WO1990015452A1 - Antenna with bends - Google Patents

Antenna with bends Download PDF

Info

Publication number
WO1990015452A1
WO1990015452A1 PCT/JP1990/000703 JP9000703W WO9015452A1 WO 1990015452 A1 WO1990015452 A1 WO 1990015452A1 JP 9000703 W JP9000703 W JP 9000703W WO 9015452 A1 WO9015452 A1 WO 9015452A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radar
underground
bent
electromagnetic wave
Prior art date
Application number
PCT/JP1990/000703
Other languages
French (fr)
Japanese (ja)
Inventor
Shoichi Sakanishi
Original Assignee
Kabushiki Kaisha Komatsu Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Komatsu Seisakusho filed Critical Kabushiki Kaisha Komatsu Seisakusho
Publication of WO1990015452A1 publication Critical patent/WO1990015452A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines

Definitions

  • the present invention relates to a transmitting / receiving antenna used for a radar, and more particularly to an underground radar or an external ground of an underground construction machine for exploring the ground by electromagnetic waves.
  • the transmission and reception bending antenna used for the radar to detect the situation is Si. Background technology
  • a radar method using reflection of electromagnetic waves is well known. Immediately, a pulse-like electromagnetic wave is transmitted to the ground, and this electromagnetic wave receives the reflected wave from the boundary of change in the soil or a foreign object to explore the state of the ground. It is a method.
  • the transmitting and receiving antennas used in this radar method are standard plate-shaped double fan-shaped dipole antennas as shown in Fig. 7. Therefore, its length is half-wave, ⁇ / ,.
  • An antenna of this type can benefit from a relatively high bandwidth.
  • the length of the antenna has to be reduced to less than half a wavelength. For this reason, the antenna deviates from resonance at a predetermined frequency, no current flows, and no electromagnetic waves are transmitted.
  • measurements are taken with an underground radar for exploring the ground or a radar for exploring the external ground conditions of an underground construction machine (hereinafter referred to as an underground radar).
  • An appropriate electromagnetic wave is determined according to the electrical characteristics of the target soil and the required exploration depth, but it depends on the conditions (structural dimensions) of the machine on which this radar is mounted. In other words, because the mounting area of the antenna is limited, it is necessary to install an antenna that is shorter than the required antenna dimensions. Therefore, there was a problem that the equipment became inefficient.
  • the present invention pays attention to the above-mentioned conventional problems, and realizes an efficient transmission / reception bend that can be matched to the wavelength of the radiated electromagnetic wave even if the mounting area of the antenna is small. It is intended to provide antennas. Disclosure of the invention
  • the present invention relates to a transmission / reception dipole antenna used for a radar, wherein a transmission antenna and a reception antenna constituting an antenna unit are provided. It is a bent end of the tena.
  • the effective ⁇ of these antennas is almost half of the radiated electromagnetic wave (Snow 2), and they are mounted on the underground radar. According to such a configuration, even if the end of the antenna is bent, the effective wavelength of the antenna is a half-wave length, so that the wave length of the radiated electromagnetic wave is reduced. Can be matched. Therefore, a large current can flow and a strong electromagnetic wave can be radiated. On the other hand, the mounting area of the antenna can be reduced.
  • FIG. 1 is a configuration diagram of a bent half-wave dipole antenna according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a tunnel collapse detection system in which the bent antenna of the present invention is applied to a shield machine.
  • Fig. 3 is an enlarged side sectional view of the bent antenna shown in Fig. 2,
  • Fig. 4 is a plan view seen from the direction of the line A-A in Fig. 3
  • Fig. 5 is a configuration diagram of an experimental device for antenna propagation characteristics
  • Fig. 6 is a diagram showing antenna propagation characteristics. Charts,
  • FIG. 7 is a configuration diagram of a conventional plate-shaped double fan half-wave dipole antenna.
  • BEST MODE FOR CARRYING OUT THE INVENTION the configuration of a bent antenna according to the present invention and an embodiment of an underground radar will be described with reference to FIGS. Refer to and explain in detail.
  • the bending angle is set to be a right angle, but this bending may have a straight curve.
  • FIG. 2 is a tunnel blockage detection system block diagram in which the underground radar according to the present invention is applied to a shield machine.
  • the tip 20a of the shield machine 20 for tunnel digging has a digging blade mounted on it.
  • the antenna unit 1 is composed of a transmitting antenna 11 and a receiving antenna 12.
  • Controller 21 coupled with antenna unit 1 has a trigger area 2, no, luther 3, sampler 4, and average. It is composed of Yarn 5.
  • the arithmetic processing unit 22 coupled to the controller 21 by an optical transmission line includes a computer, a storage device 8, a CRT display device 9, and a printer. 10.
  • the pulse signal generated at a certain timing by the trigger surface 2 is transmitted by the pulser 3 at an appropriate pulse.
  • the power is controlled to be the oscillation frequency and power, and transmitted to the transmitting antenna 11.
  • the electromagnetic wave 1a radiated from the transmitting antenna 11 is reflected on a medium boundary surface such as the ground and the like, and is received by the receiving antenna 12 as a reflected wave 1b.
  • the received reflected wave 1b is discriminated by the signal from the trigger surface 2 in the sampler 4 into a signal whose SN ratio has been improved and which contains appropriate reflection information.
  • the signal is further processed by an averager 5 to convert the analog signal into a digital signal, and the arithmetic operation is performed via an optical transmission line.
  • the computer 7 calculates the state of the object to be measured from the arrival time of the reflected wave 1b and its intensity, and sends it to the CRT display device 9 for display. Further, the calculated information is sent to the storage device 8 and stored, and is reproduced when necessary, compared with new information, or used as reference information after the fact. The calculation information can also be printed on recording paper by the printer 10.
  • antenna unit 1 As shown in FIGS. 3 and 4, the details of antenna unit 1 are shown in FIG. 3 and FIG. 4, in which antenna plate 13 transmits antenna 11 and receiver antenna 1 2 are mounted side by side, and the antenna plate 13 is mounted on the case 16.
  • the surfaces of the transmitting antenna 11 and the receiving antenna 12 are protected by a protection plate 14 against external impact. Except for the electromagnetic wave radiation surface of the transmitting antenna 11 and the reflected wave absorbing surface of the receiving antenna 12, the electromagnetic wave absorbing material 15 is filled to reduce the effects of external metallic objects. ⁇ It is being done.
  • the transmitting antenna 11 and the receiving antenna 12 respectively transmit the radiated electromagnetic wave 1a and receive the reflected electromagnetic wave lb.
  • Fig. 5 shows the configuration of the experimental setup for measuring antenna propagation characteristics. Therefore, the transmitting antenna 51 and the receiving antenna 52 are mounted on both sides of the case 53 so as to face each other, and the case 53 has water 54 4. Is filled.
  • the analyzer 55 is provided with an oscillating device for electromagnetic wave signals, an amplifying / detecting device for a received wave, and a breaking function.
  • the pulse-like high-frequency signal created by the unfolding device 55 is radiated to the case 53 by the transmitting antenna 51, and is radiated into the case 53.
  • the water is attenuated by the filled water 54 and is received by the receiving antenna 52.
  • the high frequency signal received as the received signal is returned to the analyzer 55, and the permeation amount in the water 54 is calculated in the analyzer 55.
  • the results of measuring the antenna propagation characteristics with this experimental device are shown in the chart of Fig. 6, where the horizontal axis shows the test frequency and the center f0 is the underground radar. This is the center frequency of the pulse used.
  • the vertical axis indicates the transmission amount (dB), and the transmission amount at f0 of the conventional standard antenna is set to 0 dB.
  • the curve a in the figure shows the propagation characteristics of the bent antenna according to the present invention
  • the curve b is a plate-shaped double sector dipole which is a conventional standard antenna.
  • the characteristics of the antenna are shown.
  • the effective radii of the antennas are the same in both cases, the transmission amount of the bent antenna according to the present invention is about 15 dB better than that of the conventional standard antenna. In particular, the difference in the amount of transmission in the low frequency region is remarkable.
  • the present invention is suitable for an underground radar for exploring the underground by electromagnetic waves or a radar antenna for exploring an external ground condition of an underground construction machine.
  • a low-frequency pulse can be used, and it is useful as a bent antenna that can increase the exploration depth. .

Abstract

An antenna for reception and transmission of a radar, which allows the use of low-frequency pulses despite a limit in the area for mounting antenna and enables the maximum range of distance to be extended. When the area for mounting antenna is limited, an antenna shorter than a required one must be mounted, thus reducing the efficiency. Therefore, the ends of a transmitting antenna (11) and ends of a receiving antenna (12) of a dipole antenna unit (1) are bent according to this invention. The effective length of the antenna is nearly one half (μ/2) of the wavelength of transmitted electromagnetic waves. The antenna can be mounted on an underground radar for surveying underground or a radar which is used in connection with underground construction machinery so as to survey the terrain around the site.

Description

明 細 書 折 り 曲 げ ア ン テ ナ  Bently bent antenna
技 術 分 野 Technical field
本発明 は レ ー ダ に 用 い る 送信受信用 の ァ ン テ ナ に係 り 、 特 に 電磁波 に よ り 地 中 を探査す る 地中 レ ー ダ あ る い は 地下建設機械 の外部地山状況を探査す る レ ー ダ に 用 い る 送信受信用折 り 曲 げァ ン テ ナ に Siす る 。 背 景 技 術  The present invention relates to a transmitting / receiving antenna used for a radar, and more particularly to an underground radar or an external ground of an underground construction machine for exploring the ground by electromagnetic waves. The transmission and reception bending antenna used for the radar to detect the situation is Si. Background technology
一般に 、 地 中 の 状態 あ る い は地中 の埋設物 を非破壊的 に 検知す る 方法 と し て は、 電磁波 の 反射を利 用 し た レ ー ダ法がよ く 知 ら れて い る 。 即 ち 、 パ ル ス 状 の 電磁波を地 中 に 向 つ て送信 し 、 こ の電磁波が土質 の 変化境界面あ る い は異物 か ら の反射波を受信 し て地 中 の 状況 を探査す る 方法 で あ る 。  In general, as a method for non-destructively detecting an underground condition or a buried object under the ground, a radar method using reflection of electromagnetic waves is well known. . Immediately, a pulse-like electromagnetic wave is transmitted to the ground, and this electromagnetic wave receives the reflected wave from the boundary of change in the soil or a foreign object to explore the state of the ground. It is a method.
こ の レ ー ダ 法 に 用 い ら れ る 送信お よ び受信 ァ ン テ ナ は 、 第 7 図 に示す よ う に 標準的な 板状双扇形の ダ イ ポ ー ル ア ン テ ナ で あ っ て 、 そ の县 さ は半波县 、 λ / 、 で あ る 。 こ の種 の ア ン テ ナ は、 比較的高帯域で 髙利 得が得 ら れ る 。  The transmitting and receiving antennas used in this radar method are standard plate-shaped double fan-shaped dipole antennas as shown in Fig. 7. Therefore, its length is half-wave, λ / ,. An antenna of this type can benefit from a relatively high bandwidth.
し か し な が ら 、 ア ン テ ナ の取付 け面積が限定 さ れ る 場 合 に は 、 ア ン テ ナ の县 さ を半波县以下 に せ ざ る を得 な い こ の た め、 ア ン テ ナ は所定の 周波数の 共振か ら 外れて 電流が流 れな く な り 、 電磁波が送信 さ れ な く な る 。 例え ば、 地中 を探査す る 地中 レ ー ダ あ る い は地下建設機械 の 外部地山状況 を探査す る レ ー ダ (以下地 中 レ ー ダ と い う ) に お い て は 測定対象で あ る 土質の 電気的特性や、 必要 と す る 探査深度に 対応 して 適切 な電磁波 の波县が決ま る が、 こ の レ ー ダを搭載す る 機械 の条件 (構造寸法) に よ つ て はア ン テ ナ の 取付 け面積が限 ら れ る た め に 、 必要 と す る ァ ン テ ナ 寸法 よ り も短 い县 さ の ァ ン テ ナ を装着す る こ と に な っ て 、 効率 の 悪い 装置 に な る と い う 問題があ つ た 。 However, if the mounting area of the antenna is limited, the length of the antenna has to be reduced to less than half a wavelength. For this reason, the antenna deviates from resonance at a predetermined frequency, no current flows, and no electromagnetic waves are transmitted. For example, measurements are taken with an underground radar for exploring the ground or a radar for exploring the external ground conditions of an underground construction machine (hereinafter referred to as an underground radar). An appropriate electromagnetic wave is determined according to the electrical characteristics of the target soil and the required exploration depth, but it depends on the conditions (structural dimensions) of the machine on which this radar is mounted. In other words, because the mounting area of the antenna is limited, it is necessary to install an antenna that is shorter than the required antenna dimensions. Therefore, there was a problem that the equipment became inefficient.
本発明 は上記従来の 問題点に 着目 し て 、 ァ ン テ ナ の 取 付 け面積が小 さ く て も 放射電磁波の 波县 に マ ツ チ ン グ す る 効率の良い 送信受信用折 り 曲 げァ ン テ ナ を提供す る こ と を 目的 と し て い る 。 発 明 の 開 示  The present invention pays attention to the above-mentioned conventional problems, and realizes an efficient transmission / reception bend that can be matched to the wavelength of the radiated electromagnetic wave even if the mounting area of the antenna is small. It is intended to provide antennas. Disclosure of the invention
本発明 は、 レ ー ダ に 用 い る 送信受信用 の ダ イ ポ ー ル ァ ン テ ナ に お い て 、 ア ン テ ナ ュ ニ ッ ト を構成す る送信ア ン テ ナ と 受信ア ン テ ナ の 端部を折 り 曲 げた も の で あ る 。 ま た 、 こ れ ら ア ン テ ナ の 実効县 は、 放射電磁波 の ほ ぼ半波 县 ( ス ノ 2 ) と し 、 地 中 レ ー ダ に取付 け ら れて い る 。 か か る 構成 に よ れば、 ア ン テ ナ の 端部 を折 り 曲 げて も ア ン テ ナ の実効县 は半波县で あ る か ら 、 放射電磁波 の 波县 に マ ッ チ ン グ す る こ と が で き る 。 従 っ て、 大 き な電流を流 す こ と がで き 、 強 い電磁波 を放射す る こ と がで き る 。 他 方、 ア ン テ ナ の取付 け面積 は小 さ く す る こ と がて き る 。 The present invention relates to a transmission / reception dipole antenna used for a radar, wherein a transmission antenna and a reception antenna constituting an antenna unit are provided. It is a bent end of the tena. The effective 县 of these antennas is almost half of the radiated electromagnetic wave (Snow 2), and they are mounted on the underground radar. According to such a configuration, even if the end of the antenna is bent, the effective wavelength of the antenna is a half-wave length, so that the wave length of the radiated electromagnetic wave is reduced. Can be matched. Therefore, a large current can flow and a strong electromagnetic wave can be radiated. On the other hand, the mounting area of the antenna can be reduced.
図面 の簡単な 説明 Brief description of the drawings
第 1 図 は本発明 の実施例 に係 る 折 り 曲 げ半波县ダ イ ポ 一ル ア ン テ ナ の構成図、  FIG. 1 is a configuration diagram of a bent half-wave dipole antenna according to an embodiment of the present invention.
第 2 図 は本発明 の折 り 曲 げ ァ ン テ ナ を シ ー ル ド 機械 に 適用 し た ト ン ネ ル崩壌検知 シ ス テ ム プ ロ ッ ク 図、  FIG. 2 is a block diagram of a tunnel collapse detection system in which the bent antenna of the present invention is applied to a shield machine.
第 3 図 は第 2 図 に 示す折 り 曲 げ ア ン テ ナ の 拡大側面断 面図、  Fig. 3 is an enlarged side sectional view of the bent antenna shown in Fig. 2,
第 4 図 は第 3 図 の A — A 線方 向 か ら 視 た平面図、 第 5 図 は ァ ン テ ナ 伝播特性の 実験装置 の構成図、 第 6 図 は ァ ン テ ナ 伝播特性を 示す 図表、  Fig. 4 is a plan view seen from the direction of the line A-A in Fig. 3, Fig. 5 is a configuration diagram of an experimental device for antenna propagation characteristics, and Fig. 6 is a diagram showing antenna propagation characteristics. Charts,
第 7 図 は従来 の 板状双扇形半波县 ダ イ ポ ー ルァ ン テ ナ の 構成図 で あ る 。 発 明 を実施 す る た め の 最良 の 形態 以 下本発明 に係 る 折 り 曲 げ ァ ン テ ナ の 構成 と 地 中 レ ー ダ の 実施例に つ い て 第 1 図乃 至第 6 図を参照 し詳細 に 説 明 す る 。  FIG. 7 is a configuration diagram of a conventional plate-shaped double fan half-wave dipole antenna. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the configuration of a bent antenna according to the present invention and an embodiment of an underground radar will be described with reference to FIGS. Refer to and explain in detail.
第 1 図 は本発明 に係 る 送信受信用 折 り 曲 げ半波县ダ イ ポ ー ル ァ ン テ ナ の 構成を示 し て い る 。 周 知 の よ う に ダ イ ポ ー ルァ ン テ ナ は折 り 曲 げて も そ の折 り 曲 げ部分 d , d で 反射が あ る の で 、 ダ イ ポ ー ル ア ン テ ナ の実効县 + 2 d は半波县 ス ノ 2 に等 し く な る よ う に 製作 さ れて い る 。 こ の た め ア ン テ ナ の取付 け县 さ は £ ( = { / 2 - 2 d ) ま で 小 さ く す る こ と が 出来 る 。 FIG. 1 shows the configuration of a transmission / reception bent half-wave dipole antenna according to the present invention. Dice like Zhou Even if the pole antenna is bent, there are reflections at the bent parts d and d. Therefore, the effective 县 of the dipole antenna + 2 d is a half-wave 县It is manufactured to be equal to Snow 2. For this reason the antenna installation can be reduced to £ (= {/ 2-2 d).
本実施例で は折 り 曲 げ角 度を 直角 に し て い る が、 こ の 曲 げ は通切な カ ー ブを持 た せ る よ う に し て も よ い 。  In the present embodiment, the bending angle is set to be a right angle, but this bending may have a straight curve.
第 2 図 は本発明 に 係 る 地 中 レ ー ダ を シ ー ル ド機械 に 適 用 し た ト ン ネ ル崩 壊検知 シ ス テ ム ブ ロ ッ ク 図で あ る 。 ト ン ネ ル掘削用 の シ ー ル ド 機械 2 0 の 先端 2 0 a に は掘削 刃 が装着 さ れて い る 。 ア ン テ ナ ユ ニ ッ ト 1 は送信 ア ン テ ナ 1 1 と 受信 ア ン テ ナ 1 2 等か ら 構成 さ れて い る 。 ア ン テ ナ ユ ニ ッ ト 1 と 結合 さ れた コ ン ト ロ ー ラ 2 1 は、 ト リ ガ 面 路 2 、 ノ、' ル サ ー 3 、 サ ン プ ラ 4 、 ア ベ レ ー ジ ヤ ー 5 と か ら 構成 さ れて い る 。 こ の コ ン ト ロ ー ラ 2 1 と 光伝送 線 に よ っ て結合 さ れた 演算処理装置 2 2 は、 コ ン ビ ュ ー 夕 Ί 、 記憶装置 8 、 C R T 表示装置 9 、 プ リ ン タ 1 0 と か ら 構成 さ れて い る 。  FIG. 2 is a tunnel blockage detection system block diagram in which the underground radar according to the present invention is applied to a shield machine. The tip 20a of the shield machine 20 for tunnel digging has a digging blade mounted on it. The antenna unit 1 is composed of a transmitting antenna 11 and a receiving antenna 12. Controller 21 coupled with antenna unit 1 has a trigger area 2, no, luther 3, sampler 4, and average. It is composed of Yarn 5. The arithmetic processing unit 22 coupled to the controller 21 by an optical transmission line includes a computer, a storage device 8, a CRT display device 9, and a printer. 10.
次 に作用 を説明 す る と 、 ト リ ガ面 路 2 に よ り 一定 の タ ィ ミ ン グ で発生 さ れた ノ、 · ル ス 信号をパ ル サ ー 3 に よ り 適 正 な パ ル ス 発振周波数お よ び電力 と な る よ う に 制御 し て 送信用 ア ン テ ナ 1 1 に 送信す る 。 送信用 ア ン テ ナ 1 1 か ら 放射 さ れた 電磁波 1 a は地山 等 の 媒体境界面で 反射 さ れ 、 反射波 1 b と し て 受信 ア ン テ ナ 1 2 に 受信 さ れ る 。 受信 さ れ た反射波 1 b はサ ン ブ ラ 4 に お い て ト リ ガ面 路 2 か ら の 信号 に よ つ て S N 比が改善 さ れ適切 な反射情報 を 含ん だ信号 に弁別 さ れた 後、 ア ベ レ ー ジ ヤ ー 5 に お い て さ ら に 波形処理を行 っ て ア ナ ロ グ信号か ら デ ジ タ ル信 号 に 変換 さ れ、 光伝送線を経由 し て 演算処理を行 う コ ン ビ ュ ー タ 7 に 伝送 さ れ る 。 コ ン ピ ュ ー タ 7 に お い て は 、 反射波 1 b の 到達時間 と そ の 強度か ら 測定対象 の 状況を 算 出 し、 C R T表示装置 9 に 送 っ て 表示す る 。 ま た 、 算 出 さ れた 情報 は記憶装置 8 に送 っ て 記憶 さ れ、 必要 な 時 に 再生 し て新 し い 情報 と 比較 し 、 或 い は事後 の 参考情報 と し て 活用 す る 。 ま た 、 算出情報は プ リ ン タ 1 0 に よ つ て 記録紙 に プ リ ン ト ァ ゥ 卜 す る こ と も で き る 。 In the following, the operation will be described. The pulse signal generated at a certain timing by the trigger surface 2 is transmitted by the pulser 3 at an appropriate pulse. The power is controlled to be the oscillation frequency and power, and transmitted to the transmitting antenna 11. The electromagnetic wave 1a radiated from the transmitting antenna 11 is reflected on a medium boundary surface such as the ground and the like, and is received by the receiving antenna 12 as a reflected wave 1b. The received reflected wave 1b is discriminated by the signal from the trigger surface 2 in the sampler 4 into a signal whose SN ratio has been improved and which contains appropriate reflection information. After that, the signal is further processed by an averager 5 to convert the analog signal into a digital signal, and the arithmetic operation is performed via an optical transmission line. It is transmitted to the computer 7 which performs the processing. The computer 7 calculates the state of the object to be measured from the arrival time of the reflected wave 1b and its intensity, and sends it to the CRT display device 9 for display. Further, the calculated information is sent to the storage device 8 and stored, and is reproduced when necessary, compared with new information, or used as reference information after the fact. The calculation information can also be printed on recording paper by the printer 10.
ア ン テ ナ ュ ニ ッ ト 1 の詳細 は、 第 3 図 と 第 4 図 に 示す よ う に ア ン テ ナ プ レ ー ト 1 3 に 送信 ア ン テ ナ 1 1 と 受信 ア ン テ ナ 1 2 が並 べ て 取付 け ら れ、 こ の ア ン テ ナ プ レ ー ト 1 3 は ケ ー ス 1 6 に 装着 さ れて い る 。 送信 ア ン テ ナ 1 1 と 受信 ア ン テ ナ 1 2 の 表面 は 、 保護 プ レ ー ト 1 4 に よ つ て 外部か ら の衝撃に 対 し 保護 さ れて い る 。 送信 ア ン テ ナ 1 1 の 電磁波放射面 と 受信ア ン テ ナ 1 2 の 反射波吸収 面以外 は、 外部 の 金属物体等 に よ る 影響を賒 く た め に 電 磁波吸収材 1 5 が充壎 さ れて い る 。 送信 ア ン テ ナ 1 1 と 受信 ア ン テ ナ 1 2 は、 そ れ ぞれ放射電磁波 1 a を送信 し 、 反射電磁波 l b を受信す る 。  As shown in FIGS. 3 and 4, the details of antenna unit 1 are shown in FIG. 3 and FIG. 4, in which antenna plate 13 transmits antenna 11 and receiver antenna 1 2 are mounted side by side, and the antenna plate 13 is mounted on the case 16. The surfaces of the transmitting antenna 11 and the receiving antenna 12 are protected by a protection plate 14 against external impact. Except for the electromagnetic wave radiation surface of the transmitting antenna 11 and the reflected wave absorbing surface of the receiving antenna 12, the electromagnetic wave absorbing material 15 is filled to reduce the effects of external metallic objects.壎 It is being done. The transmitting antenna 11 and the receiving antenna 12 respectively transmit the radiated electromagnetic wave 1a and receive the reflected electromagnetic wave lb.
第 5 図 はァ ン テ ナ 伝播特性の 計測用 実験装置の構成図 で あ っ て 、 送信ア ン テ ナ 5 1 と 受信 ア ン テ ナ 5 2 は ケ ー ス 5 3 の 両側面に 対向 し て 装着 さ れて お り 、 ケ ー ス 5 3 に は水 5 4 が充滴 さ れて い る 。 解析装置 5 5 は電磁波信 号 の 発振装置 と 受信波 の増幅 · 検知装置及び 解折機能 を 備 え て い る 。 こ の 解折装置 5 5 で作成 し た パ ル ス 状の 高 周 波信号 は送信ア ン テ ナ 5 1 に よ っ て ケ ー ス 5 3 に放射 さ れ、 ケ ー ス 5 3 の 中 に充潢 さ れた 水 5 4 に よ っ て减衰 さ れて受信 ア ン テ ナ 5 2 に 受信 さ れ る 。 受信信号で受信 さ れた髙周波信号 は解析装置 5 5 に 戻 さ れ、 解折装置 5 5 に お い て 水 5 4 中 の 透過量が算出 さ れ る 。 Fig. 5 shows the configuration of the experimental setup for measuring antenna propagation characteristics. Therefore, the transmitting antenna 51 and the receiving antenna 52 are mounted on both sides of the case 53 so as to face each other, and the case 53 has water 54 4. Is filled. The analyzer 55 is provided with an oscillating device for electromagnetic wave signals, an amplifying / detecting device for a received wave, and a breaking function. The pulse-like high-frequency signal created by the unfolding device 55 is radiated to the case 53 by the transmitting antenna 51, and is radiated into the case 53. The water is attenuated by the filled water 54 and is received by the receiving antenna 52. The high frequency signal received as the received signal is returned to the analyzer 55, and the permeation amount in the water 54 is calculated in the analyzer 55.
こ の実験装置で ァ ン テ ナ 伝播特性を測定 し た結果が第 6 図 に示す図表で あ っ て 、 横軸 は試験周 波数 を示 し、 中 心 の f 0 は地中 レ ー ダ に お い て 用 い て い る パ ル ス の 中 心 周 波数で あ る 。 縦軸 は透過量 ( d B ) を示 し 、 従来の 標 準 ア ン テ ナ の f 0 に お け る 透過量を 0 d B と し て い る 。 図 中 の 曲線 a は本発明 に係 る 折 り 曲 げァ ン テ ナ の 伝播特 性 を 示 し 、 曲線 b は従来の標準 ア ン テ ナ で あ る 板状双扇 形 ダ イ ポ ー ル ア ン テ ナ に よ る 特性を 示 し て い る 。 ア ン テ ナ の 実効县 は ど ち ら も 同 じ だが、 本発明 に係 る 折 り 曲 げ ア ン テ ナ の 透過量 は、 従来 の標準ア ン テ ナ よ り も 約 1 5 d B 良 く 、 特 に低周波数領域で の 透過量 の 差異が顕著 で あ る 。  The results of measuring the antenna propagation characteristics with this experimental device are shown in the chart of Fig. 6, where the horizontal axis shows the test frequency and the center f0 is the underground radar. This is the center frequency of the pulse used. The vertical axis indicates the transmission amount (dB), and the transmission amount at f0 of the conventional standard antenna is set to 0 dB. The curve a in the figure shows the propagation characteristics of the bent antenna according to the present invention, and the curve b is a plate-shaped double sector dipole which is a conventional standard antenna. The characteristics of the antenna are shown. Although the effective radii of the antennas are the same in both cases, the transmission amount of the bent antenna according to the present invention is about 15 dB better than that of the conventional standard antenna. In particular, the difference in the amount of transmission in the low frequency region is remarkable.
以上説 明 し た よ う に 、 ア ン テ ナ の 取付 け面積が小 さ く て も 放射電磁波 の 波县 に マ ッ チ ン グ す る 効率 の 良い送信 受信用 折 り 曲 げア ン テ ナ を 得 る こ と がで き る 。 こ れに よ り 伝播特性 の 良い 地中 レ ー ダ を得 る こ と がで き る 。 産業上の 利用 可能性 As explained above, even if the antenna mounting area is small, efficient transmission that matches the wavelength of the radiated electromagnetic wave can be achieved. A folded antenna for reception can be obtained. This makes it possible to obtain an underground radar with good propagation characteristics. Industrial applicability
本発明 は電磁波 に よ り 地中 を 探査す る 地中 レ ー ダ あ る い は地下建設機械 の外部地山状況を探査す る レ ー ダ用 の ア ン テ ナ に 適 し て お り 、 特 に ア ン テ ナ の 取付 け面積に 制 限が あ っ て も 低周 波パ ル ス が使用 で き 、 探査深度 が伸 ば せ る 折 り 曲 げ ア ン テ ナ と し て 有用 で あ る 。  INDUSTRIAL APPLICABILITY The present invention is suitable for an underground radar for exploring the underground by electromagnetic waves or a radar antenna for exploring an external ground condition of an underground construction machine. In particular, even if the mounting area of the antenna is limited, a low-frequency pulse can be used, and it is useful as a bent antenna that can increase the exploration depth. .

Claims

請 求 の 範 囲 The scope of the claims
1 . レ ー ダ に 用 い る 送信受信用 の ダ イ ポ ー ル ア ン テ ナ に お い て、 こ の ア ン テ ナ の端部を折 り 曲 げ た こ と を 特徴 と す る 折 り 曲 げ ア ン テ ナ 。 1. In the transmission / reception dipole antenna used for the radar, the end of this antenna is bent. A bent antenna.
2 . 前記 ア ン テ ナ の 実効县 は、 放射電磁波 の ほ ぼ半波县 ( λ / 2 ) で あ る こ と を特徴 と す る 請求項 1 記載 の折 り 曲 げ ア ン テ ナ 。 2. The bent antenna according to claim 1, wherein an effective wavelength of the antenna is substantially half a wavelength (λ / 2) of the radiated electromagnetic wave.
3 . 前記 ア ン テ ナ は、 地中 を探査す る 地 中 レ ー ダ も し く は地下建設機械の 外部地山 伏況 を探査す る レ ー ダ の い ず れか に取付 け ら れて い る こ と を特徴 と す る 請求項 1 ま た は 2 記載 の折 り 曲 げア ン テ ナ 。 3. The antenna shall be mounted on either an underground radar for exploring the ground or a radar for exploring the external ground conditions of underground construction equipment. The bent antenna according to claim 1, wherein the bent antenna is characterized in that:
PCT/JP1990/000703 1989-05-31 1990-05-30 Antenna with bends WO1990015452A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP13791989A JPH033503A (en) 1989-05-31 1989-05-31 Folded antenna
JP1/137919 1989-05-31

Publications (1)

Publication Number Publication Date
WO1990015452A1 true WO1990015452A1 (en) 1990-12-13

Family

ID=15209752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/000703 WO1990015452A1 (en) 1989-05-31 1990-05-30 Antenna with bends

Country Status (2)

Country Link
JP (1) JPH033503A (en)
WO (1) WO1990015452A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0736924A1 (en) * 1995-04-05 1996-10-09 Philips Electronique Grand Public Portable receiver with an antenna
US9413072B2 (en) 2013-03-05 2016-08-09 Mitsubishi Electric Corporation Method for installing antenna device, and antenna device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6057805A (en) * 1996-08-19 2000-05-02 Emc Test Systems, L.P. Broad band shaped element antenna
KR20020004640A (en) * 2000-07-06 2002-01-16 오근홍 A tension structure of a tent
JP2006295712A (en) * 2005-04-13 2006-10-26 Yagi Antenna Co Ltd Onboard antenna incorporated with door
JP5053009B2 (en) * 2007-09-18 2012-10-17 古河電気工業株式会社 In-vehicle TV antenna and its mounting method
JP5149600B2 (en) * 2007-11-14 2013-02-20 小島プレス工業株式会社 In-vehicle antenna system
CN102270779B (en) * 2011-07-27 2013-07-10 东南大学 Sub-millimetre wave tie pulse loading antenna
JP5536173B2 (en) * 2012-10-23 2014-07-02 小島プレス工業株式会社 In-vehicle antenna system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141802A (en) * 1983-01-26 1984-08-14 ジオフイジカル サーベイ システムズ, インコ−ポレイテツド Frequency independent antenna
JPS59193605A (en) * 1983-04-18 1984-11-02 Denki Kogyo Kk Dipole antenna

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141802A (en) * 1983-01-26 1984-08-14 ジオフイジカル サーベイ システムズ, インコ−ポレイテツド Frequency independent antenna
JPS59193605A (en) * 1983-04-18 1984-11-02 Denki Kogyo Kk Dipole antenna

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0736924A1 (en) * 1995-04-05 1996-10-09 Philips Electronique Grand Public Portable receiver with an antenna
US9413072B2 (en) 2013-03-05 2016-08-09 Mitsubishi Electric Corporation Method for installing antenna device, and antenna device

Also Published As

Publication number Publication date
JPH033503A (en) 1991-01-09

Similar Documents

Publication Publication Date Title
US4905008A (en) Radar type underground searching apparatus
US7893862B2 (en) Method and apparatus for using collimated and linearly polarized millimeter wave beams at Brewster's angle of incidence in ground penetrating radar to detect objects located in the ground
US8055193B2 (en) Underwater remote sensing
EP0435585A2 (en) Locatable object suitable for underground use and methods of locating same
WO1999063361A1 (en) Radar apparatus
WO1990015452A1 (en) Antenna with bends
JP2003515726A (en) Ground penetrating radar system and method for detecting objects above or below ground surface
US4673935A (en) Instrusion detection system
JPH0618650A (en) Antenna for underground prospecting radar
JP3364032B2 (en) Forward monitoring device for shield machine
JP2850994B2 (en) Borehole radar using slot antenna
KR101224075B1 (en) A system for drawing a map of hidden geographical features
JP2939575B2 (en) Underground radar equipment
KR100493727B1 (en) Method for detecting target in multi-function radar
KR100431777B1 (en) Water leak detector and antenna thereof
JPH10319117A (en) Antenna for underground probing and underground probing device
JPH11352002A (en) Antenna for water leakage detector
JP3259544B2 (en) Method and apparatus for exploring undersea buried objects
JP2866912B2 (en) Obstacle Detector for Civil Excavation Propulsion Machine
JP3629385B2 (en) Radar equipment for underground exploration
Kobayashi et al. A study of a vehicle ground speed sensor using the ultrasonic wave doppler effect
JP2834393B2 (en) Automatic detection of abnormal objects ahead in tunnel construction
JP3020346B2 (en) Radar equipment
JPH10260266A (en) Underground investigation radar
Brooker et al. A new modality radaracoustic sensor for visualisation in environments with poor radar/lidar reflectivity

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB