JP3259544B2 - Method and apparatus for exploring undersea buried objects - Google Patents

Method and apparatus for exploring undersea buried objects

Info

Publication number
JP3259544B2
JP3259544B2 JP24161794A JP24161794A JP3259544B2 JP 3259544 B2 JP3259544 B2 JP 3259544B2 JP 24161794 A JP24161794 A JP 24161794A JP 24161794 A JP24161794 A JP 24161794A JP 3259544 B2 JP3259544 B2 JP 3259544B2
Authority
JP
Japan
Prior art keywords
sound source
cable
sea
frequency
parametric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24161794A
Other languages
Japanese (ja)
Other versions
JPH08105976A (en
Inventor
信幸 吉澤
忠敏 谷藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP24161794A priority Critical patent/JP3259544B2/en
Publication of JPH08105976A publication Critical patent/JPH08105976A/en
Application granted granted Critical
Publication of JP3259544B2 publication Critical patent/JP3259544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は例えば海底に埋設された
ケーブルを探査する等の海底埋設物の探査方法および装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for searching for a buried object under the sea, for example, for searching a cable buried in the sea floor.

【0002】[0002]

【従来の技術】海底に埋設されたケーブルを探査する技
術として、従来から、(a)ケーブルに信号電流を流
し、電界の変化や強度を測定する方法、(b)コイルで
磁界を発生し、導体であるケーブルに生じる誘導磁界の
変化や強度を測定する方法、が実用されている。これら
の方法では、センサとケーブルとの距離は測定できる
が、距離測定精度が数10cmと悪く、かつケーブル防
護上重要なケーブルの埋設深度(土かむり量)自体を直
接に測定できないという欠点があった。また(a)では
ケーブルに信号を流す必要があるため、事前に陸上部に
おいて電源や信号源を設置する必要がある。また、ケー
ブルが断線している場合には探査が不可能になる欠点が
ある。(b)では埋設深度1mまでの探査が限界で、現
在の最大埋設深度2mにおいてはケーブルを見失ってし
まう欠点がある。
2. Description of the Related Art Conventionally, as a technique for exploring a cable buried under the seabed, there have been conventionally used methods of (a) passing a signal current through a cable to measure a change and intensity of an electric field, and (b) generating a magnetic field with a coil. A method of measuring a change or intensity of an induced magnetic field generated in a cable as a conductor has been put to practical use. These methods can measure the distance between the sensor and the cable, but have the drawbacks that the distance measurement accuracy is poor at several tens of centimeters and that the burial depth (the amount of burrow) of the cable, which is important for cable protection, cannot be directly measured. Was. In (a), since it is necessary to send a signal through a cable, it is necessary to install a power supply and a signal source in advance on land. Further, there is a disadvantage that the exploration becomes impossible when the cable is broken. In (b), the exploration up to the burial depth of 1 m is the limit, and there is a disadvantage that the cable is lost at the current maximum burial depth of 2 m.

【0003】超音波は水中において遠距離まで伝達でき
るので、船舶の水深計や魚群探知、海底の地層探査等に
幅広く用いられている。しかし、海底下に埋設されたケ
ーブルを超音波で感知できたという報告例はない。海底
地層を数kmまで探査する目的で超音波(弾性波)を用
いた探査技術が実用されているが、地層深くまで探査す
るために周波数は数kHz以下と低く、距離分解能は数
m以下しかない。このためケーブルのような細い物体を
感知することはできない。また、低い周波数を発生させ
るために音源および受波器は数mから数100mと大き
く、高価であるばかりでなく、機動性に劣る欠点があ
る。
[0003] Since ultrasonic waves can be transmitted to a long distance in water, they are widely used for depth measurement of fish, detection of fish schools, exploration of undersea stratum, and the like. However, there are no reports that ultrasonic cables could detect cables buried under the seabed. Exploration technology using ultrasonic waves (elastic waves) has been used for the purpose of exploring the submarine stratum up to several km, but the frequency is as low as several kHz or less, and the distance resolution is only several meters or less for exploring deep underground. Absent. Therefore, a thin object such as a cable cannot be detected. In addition, since a low frequency is generated, the sound source and the receiver are large, ranging from several meters to several hundreds of meters, and are not only expensive but also inferior in mobility.

【0004】なお、陸上埋設物を探査する技術として地
中レーダー法が有用であるが、マイクロ波を用いるため
電界質である海中では用いることはできない。
Although the underground radar method is useful as a technique for exploring buried objects on land, it cannot be used in the sea, which is an electric field, because microwaves are used.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記の事情に
鑑みてなされたもので、少なくとも海底面下2m程度ま
でに埋設された外径数cm程度のケーブルの土かぶり量
を直接に測定でき、かつ、小型で機動性の良い海底埋設
物の探査方法および装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and can directly measure the amount of soil covering of a cable having an outer diameter of about several cm buried at least about 2 m below the sea bottom. Another object of the present invention is to provide a method and an apparatus for exploring an undersea buried object that is small and has good mobility.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は、海底下に埋設された物体の感知手段として
超音波を用い、必要充分な地中透過性と距離分解能を同
時に実現できる周波数範囲を実験的に明らかにする。地
中透過性としては、ケーブルを埋設可能な具体的な地質
を特定し、かつケーブルの最大埋設深度である2m以
上、もしくは地質探査上必要な5mまで透過できる条件
を明らかにする。また、距離分解能としてはケーブルの
埋設深度が2mであることを考慮して10cm程度とす
る。かつ、細いケーブルを地層と分離できるだけの空間
分解能と、小型で機動性の良い音源を実現する方法とし
てパラメトリック音源法を用い、ケーブルを識別するの
に必要充分な探知距離を明らかにする。同時に、反射音
圧の変化から地層とケーブルを分離するための探索手段
として、ケーブルに直交する平面内での音源の走査を行
う。以上の具体的な方法を同時に満足することによっ
て、課題を解決する。
In order to achieve the above object, the present invention uses an ultrasonic wave as a means for detecting an object buried under the seabed, and can simultaneously realize necessary and sufficient ground permeability and distance resolution. The frequency range is determined experimentally. As the underground permeability, the specific geology at which the cable can be buried is specified, and the conditions that allow the cable to penetrate to 2 m or more, which is the maximum burial depth of the cable, or to 5 m required for geological exploration are clarified. The distance resolution is set to about 10 cm in consideration of the fact that the burial depth of the cable is 2 m. In addition, the spatial resolution enough to separate the thin cable from the stratum and the parametric sound source method as a method for realizing a small and highly mobile sound source are used, and the necessary and sufficient detection distance to identify the cable is clarified. At the same time, a sound source is scanned in a plane orthogonal to the cable as a search unit for separating the cable from the stratum from the change in the reflected sound pressure. The problem is solved by simultaneously satisfying the above specific methods.

【0007】[0007]

【作用】本発明は、二次周波数10〜30kHzのパラ
メトリック音源を用いることにより、軟い地質に対して
は、地中透過性(海底下約5m)、距離分解能10cm
程度、および空間分解能10cm程度で、海底に埋設さ
れたケーブルを探査できる。
According to the present invention, the use of a parametric sound source having a secondary frequency of 10 to 30 kHz allows the underground permeability (about 5 m below the seabed) and the distance resolution of 10 cm for soft geology.
The cable buried on the sea floor can be searched with a degree and a spatial resolution of about 10 cm.

【0008】[0008]

【実施例】以下図面を参照して本発明の実施例を詳細に
説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0009】図1は本発明の一実施例を示す構成説明図
である。図1中、1は水中艇、2はパラメトリック音源
および受波器、3はパラメトリック音源走査面、4は海
底面、5は埋設物(ケーブル)、Aは水中艇1の進行方
向、Bは鉛直方向、Lは水中艇1と海底面4間の距離
(数メートル)である。すなわち、海中に没するよう
に、水中艇1にはパラメトリック音源および受波器2が
搭載される。前記パラメトリック音源は二次周波数10
kHzから30kHzの音を海底面4に向けて発する。
前記受波器は前記パラメトリック音源の海底方向からの
反射音圧を受ける。前記パラメトリック音源を海中に鉛
直下向きに海底面4に向かい合うよう設置し、前記パラ
メトリック音源を海底面4から数mの高度を保って海底
面4に沿って海中を移動させつつ、移動方向に垂直な面
内を走査させ、受波器によって反射音圧の変化を測定す
る。
FIG. 1 is a structural explanatory view showing an embodiment of the present invention. In FIG. 1, 1 is an underwater boat, 2 is a parametric sound source and a wave receiver, 3 is a parametric sound source scanning surface, 4 is a seabed, 5 is an embedded object (cable), A is a traveling direction of the underwater boat 1, and B is a vertical direction. The direction, L, is the distance (several meters) between the underwater boat 1 and the sea floor 4. That is, a parametric sound source and a receiver 2 are mounted on the underwater boat 1 so as to be submerged in the sea. The parametric sound source has a secondary frequency of 10
A sound of kHz to 30 kHz is emitted toward the sea floor 4.
The receiver receives the reflected sound pressure of the parametric sound source from the seabed direction. The parametric sound source is installed vertically in the sea so as to face the sea bottom 4, and the parametric sound source is moved along the sea bottom 4 along the sea bottom 4 while maintaining an altitude of several meters from the sea bottom 4, and is perpendicular to the moving direction. The surface is scanned, and the change in the reflected sound pressure is measured by the receiver.

【0010】尚、上記実施例ではパラメトリック音源お
よび受波器2を水中艇1に搭載する場合について説明し
たが、パラメトリック音源および受波器を海中に没する
ように船腹に取付けるようにしても同様に実施すること
ができる。
In the above embodiment, the case where the parametric sound source and the receiver 2 are mounted on the underwater boat 1 has been described. However, the same applies when the parametric sound source and the receiver are mounted on the hull so as to be submerged in the sea. Can be implemented.

【0011】図2に超音波の周波数と距離分解能の関係
の一例を示す。水中ソナーの周波数は数10kHz以上
あり、海底面下には透過しない。海底油田などの地層探
査は数kHz以下であり、地下深く透過するが分解能は
悪い。10cm程度の距離分解能を得るには図中に点線
で示すとうり15kHz以上が必要と思われる。ケーブ
ル埋設深度探査には厳密に10cmの距離分解能が必要
ではないが、10cmオーダーの分解能を得るには10
kHz程度以上の周波数が必要なことがわかる。周波数
を増加するほど分解能は向上するが、その反面、海底下
に透過しにくくなる。透過特性は地質に依存するため、
具体的な地質についてどの程度まで周波数を増加できる
か実験を行った。ケーブル埋設は、通常高水圧ジェット
もしくは鍬による海底面開削により行われるので、埋設
できる地層は軟らかいものに自ずと限定される。図6に
海底ケーブルが埋設できる地質の分析結果、および地質
をサンプリングした海域の水深を示す。これらの地質に
おいて2m以上透過できる最大周波数を明らかにする必
要がある。
FIG. 2 shows an example of the relationship between the frequency of ultrasonic waves and the distance resolution. Underwater sonars have frequencies of tens of kHz or more and do not transmit below the sea floor. Underground exploration of offshore oil fields is below several kHz and penetrates deep underground but has poor resolution. In order to obtain a distance resolution of about 10 cm, it is considered that 15 kHz or more is necessary as indicated by a dotted line in the figure. A depth resolution of 10 cm is not strictly required for cable burial exploration.
It is understood that a frequency of about kHz or more is required. As the frequency increases, the resolution improves, but on the other hand, it becomes difficult to penetrate below the sea floor. Because the transmission characteristics depend on the geology,
An experiment was conducted to determine how much the frequency can be increased for specific geology. Since cable burial is usually carried out by digging the seabed with a high-pressure jet or a hoe, the geological layers that can be buried are naturally limited to soft ones. FIG. 6 shows the analysis results of the geology where the submarine cable can be buried, and the water depth of the sea area where the geology was sampled. It is necessary to clarify the maximum frequency that can pass 2 m or more in these geology.

【0012】一方、外径が10cm程度の海底ケーブル
を探知するには空間分解能も必要である。図3に空間分
解能の所要条件を示す。すなわち、10cm空間分解能
を実現するための、音源のセンサ直径Dと周波数の関係
を示す。音源とケーブルの距離Zは埋設深度を2m、海
底面とセンサの距離1mの和として3mと仮定した。図
中に示した振動子からの放射界の式を用いて計算した。
図中に点線で示すとうり20kHzでも音源のセンサ直
径は2m以上になり、小型な装置は実現できないことが
わかる。空間分解能を満足し、かつ小型のセンサを実現
するためパラメトリック音源を用いる。
On the other hand, in order to detect a submarine cable having an outer diameter of about 10 cm, a spatial resolution is also required. FIG. 3 shows the required conditions for the spatial resolution. That is, the relationship between the sensor diameter D of the sound source and the frequency for realizing a spatial resolution of 10 cm is shown. The distance Z between the sound source and the cable was assumed to be 3 m as the sum of the buried depth of 2 m and the distance of 1 m between the sea floor and the sensor. The calculation was performed using the equation of the radiation field from the vibrator shown in the figure.
As shown by the dotted line in the figure, even at 20 kHz, the sensor diameter of the sound source becomes 2 m or more, and it is understood that a small device cannot be realized. A parametric sound source is used to satisfy the spatial resolution and realize a small sensor.

【0013】図4にパラメトリック音源の概念図を示
す。すなわち、周波数f1とf2が僅かに異なる2つの
強力な一次波を水中で発生し、非線形効果によって水中
で合成される二次波のうち、f1とf2の差の周波数成
分をセンシングに用いる。これがパラメトリック音源法
と呼ばれている方法であり、図3に示したとうり一次波
を100kHz以上にすれば小型のセンサで指向性が良
好な超音波が得られ、二次波も一次波に準じた指向性が
得られることが知られている。また、一次波の共振領域
で周波数を変化させることで二次周波数を変化できるの
で、センサ構造を変えずに波長可変の音源を実現でき
る。実際に一次周波数を100〜130kHzの範囲で
変化できる直径40cmのセンサを試作した結果、二次
周波数10〜30kHz、指向角3度の極めて指向性の
良い、つまり空間分解能の良い超音波を得ることができ
た。図3に示したように、周波数を100kHz程度に
すれば、センサ直径40cmで、空間分解能は約10c
mを達成できることがわかる。なお、センサと物体の距
離が離れれば空間分解能が図中の式に従って劣化するの
は明らかなので、空間分解能を維持するには物体との距
離を維持することが必要である。具体的にはセンサを水
中艇等に搭載して、海底面までの距離を維持する必要が
ある。
FIG. 4 shows a conceptual diagram of a parametric sound source. That is, two strong primary waves with slightly different frequencies f1 and f2 are generated in water, and the frequency component of the difference between f1 and f2 among the secondary waves synthesized in water by the nonlinear effect is used for sensing. This is a method called a parametric sound source method. As shown in FIG. 3, if the primary wave is set to 100 kHz or more, an ultrasonic wave having a good directivity can be obtained with a small sensor, and the secondary wave is similar to the primary wave. It is known that a high directivity can be obtained. Further, since the secondary frequency can be changed by changing the frequency in the resonance region of the primary wave, a tunable sound source can be realized without changing the sensor structure. As a result of trial production of a sensor with a diameter of 40 cm that can change the primary frequency in the range of 100 to 130 kHz, it is possible to obtain an ultrasonic wave with a secondary frequency of 10 to 30 kHz and a very good directivity of a directional angle of 3 degrees, that is, a good spatial resolution. Was completed. As shown in FIG. 3, if the frequency is about 100 kHz, the sensor diameter is 40 cm and the spatial resolution is about 10 c.
It can be seen that m can be achieved. It is clear that if the distance between the sensor and the object increases, the spatial resolution deteriorates according to the equation in the figure. Therefore, it is necessary to maintain the distance to the object in order to maintain the spatial resolution. Specifically, it is necessary to mount the sensor on an underwater boat or the like to maintain the distance to the sea floor.

【0014】この音源を用いて、図6の地質において超
音波の透過損失を測定した結果を図7に示す。実験は図
6の地質をサンプリングした地点の真上にパラメトリッ
ク音源を設置した実験船を停泊させ、各周波数における
透過特性を測定した。透過特性は地質によってかなり異
なるが、一般的に周波数が高くなるほど悪くなる。物体
の反射波を検出できるか否かは次のソナー方程式により
推定できる。
FIG. 7 shows the result of measuring the transmission loss of the ultrasonic wave in the geology of FIG. 6 using this sound source. In the experiment, an experimental ship in which a parametric sound source was installed just above the point where the geology was sampled in FIG. 6 was anchored, and the transmission characteristics at each frequency were measured. Transmission characteristics vary considerably with geology, but generally worse at higher frequencies. Whether or not the reflected wave of the object can be detected can be estimated by the following sonar equation.

【0015】 EL=SL−W−C+TS (1) ここでELは受波レベル、SLは送波レベル、Wは音波
の水中減衰、Cは音波の土中減衰、TSは物体による反
射レベルである。ここで水中のノイズレベルをNLとす
ると、次式を満たすことが検出できる条件である。
EL = SL−W−C + TS (1) Here, EL is the reception level, SL is the transmission level, W is the underwater attenuation of the sound wave, C is the attenuation of the sound wave in the soil, and TS is the reflection level of the object. . Here, assuming that the underwater noise level is NL, it is a condition that the following equation can be satisfied.

【0016】 EL>NL (2) さて、(1)式において実用に足る送波素子であるPZ
Tを用いた場合のパラメトリック音源二次波のSLは1
70dB(re μPa at 1m)程度が実用上限
界である。ここで、「re μPa at 1m」と
は、マイクの振動子と被測定点との距離1mでの「レラ
ティブ マイクロパスカル」という単位である。また、
伝搬距離をL(m)とするとWは周波数によらず式
(3)で与えられる。L=3mとするとWは約10dB
となる。
EL> NL (2) Now, PZ which is a practically sufficient transmitting element in the equation (1)
The SL of the parametric sound source secondary wave when T is used is 1
The practical limit is about 70 dB (re μPa at 1 m). Here, “re μPa at 1 m” is a unit called “relative micropascal” at a distance of 1 m between the transducer of the microphone and the point to be measured. Also,
Assuming that the propagation distance is L (m), W is given by equation (3) regardless of the frequency. If L = 3m, W is about 10dB
Becomes

【0017】 W=20 log L (3) また、TSは物体の材質や形状、大きさによって異な
る。図8に試作パラメトリック音源を用いて通信用の鉄
線外装ケーブルのTSを測定した結果を示す。これより
TSは約−6dBであることがわかった。また、海中の
ELは通常100dBである。以上の結果を用いて
(2)式を満足するCの許容値を求めると C<170−10−6−100=54(dB) (4) 一方、土中減衰は周波数および距離に比例して大きくな
ると考えられ、図7に示したとうりケーブルを埋設可能
な地層においては0.15〜0.45dB/mkHzで
与えられる。従って深度2mつまり往復4mの土中減衰
が(4)式を満足できるようにするには、土中減衰の最
悪値0.45を用いて、周波数をfとするとf・4・
0.45<54より約30kHz以下の周波数にすれば
良いことがわかる。また、本発明の用途としては前述の
ケーブル探査の他、港湾工事やケーブル布設ルート調査
における地盤探査が考えられる。このような場合には図
6に示したような柔らかい地層については深度5m程度
まで探査できる能力が必要なので、f・10・0.45
<54より周波数は12kHz以下にすれば良いことが
わかる。先に図2で説明したように距離分解能として1
0cmオーダーを得るためにはfは10kHz以上にす
る必要があるので、両条件を満たすには周波数範囲は1
0〜30kHzに限定されることを見いだせた。
W = 20 log L (3) The TS differs depending on the material, shape, and size of the object. FIG. 8 shows the results of measuring the TS of an iron-coated cable for communication using a prototype parametric sound source. From this, it was found that TS was about -6 dB. The underwater EL is usually 100 dB. Using the above results, an allowable value of C that satisfies Equation (2) is obtained as follows: C <170-10-6-100 = 54 (dB) (4) On the other hand, soil attenuation is proportional to frequency and distance. It is considered to be larger, and is given at 0.15 to 0.45 dB / mkHz in the stratum where the cable can be embedded as shown in FIG. Therefore, in order to make the soil attenuation at a depth of 2 m, that is, 4 m round trip, satisfy the equation (4), the worst value of soil attenuation is 0.45, and the frequency is f.
From 0.45 <54, it can be seen that the frequency should be about 30 kHz or less. In addition, as an application of the present invention, ground exploration in harbor construction and cable laying route investigation can be considered in addition to the above-described cable exploration. In such a case, it is necessary to have a capability of detecting a soft stratum as shown in FIG. 6 to a depth of about 5 m.
It is understood from <54 that the frequency should be set to 12 kHz or less. As described above with reference to FIG.
Since f needs to be 10 kHz or more to obtain the order of 0 cm, the frequency range is 1 to satisfy both conditions.
It has been found that the frequency is limited to 0 to 30 kHz.

【0018】図5に試作装置による埋設ケーブル像(埋
設深度1m、水深26m)を示す。すなわち、試作装置
を用いて図6における地質No.3の地点において海底
面下1mに埋設された5mm外装ケーブルを探査した結
果を示す。図5は二次周波数10kHzにおける結果で
ある。実験は水深26mの海域において実験船の前後の
錨をおろして停船し、実験船の船腹に固定した試作パラ
メトリック音源を用いて反射強度を測定した。図中ケー
ブル真上と示した状態は、センサがケーブル真上にある
状態を示す。この時は地中1mにケーブル像が得られて
いる。一方、図5中に、センサをケーブル真上から1m
ずらした状態を示す。この時にはケーブル像が消えてい
る。再びセンサを真上に戻すと、再度ケーブル像が得ら
れている。この実験により、本試作装置により海底面下
に埋設されたケーブル像が得られることを確認できた。
ケーブル像は26.8mから27.3mの範囲に分布し
ているが、局部的には、ケーブル像は20cm程度の範
囲におさまっている。厳しくみて、実験時の船体動揺を
10cmと仮定すれば、距離分解能約10cmが違成さ
れていることがわかる。
FIG. 5 shows a buried cable image (buried depth 1 m, water depth 26 m) by the prototype device. In other words, the geological No. in FIG. The result of exploring the 5 mm armored cable buried 1 m below the sea floor at the point 3 is shown. FIG. 5 shows the result at the secondary frequency of 10 kHz. In the experiment, the anchor was lowered in front of and behind the experimental ship in the water area at a depth of 26 m, and the reflection intensity was measured using a prototype parametric sound source fixed to the side of the experimental ship. In the drawing, the state shown directly above the cable indicates a state where the sensor is directly above the cable. At this time, a cable image was obtained 1 m underground. On the other hand, in FIG.
This shows a shifted state. At this time, the cable image has disappeared. When the sensor is returned directly above, the cable image is obtained again. By this experiment, it was confirmed that the cable image buried under the sea bottom was obtained by this prototype device.
Although the cable image is distributed in the range of 26.8 m to 27.3 m, locally, the cable image is within a range of about 20 cm. Strictly speaking, assuming that the sway of the hull at the time of the experiment is 10 cm, it can be understood that the distance resolution is about 10 cm.

【0019】なお、水深26,27,および28mにし
めされた細い連続線は距離マーカーである。また、実験
では船の位置およびケーブル埋設時の位置は測定精度1
mのトランスポンダを用いて精密に測定して位置合わせ
を行った。
The thin continuous lines set at water depths 26, 27, and 28 m are distance markers. In the experiment, the position of the ship and the position when the cable was buried were
The measurement was performed accurately using a transponder of m and the alignment was performed.

【0020】上記の実験のように、ケーブルのような細
い埋設物でも、センサを真上に保持できれば、保持して
いる間は反射波を受信できる。しかし、センサを潜水艇
等に搭載する場合には、センサがケーブルの上を横切っ
て通過しても、瞬間的にケーブル像がえられるだけでノ
イズとの判別が難しい。また、ケーブルの場合は、埋設
ルートに沿って埋設深度を連続的に測定する必要があ
る。これらの課題を解決するため、図1に示すようにパ
ラメトリック音源および受波器2をケーブルルートなど
進行方向に直交する鉛直な面内で走査することによっ
て、地層からケーブルを連続的に抽出し、かつ埋設深度
を連続測定する機能を付加した。この機能により、前記
の課題を解決できた。
As in the above experiment, if a sensor can be held directly above even a thin embedded object such as a cable, a reflected wave can be received while the sensor is held. However, when the sensor is mounted on a submersible vehicle or the like, even if the sensor passes across the cable, it is difficult to determine the noise because only a cable image is obtained instantaneously. In the case of cables, it is necessary to continuously measure the burial depth along the burial route. To solve these problems, as shown in FIG. 1, the cable is continuously extracted from the stratum by scanning the parametric sound source and the receiver 2 in a vertical plane perpendicular to the traveling direction such as a cable route, A function to continuously measure the burial depth has been added. This function has solved the above-mentioned problem.

【0021】[0021]

【発明の効果】以上述べたように、従来は海底下数mま
でに埋設された物体を精度よく感知する方法が無かった
が、本発明によれば、海底下に埋設されたケーブルのよ
うな細い物体を海底面を開削することなく探知し、かつ
その深度を10cmオーダーの距離分解能で測定するこ
とが可能になった。また、本方法は、同時に海底面表層
近傍の地層を従来に比べ精度よく探査することも可能で
ある。従って、従来は地盤探査装置とケーブル探知器と
いう別個の装置が必要であった海底ケーブル埋設工事
を、本発明の方法を用いた1つの装置で達成することが
可能になり、経費面および設備面での節約が可能にな
る。
As described above, conventionally, there has been no method for accurately detecting an object buried up to several meters below the seabed. However, according to the present invention, there is no method for sensing a cable buried under the seabed. It has become possible to detect a thin object without digging the sea floor and measure its depth with a distance resolution of the order of 10 cm. In addition, this method can also simultaneously search the stratum near the sea bottom surface with higher accuracy than before. Accordingly, undersea cable burial work, which conventionally required separate devices such as a ground exploration device and a cable detector, can be achieved by a single device using the method of the present invention. Savings.

【0022】また、本方法により従来発見が困難であっ
た港湾周辺に残置された機電および沈没船、また古代の
遺跡等の非開削探知が可能になると期待される。
Further, it is expected that this method will enable undiscovered detection of electromechanical and sunken ships left around harbors and ancient archeological sites, which were conventionally difficult to find.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す構成説明図である。FIG. 1 is a configuration explanatory view showing one embodiment of the present invention.

【図2】本発明に係る超音波周波数と距離分解能の関係
の一例を示す特性図である。
FIG. 2 is a characteristic diagram showing an example of a relationship between an ultrasonic frequency and a distance resolution according to the present invention.

【図3】本発明に係る空間分解能達成のための音源セン
サ直径と周波数の関係の一例を示す特性図である。
FIG. 3 is a characteristic diagram showing an example of a relationship between a sound source sensor diameter and a frequency for achieving a spatial resolution according to the present invention.

【図4】本発明に係るパラメトリック音源の概念図であ
る。
FIG. 4 is a conceptual diagram of a parametric sound source according to the present invention.

【図5】本発明に係る試作装置による埋設ケーブル像の
一例を示す特性図である。
FIG. 5 is a characteristic diagram showing an example of a buried cable image by the prototype device according to the present invention.

【図6】本発明に係る海底ケーブルが埋設できる地質の
分析結果の一例を示す説明図である。
FIG. 6 is an explanatory diagram showing an example of an analysis result of geology in which a submarine cable according to the present invention can be buried.

【図7】図6の地質において超音波の透過特性を測定し
た結果の一例を示す説明図である。
FIG. 7 is an explanatory diagram showing an example of a result of measuring transmission characteristics of ultrasonic waves in the geology of FIG. 6;

【図8】本発明に係る試作パラメトリック音源を用いて
通信用の鉄線外装ケーブルのTSを測定した結果の一例
を示す説明図である。
FIG. 8 is an explanatory diagram showing an example of a result of measuring a TS of an iron-coated cable for communication using a prototype parametric sound source according to the present invention.

【符号の説明】[Explanation of symbols]

1…水中艇、2…パラメトリック音源および受波器、3
…パラメトリック音源走査面、4…海底面、5…埋設物
(ケーブル)。
1. Underwater boat, 2. Parametric sound source and receiver, 3.
... parametric sound source scanning plane, 4 ... sea bottom, 5 ... buried object (cable).

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01V 1/00 G01S 15/02 G01V 1/38 H03F 7/00 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01V 1/00 G01S 15/02 G01V 1/38 H03F 7/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一次周波数を100〜130kHzの範
囲で変化させ、二次周波数10kHzから30kHzの
パラメトリック音源を海中に鉛直下向きに海底面に向か
い合うよう設置し、前記音源を海底面に沿って移動させ
つつ、移動方向に垂直な面内を走査させ、受波器によっ
て反射音圧の変化を測定することを特徴とする海底埋設
物の探査方法。
(1) A primary frequency in a range of 100 to 130 kHz.
Varied enclosed, and installed so as to face the ocean floor vertically downward 30kHz parametric sound source from the secondary frequency 10kHz to the sea, the sound source while moving along the sea floor, is scanned a plane perpendicular to the direction of movement A method for exploring a buried undersea object, comprising measuring a change in reflected sound pressure by a receiver.
【請求項2】 パラメトリック音源を水中艇に搭載し、
海底面から数mの高度を保って海中を移動させることを
特徴とする請求項1記載の海底埋設物の探査方法。
2. A parametric sound source mounted on an underwater boat,
2. The method according to claim 1, wherein the object is moved in the sea while maintaining an altitude of several meters from the sea floor.
【請求項3】 海中に没するように、船腹あるいは水中
艇に取付けられた音源と受波器であって、一次周波数を
100〜130kHzの範囲で変化させ、二次周波数1
0kHzから30kHzの音を海底に向けて発し、海底
面に沿って移動させつつ、移動方向に垂直な面内を走査
させるパラメトリック音源と、該パラメトリック音源の
海底方向からの反射音圧を受ける受波器とから構成され
ることを特徴とする海底埋設物の探査装置。
3. A sound source and a receiver mounted on a flank or an underwater boat so as to be submerged in the sea, and have a primary frequency.
It is changed in the range of 100 to 130 kHz and the secondary frequency 1
The 30kHz of sound and departure towards the bottom of the sea from 0kHz, submarine
Scans in a plane perpendicular to the direction of movement while moving along the plane
Locator undersea buried objects characterized parametric sound source Ru is, that it is composed of a wave receiver for receiving a reflected sound pressure from the seabed direction of the parametric excitation.
JP24161794A 1994-10-05 1994-10-05 Method and apparatus for exploring undersea buried objects Expired - Fee Related JP3259544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24161794A JP3259544B2 (en) 1994-10-05 1994-10-05 Method and apparatus for exploring undersea buried objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24161794A JP3259544B2 (en) 1994-10-05 1994-10-05 Method and apparatus for exploring undersea buried objects

Publications (2)

Publication Number Publication Date
JPH08105976A JPH08105976A (en) 1996-04-23
JP3259544B2 true JP3259544B2 (en) 2002-02-25

Family

ID=17076997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24161794A Expired - Fee Related JP3259544B2 (en) 1994-10-05 1994-10-05 Method and apparatus for exploring undersea buried objects

Country Status (1)

Country Link
JP (1) JP3259544B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9255834B2 (en) 2011-06-15 2016-02-09 Textron Innovations Inc. System and method for detecting objects in a fluid system
DE102014100623B4 (en) 2014-01-21 2018-04-05 Thyssenkrupp Ag Apparatus and method for studying the seabed condition
JP7188717B1 (en) * 2022-03-14 2022-12-13 株式会社人材開発支援機構 Sludge thickness measuring method and sludge thickness measuring device

Also Published As

Publication number Publication date
JPH08105976A (en) 1996-04-23

Similar Documents

Publication Publication Date Title
Wunderlich et al. High-resolution echo-sounding and detection of embedded archaeological objects with nonlinear sub-bottom profilers
US20140104979A1 (en) Ground-Penetrating Tunnel-Detecting Active Sonar
RU2608301C2 (en) System and method for 3d examination of sea bottom for engineering survey
RU2670175C1 (en) Method of georadar survey of underwater linear objects
RU2424538C1 (en) Method of searching for mineral deposits using submarine geophysical vessel
JP3259544B2 (en) Method and apparatus for exploring undersea buried objects
RU2639728C1 (en) Data collection systems for maritime modification with coss and reception module
JP3374376B2 (en) Undersea exploration equipment
RU2356069C2 (en) Method of profiling bed loads
US5991236A (en) Method of measuring buried objects, geological formations and sediment properties
Grelowska et al. Acoustic imaging of selected areas of gdansk bay with the aid of parametric echosounder and side-scan sonar
Theuillon et al. High-resolution geoacoustic characterization of the seafloor using a subbottom profiler in the Gulf of Lion
Wada et al. Small-diameter directional borehole radar system with 3D sensing capability
JPH0820524B2 (en) Burial depth measuring device from detector of buried conductor
RU2791565C1 (en) Device for offshore electric probing of deposits of deep-sea polymetallic sulphides and method for its implementation
RU2050559C1 (en) Active sonar for detection of objects near bottom, on bottom and in near-surface layer of bottom
JPH10186048A (en) Measuring method and device for buried object, structure of stratum, and nature of deposit
Tarasov et al. Nonlinear acoustics methods in the investigations of elastic wave interactions in the ocean
KR102266458B1 (en) Seismic survey method at boundary between land and water area
Church et al. Sound methods: the necessity of high-resolution geophysical data for planning deepwater archaeological projects
Wunderlich et al. Advantages of parametric acoustics for the detection of the dredging level in areas with siltation
Tarasov et al. Low-frequency parametric systems in the shallow sea
RU2149424C1 (en) Active sonar for search of objects close to floor, on floor and in surface layer of floor
WO2024006127A2 (en) Continuous-wave radar system for detecting ferrous and non-ferrous metals in saltwater environments
Hu et al. The target comparison from different sidescan sonar system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071214

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees