WO1991001464A1 - Clapet anti-retour, notamment pour micropompe et micropompe munie d'un tel clapet - Google Patents
Clapet anti-retour, notamment pour micropompe et micropompe munie d'un tel clapet Download PDFInfo
- Publication number
- WO1991001464A1 WO1991001464A1 PCT/CH1990/000173 CH9000173W WO9101464A1 WO 1991001464 A1 WO1991001464 A1 WO 1991001464A1 CH 9000173 W CH9000173 W CH 9000173W WO 9101464 A1 WO9101464 A1 WO 9101464A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shutter
- valve
- plate
- chamber
- micropump
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 9
- 238000004891 communication Methods 0.000 claims abstract description 7
- 238000005086 pumping Methods 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 10
- 230000000737 periodic effect Effects 0.000 claims description 2
- 230000000284 resting effect Effects 0.000 claims 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052710 silicon Inorganic materials 0.000 abstract description 6
- 239000010703 silicon Substances 0.000 abstract description 6
- 239000011521 glass Substances 0.000 abstract description 5
- 239000003814 drug Substances 0.000 abstract description 4
- 229940079593 drug Drugs 0.000 abstract description 2
- 235000012431 wafers Nutrition 0.000 description 14
- 239000012528 membrane Substances 0.000 description 12
- 230000036316 preload Effects 0.000 description 7
- 239000008188 pellet Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 101100334009 Caenorhabditis elegans rib-2 gene Proteins 0.000 description 1
- 241000100287 Membras Species 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000005360 phosphosilicate glass Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/02—Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
- F04B43/04—Pumps having electric drive
- F04B43/043—Micropumps
- F04B43/046—Micropumps with piezoelectric drive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15C—FLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
- F15C5/00—Manufacture of fluid circuit elements; Manufacture of assemblages of such elements integrated circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K15/00—Check valves
- F16K15/14—Check valves with flexible valve members
- F16K15/144—Check valves with flexible valve members the closure elements being fixed along all or a part of their periphery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
- F16K99/0003—Constructional types of microvalves; Details of the cutting-off member
- F16K99/0005—Lift valves
- F16K99/0009—Lift valves the valve element held by multiple arms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
- F16K99/0034—Operating means specially adapted for microvalves
- F16K99/0055—Operating means specially adapted for microvalves actuated by fluids
- F16K99/0057—Operating means specially adapted for microvalves actuated by fluids the fluid being the circulating fluid itself, e.g. check valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K2099/0073—Fabrication methods specifically adapted for microvalves
- F16K2099/0074—Fabrication methods specifically adapted for microvalves using photolithography, e.g. etching
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K2099/0082—Microvalves adapted for a particular use
- F16K2099/0094—Micropumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
- F16K99/0034—Operating means specially adapted for microvalves
Definitions
- the present invention relates to the field of micropumps of which at least a part of the body is made of a material machined by usual photolithographic methods to form the various organs and cavities of the pump. More particularly, the invention relates to the construction of a non-return valve produced according to this technique and usable in micropumps of this kind. It also relates to a micropump using such a non-return valve.
- the pump body is formed by a plate made of a material machined by photolithographic processes, a particularly suitable material being silicon.
- the pump body simultaneously forms the valve body, which is therefore produced in a first silicon wafer for example, which delimits a chamber with at least a second wafer, in glass for example, joined face to face with the first wafer .
- the valve chamber is divided into two compartments by a generally flat obturator which, in a generally central area, has an annular rib intended, by virtue of an elastic stress inherent in said obturator, to normally come to bear against a valve seat provided on the second plate.
- the central zone of the shutter is connected to the first plate by means of connection means formed by a thin deformable membrane which isolates the two compartments from each other.
- the prestressing of the diaphragm not only induces a loss of pressure, but also a loss of useful volume of the pump because the variation in volume of the pumping chamber must overcome this prestressing and for this reason the diaphragm is swung in a direction opposite to the seat of the valve.
- the pressure loss and the volume loss are interdependent.
- the thickness of the membrane is chosen to a value such that the prestressing is low, the pressure loss is low.
- the diaphragm of the valve is strongly curved with each stroke of the pump so that the loss of volume is significant.
- the thickness of the membrane is chosen to a value such that the prestressing is strong, the deformation of the membrane is small so that the loss of volume is small, but the loss of pressure is significant.
- the object of the invention is to provide a valve of the type described above in which the drawbacks of the prior art are eliminated.
- the invention therefore relates to such a valve which is characterized in that the means for connecting the shutter to the body of the valve are formed by at least two separate connecting members extending in the general plane of the shutter and leaving between them openings for the communication of the two compartments of the valve chamber.
- the preload of the shutter can be chosen to the optimum value, while the loss of volume when the valve is opened is completely eliminated. Compared to a valve of the prior art in which the membrane is full, there is therefore obtained an overall reduction in the loss of energy, relating to the two effects, which leads to pumps having a clearly better efficiency.
- the invention also relates to a micropump fitted with such a non-return valve.
- valve is not leaktight on closing, since the sacrificial layer being eliminated, there necessarily remains a slit between the central zone of the shutter and the seat of the valve.
- This seal can be improved to a certain extent if the valve is subjected to a certain pressure at its outlet, but even in this case leaks remain.
- the volume losses caused by the valves are negligible because, with this type of technology, the valves are small compared to the size of the deformable wall. In other words, the problems which are at the basis of the present invention do not arise there, and a fortiori, are not solved there.
- the openings of the shutter are provided only to allow the stripping of the sacrificial layer.
- FIG. 1 is a cross section, according to the line II of FIG. 2, of a non-return valve according to the invention in accordance with a first embodiment
- Figure 2 is a view of the valve taken along line II-II of Figure 1
- FIG. 3A shows a top view of the shutter of a valve produced according to a variant of the invention
- FIG. 3B shows a perspective view of the shutter of a valve produced according to another variant of the invention
- Figure 4 is a section along line IV-IV of Figure 5 of a non-return valve according to another embodiment of the invention
- Figure 6 is a cross section of a micropump using a valve according to Figures 1 and 2
- FIG. 7 is a cross section of a micropump using a valve according to FIGS. 4 and 5.
- the valve comprises a first plate 1 which constitutes the body of the valve and which is made of a material which can be machined by photolithographic methods.
- a particularly suitable material is silicon.
- a second plate 2 made of glass for example, is fixed, face against face and in a sealed manner, to the first plate, for example by anodic bonding (anodic bonding). It includes a orifice 3 which is the inlet of the non-return valve and forms the seat 4 thereof in the area of the interior surface of the plate which surrounds the orifice 3.
- This third plate has an orifice 6 which is the outlet of the non-return valve.
- the stack of three wafers and the machining practiced in the first wafer delimit a valve chamber 7 divided into an inlet compartment 8 and an outlet compartment 9 by a shutter member 10.
- an annular rib 12 centered on the orifice 3 and extending in the direction of the second plate 2.
- a layer of oxide 13 covers the rib as well as the bottom of the bowl which it delimits facing the inlet orifice 3.
- the strip 11 On the opposite side, the strip 11 carries a central boss 14 making it possible to limit the excursion of the shutter 10 in the direction of opening the valve in the event of overpressure at the inlet thereof.
- FIG. 2 clearly shows that the strip in fact forms two connecting members 11a and 11b connecting the central area of the strip to the body of the valve. Consequently, the shutter is separated from this body by two parallel slots 14a, 14b which connect the compartments 8 and 9 of the body of the valve.
- the oxide layer 13 is provided in particular to avoid the adhesion of the top of the rib 12 to the wafer 2 during the anode welding operations.
- the shutter 10 is subjected to a certain prestress when the rib 12 is applied to its seat 4, because the oxide layer 13 slightly increases the height of the rib 2 relative to the interface between the plates 1 and 2. More the layer is thick and the greater the prestress. Of course, the degree of prestressing also determines the quality of the sealing of the valve in the closed position.
- the valve is opened when the pressure at inlet 3 is greater than the sum of the pressure at outlet 6 and the pressure induced by the prestress. Under these conditions, the shutter 10 is deformed by bending of the branches 11a and 11b, the center of the shutter remaining undeformable. As the compartments 8 and 9 are in communication through the slots 14a and 14b, the deformation of the shutter does not cause any disturbing volume variation, as is the case of the valve of the prior art.
- FIG. 3A shows a variant of the non-return valve that has just been described.
- the shutter comprises four branches 15a to 15d arranged in a cross and leaving between them openings 16a to 16d which put in communication the two compartments of the valve located on either side of the shutter.
- the valve is identical to that already described in connection with FIGS. 1 and 2.
- FIG. 3B Another alternative embodiment of the shutter is shown in FIG. 3B.
- the obturator is obtained by a series of etching operations in a wafer 100 made of a material which can be machined by photolithographic processes, such as silicon.
- This shutter 102 comprises, in a central zone, a flat rectangular portion 104 provided, at its periphery, with a rib 106 extending in the direction perpendicular to the plane of the plate 100.
- the rib 106 is covered with a oxide layer 108 to avoid adhesion with the valve seat and to induce a prestress on the shutter.
- the shutter 102 also comprises means for connecting the central zone to the body of the valve, ie to the plate 100. These connection means are constituted by a plurality of arms parallel to one another.
- two arms 110, 112 connect one side 114 of the central zone to the plate and two arms 116, 118 connect the opposite side 120 of the central zone to the plate. These four arms are arranged in the same plane.
- Two additional arms 120, 122 respectively connecting the sides 114 and 120 of the central area to the plate are arranged in a different plane (lower in FIG. 3B) from that of the four arms 110, 112, 116, 118.
- the additional arm 122 (resp. 124) is arranged between the arms 110, 112 (resp. 116, 118). It is understood that this structure provides better stability of the valve along the axis Z-Z, by limiting the possibilities of movement of the valve around the axis X-X.
- Figures 4 and 5 illustrate another embodiment of the invention.
- the body of the valve formed by a plate 17 machined like the plate 1 defines, with a plate 18, the chamber 19 of the valve.
- the plate 17 has an orifice 20 which is the outlet from the valve, the chamber 19 having a cross shape with four branches 19a to 19d. At the end of each branch is provided a step 21, slightly raised relative to the bottom of the chamber 19.
- a shutter 22 is also applied in the form of a cross and which adjusts with a large clearance in the chamber 19.
- a rib 23 cooperating with a seat 24 formed by the periphery of an orifice 25 (inlet of the valve) formed in the plate 18.
- the chamber 19 is also divided into two compartments 26 and 27 which are brought into communication by L-shaped spaces 28a to 28d left free in the chamber 19 along the branches of the shutter.
- the latter is an independent part machined separately from the wafer 17 but produced, for example, in the same material as the latter.
- the chamber 19 and the shutter 22 can be chosen for the chamber 19 and the shutter 22. It is thus possible, for example, to produce a circular chamber and to provide a single rung of annular shape around the periphery of the bottom of the chamber. In this case, a circular shutter can be used, comprising cut-outs to connect the two compartments of the chamber. You can also use the cross-shaped shutter shown in Figure 5.
- FIGS. 6 and 7 show two applications of the valves that have just been described in micropumps actuated by piezoelectric pellets.
- Each micropump consists of a pumping chamber defined by two plates attached to one another, a non-return valve through which the pumping chamber can selectively communicate with an inlet of the pump and a second valve. through which the pumping chamber can selectively communicate with an output of the pump.
- the micropump finally comprises means for causing a periodic variation in volume of the pumping chamber; these means generally consist of a piezoelectric pellet connected to a source of alternating electrical voltage.
- the micropump shown in FIG. 6 comprises a first wafer 1 made of a material that can be machined by photolithographic processes, such as silicon.
- a second plate 2 and a third plate 5, which are for example made of glass, are fixed face to face and in a sealed manner each on one face of the first plate.
- the plates 1, 2 and 5 respectively have a thickness of the order of 0.3 mm, 1 mm and 1 mm (the proportions have not been observed in the drawing).
- the surface dimension of these plates is of the order of 15 x 20 mm.
- the inlet valve is a non-return valve identical to that shown in FIGS. 1 and 2.
- the reference numerals designating the elements of this valve in FIG. 6 correspond to those used in FIGS. 1 and 2.
- the orifice 3 constitutes the suction pipe of the pump.
- the reservoir may contain a medicament, for example in case the pump is used for injecting this medicament into the human body with a precise dosage.
- the micropump can be worn on the patient's body, or even be implanted.
- the outlet valve is also produced by machining the first plate 1.
- This valve comprises a shutter 31 formed by a membrane 32 at the center of which is provided an annular rib 33 extending in the direction of the second plate 2.
- a layer of oxide 34 covers the rib as well as the bowl it demarcates. This oxide layer avoids the adhesion of the rib 33 to the wafer 2 during the anode welding operations and improves the sealing of the valve. It also makes it possible, due to its thickness, to subject the shutter 31 to a certain prestress when the valve is in the closed position.
- the shutter 31 comprises in the bowl defined by the annular rib 33 an outlet orifice 35 which constitutes the discharge line of the pump.
- a connector 36 to which a pipe 37 is connected is disposed opposite this outlet 35.
- the pipe 37 can be connected to an injection needle (not shown), in the case where the pump is used for injection of drugs.
- the pumping chamber 38 Between the two valves is the pumping chamber 38. It is delimited by the plates 1 and 2 and communicates with the compartment 8 of the chamber of the inlet valve by a passage 39 (functionally identical to the orifice 20 of the figure 1) and with the chamber 40 of the outlet valve through a passage 41.
- This pumping chamber 38 can be deformed by a control means which generally, as shown in Figure 6, com ⁇ takes a piezoelectric pad 42 connected to an AC voltage source (not shown).
- the piezoelectric pad 42 may be of the PXE-52 type from the company Philips, bonded to the wafer 1 using an appropriate adhesive.
- This patch has an electrode (not shown) on each of its faces; to ensure adequate electrical insulation between the piezoelectric chip and the wafer 1, it is therefore desirable to provide between them a thin layer of silicon oxide 43.
- the shutter 31 When the piezoelectric pellet is controlled to induce a reduction in pressure in the pumping chamber 38, (which corresponds to a downward movement in FIG. 6), the shutter 31 is kept in the closed position while the shutter 10 opens as soon as the difference between the pressure prevailing in the orifice 3 and the pressure prevailing in the pump (pumping chamber 38 or compar ⁇ timent 8 and 9 of the valve) is greater than the preload at which it is subject the shutter 10. We are then in the suction phase, the liquid flowing from the pipe 29 to the pumping chamber 38. If the piezoelectric pad is now controlled to induce an increase in pressure in the pumping chamber 38 (which corresponds to an upward movement in FIG.
- the shutter 10 closes as soon as the pressure in the chamber, increased by the pressure linked to the preload of the shutter, is higher than the pressure in the orifice 3.
- the pressure in the pumping chamber 38 continues to increase, the shutter 31 opens when that -ci becomes greater than the sum of the pressure in the orifice 35 and the pressure due to the preload of the obtura ⁇ tor.
- the preload on the inlet valve according to the invention can be chosen to be low, so that the loss of volume on the outlet valve, during the suction phase, is minimal.
- the discharge phase there is no loss of energy at the inlet valve. The energy loss is thus halved compared to a micropump fitted with two diaphragm valves.
- FIG. 7 A second embodiment of a micropump including a non-return valve according to the invention is shown in FIG. 7.
- the non-return valve forms the inlet valve of the micropump. It is identical to the valve represented in FIGS. 4 and 5.
- the reference numerals designating the elements of this valve in FIG. 7 correspond to those used in FIGS. 4 and 5.
- the orifice 25 constitutes the suction line of the pump.
- a pipe 44 connected to a reservoir (not shown) is connected to a connector 45 disposed opposite the orifice 25.
- the pumping chamber is formed by the compartments 26 and 27 of the valve.
- the bottom of the compartment 28 has been lowered, relative to the valve of Figure 4, so that the plate 17 has a thickness sufficiently small to constitute the deformable wall of the pump.
- this deformation is controlled by a piezoelectric pellet 42 bonded to a layer of silicon oxide 43, serving as electrical insulator, deposited on the face of the wafer 17 opposite the face of this plate defining the bottom of the pumping chamber.
- the pumping chamber 19 communicates through a passage 46 with the outlet valve. This comprises a shutter 48 machined in the wafer 18 and formed of a membrane 50 and an annular rib 52.
- the annular rib is coated with an oxide layer 54 and delimits above an orifice of outlet 56, drilled in the plate 18, a volume 58 in which the outlet pressure prevails.
- the outlet orifice 56 communicates with a pipe 60 by means of a connector 62 arranged opposite.
- the outlet pressure acts only on a small area of the membrane 50 compared to the significantly larger area on which the pressure prevailing in the pumping chamber can act. This has the effect of regulating the outlet flow which becomes practically independent of the outlet pressure, this effect being caused by the prestressing provided by the oxide layer 54.
- This type of outlet valve can only operate if it is subjected to a high preload, which is obtained by depositing an oxide layer not only on the annular rib 52, but also possibly on the membrane 50.
- the reduction in energy loss which is achieved with the inlet valve according to the invention is therefore greater, in absolute value, in a micropump provided with an outlet valve according to FIG. 7 than in a micropump equipped with 'an outlet valve according to Figure 6.
- micropump shown in FIG. 7 has only two plates and that the pipes 44 and 60 are located on the same side of the pump, which allows greater compactness than in the embodiment of the figure 6.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Reciprocating Pumps (AREA)
Abstract
Le corps du clapet anti-retour est formé dans une plaquette en silicium (1) usinée par des procédés photolithographiques. La plaquette (1) délimite une chambre de clapet (7) avec deux plaquettes en verre (2, 5) accolées sur les faces respectives de la plaquette (1). La chambre est divisée en deux compartiments (8, 9) par un obturateur de forme générale plane comportant dans une zone sensiblement centrale une nervure annulaire (12). L'obturateur comprend des moyens de liaison au corps du clapet formé par au moins deux organes de liaison (11a, 11b) qui laissent entre eux au moins une ouverture (14a, 14b) pour la mise en communication des deux compartiments de la chambre du clapet. Application aux micropompes, notamment pour le dosage précis de faibles quantités de médicaments à injecter.
Description
CLAPET ANTI-RETOUR, NOTAMMENT POUR MICROPOMPE ET MICROPOMPE MUNIE D'UN TEL CLAPET
La présente invention concerne le domaine des micropompes dont au moins une partie du corps est réalisée en un matériau usiné par des procédés photolithographiques usuels pour former les divers organes et cavités de la pompe. Plus particulièrement, l'invention concerne la construction d'un clapet anti-retour réalisé selon cette technique et utilisable dans des micropompes de ce genre. Elle concerne également une micropompe utilisant un tel clapet anti-re¬ tour.
Dans un article paru dans la revue "Sensors and Actuators" 15 (1988), pages 153 â 167. H. van Lintel et al décrivent des micropom¬ pes comportant des clapets anti-retour destinés â isoler sélective¬ ment la chambre de pompage de l'entrée et de la sortie de la pompe lorsque le volume de cette chambre est modifié par les déformations de l'une de ses parois, déformations qui sont provoquées par une pastille piézoélectrique fixée sur cette paroi déformable.
Le corps de la pompe est formé par une plaquette en un matériau usiné par de procédés photolithographiques, un matériau particuliè¬ rement approprié étant le silicium. Le corps de pompe forme en même temps le corps des clapets, qui est donc réalisé dans une première plaquette en silicium par exemple, qui délimite une chambre avec au moins une seconde plaquette, en verre par exemple, accolée face â face à la première plaquette.
La chambre du clapet est divisée en deux compartiments par un obturateur de forme générale plane qui comporte dans une zone généralement centrale une nervure annulaire destinée, en vertu d'une contrainte élastique inhérente audit obturateur, à venir normalement s'appliquer contre un siège de clapet prévu sur la deuxième plaquet¬ te.
La zone centrale de l'obturateur est connectée à la première plaquette par l'intermédiaire de moyens de liaison formés par une
membrane mince déformable qui isole les deux compartiments l'un par rapport à l 'autre.
Les avantages d'une telle construction sont nombreux. En parti¬ culier, 1 'étanchéité d'un tel clapet est bonne, car l'obturateur est poussé contre le siège par la précontrainte inhérente de la membra¬ ne. Cette précontrainte est déterminée par l'épaisseur de la membra¬ ne qui est très légèrement incurvée dans la position de repos (fermée) du clapet grâce au fait que la nervure a une hauteur très légèrement supérieure â la distance séparant la membrane du siège du clapet.
Lors de la phase d'ouverture du clapet, (par exemple la phase d'aspiration de la pompe, lorsque le clapet est placé entre l'entrée de la pompe et la chambre de pompage), la précontrainte de la membrane induit non seulement une perte de pression, mais aussi une perte de volume utile de la pompe car la variation de volume de la chambre de pompage doit vaincre cette précontrainte et pour cela bomber la membrane dans un sens opposé au siège du clapet.
On voit donc que la perte de pression et la perte de volume sont interdépendantes. Par exemple, lorsque l'épaisseur de la membrane est choisie à une valeur telle que la précontrainte est faible, la perte de pression est faible. Cependant, dans ces conditions, la membrane du clapet est fortement bombée â chaque coup de la pompe si bien que la perte de volume est importante. Au contraire, si l'é¬ paisseur de la membrane est choisie à une valeur telle que la précontrainte est forte, la déformation de la membrane est faible si bien que la perte de volume est faible, mais la perte de pression est importante.
La perte de pression et la perte de volume ont finalement pour conséquence une perte d'énergie qui diminue la part du travail fourni à chaque coup de la pompe par la pastille piézoélectrique. Lors de la conception de la pompe, il faut donc choisir un compromis qui concilie une précontrainte donnée avec une perte de volume pas trop importante. Il s'est avéré que le meilleur compromis conduit à une valeur de la précontrainte qui est nettement supérieure à celle nécessaire à une bonne étanchéité du clapet en position fermée.
On voit donc que la membrane des clapets décrits dans l'article précité n'apporte pas une solution satisfaisante, car son
utilisation conduit à un rendement défavorable de la pompe dans laquelle le clapet est incorporé.
L'invention a pour but de fournir un clapet du type décrit ci-dessus dans lequel les inconvénients de l'art antérieur sont éliminés.
L'invention a donc pour objet un tel clapet qui est caractérisé en ce que les moyens de liaison de l'obturateur au corps du clapet sont formés par au moins deux organes de liaison distincts s'éten¬ dant dans le plan général de l'obturateur et laissant entre eux des ouvertures pour la mise en communication des deux compartiments de la chambre du clapet.
Grâce â ces caractéristiques, la précontrainte de l'obturateur peut être choisie à la valeur optimale, tandis que la perte de volume à l'ouverture du clapet est totalement éliminée. Comparé à un clapet de l'art antérieur dans lequel la membrane est pleine, on obtient donc une diminution globale de la perte d'énergie, relative aux deux effets, ce qui conduit à des pompes ayant un rendement nettement meilleur.
L'invention a également pour objet une micropompe munie d'un tel clapet anti-retour.
Il est à noter que Shuichi Shoji et Masayoshi Esashi ont déjà proposé un clapet pour une micropompe (voir Technical Digest of the 7th Sensors Symposium, 1988, pp. 217 à 220) dans lequel est prévu un obturateur circulaire dont la zone centrale coopère avec un siège de clapet et est connectée à un anneau périphérique au moyen de bran¬ ches déformables. Toutefois, dans ce cas, l'obturateur du clapet est réalisé par dépôt en phase vapeur d'une couche sacrificielle en verre au phosphosilicate sur laquelle est déposée du silicium polycristallin, également par dépôt en phase vapeur, pour former l'obturateur proprement dit. Un tel agencement ne présente aucune précontrainte à la fermeture. D'ailleurs, un tel clapet n'est pas étanche à la fermeture, car la couche sacrificielle étant éliminée, il subsiste nécessairement une fente entre la zone centrale de l'obturateur et le siège du clapet. Cette étanchéité peut être améliorée dans une certaine mesure si le clapet est soumis à une certaine pression à sa sortie, mais même dans ce cas des fuites demeurent. Il faut noter que les pertes de volumes causées par les
clapets sont négligeables car, avec ce type de technologie, les clapets sont petits devant la taille de la paroi déformable. En d'autres termes, les problèmes qui sont à la base de la présente invention ne s'y posent pas et, à fortiori, n'y sont pas résolus. Il est à noter d'ailleurs que les ouvertures de l'obturateur sont prévues uniquement pour permettre le décapage de la couche sacrifi¬ cielle.
D'autres caractéristiques et avantages de l'invention apparaî¬ tront au cours de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés sur lesquels : la figure 1 est une coupe transversale, selon la ligne I-I de la figure 2, d'un clapet anti-retour suivant l'invention confor¬ mément à un premier mode de réalisation ; la figure 2 est une vue du clapet prise selon la ligne II-II de la figure 1 ; la figure 3A montre une vue de dessus de l'obturateur d'un clapet réalisé suivant une variante de l'invention ; la figure 3B montre une vue en perspective de l'obturateur d'un clapet réalisé suivant une autre variante de l'invention ; la figure 4 est une coupe selon la ligne IV-IV de la figure 5 d'un clapet anti-retour conformément à un autre mode de réalisa¬ tion de 1 'invention ; la figure 6 est une coupe transversale d'une micropompe utilisant un clapet selon les figures 1 et 2 ; et la figure 7 est une coupe transversale d'une micropompe utilisant un clapet selon les figures 4 et 5.
En se référant aux figures 1 et 2, on va tout d'abord décrire un clapet anti-retour selon l'invention dans une configuration isolée, c'est-à-dire indépendamment de son circuit d'utilisation.
Dans ce mode de réalisation, le clapet comporte une première plaquette 1 qui constitue le corps du clapet et qui est réalisée en un matériau usinable par des procédés photolithographiques. Un matériau particulièrement approprié est le silicium.
Une deuxième plaquette 2, en verre par exemple, est fixée, face contre face et d'une manière étanche, à la première plaquette, par exemple par liaison anodique (anodic bonding). Elle comporte un
orifice 3 qui est l'entrée du clapet anti-retour et forme le siège 4 de celui-ci dans la zone de la surface intérieure de la plaquette qui entoure l'orifice 3.
Une troisième plaquette 5, également en verre par exemple, est accolée à la première plaquette 1 du côté de celle-ci opposée à la deuxième plaquette. Cette troisième plaquette présente un orifice 6 qui est la sortie du clapet anti-retour.
L'empilement des trois plaquettes ainsi que les usinages prati¬ qués dans la première plaquette délimitent une chambre de clapet 7 divisée en un compartiment d'entrée 8 et un compartiment de sortie 9 par un organe obturateur 10.
Celui-ci est formé par une mince lamelle 11 venue de matière avec la première plaquette 1. Au centre de cette lamelle est prévue une nervure annulaire 12 centrée sur l'orifice 3 et s'étendant en direction de la deuxième plaquette 2. Une couche d'oxyde 13 recouvre la nervure ainsi que le fond de la cuvette qu'elle délimite face à l'orifice d'entrée 3. Du côté opposé, la lamelle 11 porte un bossage central 14 permettant de limiter l'excursion de l'obturateur 10 dans le sens de l'ouverture du clapet en cas de surpression à l'entrée de celui-ci.
La figure 2 fait clairement apparaître que la lamelle forme en fait deux organes de liaison lia et 11b raccordant la zone centrale de la lamelle au corps du clapet. Par conséquent, l'obturateur est séparé de ce corps par deux fentes parallèles 14a, 14b qui mettent en communication les compartiments 8 et 9 du corps du clapet.
La couche d'oxyde 13 est prévue notamment pour éviter l'adhé¬ rence du sommet de la nervure 12 à la plaquette 2 au cours des opérations de soudage anodique.
L'obturateur 10 est soumis à une certaine précontrainte lorsque la nervure 12 est appliquée sur son siège 4, car la couche d'oxyde 13 augmente légèrement la hauteur de la nervure 2 par rapport à l'interface entre les plaquettes 1 et 2. Plus la couche est épaisse et plus grande sera la précontrainte. Bien entendu, le degré de précontrainte détermine également la qualité de l'ëtanchéité du clapet en position de fermeture.
L'ouverture du clapet est réalisée lorsque la pression à l'en¬ trée 3 est supérieure à la somme de la pression à la sortie 6 et de
la pression induite par la précontrainte. Dans ces conditions, l 'obturateur 10 se déforme par flexion des branches lia et 11b, le centre de l'obturateur demeurant indéformable. Comme les comparti¬ ments 8 et 9 sont en communication à travers les fentes 14a et 14b, la déformation de l'obturateur ne provoque aucune variation de volume gênante, comme c'est le cas du clapet de la technique anté¬ rieure.
La figure 3A montre une variante du clapet anti-retour que l'on vient de décrire. Dans ce cas, l'obturateur comporte quatre branches 15a à 15d disposées en croix et laissant entre elles des ouvertures 16a â 16d qui mettent en communication les deux compartiments du clapet situés de part et d'autre de l'obturateur. Pour le reste, le clapet est identique à celui déjà décrit à propos des figures 1 et 2. Bien entendu, on peut choisir un autre nombre de branches tout en restant dans le cadre de l'invention.
Une autre variante de réalisation de l'obturateur est représen¬ tée sur la figure 3B. Comme pour les figures précédentes, l'obtura¬ teur est obtenu par une suite d'opérations de gravure dans une plaquette 100 en un matériau usinable par des procédés photolitho¬ graphiques, tel que le silicium.
Cet obturateur 102 comprend, dans une zone centrale, une partie plane de forme rectangulaire 104 pourvue, â sa périphérie, d'une nervure 106 s'étendant dans la direction perpendiculaire au plan de la plaquette 100. La nervure 106 est recouverte d'une couche d'oxyde 108 pour éviter l'adhérence avec le siège du clapet et pour induire une précontrainte sur l'obturateur.
L'obturateur 102 comprend également des moyens de liaison de la zone centrale au corps du clapet, i.e. à la plaquette 100. Ces moyens de liaison sont constitués par une pluralité de bras parallè¬ les entre eux.
Plus précisément deux bras 110, 112 relient un côté 114 de la zone centrale à la plaquette et deux bras 116, 118 relient le côté opposé 120 de la zone centrale à la plaquette. Ces quatre bras sont disposés dans un même plan.
Deux bras supplémentaires 120, 122 reliant respectivement les côtés 114 et 120 de la zone centrale à la plaquette sont disposés
dans un plan différent (inférieur sur la figure 3B) de celui des quatres bras 110, 112, 116, 118.
Le bras supplémentaire 122 (resp. 124) est disposé entre les bras 110, 112 (resp. 116, 118). On comprend que cette structure assure une meilleure stabilité du clapet selon l'axe Z-Z, en limi¬ tant les possibilités de mouvement du clapet autour de l'axe X-X.
Les figures 4 et 5 illustrent un autre mode de réalisation de l'invention. Sur celles-ci, le corps du clapet formé par une pla¬ quette 17 usinée comme la plaquette 1 délimite, avec une plaquette 18, la chambre 19 du clapet. La plaquette 17 comporte un orifice 20 qui est la sortie du clapet, la chambre 19 présentant une forme en croix à quatre branches 19a à 19d. A l'extrémité de chaque branche est prévu un échelon 21, légèrement surélevé par rapport au fond de la chambre 19.
C'est sur les échelons 21 qu'est appliqué un obturateur 22 en forme de croix également et s'ajustant avec un jeu important dans la chambre 19. Au centre de l'obturateur 22 est prévue une nervure 23 coopérant avec un siège 24 formé par le pourtour d'un orifice 25 (entrée du clapet) pratiqué dans la plaquette 18.
Dans ce mode de réalisation, la chambre 19 est également divisée en deux compartiments 26 et 27 qui sont mis en communication par des espaces en forme de L 28a â 28d laissés libres dans la chambre 19 le long des branches de l'obturateur.
Il est à noter que ce dernier est une pièce indépendante usinée séparément de la plaquette 17 mais réalisée, par exemple, dans le même matériau que celle-ci.
Bien entendu, d'autres formes peuvent être choisies pour la chambre 19 et l'obturateur 22. On peut ainsi, par exemple, réaliser une chambre circulaire et prévoir un échelon unique de forme annu¬ laire sur le pourtour du fond de la chambre. Dans ce cas, on peut utiliser un obturateur circulaire, comportant des découpes pour mettre en communication les deux compartiments de la chambre. On peut aussi utiliser l'obturateur en forme de croix représenté sur la figure 5.
Les figures 6 et 7 montrent deux applications des clapets que l'on vient de décrire dans des micropompes actionnées par des pastilles piézo-électriques.
Chaque micropompe se compose d'une chambre de pompage définie par deux plaquettes accolées l'une à l'autre, un clapet anti-retour à travers lequel la chambre de pompage peut sélectivement communi¬ quer avec une entrée de la pompe et un second clapet à travers lequel la chambre de pompage peut sélectivement communiquer avec une sortie de la pompe. La micropompe comprend enfin des moyens pour provoquer une variation périodique de volume de la chambre de pompage ; ces moyens sont généralement constitués par une pastille piézo-ëlectrique raccordée à une source de tension électrique alternative.
La micropompe représentée sur la figure 6 comprend une première plaquette 1 en un matériau usinable par des procédés photolithogra¬ phiques, tel que le silicium. Une deuxième plaquette 2 et une troisième plaquette 5, qui sont par exemple en verre, sont fixées face contre face et d'une manière étanche chacune sur une face de la première plaquette.
Pour fixer les idées, les plaquettes- 1, 2 et 5 ont respective¬ ment une épaisseur de l'ordre de 0,3 mm, 1 mm et 1 mm (les propor- tions n'ont pas été respectées sur le dessin). La dimension en surface de ces plaquettes est de l'ordre de 15 x 20 mm .
Le clapet d'entrée est un clapet anti-retour identique à celui représenté sur les figures 1 et 2. Les références numériques dési¬ gnant les éléments de ce clapet sur la figure 6 correspondent à celles utilisées sur les figures 1 et 2.
L'orifice 3 constitue la conduite d'aspiration de la pompe.
Un tuyau 29, raccordé à un réservoir non représenté, est branché sur un raccord 30 disposé vis-à-vis de 1 Orifice 3.
Le réservoir peut contenir un médicament, par exemple au cas où la pompe est utilisée pour l'injection de ce médicament dans le corps humain avec un dosage précis. Dans cette application, la micropompe peut être portée sur le corps du patient, voire être implantée.
Le clapet de sortie est également réalisé par usinage de la première plaquette 1. Ce clapet comprend un obturateur 31 formé d'une membrane 32 au centre de laquelle est prévue une nervure annulaire 33 s'étendant en direction de la deuxième plaquette 2. Une couche d'oxyde 34 recouvre la nervure ainsi que la cuvette qu'elle
délimite. Cette couche d'oxyde évite l'adhérence de la nervure 33 à la plaquette 2 au cours des opérations de soudage anodique et améliore l 'étanchéité du clapet. Elle permet aussi du fait de son épaisseur de soumettre l'obturateur 31 à une certaine précontrainte lorsque le clapet est en position fermée.
L'obturateur 31 comprend dans la cuvette définie par la nervure annulaire 33 un orifice de sortie 35 qui constitue la conduite de refoulement de la pompe. Un raccord 36 sur lequel est branché un tuyau 37 est disposé vis-à-vis de cet orifice de sortie 35. Le tuyau 37 peut être branché à une aiguille d'injection (non représentée), dans le cas où la pompe est utilisée pour l'injection de médica¬ ments.
Entre les deux clapets se trouve la chambre de pompage 38. Elle est délimitée par les plaquettes 1 et 2 et communique avec le compartiment 8 de la chambre du clapet d'entrée par un passage 39 (fonctionnellement identique à l'orifice 20 de la figure 1) et avec la chambre 40 du clapet de sortie par un passage 41.
Cette chambre de pompage 38 peut être déformée par un moyen de commande qui généralement, comme représenté sur la figure 6, com¬ prend une pastille piézo-électrique 42 reliée à une source de tension alternative (non représentée). La pastille piézo-électrique 42 peut être du type PXE-52 de la société Philips, collée sur la plaquette 1 au moyen d'une colle appropriée. Cette pastille comporte une électrode (non représentée) sur chacune de ses faces ; pour assurer une isolation électrique convenable entre la pastille piézo-électrique et la plaquette 1, il est donc souhaitable de prévoir entre celles-ci une mince couche d'oxyde de silicium 43.
Le fonctionnement de la micropompe représentée est le suivant.
Lorsque la pastille piézo-électrique est commandée pour induire une diminution de pression dans la chambre de pompage 38, (ce qui correspond à un mouvement vers le bas sur la figure 6), l'obturateur 31 est maintenu en position fermée alors que l'obturateur 10 s'ouvre dès que la différence entre la pression régnant dans l'orifice 3 et la pression régnant dans la pompe (chambre de pompage 38 ou compar¬ timent 8 et 9 du clapet) est supérieure à la précontrainte à laquel- le est soumis l'obturateur 10. On se trouve alors en phase d'aspi¬ ration, le liquide circulant du tuyau 29 vers la chambre de pompage
38. Si l'on commande maintenant la pastille piézo-électrique pour induire une augmentation de pression dans la chambre de pompage 38 (ce qui correspond à un mouvement vers le haut sur la figure 6), l 'obturateur 10 se ferme dès que la pression dans la chambre, augmentée de la pression liée à la précontrainte de l'obturateur, est supérieure à la pression dans l'orifice 3. La pression dans la chambre de pompage 38 continuant à croître, l'obturateur 31 s'ouvre lorsque celle-ci devient supérieure à la somme de la pression dans l'orifice 35 et de la pression due à la précontrainte de l'obtura¬ teur. On se trouve alors en phase de refoulement, le liquide circu¬ lant de la chambre de pompage 38 vers le tuyau 37.
Il faut noter que la précontrainte sur le clapet d'entrée selon l'invention peut être choisie faible, de sorte que la perte de volume sur le clapet de sortie, en phase d'aspiration, est minime. De plus, pendant la phase de refoulement, il n'y a pas de perte d'énergie au niveau du clapet d'entrée. La perte d'énergie est ainsi réduite de moitié par rapport à une micropompe munie de deux clapets à membrane.
Un second mode de réalisation d'une micropompe incluant un clapet anti-retour selon l'invention est représenté sur la figure 7. Le clapet anti-retour forme le clapet d'entrée de la micropompe. Il est identique au clapet représenté sur les figures 4 et 5. Les références numériques désignant les éléments de ce clapet sur la figure 7 correspondent à celles utilisées sur les figures 4 et 5.
L'orifice 25 constitue la conduite d'aspiration de la pompe. Un tuyau 44 raccordé à un réservoir (non représenté) est branché sur un raccord 45 disposé vis-à-vis de l'orifice 25.
La chambre de pompage est formée par les compartiments 26 et 27 du clapet. Le fond du compartiment 28 a été abaissé, par rapport au clapet de la figure 4, pour que la plaquette 17 ait une épaisseur suffisamment faible pour constituer la paroi déformable de la pompe. Comme pour la micropompe de la figure 6, cette déformation est commandée par une pastille piézo-électrique 42 collée sur une couche d'oxyde de silicium 43, servant d'isolant électrique, déposée sur la face de la plaquette 17 opposée à la face de cette plaquette définissant le fond de la chambre de pompage.
La chambre de pompage 19 communique par un passage 46 avec le clapet de sortie. Celui-ci comprend un obturateur 48 usiné dans la plaquette 18 et formé d'une membrane 50 et d'une nervure annulaire 52. La nervure annulaire est revêtue d'une couche d'oxyde 54 et délimite au-dessus d'un orifice de sortie 56, percé dans la plaquet¬ te 18, un volume 58 dans lequel règne la pression de sortie. L'ori¬ fice de sortie 56 communique avec un tuyau 60 par l'intermédiaire d'un raccord 62 disposé en vis-à-vis.
Lorsque l'obturateur 48 est fermé, la pression de sortie n'agit que sur une faible surface de la membrane 50 comparée à la surface nettement plus importante sur laquelle peut agir la pression régnant dans la chambre de pompage. Ceci a pour effet une régulation du débit de sortie qui 'devient pratiquement indépendante de la pression de sortie, cet effet étant provoqué par la précontrainte assurée par la couche d'oxyde 54.
Ce type de clapet de sortie ne peut fonctionner que s'il est soumis à une précontrainte élevée, qui est obtenue en déposant une couche d'oxyde non seulement sur la nervure d'annulaire 52, mais aussi éventuellement sur la membrane 50.
Ceci induit une perte de volume pompé, car l'augmentation de pression dans la chambre déforme la membrane 50, avant que le clapet ne s'ouvre, de manière beaucoup plus importante que dans le cas du clapet de sortie de la micropompe de la figure 6.
La réduction de la perte d'énergie qui est atteinte avec le clapet d'entrée selon l'invention est donc plus grande, en valeur absolue, dans une micropompe munie d'un clapet de sortie selon la figure 7 que dans une micropompe munie d'un clapet de sortie selon la figure 6.
Il faut également noter que la micropompe représentée sur la figure 7 ne comporte que deux plaquettes et que les tuyaux 44 et 60 sont situés d'un même côté de la pompe, ce qui permet une plus grande compacité que dans le mode de réalisation de la figure 6.
Claims
1. Clapet anti-retour, notamment pour micropompe, dont le corps est formé d'une première plaquette (1 ; 17 ; 100) en un matériau usiné par des procédés photolithographiques, cette plaquette délimi¬ tant une chambre (7, 19) avec au moins une deuxième plaquette (2 ; 18) accolée à la première plaquette, ladite chambre étant divisée en deux compartiments (8, 9 ; 26, 27) par un obturateur (10 ; 22 ; 102) de forme générale plane, qui comporte dans une zone sensiblement centrale une nervure (12 ; 23 ; 106) destinée, en vertu d'une contrainte élastique inhérente audit obturateur, à venir normalement s'appliquer contre un siège de clapet (4 ; 24) prévu sur la deuxième plaquette qui est en regard de cette nervure, ledit obturateur comprenant également des moyens de liaison s'étendant radialement à partir de ladite zone centrale vers la périphérie de l'obturateur pour assurer le support de celui-ci avec le corps du clapet, ce dernier étant caractérisé en ce que lesdits moyens de liaison sont formés par au moins deux organes de liaison (lia, 11b ; 15a-d) distincts s'étendant dans le plan général de l'obturateur et lais¬ sant entre eux au moins une ouverture (14a, 14b ; 16a-d ; 28a-d) pour la mise en communication des deux compartiments de la chambre du clapet.
2. Clapet anti-retour selon la revendication 1, caractérisé en ce qu'il comprend deux plaquettes (17, 18), la première plaquette (17) comprenant au moins un échelon (21) surélevé par rapport au fond de la chambre (19), sur lequel repose l'obturateur (22).
3. Clapet anti-retour selon la revendication 2, caractérisé en ce que l'obturateur et la première plaquette sont en un même maté¬ riau.
4. Clapet anti-retour selon la revendication 1, caractérisé en ce qu'il comprend trois plaquettes (1, 2, 5), les deuxième et troisième plaquettes (2, 5) étant accolées à la première plaquette (1) respectivement de part et d'autre de celle-ci, l'obturateur (10) étant formé dans la première plaquette (1).
5. Clapet anti-retour selon l'une quelconque des revendications 1 à 4, caractérisé en ce que chaque ouverture a la forme d'une fente (14a, 14b).
6. Clapet anti-retour selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les organes de liaison sont des bras (lla-b ; 15a-d ; 21a-d ; 110, 112, 116, 118, 120, 124) s'étendant â partir de la zone centrale de l'obturateur.
7. Clapet anti-retour selon la revendication 6, caractérisé en ce que les organes de liaison comprennent un premier ensemble de bras (110, 112, 116, 118) disposés dans un plan et un second ensem¬ ble de bras (122, 124) disposés dans un autre plan.
8. Micropompe comportant une première plaquette (1 ; 17 ; 100) en matière susceptible d'être usinée par des techniques photolitho¬
10 graphiques de manière â définir avec au moins une deuxième plaquette (2 ; 18) accolée face à face à la première plaquette, une chambre de pompage (38, 19), un premier clapet de type anti-retour (4, 10 ; 22, 24) à travers lequel ladite chambre de pompage peut sélectivement communiquer avec une entrée (3 ; 25) de la pompe et un second clapet
15 à travers lequel ladite chambre de pompage peut sélectivement communiquer avec une sortie (35, 56) de la pompe, des moyens (42) étant prévus pour provoquer une variation périodique de volume de ladite chambre de pompage (38 ; 19), lesdites plaquettes délimitant une chambre du clapet anti-retour dans laquelle est disposé un
?_ obturateur (10 ; 22 ; 102) de forme générale plane la divisant en deux compartiments (8,
9 ; 26, 27), ledit obturateur (10 ; 22 ; 102) comportant dans une zone sensiblement centrale une nervure (12 ; 23 ; 106) destinée, en vertu d'une contrainte élastique inhérente audit obturateur, à venir normalement s'appliquer contre un siège de clapet (4 ; 24) prévu sur la deuxième plaquette qui est en regard de cette nervure, ledit obturateur comprenant également des moyens de liaison s'étendant à partir de ladite zone centrale vers la périphé¬ rie de l'obturateur pour assurer le support de celui-ci avec le corps du clapet, ce dernier étant caractérisé en ce que lesdits
30 moyens de liaison sont formés par au moins deux organes de liaison (lia, 11b ; 15a-d ; 21a-d) distincts s'étendant dans le plan général de l'obturateur et laissant entre eux au moins une ouverture (14a, 14b ; 16a-d ; 28a-d ; 110, 112, 116, 118, 122, 124) pour la mise en communication des deux compartiments de la chambre du clapet. 5 9. Micrompompe selon la revendication 8 caractérisée en ce qu'elle comprend deux plaquettes (17, 18), la première plaquette (17) comprenant au moins un échelon (21) surélevé par rapport au fond de la chambre (19) du clapet anti-retour, l'obturateur (22) reposant sur cet échelon.
10. Micropompe selon la revendication 9, caractérisée en ce que la contrainte élastique est créée par la différence entre la profon¬ deur (p) de la chambre jusqu'à l'échelon (21) et l'épaisseur de l'obturateur (22).
11. Micropompe selon Tune quelconque des revendications 9 et 10, caractérisée en ce que la chambre de pompage est constituée par les deux compartiments (26, 27) de la chambre du clapet anti-retour.
12. Micrompompe selon la revendication 8, caractérisée en ce qu'elle comprend trois plaquettes (1, 2, 5), les deuxième et troi¬ sième plaquettes (2, 5) étant accolées â la première plaquette (1) respectivement de part et d'autre de celle-ci, l'obturateur (10) du clapet anti-retour étant formé dans la première plaquette (1).
13. Micropompe selon la revendication 12, caractérisée en ce que la contrainte élastique de l'obturateur (10) est créée par une couche d'oxyde (13).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH2689/89-1 | 1989-07-19 | ||
CH268989 | 1989-07-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1991001464A1 true WO1991001464A1 (fr) | 1991-02-07 |
Family
ID=4239365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CH1990/000173 WO1991001464A1 (fr) | 1989-07-19 | 1990-07-17 | Clapet anti-retour, notamment pour micropompe et micropompe munie d'un tel clapet |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1991001464A1 (fr) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0435653A1 (fr) * | 1989-12-27 | 1991-07-03 | Seiko Epson Corporation | Micropompe |
EP0512521A1 (fr) * | 1991-05-08 | 1992-11-11 | Hewlett-Packard Company | Valve microminiaturisée commandée thermiquement |
US5259737A (en) * | 1990-07-02 | 1993-11-09 | Seiko Epson Corporation | Micropump with valve structure |
WO1994028318A1 (fr) * | 1993-05-27 | 1994-12-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Microvanne |
WO1995009989A1 (fr) * | 1993-10-04 | 1995-04-13 | Research International, Inc. | Commutateurs de debit micro-usines |
WO2000036301A1 (fr) * | 1997-04-03 | 2000-06-22 | The Government Of The United States Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) | Soupape de regulation ferroelectrique de l'ecoulement fluide |
EP1296067A3 (fr) * | 2001-09-25 | 2004-02-11 | Randox Laboratories Ltd. | Microvanne passive |
US6797063B2 (en) | 2001-10-01 | 2004-09-28 | Fsi International, Inc. | Dispensing apparatus |
WO2014136090A1 (fr) | 2013-03-07 | 2014-09-12 | Debiotech S.A. | Vanne microfluidique ayant une tolérance améliorée à des particules |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4181477A (en) * | 1978-03-02 | 1980-01-01 | Pace Incorporated | Pump valve |
DE3508777A1 (de) * | 1984-04-11 | 1985-11-14 | Dr.-Ing. Walter Frohn-Betriebe, 8000 München | Entgasungsventil fuer lager- und/oder transportbehaelter |
-
1990
- 1990-07-17 WO PCT/CH1990/000173 patent/WO1991001464A1/fr unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4181477A (en) * | 1978-03-02 | 1980-01-01 | Pace Incorporated | Pump valve |
DE3508777A1 (de) * | 1984-04-11 | 1985-11-14 | Dr.-Ing. Walter Frohn-Betriebe, 8000 München | Entgasungsventil fuer lager- und/oder transportbehaelter |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0435653A1 (fr) * | 1989-12-27 | 1991-07-03 | Seiko Epson Corporation | Micropompe |
US5259737A (en) * | 1990-07-02 | 1993-11-09 | Seiko Epson Corporation | Micropump with valve structure |
EP0512521A1 (fr) * | 1991-05-08 | 1992-11-11 | Hewlett-Packard Company | Valve microminiaturisée commandée thermiquement |
US5681024A (en) * | 1993-05-21 | 1997-10-28 | Fraunhofer-Gesellschaft zur Forderung der angerwanden Forschung e.V. | Microvalve |
WO1994028318A1 (fr) * | 1993-05-27 | 1994-12-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Microvanne |
US5697153A (en) * | 1993-10-04 | 1997-12-16 | Research International, Inc. | Method for manufacturing a fluid flow regulator |
US5705070A (en) * | 1993-10-04 | 1998-01-06 | Research International, Inc. | Micromachined filters |
US5617632A (en) * | 1993-10-04 | 1997-04-08 | Research International, Inc. | Methods for forming a contoured regulator seat |
US5660728A (en) * | 1993-10-04 | 1997-08-26 | Research International, Inc. | Micromachined fluid handling apparatus with filter |
WO1995009987A1 (fr) * | 1993-10-04 | 1995-04-13 | Research International, Inc. | Regulateurs de debit micro-usines |
WO1995009989A1 (fr) * | 1993-10-04 | 1995-04-13 | Research International, Inc. | Commutateurs de debit micro-usines |
US5702618A (en) * | 1993-10-04 | 1997-12-30 | Research International, Inc. | Methods for manufacturing a flow switch |
US5585011A (en) * | 1993-10-04 | 1996-12-17 | Research International, Inc. | Methods for manufacturing a filter |
US5839467A (en) * | 1993-10-04 | 1998-11-24 | Research International, Inc. | Micromachined fluid handling devices |
WO2000036301A1 (fr) * | 1997-04-03 | 2000-06-22 | The Government Of The United States Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) | Soupape de regulation ferroelectrique de l'ecoulement fluide |
AU752367B2 (en) * | 1997-04-03 | 2002-09-19 | Government of the United States of America as represented by the Administrator of the National Aeronautics and Space Administration (NASA), The | Ferroelectric fluid flow control valve |
CN1125921C (zh) * | 1997-04-03 | 2003-10-29 | 美国政府,美国国家宇航管理局管理者代表 | 铁电流体流量控制阀 |
EP1296067A3 (fr) * | 2001-09-25 | 2004-02-11 | Randox Laboratories Ltd. | Microvanne passive |
US6797063B2 (en) | 2001-10-01 | 2004-09-28 | Fsi International, Inc. | Dispensing apparatus |
WO2014136090A1 (fr) | 2013-03-07 | 2014-09-12 | Debiotech S.A. | Vanne microfluidique ayant une tolérance améliorée à des particules |
US9903508B2 (en) | 2013-03-07 | 2018-02-27 | Debiotech S.A. | Microfluidic valve having improved tolerance to particles |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0739451B1 (fr) | Micropompe | |
EP1003973B1 (fr) | Micropompe comprenant un organe de controle d'entree permettant son auto-amorcage | |
EP0429591B1 (fr) | Micropompe perfectionnee | |
EP0951617B1 (fr) | Micropompe avec piece intermediaire integree | |
EP0392978A1 (fr) | Micropompe à débit constant | |
EP0737273B1 (fr) | Micropompe | |
EP1283957B1 (fr) | Dispositif fluidique micro-usine et son procede de fabrication | |
WO1991001464A1 (fr) | Clapet anti-retour, notamment pour micropompe et micropompe munie d'un tel clapet | |
EP2663091A1 (fr) | Haut-parleur digital a performance ameliorée | |
FR2994228A1 (fr) | Pompe realisee dans un substrat | |
EP3488929B1 (fr) | Dispositif d'injection d'un échantillon fluidique | |
EP2242524A1 (fr) | Regulateur de flux passif pour infusion de medicaments | |
EP0639761A1 (fr) | Capteur de pression différentielle de type capacitif | |
FR2935370A1 (fr) | Micropompe | |
EP2438339B1 (fr) | Organe de circulation fluidique, et ensemble de circulation fluidique comprenant au moins un tel organe | |
CH684209A5 (fr) | Clapet intégré et micropompe comprenant un tel clapet. | |
EP1518144A1 (fr) | Procede de fabrication d'un dispositif delimitant un volume pour le confinement d'un fluide ou d'une matiere sensible | |
WO2006056967A1 (fr) | Dispositif microfluidique mecanique, le procede de fabrication d'un empilement intermediaire et de ce dispositif microfluidique, et une micropompe. | |
FR2650634A1 (fr) | Micropompe perfectionnee | |
CH680009A5 (en) | Micro-pump-for injection of medication dose | |
CH683634A5 (fr) | Clapet intégré et micropompe comprenant un tel clapet. | |
WO2009047419A2 (fr) | Tiroir de distribution pour compteur de gaz a membranes a entrainement de distribution rotatif | |
EP3340332A1 (fr) | Pile et son procede de fabrication | |
EP0331591A1 (fr) | Capsule électroacoustique à membrane piézoélectrique | |
EP3838410A1 (fr) | Dispositif à actionnement pneumatique à substrats à base de papier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE |