パルス幅を 測定している。  According to the first magnetic detection device of the present invention, the pulse width is directly measured at the counter, and according to the second magnetic detection device of the present invention, the pulse width is normally measured by the low-pass filter. The pulse width is measured by detecting the average DC component of the digitized signal.
さらに、 本発明の磁気測定方法においては、 パルス電圧供給源から被測定磁界 に近接された磁気センサ一のコイルに正負のパルス電圧が供給され、 それによつ てコィル両端に発生する電圧の正負のピーク値を 1対のピーク値検出手段で検出 し、 その各ピーク値を加算器で加算することによって磁気センサ—が検出する被 測定磁界 (外部磁界) の変化を電圧レベルの変化として測定することができる。  Further, in the magnetic measurement method of the present invention, a positive or negative pulse voltage is supplied from the pulse voltage supply source to the coil of the magnetic sensor that is close to the magnetic field to be measured, whereby the positive or negative voltage of the voltage generated between both ends of the coil is supplied. A peak value is detected by a pair of peak value detection means, and the change of the magnetic field to be measured (external magnetic field) detected by the magnetic sensor is measured as a change of a voltage level by adding each peak value by an adder. Can be.
本発明の磁気検出装置によれば、 磁気センサの検出コイルに所定実効値を有す る交流励磁電流を印加して検出信号を得て、 この得られた検出信号の波形の一部 が外部磁界に起因して変形する変形度合いを検出している。 したがって、 磁気セ ンサに印加する交流励磁信号の電圧値を大幅に低減でき、 また、 この検出信号の 信号波形の変形度合いから簡単に外部磁界強度を検出できる。 その結果、 各回路 構成を簡素化でき、 検出装置全体の小型化および低製造費化を図ることができる < また、 本発明の磁気検出方法によれば、 微小磁界に対する検出感度を向上でき、 しかも磁気センサーのコイルをパルス電圧で駆動させることにより、 省電力化を 図ることができる。 したがって、 例えば本発明の磁気測定方法をバッテリ駆動に より実現する上で非常に有効である。 According to the magnetic detection device of the present invention, a detection signal is obtained by applying an AC exciting current having a predetermined effective value to the detection coil of the magnetic sensor, and a part of the waveform of the obtained detection signal is an external magnetic field. Is detected. Therefore, the voltage value of the AC excitation signal applied to the magnetic sensor can be significantly reduced, and the external magnetic field strength can be easily detected from the degree of deformation of the signal waveform of the detection signal. As a result, each circuit configuration can be simplified, and the entire detection device can be reduced in size and manufacturing cost can be reduced < Further, according to the magnetic detection method of the present invention, detection sensitivity to a minute magnetic field can be improved, and power can be saved by driving the coil of the magnetic sensor with a pulse voltage. Therefore, for example, it is very effective in realizing the magnetic measurement method of the present invention by battery operation.
[実施例] - 以下本発明の一実施例を図面を用いて説明する。  [Embodiment]-An embodiment of the present invention will be described below with reference to the drawings.
図 1は実施例の磁気検出装置の概略構成を示すプロック図である。 図中 1 1は、 所定実効値を有した交流励磁信号として、 例えば三角波形状を有する高周波励磁 信号を出力する励磁信号発生回路であり、 この励磁信号波発生回路 1 1は、 高周 波発振器 1 2と分周器 1 3と三角波発生回路 1 4とで構成されている。 高周波発 振器 1 2は例えば 1 0 MHz等の高周波数を有するクロック信号 dを出力する。 こ のクロック信号 dは次の分周器 1 3で例えば 1 に分周されたのち、 三角波発 生回路 1 4へ入力される。 この三角波発生回路 1 4は図 3に すような周期 T 0 の三角波形状を有した交流励磁信号としての高周波励磁信号 aを例えば抵抗で構 成されたィンピーダンス素子 1 5を介して磁気センサ 1 6へ送出する。  FIG. 1 is a block diagram showing a schematic configuration of the magnetic detection device of the embodiment. In the figure, reference numeral 11 denotes an excitation signal generation circuit which outputs, for example, a high-frequency excitation signal having a triangular waveform as an AC excitation signal having a predetermined effective value.The excitation signal wave generation circuit 11 includes a high-frequency oscillator 1 2 and a frequency divider 13 and a triangular wave generation circuit 14. The high-frequency oscillator 12 outputs a clock signal d having a high frequency, for example, 10 MHz. This clock signal d is divided into, for example, 1 by the next frequency divider 13 and then input to the triangular wave generation circuit 14. This triangular wave generation circuit 14 converts a high frequency excitation signal a as an AC excitation signal having a triangular wave shape with a period T 0 as shown in FIG. 3 through an impedance element 15 composed of a resistor, for example, through a magnetic sensor 1. Send to 6.
磁気センサ 1 6は、 図示するように、 例えば棒状に形成された強磁性体のコア 1 7に検出コイル 1 8を巻装して構成されている。 そして、 この磁気センサ 1 6 の検出コイル 1 8の一端に前記ィンピーダンス素子 1 5を介した高周波励磁信号 aが印加され、 他端は接地されている。 そして、 この検出コイル 1 8の端子電圧 が磁気センサ 1 6の検出信号 bとして取出されて波形整形回路としての比較器 1 9の (+ ) 側入力端子へ入力される。 この比較器 1 9の (一) 側入力端子は接 地されている。 比較器 1 9は、 検出信号 bが接地電位 (0 V ) より高い場合に H (ハイ) レベルとなり、 接地電位 (0 V ) より低い場合には L (ロー) レベルと なる正規化信号 cを出力する。 なお、 この正規化信号 cの電圧レベルは Hレベル で 5 Vとなり、 Lレベルで 0 Vとなる一定レベル信号である。  As shown in the figure, the magnetic sensor 16 is configured by winding a detection coil 18 around a ferromagnetic core 17 formed in, for example, a rod shape. The high frequency excitation signal a via the impedance element 15 is applied to one end of the detection coil 18 of the magnetic sensor 16, and the other end is grounded. Then, the terminal voltage of the detection coil 18 is extracted as a detection signal b of the magnetic sensor 16 and input to the (+) side input terminal of the comparator 19 as a waveform shaping circuit. The (1) side input terminal of this comparator 19 is grounded. Comparator 19 outputs a normalized signal c having a H (high) level when the detection signal b is higher than the ground potential (0 V) and an L (low) level when the detection signal b is lower than the ground potential (0 V). Output. The voltage level of the normalized signal c is a constant level signal of 5 V at H level and 0 V at L level.
比較器 1 9から出力された一定レベルを有した正規化信号 cはカウンタ 2 0の 制御端子 Gへ入力されると共に、 ローパスフィルタ 2 1へ入力される。 前記カウ ンタ 2 0のクロック端子 C Pには高周波発振器 1 2から出力されたクロック信号 dが入力されている。 そして、 カウンタ 2 0は、 制御端子 Gに印加されている前 記正規化信号 cが Lレベルから Hレベルへ立上るタイミングに同期して、 前記ク 口ック信号 dのクロック数のカウント動作を開始し、 正規化信号 cにおける Hレ ベルから Lレベルへの立下がりタイミ ングに同期してカウント動作を終了する。 すなわち、 このカウンタ 2 0は正規化信号 cの Hレベル期間で示されるパルス幅 Tを計測する。 このカウンタ 2 0にて計測されたデジタルのパルス幅 Tは例えば マイクロコンピュータ等で構成された演算回路 2 2へ送出される。 The normalized signal c having a constant level output from the comparator 19 is input to the control terminal G of the counter 20 and to the low-pass filter 21. The clock signal d output from the high-frequency oscillator 12 is input to the clock terminal CP of the counter 20. Then, the counter 20 is activated before being applied to the control terminal G. In synchronization with the timing when the normalized signal c rises from the L level to the H level, the counting operation of the number of clocks of the clock signal d is started, and the normalized signal c is changed from the H level to the L level. The count operation ends in synchronization with the falling timing. That is, the counter 20 measures the pulse width T indicated by the H level period of the normalized signal c. The digital pulse width T measured by the counter 20 is sent to an arithmetic circuit 22 composed of, for example, a microcomputer or the like.
—方、 ローパスフィルタ 2 1は、 比較的大きい時定数を有しており、 正規化信 号 cのパルス状波形に含まれる各周波数成分のうち高周波成分を遮断して、 低周 波成分のみを通過させる。 よって、 このローパスフィルタ 2 1は、 正規化信号 c の実効平均電圧に比例する平均直流電圧を出力する。 そして、 正規化信号 cの平 均直流電圧は正規化信号 cのパルス幅 Tに対応するので、 結果として、 このロー パスフィルタ 2 1のアナログの出力信号 f の電圧は正規化信号 c.のパルス幅丁に 対応する。 そして、 パルス幅 Tに対応する電圧値を有した出力 ft号 f はアナログ の演算回路 2 3へ入力される。  On the other hand, the low-pass filter 21 has a relatively large time constant, and cuts off the high-frequency components among the frequency components included in the pulse-like waveform of the normalized signal c, and removes only the low-frequency components. Let it pass. Therefore, this low-pass filter 21 outputs an average DC voltage proportional to the effective average voltage of the normalized signal c. Since the average DC voltage of the normalized signal c corresponds to the pulse width T of the normalized signal c, as a result, the voltage of the analog output signal f of the low-pass filter 21 becomes equal to the pulse of the normalized signal c. Corresponds to the width. Then, the output ftf having a voltage value corresponding to the pulse width T is input to the analog arithmetic circuit 23.
次にこのように構成された磁気検出装置の動作を説明するが、 その前に前記磁 気センサ 1 6の基本原理について、 図 2 A、 図 2 B、 ならびに図 6および図 7 A、 図 7 B、 図 7 C、 図 7 D、 図 7 Eを参照して説明する。 図 6に示すように、 励磁 信号発生回路 1 1と、 ィンピーダンス素子 1 5と、 強磁性体のコア 1 7の外周に 巻装された検出コイル 1 8とが直列に接続されている。 磁石 2 5は、 コア 1 7と 検出コイル 1 8からなる磁気センサ 1 6に外部磁界を与えるためのものである。 励磁信号発生回路 1 1から図 7 Aに示すような交流電源電圧波形 (高周波励磁 信号) が生じるようになつている。 インピーダンス素子 1 5の抵抗値を Rとし、 磁気センサ 1 6の検出コイル 1 8のインピーダンスを Z s とし、 検出コイル 1 8 の両端から取出される検出信号を bとし、 励磁信号発生回路 1 1から出力される 高周波励磁信号 aとすると、 (1) 式の関係が成立する。 Next, the operation of the magnetic detection device thus configured will be described. Before that, the basic principle of the magnetic sensor 16 will be described with reference to FIGS. 2A and 2B, and FIGS. 6 and 7A and FIG. B, FIG. 7C, FIG. 7D, and FIG. 7E will be described. As shown in FIG. 6, an excitation signal generating circuit 11, an impedance element 15, and a detection coil 18 wound around the outer periphery of a ferromagnetic core 17 are connected in series. The magnet 25 is for applying an external magnetic field to the magnetic sensor 16 including the core 17 and the detection coil 18. The excitation signal generation circuit 11 generates an AC power supply voltage waveform (high-frequency excitation signal) as shown in Fig. 7A. The resistance value of the impedance element 1 5 and R, the impedance of the detection coil 1 8 of the magnetic sensor 1 6 and Z s, the detection signal taken out from both ends of the detection coil 1 8 is b, the excitation signal generating circuit 1 1 Assuming the high-frequency excitation signal a to be output, the relationship of equation (1) holds.
b = a ♦ Z s Z ( R + Z s ) 〜(1) b = a ♦ Z s Z (R + Z s) ~ (1)
(1) 式において、 抵抗値 Rは一定であるので、 検出信号 bは検出コイル 1 8のィ ンピーダンス Z s に応じて変化する。 そして、 強磁性体のコア 1 7に卷装された 検出コイル 1 8のインピーダンス Z s はコア 1 7の透磁率 に比例する。 今、 図 6において、 磁石 2 5を離した状態で、 すなわち外部磁界を加えない状 態で、 前記磁気センサ 1 6の検出コイル 1 8に交流電流を流したとすると、 図 2 Aに示すようにコア 1 7のヒステリシス特性によって強磁性体のコア 1 7の透磁 率特性は、 図 2 Bに示すようになる。 (1) In the equation, the resistance value R is constant, the detection signal b is changed in accordance with the I impedance Z s of the detection coil 1 8. Then, the impedance Z s of the detection coil 1 8 which is卷装core 1 7 of the ferromagnetic material is proportional to the permeability of the core 1 7. Now, in FIG. 6, if an alternating current is applied to the detection coil 18 of the magnetic sensor 16 in a state where the magnet 25 is separated, that is, in a state where no external magnetic field is applied, as shown in FIG. Due to the hysteresis characteristic of the core 17, the magnetic permeability characteristic of the ferromagnetic core 17 becomes as shown in FIG. 2B.
図 7 Aの電圧波形は、 外部磁界の影響によつて図 7 Bに示すように全体が正側 に直流成分だけシフ トされる。 また、 図 7 Aの電圧波形は、 外部磁界によって負 側に直流成分だけシフ トされる。 もし、 外部磁界が交流磁界であれば、 図 7 A、 図 7 Bのシフトが繰り返される。 このため、 検出コイル 1 8の両端に発生する出 力電圧は図 7 Dに示すような波形となる。 そして、 磁石 2 5による外部磁界を加 えられない状態では波形は正、 負対称波形となり、 正方向の電圧 V と負方向の 電圧 V 2 は等しくなる。 The voltage waveform of FIG. 7A is entirely shifted by the DC component to the positive side as shown in FIG. 7B due to the effect of the external magnetic field. In addition, the voltage waveform in FIG. 7A is shifted to the negative side by the external magnetic field by only the DC component. If the external magnetic field is an alternating magnetic field, the shifts in Figs. 7A and 7B are repeated. Therefore, the output voltage generated across the detection coil 18 has a waveform as shown in FIG. 7D. Then, the waveform of the external magnetic field by the magnet 2 5 with pressurized Erare absence positive, a negative symmetrical waveform, the voltage V 2 in the positive direction of voltage V and the negative direction are equal.
しかし、 磁石 2 5を図 6の点線で示すように検出コイル 1 8に近接させるとコ ァ 1 7を交差する磁束は検出コイル 1 Sで発生する磁界と外部磁界との合成磁束 となる。 このため、 検出コイル 1 8の両端に発生する電圧波形は、 図 7 Eに示す ように V i > V 2 となる。  However, when the magnet 25 is brought close to the detection coil 18 as shown by the dotted line in FIG. 6, the magnetic flux crossing the core 17 becomes a composite magnetic flux of the magnetic field generated by the detection coil 1S and the external magnetic field. For this reason, the voltage waveform generated at both ends of the detection coil 18 is V i> V 2 as shown in FIG. 7E.
従って、 検出コイル 1 8の両端に発生する出力電圧の正側の電圧 V i と負側の 電圧 v 2 を比較し、 その差を求めることによって間接的に外部磁界を計測できる。 従って、 この原理を漏洩磁束探傷法に適用すれば外部磁界は欠陷によって発生す るので結局欠陥を探傷できることになる。 Therefore, the external magnetic field can be indirectly measured by comparing the positive voltage V i and the negative voltage v 2 of the output voltage generated at both ends of the detection coil 18 and obtaining the difference. Therefore, if this principle is applied to the magnetic flux leakage detection method, the external magnetic field is generated by the defect, so that the defect can be detected after all.
—方、 図 2 Aに示すようにコア 1 7においては、 励磁電流を一定以上増加させ ても発生磁界は一定以上増加せずに飽和状態となる。 そして、 一般に、 図示する ようなヒステリシス特性を有している。 したがって、 透磁率 も図 2 Bに示すよ うに励磁電流値に応じて変化する。 その結果、 検出コイル 1 8のインピーダンス Z s も励磁電流値、 すなわち、 検出コイル 1 8に印加される高周波励磁信号 aの 値により変化する。 よって、 図 3に示す高周波励磁信号 aが増加する過程で急激 にインピーダンス Z s が変化するので、 検出信号 bは急激に上昇または下降する。 よって、 検出信号 bの波形は図 3に示すように 0 Vを中心に正側および負側に亘 る略矩形波形となる。 なお、 この略矩形波形のパルス幅 1 は高周波励磁信号 a の周期 T。 の 1 2である。 すなわち、 入力された三角波形は略矩形波形となる。 このような略矩形波形状を有した検出信号 bが比較器 19へ入力されると、 こ の比較回路 19のしきい値が 0Vであるので、 この比較回路 19から出力される 正規化信号 cは検出信号 bのパルス幅と同一パルス幅 を有する。 そして、 こ のパルハ'幅 はカウンタ 20で計測されて演算回路 22へ送出される。 演算回 路 22は既知である高周波励磁信号 aの周期 T。 と検出されたパルス幅 とを 比較して、 T。
Figure imgf000010_0001
の場合は外部磁界が存在しないと判断する。
On the other hand, as shown in FIG. 2A, in the core 17, even if the exciting current is increased beyond a certain level, the generated magnetic field does not increase beyond a certain level and becomes saturated. In general, it has a hysteresis characteristic as shown. Therefore, the magnetic permeability also changes according to the exciting current value as shown in FIG. 2B. As a result, the impedance Z s is also the excitation current value of the detection coil 1 8, i.e., which changes depending on the value of the high frequency excitation signal a applied to the detection coil 1 8. Therefore, the impedance Z s changes rapidly in the process of increasing the high-frequency excitation signal a shown in FIG. 3, and the detection signal b rapidly rises or falls. Therefore, as shown in FIG. 3, the waveform of the detection signal b is a substantially rectangular waveform extending from 0 V to the positive side and the negative side. The pulse width 1 of this substantially rectangular waveform is the period T of the high-frequency excitation signal a. 1 of 2. That is, the input triangular waveform becomes a substantially rectangular waveform. When the detection signal b having such a substantially rectangular wave shape is input to the comparator 19, the threshold value of the comparison circuit 19 is 0 V, so the normalized signal c output from the comparison circuit 19 Has the same pulse width as the pulse width of the detection signal b. The width of the pulse is measured by the counter 20 and sent to the arithmetic circuit 22. The arithmetic circuit 22 has a period T of the known high-frequency excitation signal a. Compared with the detected pulse width and T.
Figure imgf000010_0001
In the case of, it is determined that there is no external magnetic field.
また、 ローパスフィルタ 21から直流電圧 を有した出力信号 f が演算回路 23へ入力される。 そして、 この演算回路 23はその直流電圧 V から外部磁界 が印加されていないと判断する。  Further, an output signal f having a DC voltage is input from the low-pass filter 21 to the arithmetic circuit 23. Then, the arithmetic circuit 23 determines from the DC voltage V that no external magnetic field is applied.
そして、 このような状態において、 例えば S極または N極を有する直流の外部 磁界 H2 または— H3 が磁気センサ 16の高周波励磁電流による磁界に交差する と、 この外部磁界 Η2 , H3 が高周波励磁電流による磁界に加算されたり、 減算 されるとコア 17の透磁率 が変化するので、 検出コイル 18のィンピーダンス Zs が大きく変化する。 よって、 磁気センサ 16の検出信号 bの波形は図 3にお ける中央の検出信号 b 2 または右側の検出信号 b 3 のように変化する。 Then, in such a state, for example, when a DC external magnetic field H 2 or −H 3 having an S pole or an N pole crosses the magnetic field generated by the high frequency excitation current of the magnetic sensor 16, the external magnetic fields Η 2 and H 3 become or is added to the magnetic field by the high-frequency excitation current, because the magnetic permeability of the subtracted core 17 is changed, Inpidansu Z s of the detection coil 18 varies greatly. Accordingly, the waveform of the detection signal b of the magnetic sensor 16 changes as you Keru central detection signal b 2 or the right of the detection signal b 3 in FIG.
したがって、 比較器 19から出力される正規化信号 cのパルス幅 Tは T2 また は Τ3 へ変化する。 よって、 カウンタ 20から演算回路 22へ入力されるパルス 幅 Τも から T2 または Τ3 へ変化する。 演算回路 22は外部磁界が印加され ていない状態のパルス幅 1 (=Τ。 Ζ2) と得られたパルス幅 または T2 から印加された外部磁界 Η2 または一 Η3 を算出する。 Thus, the pulse width T of the normalized signal c output from the comparator 19 T 2 or changed to T 3. Thus, it changes from even a pulse width T which is input from the counter 20 to the arithmetic circuit 22 to T 2 or T 3. Calculation circuit 22 calculates the external magnetic field pulse width state not applied 1 (= Τ. Ζ2) external magnetic field is applied from the pulse width or T 2 obtained with Eta 2 or a Eta 3.
また、 比較器 19から出力される正規化信号 cの外部磁界 Η2 または一 Η3 に 対応するパルス幅 Τ2 または Τ3 は口一パスフィルタ 21から演算回路 23へ入 力される出力信号 f の直流電圧 V2 または V3 にて検出される。 よって、 このァ ナログの演算回路 23においても、 前記外部磁界が印加されていない状態の直流 電圧 との対比でもって、 印加された外部磁界 H2 または— H3 が算出される c このように、 この磁気検出装置に外部から印加された磁界の大きさと方向が各 演算回路 22, 23でデジタル的にまたはアナログ的に算出される。 The output signal is the external magnetic field Eta input 2 or pulse width T 2 or T 3 corresponding to an Eta 3 by mouth one pass filter 21 to the arithmetic circuit 23 of the normalized signal c output from the comparator 19 f detected by the DC voltage V 2 or V 3. Therefore, also in the arithmetic circuit 23 of this § analog, with at comparison with the DC voltage in a state where the external magnetic field is not applied, the applied external magnetic field H 2 or - c the amount of H 3 is thus calculated, The magnitude and direction of the magnetic field externally applied to the magnetic detection device are calculated digitally or analogly by the arithmetic circuits 22, 23.
このように構成された磁気検出装置によれば、 磁気センサ 16に印加する交流 励磁電流としての高周波励磁信号 aの信号波形を図 3に示すように所定実効値を 有した三角形状としている。 この高周波励磁信号 aの実効電流値は図 4に示した 従来検出装置における トリガ波形状のパルス信号 eュ より大きいので、 磁気セン サ 1 6のコア 1 7を可飽和まで磁化するに必要な高周波励磁信号 aの電圧を低く 設定できる。 実施例装置においては、 高周波励磁信号 aの電圧値を 5 V P—P まで 低下させることができた。 よって、 励磁信号発生回路 1 1の高周波発振器 1 2 , 分周器 1 3 , 三角波発生回路 1 4を駆動させるための直流電源は通常の 5 Vの一 定レベルで十分である。 すなわち、 従来装置のように、 1 5〜2 5 Vの直流電源 は必要ない。 その結果、 装置全体の回路構成が簡素化できる。 According to the magnetic detection device configured as described above, the signal waveform of the high-frequency excitation signal a as the AC excitation current applied to the magnetic sensor 16 has a predetermined effective value as shown in FIG. It has a triangular shape. Since the effective current value of the high-frequency excitation signal a is larger than the trigger signal pulse signal e in the conventional detector shown in FIG. 4, the high-frequency necessary for magnetizing the core 17 of the magnetic sensor 16 to saturable is obtained. The voltage of the excitation signal a can be set low. In the example device, the voltage value of the high-frequency excitation signal a could be reduced to 5 VP-P. Therefore, the DC power supply for driving the high-frequency oscillator 12, the frequency divider 13, and the triangular wave generation circuit 14 of the excitation signal generation circuit 11 is normally at a constant level of 5 V, which is sufficient. That is, a DC power supply of 15 to 25 V is not required unlike the conventional device. As a result, the circuit configuration of the entire device can be simplified.
さらに、 磁気センサ 1 6の検出信号 bから外部磁界の強度を検出する回路は、 例えば簡単な回路構成を有する比較器 1 9から構成された波形整形回路やカウン 夕 2 0やローパスフィル 2 1等の安価で簡単な構成の回路部材でもって実現可能 である。 したがって、 励磁信号発生回路 1 1および検出信号の各信号処理回路 1 9 , 2 0 , 2 1の回路構成を簡素化できるので、 磁気検出装置全体を小型, 軽 量に、 かつ低価格で構成できる。  Further, a circuit for detecting the intensity of the external magnetic field from the detection signal b of the magnetic sensor 16 includes, for example, a waveform shaping circuit composed of a comparator 19 having a simple circuit configuration, a counter 20 and a low-pass filter 21. It can be realized with a low-cost and simple circuit member. Accordingly, the circuit configuration of the excitation signal generation circuit 11 and the signal processing circuits 19, 20 and 21 for the detection signal can be simplified, so that the entire magnetic detection device can be made compact, lightweight and inexpensive. .
また、 前述した各回路を T T L回路で構成できるので、 I C化が可能であり、 装置全体をさらに小型に構成できる。  In addition, since each of the above-described circuits can be configured by a TTL circuit, IC can be achieved, and the entire device can be further reduced in size.
さらに、 カウンタ 2 0の出力信号は一定レベルのデジタル信号であるので、 外 部雑音の影響を受けにくい。 また、 簡単な構成であるので、 点検補修が容易であ る。 よって、 工場の製造ライン等の悪環境条件下でも十分な測定精度を得ること ができる。  Further, since the output signal of the counter 20 is a digital signal of a fixed level, it is hardly affected by external noise. In addition, inspection and repair are easy because of the simple configuration. Therefore, sufficient measurement accuracy can be obtained even under adverse environmental conditions such as a factory production line.
さらに、 波形整形回路として実施例のように比較器 1 9を使用した場合には、 しきい値を変更するのみで、 例えば近接スィツチ等にも転用が可能である。  Further, when the comparator 19 is used as a waveform shaping circuit as in the embodiment, it can be diverted to, for example, a proximity switch or the like only by changing the threshold value.
また、 電磁誘導効果等を利用した単純なピックァップコイルを用いた従来の磁 気検出装置においては、 その測定原理から時間的に変化する磁界しか測定できな かったが、 可飽和された磁気センサ 1 6を用いることによって、 直流磁界から高 周波磁界まで広い周波数範囲に亘つて磁界を精度良く測定できる。  Also, conventional magnetic detectors using a simple pickup coil utilizing the electromagnetic induction effect, etc., could measure only a time-varying magnetic field due to the measurement principle, but a saturable magnetic sensor By using 16, it is possible to accurately measure a magnetic field over a wide frequency range from a DC magnetic field to a high-frequency magnetic field.
また、 本発明においては、 磁気センサ 1 6の検出信号 bの波形の一部が外部磁 界に起因して変形する変形度合 (パルス幅変化) を測定して、 その変形度合いか ら外部磁界強度を検出している。 したがって、 波形そのものは温度等の外部環境 条件に影響されにくいので、 特に磁気センサ 1 6の検出信号 bに対して温度補償 対策を講ずる必要がない。 Also, in the present invention, the degree of deformation (pulse width change) at which a part of the waveform of the detection signal b of the magnetic sensor 16 is deformed due to the external magnetic field is measured, and the external magnetic field strength is determined from the degree of deformation. Has been detected. Therefore, the waveform itself depends on the external environment such as temperature. Since it is hardly affected by the conditions, it is not necessary to take a temperature compensation measure especially for the detection signal b of the magnetic sensor 16.
なお、 本発明は上述した実施例に限定されるものではない。 実施例においては、 直流の外部磁界 + H 2 , — H 3 を測定する場合について説明したが、 上述したよ うに交流の外部磁界も測定できることは勿論である。 The present invention is not limited to the embodiments described above. In the embodiment, the case where the DC external magnetic field + H 2 , —H 3 is measured has been described, but it is needless to say that the AC external magnetic field can also be measured as described above.
また、 励磁信号発生回路 1 1からィンピーダンス素子 1 5を介して磁気センサ 1 6の検出コイル 1 8に印加する交流励磁電流として三角波形状を有する高周波 励磁信号 aを用いたが、 実施例のように直流の外部磁界 + H 2 , 一 H 3 を測定す る場合は、 低周波の励磁電流を用いても十分高い測定精度を得ることができる。 すなわち、 磁気センサ 1 6に印加する交流励磁電流の周波数は測定対象となる 外部磁界の周波数の概略 1 0倍以上の周波数が望ましいが、 測定対象磁界によつ てはこの条件を必ずしも満足していなくても十分高い測定精度を得ることが可能 である。 Also, a high-frequency excitation signal a having a triangular wave shape was used as an AC excitation current applied from the excitation signal generation circuit 11 to the detection coil 18 of the magnetic sensor 16 via the impedance element 15, as in the embodiment. external magnetic field + H 2 DC, if you measure an H 3 can be used exciting current of a low frequency to obtain a sufficiently high measurement accuracy. That is, the frequency of the AC excitation current applied to the magnetic sensor 16 is desirably about 10 times or more the frequency of the external magnetic field to be measured, but this condition is not necessarily satisfied depending on the magnetic field to be measured. Even without it, it is possible to obtain sufficiently high measurement accuracy.
さらに、 実施例においては、 磁気センサ 1 6の検出コイル 1 8に印加する交流 励磁電流の波形を三角波形状としたが、 所定実効値を有する例えばサイン波形状, 鋸歯状波形状, 対数波形状であってもよい。  Further, in the embodiment, the waveform of the AC exciting current applied to the detection coil 18 of the magnetic sensor 16 is a triangular wave shape. There may be.
次に、 本発明による磁気検出方法について、 図 8を参照して説明する。 図 8は 本発明の磁気検出方法を実施するためのブロック図である。 図中 1 0 1はパルス 電圧発生器で、 このパルス電圧発生器 1 0 1からは正負のパルス電圧が一定の間 隔で発生するようになっている。 このパルス電圧発生器 1 0 1の出力端子には前 記ィンピーダンス素子 1 5と、 前記磁気センサ 1 6の検出コイル 1 8との直列回 路が接続されている。 検出コイル 1 8は強磁性体のコア 1 7に巻回されている。 検出コイル 1 8の両端に発生する電圧の正負のピーク値を 1対の正電圧ピーク 検波器 1 0 4及び負電圧ピーク検波器 1 0 5で検出している。 これら各ピーク検 波器 1 0 4 , 1 0 5からのピーク検出出力を加算器 1 0 6に供給して加算処理し、 測定出力 V。 を送出するようにしている。  Next, a magnetic detection method according to the present invention will be described with reference to FIG. FIG. 8 is a block diagram for implementing the magnetic detection method of the present invention. In the figure, reference numeral 101 denotes a pulse voltage generator, from which positive and negative pulse voltages are generated at fixed intervals. The output terminal of the pulse voltage generator 101 is connected to a series circuit of the impedance element 15 and the detection coil 18 of the magnetic sensor 16. The detection coil 18 is wound around a ferromagnetic core 17. The positive and negative peak values of the voltage generated at both ends of the detection coil 18 are detected by a pair of positive voltage peak detectors 104 and negative voltage peak detectors 105. The peak detection output from each of these peak detectors 104 and 105 is supplied to an adder 106 to be added and processed to obtain a measurement output V. Is sent.
このような構成においては、 磁気センサ— 1 6の検出コイル 1 8にはパルス電 圧発生器 1 0 1からパルス電圧が供給され、 このパルス電圧によって強磁性体 1 0 3 bが飽和状態に磁化される。 そして強磁性体 1 0 3 bに被測定磁界として の外部磁界が交差すると、 外部磁界の極性とその強さに対応してコイル 1 8には 正電圧と負電圧が発生する。 In such a configuration, a pulse voltage is supplied from the pulse voltage generator 101 to the detection coil 18 of the magnetic sensor 16, and the pulse voltage magnetizes the ferromagnetic material 103 b to a saturated state. Is done. Then, the ferromagnetic material 103 b as the magnetic field to be measured When the external magnetic fields intersect, a positive voltage and a negative voltage are generated in the coil 18 corresponding to the polarity and strength of the external magnetic field.
しかして正電圧のピーク値 V が正電圧ピーク検波器 1 0 4によって検出され、 負電圧のピーク値 V 2 が負電圧ピーク検波器 1 0 5によって検出され、 加算器 1 0 6で V: + (一 V 2 ) の加算処理が行われて測定出力 V。 が送出されること に7よる。 Thus the peak value V of the positive voltage is detected by a positive voltage peak detector 1 0 4, the peak value V 2 of the negative voltage is detected by the negative voltage peak detector 1 0 5, V adder 1 0 6: + (1 V 2 ) is added and the measurement output V is obtained. 7 due to the fact that but sent.
このように磁気センサ— 1 6のコイル 1 8に対してパルス電圧を供給している ので、 交流電力を供給するものに比べて消費電力は少なくなり、 省電力化を図る ことができる。 例えばパルス電圧のパルス幅てとパルス周期 Tとの比を (1 0〜 1 0 0 ) て - Tにすれば磁気センサー 1 6に供給する平均電力を 1 1 0〜1 Z 1 0 0程度に抑えることができ動力源としてバッテリ一を使用すること^充分に 可能となる。  Since the pulse voltage is supplied to the coil 18 of the magnetic sensor 16 as described above, the power consumption is reduced as compared with the one that supplies the AC power, and power can be saved. For example, if the ratio between the pulse width of the pulse voltage and the pulse period T is (10 to 100) and is -T, the average power supplied to the magnetic sensor 16 becomes about 110 to 1Z100. It is possible to use a battery as a power source.
また、 コイル 1 8に発生する電圧のピーク値を検出するようにしているので、 T / てを 2〜1 0 0という広い幅で変化させても微小磁束の検出感度の相対感度 はほとんど変化しない。 これに対して振幅検波方式では、 T Z てが 5以上大きく なると感度が急激に低下し省電力化を図ることが困難となる。  In addition, since the peak value of the voltage generated in the coil 18 is detected, the relative sensitivity of the detection sensitivity of the minute magnetic flux hardly changes even if T / te is changed in a wide range of 2 to 100. . On the other hand, in the case of the amplitude detection method, when T Z increases by 5 or more, the sensitivity sharply decreases and it becomes difficult to save power.
[図面の簡単な説明]  [Brief description of drawings]
図 1は本発明の一実施例に係わる磁気検出装置の概略構成を示すプロック図、 図 2は同実施例装置の磁気センサのコアのヒステリシス特性および透磁率特性 図、  FIG. 1 is a block diagram showing a schematic configuration of a magnetic detection device according to an embodiment of the present invention, FIG. 2 is a hysteresis characteristic and a magnetic permeability characteristic diagram of a core of a magnetic sensor of the device of the embodiment,
図 3は実施例装置の動作を示すタイムチヤ一ト、  FIG. 3 is a time chart showing the operation of the embodiment device.
図 4は従来の磁気検出装置の概略構成を示すプロック図、  FIG. 4 is a block diagram showing a schematic configuration of a conventional magnetic detection device,
図 5は同従来装置の動作を示すタイムチヤ一ト。  Fig. 5 is a time chart showing the operation of the conventional device.
図 6は可飽和形磁気センサ一による測定原理を説明するための回路図。  Fig. 6 is a circuit diagram for explaining the measurement principle using a saturable magnetic sensor.
図 7は図 6におけるコィルへの供給電力波形及びコィルの出力電圧波形を示す 図。  FIG. 7 is a diagram showing a power supply waveform to the coil and an output voltage waveform of the coil in FIG.
図 8は本発明の磁気検出方法を実施するためのプロック図。  FIG. 8 is a block diagram for implementing the magnetic detection method of the present invention.

Claims

[請求の範囲]  [The scope of the claims]
(1) 強磁性体で形成されたコアに検出コイルを巻装してなる磁気センサと、 こ の磁気センサの検出コイルに対してィンピーダンス素子を介して所定実効値を有 する交流励磁電流を印加して前記コァを飽和域まで磁化する励磁信号発生回路と、 前記検出コィルの両端から取出された検出信号の波形を所定のしきい値で正規化 する波形整形回路と、 この波形整形回路から出力された正規化信号のパルス幅を 計測する力ゥンタとを備え、 外部磁界が前記磁気センサに交差することに起因し て生じる前記パルス幅の変化から前記外部磁界強度を検出するようにした磁気検 出装置。  (1) A magnetic sensor in which a detection coil is wound around a core formed of a ferromagnetic material, and an AC exciting current having a predetermined effective value is applied to the detection coil of the magnetic sensor via an impedance element. An excitation signal generating circuit that applies the magnetized coil to a saturation region, a waveform shaping circuit that normalizes a waveform of a detection signal extracted from both ends of the detection coil by a predetermined threshold value, and a waveform shaping circuit. A force counter for measuring a pulse width of the output normalized signal, wherein the external magnetic field strength is detected from a change in the pulse width caused by an external magnetic field crossing the magnetic sensor. Detector.
(2) 強磁性体で形成されたコアに検出コイルを巻装してなる磁気センサと、 こ の磁気センサの検出コイルに対してィンピーダンス素子を介して所定実効値を有 する交流励磁電流を印加して前記コアを飽和域まで磁化する励 信号発生回路と、 前記検出コィルの両端から取出された検出信号の波形を所定のしきい値で正規化 する波形整形回路と、 この波形整形回路から出力された正規化信号のパルス幅を 平均直流成分として検出するためのローパスフィル夕とを備え、 外部磁界が前記 磁気センサに交差することに起因して生じる前記パルス幅の変化から前記外部磁 界強度を検出するようにした磁気検出装置。  (2) A magnetic sensor in which a detection coil is wound around a core formed of a ferromagnetic material, and an AC excitation current having a predetermined effective value is applied to the detection coil of the magnetic sensor via an impedance element. An excitation signal generating circuit for applying the magnetization to the core to a saturation region, a waveform shaping circuit for normalizing a waveform of a detection signal taken out from both ends of the detection coil by a predetermined threshold value, and a waveform shaping circuit. A low-pass filter for detecting a pulse width of the output normalized signal as an average DC component, wherein the external magnetic field is determined based on a change in the pulse width caused by an external magnetic field crossing the magnetic sensor. A magnetic detector that detects intensity.
(8) 請求の範囲第 1項、 又は第 2項記載の励磁信号発生回路は、 三角波形状、 低周波波形状、 所定実効値を有するサイン波形状、 鋸歯状波形状、 対数波形状の 内のいずれか一つの波形信号を出力するものである。  (8) The excitation signal generation circuit according to claim 1 or 2 is a triangular wave shape, a low frequency wave shape, a sine wave shape having a predetermined effective value, a sawtooth wave shape, or a logarithmic wave shape. It outputs any one of the waveform signals.
(4) 請求の範囲第 1項、 又は第 2項記載の波形成形回路は、 比較器である。  (4) The waveform shaping circuit according to claim 1 or 2 is a comparator.
(5) 強磁性体からなるコアに検出コィルを卷回してなる磁気センサを被測定磁 界に近接させ、 この磁気センサの検出コイルにィンピーダンス素子を介して正負 のパルス電圧を供給し、 前記コィルの両端に発生する電圧の正負のピーク値をそ れぞれ検出し、 この検出された正負のピーク値を加算し、 この加算値を前記被測 定磁界に対応する測定値とすることを特徴とする磁気検出方法。  (5) A magnetic sensor formed by winding a detection coil around a core made of a ferromagnetic material is brought close to the magnetic field to be measured, and positive and negative pulse voltages are supplied to the detection coil of the magnetic sensor via an impedance element. The positive and negative peak values of the voltage generated at both ends of the coil are respectively detected, and the detected positive and negative peak values are added, and the added value is set as a measured value corresponding to the measured magnetic field. Characteristic magnetic detection method.
PCT/JP1991/000250 1990-02-28 1991-02-26 Method and apparatus for magnetic detection WO1991013366A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP4782290 1990-02-28
JP2/47822 1990-02-28
JP11528490A JPH03272483A (en) 1990-02-28 1990-05-02 Detecting device of magnetism
JP2/115284 1990-05-02
JP2278918A JP2617615B2 (en) 1990-10-19 1990-10-19 Magnetic measurement method and device
JP2/278918901019 1990-10-19

Publications (1)

Publication Number Publication Date
WO1991013366A1 true WO1991013366A1 (en) 1991-09-05

Family

ID=27293105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/000250 WO1991013366A1 (en) 1990-02-28 1991-02-26 Method and apparatus for magnetic detection

Country Status (1)

Country Link
WO (1) WO1991013366A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004061466A1 (en) * 2002-12-26 2004-07-22 Masahiko Sumigama Magnetic sensor
FR3060757A1 (en) * 2016-12-19 2018-06-22 Safran Electronics & Defense FLOW VALVE CURRENT SENSOR

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124269U (en) * 1974-08-12 1976-02-23
US4290018A (en) * 1979-08-22 1981-09-15 Rockwell International Corporation Magnetic field strength measuring apparatus with triangular waveform drive means
US4303886A (en) * 1979-08-22 1981-12-01 Rockwell International Corporation Magnetic field strength measuring apparatus
US4305035A (en) * 1979-08-22 1981-12-08 Rockwell International Corporation Magnetic field amplitude detection sensor apparatus
JPS57199969A (en) * 1981-06-03 1982-12-08 Mitsubishi Electric Corp Magnetic field measuring device
JPS59141058A (en) * 1984-01-20 1984-08-13 Hitachi Ltd Magnetic detector
JPH01308982A (en) * 1989-04-28 1989-12-13 Nkk Corp Method and apparatus for measuring magnetism

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124269U (en) * 1974-08-12 1976-02-23
US4290018A (en) * 1979-08-22 1981-09-15 Rockwell International Corporation Magnetic field strength measuring apparatus with triangular waveform drive means
US4303886A (en) * 1979-08-22 1981-12-01 Rockwell International Corporation Magnetic field strength measuring apparatus
US4305035A (en) * 1979-08-22 1981-12-08 Rockwell International Corporation Magnetic field amplitude detection sensor apparatus
JPS57199969A (en) * 1981-06-03 1982-12-08 Mitsubishi Electric Corp Magnetic field measuring device
JPS59141058A (en) * 1984-01-20 1984-08-13 Hitachi Ltd Magnetic detector
JPH01308982A (en) * 1989-04-28 1989-12-13 Nkk Corp Method and apparatus for measuring magnetism

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004061466A1 (en) * 2002-12-26 2004-07-22 Masahiko Sumigama Magnetic sensor
FR3060757A1 (en) * 2016-12-19 2018-06-22 Safran Electronics & Defense FLOW VALVE CURRENT SENSOR
WO2018115032A1 (en) * 2016-12-19 2018-06-28 Safran Electronics & Defense Current sensor with fluxgate
CN110088636A (en) * 2016-12-19 2019-08-02 赛峰电子与防务公司 Current sensor with fluxgate
US10884028B2 (en) 2016-12-19 2021-01-05 Safran Electronics & Defense Current sensor with fluxgate
CN110088636B (en) * 2016-12-19 2021-06-22 赛峰电子与防务公司 Current sensor with fluxgate

Similar Documents

Publication Publication Date Title
US5537038A (en) Magnetic flux measuring method and apparatus for detecting high frequency components of magnetic flux with high speed orientation
US5287059A (en) Saturable core magnetometer with a parallel resonant circuit in which the W3 DC level changes with a change in an external magnetic field
US11249152B2 (en) Magnetic field detection device and method of detecting magnetic field
US20140021939A1 (en) Current-measuring device
US11269023B2 (en) Magnetic field detection device and method of detecting magnetic field
JPH0473554B2 (en)
JP4209114B2 (en) Magnetic field sensor
US6078172A (en) Current-compensated current sensor for hysteresis-independent and temperature-independent current measurement
WO1991013366A1 (en) Method and apparatus for magnetic detection
CN116539945A (en) Current measurement circuit and current sensor
JPH0784021A (en) Very weak magnetism measuring apparatus and non-destructive inspection method
JP2002090432A (en) Magnetic field detecting device
JP2004239828A (en) Flux gate magnetic field sensor
JPH0424574A (en) Detecting device of magnetism
JPH03272483A (en) Detecting device of magnetism
JP2617570B2 (en) Magnetic measuring device
JP2002286821A (en) Magnetic field detection apparatus
JP2003004830A (en) Magnetic field detector
JP2617615B2 (en) Magnetic measurement method and device
JPH0224476B2 (en)
JP2002071770A (en) Magnetic field detector
JP2000162294A (en) Magnetic field sensor
RU2300774C1 (en) Measuring converter
JPH03243801A (en) Noncontact type range finder
SU1062592A1 (en) Magnetic noise structuroscopy device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT

WA Withdrawal of international application
NENP Non-entry into the national phase

Ref country code: CA