WO1990013977A1 - Device for forming brightness signals in a color tv camera - Google Patents
Device for forming brightness signals in a color tv camera Download PDFInfo
- Publication number
- WO1990013977A1 WO1990013977A1 PCT/JP1990/000569 JP9000569W WO9013977A1 WO 1990013977 A1 WO1990013977 A1 WO 1990013977A1 JP 9000569 W JP9000569 W JP 9000569W WO 9013977 A1 WO9013977 A1 WO 9013977A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- luminance signal
- color
- signal
- primary color
- signals
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 claims abstract description 21
- 239000003086 colorant Substances 0.000 claims description 7
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 5
- 239000007787 solid Substances 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 14
- 238000001444 catalytic combustion detection Methods 0.000 description 13
- 230000005540 biological transmission Effects 0.000 description 6
- 101100115215 Caenorhabditis elegans cul-2 gene Proteins 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000003111 delayed effect Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 230000005457 Black-body radiation Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/80—Camera processing pipelines; Components thereof
- H04N23/84—Camera processing pipelines; Components thereof for processing colour signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/10—Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
- H04N25/11—Arrangement of colour filter arrays [CFA]; Filter mosaics
- H04N25/13—Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
- H04N25/134—Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
Definitions
- the present invention relates to a luminance signal generation device for a color television camera, and more particularly to a luminance signal generation device having a plurality of solid-state imaging devices and improving the resolution of the luminance signal in a color television camera using an imaging method in which spatial pixels are shifted. Related to the device.
- a three-color separation prism Die-Cloick's prism
- the three primary colors red R, green G, and blue B
- a three-panel type in which a solid-state imaging device such as a CCD corresponding to the above is converted into an electric signal to obtain three primary color signals.
- the solid-state imaging device is a set of discrete pixels, and the pixels are finitely arranged periodically at regular intervals. Because of this configuration, the resolution is improved by using a method called spatial pixel (picture element) shift.
- the pixels of the solid-state image sensor for red R and the pixels of the solid-state image sensor for blue B are horizontally shifted with respect to the pixels of the solid-state image sensor that extracts the green G signal.
- the pixels of red R or blue B and the signal of ⁇ G are alternately extracted, a signal in which the number of pixels is equivalently doubled is obtained, and the resolution is obtained. Will be improved.
- the luminance signal is created with the addition ratio of 0.30 R: 0.59G: 0.11B based on the above-mentioned rule, and the limit resolution level of the luminance signal is There was a problem that the best signal could not be obtained, and a false signal was generated.
- the present invention has been made in view of the above-described circumstances, and in a predetermined video band (for example, within a 4.2 MHz 2 video bandwidth of the NTSC system), the luminance signal generation is performed using three primary color ratios corresponding to standard white.
- a predetermined video band for example, a high frequency band exceeding the NTSC video bandwidth of 4.2 MHz
- a luminance signal of the best resolution corresponding to the spatial pixel shift amount can be obtained.
- a plurality of solid-state imaging devices are arranged so that pixels are spatially shifted, and incident light beams divided into color systems corresponding to the plurality of solid-state imaging devices are transmitted to the plurality of solid-state imaging devices.
- a color TV camera configured to obtain three primary color signals by converting each element to an electric signal
- each primary color signal is added at a three primary color ratio corresponding to reproduction of standard white and a luminance signal is added.
- the luminance signal generating device is configured to generate the luminance signal by adding the primary color signals at three primary color ratios corresponding to the pixel shift amount and the three primary color ratios corresponding to the pixel shift amount outside the predetermined video band.
- a luminance signal is created by adding each primary color signal at a ratio of three primary colors corresponding to reproduction of the standard white, and a luminance signal corresponding to the standard white is obtained.
- a luminance signal is created by adding each primary color signal at the three primary color ratios corresponding to the pixel shift amounts of the plurality of solid-state imaging elements at a time relationship ratio, and the best resolution in pixel shift is obtained. A luminance signal is obtained.
- the video bandwidth transmitted as a color television signal is specified as 4.2 MHz, and in this video bandwidth, an addition ratio (0.30 R: 0.59 G: 0) corresponding to the standard white color is used.
- a luminance signal is created by adding the three primary colors, and this luminance signal is output as it is as a color TV signal.However, before transmission, the high-frequency range exceeds the video bandwidth. Since there is no provision for the creation of a luminance signal at the time, each primary color signal is added at a time relationship ratio corresponding to the spatial pixel shift amount, and the Although a luminance signal reproduction error occurs with respect to the width, the best luminance signal resolution is obtained in the high frequency range.
- a luminance signal by adding each primary color signal at a time relationship ratio corresponding to the amount of spatial pixel shift, particularly in a band where the resolution is improved by spatial pixel shift. It is effective to use a high frequency rather than a video bandwidth of 4.2 MHz or more in PAL, SECAM, and high-definition (high-vision) systems. .
- FIG. 1 is a system block diagram showing one embodiment of the present invention.
- FIG. 2 is a state diagram showing an example of spatial pixel shifting.
- FIG. 3 is a diagram showing the time relationship of the output in the spatial pixel shift shown in FIG.
- FIG. 4 is a state diagram showing another example of spatial pixel shifting.
- FIG. 5 is a diagram showing the time relationship of the output in the spatial pixel shift shown in FIG.
- FIG. 1 shows an embodiment of a luminance signal generating apparatus according to the present invention for generating a luminance signal Y based on three primary color signals (R, G, B) of a color television camera.
- a dichroic prism-prism 2 is provided behind an imaging lens 1, and in this dichroic prism 'prism 2, the incident light rays are red R, green G, and blue B. It is divided into primary color systems.
- the solid-state image sensors are located at the imaging positions of these independent three primary color optical paths.
- the three CCDs 3, 4, and 5 are arranged, and the three primary colors are converted into electric signals by these three CCDs 3, 4, and 5, respectively.
- FIG. 1 shows only a hardware configuration that creates a luminance signal Y based on the three primary color signals output from the CCDs 3, 4, and 5, and in an NTSC-type power television, In addition, a configuration is provided to create a color difference symbol from the luminance signal Y and the red R and blue B signals.
- the luminance signal generator for a color TV camera shown in Fig. 1 adds R, G, and ⁇ three primary color signals at a predetermined addition ratio (0.30R: 0.59G: 0.11B) specified in the NTSC system.
- a first mix amplifier 6 for generating a normal luminance signal Y is provided.
- the luminance signal Y is created with this addition ratio in a video bandwidth of 4.2 MHz.
- the addition ratio for creating the luminance signal Y is not specified, and 0.30R: 0.59G: 0. There is no need to create a luminance signal Y with a ratio of 11 ⁇ . For this reason, in a high frequency range exceeding the video bandwidth of 4.2 MHz, the luminance signal Y is generated at an addition ratio different from the 0.30R: 0.59G: 0.11B addition ratio to obtain the best resolution.
- the luminance signal Y written in the first Mi Kkusuanpu 6, brightness created by the second Mi Kkusua amplifier 7 which has passed through the highpass Luther 8 The signal Y ′ is added.
- the luminance signal generation device having the above configuration, when the video bandwidth of the NTSC system is within 4.2MH2, the luminance signal Y generated by the first mix amplifier 6 with the addition ratio of 0.30 R: 0.59G: 0.11B is obtained.
- the output ratio is corrected as is in the first mix amplifier 6 when the video bandwidth exceeds 4.2 MHz, and the final luminance signal Y is corrected. Will be output.
- the CCDs 3, 4, and 5 provided corresponding to the three primary colors use a method generally called spatial pixel (picture element) shifting to improve the resolution.
- the CCD 3 pixel for red R and the CCD 5 pixel for blue B are mechanically displaced from the CCD 4 pixel for extracting the green G signal by a pixel in the horizontal direction.
- the red R or blue B signal and the ⁇ G signal are alternately extracted, a signal in which the number of pixels is doubled is equivalently obtained, and the resolution is improved.
- the luminance signal Y created by this addition ratio is used. Although it is not possible to output within the video bandwidth of 4.2 MHz, the luminance signal Y is created with the above addition ratio 0.25 R: 0.50 G: 0.25 B in the band exceeding the video bandwidth of 4.2 MHz before transmission. This does not violate the provisions of the NTSC system.
- the luminance signal Y is created with the addition ratio 0.25R: 0.50G: 0.25B so that the highest resolution can be obtained in the high frequency range while complying with the NTSC standard.
- the luminance signal Y is generated when the video bandwidth exceeds 4.2 MHz in B.
- the ratio of the second mix amplifier 7 may be changed.
- the spatial CCDs of the three CCDs 3, 4, and 5 may be shifted by 1Z3 pixel periods X in some cases.
- the output E z of the CCD 3 for the red R signal is delayed by XZ 3 when the pixel period is X, with respect to the output E of the CCD 4 for the green G signal.
- the output E 3 of the CCD 5 for the blue B signal lags the output E 2 of the CCD 3 for the red R signal by X / 3. Therefore, in this case, the time relationship is as shown in Fig. 5.
- the video signal ratio should be set in the second mix pump 7 so that the luminance signal Y is created at 0.33R: 0.50G: 0.17B when the video bandwidth exceeds 4.2 MHz. Good.
- a color television camera having three solid-state imaging devices has been described. However, the incident light is color-divided into two systems of red, blue, and green by a prism, and the solid-state imaging of two plates is performed. A green signal is obtained from one of the solid-state imaging devices, and two red and blue signals are extracted as dot-sequential signals by the other solid-state imaging device equipped with a red and blue color stripe filter.
- the two-plate type configured may be used.
- the luminance signal is created by adding each primary color signal at a time relation ratio corresponding to the spatial pixel shift amount in a high frequency region exceeding the NTSC video bandwidth of 4.2 MHz2. Since the creation of such a luminance signal is particularly effective for a band whose resolution is improved by shifting spatial pixels (for example, a frequency band of 6 to 7 MH2 or higher, which is higher than 4.2 MHz), the video bandwidth of the NTSC system is 4.2 MHz. It is effective to operate from a higher frequency instead of the above frequency, and it can be implemented in the PAL system, SECAM system, and high-definition system (high vision).
- the three primary color ratios (0.30 R: 0.59 G: 0.11 B in the NTSC system) corresponding to the reproduction of standard white are used.
- a luminance signal is created by adding each of the primary color signals, and a luminance signal is created at a time relationship ratio corresponding to the amount of spatial pixel shift outside of the predetermined video band. While creating a luminance signal in accordance with the above, it is possible to create a luminance signal with an addition ratio that provides the best resolution for high frequencies exceeding the video bandwidth. Resolution is improved.
- the luminance signal generating apparatus for a color television camera can improve the resolution in a high frequency region exceeding the video bandwidth, especially in a color television camera in which spatial pixels are shifted. It can enhance the performance of color TV cameras and, in turn, enhance its commercial value, which is extremely effective.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Processing Of Color Television Signals (AREA)
- Color Television Image Signal Generators (AREA)
Abstract
A device for forming brightness signals in a color TV camera in which a plurality of solid imaging elements are so arranged that the pixels are spatially deviated. In the bands other than a predetermined video band where primary color signals are added up at a three primary color ratio corresponding to the reproduction of a standard white color to form brightness signals, the primary color signals are added up at a ratio of time relations corresponding to the deviated amount of pixels to form brightness signals in order to obtain a high resolution that could not be obtained with a three primary color ratio corresponding to the reproduction of the standard white color in the bands other than the above video band thereby to improve the resolution in a high-frequency band before the signals are transmitted as TV signals.
Description
明 細 書 Specification
カラーテレビカメ ラにおける輝度信号作成装置 Luminance signal generator for color TV cameras
〈技術分野〉 <Technical field>
本発明は、 カラーテレビカメ ラにおける輝度信号作成装置に関し、 特に固体撮像素子を複数備え、 かつ、 空間画素ずらしの撮像方式を 用いたカラーテレビカメ ラにおいて輝度信号の解像度を向上させた 輝度信号作成装置に関する。 The present invention relates to a luminance signal generation device for a color television camera, and more particularly to a luminance signal generation device having a plurality of solid-state imaging devices and improving the resolution of the luminance signal in a color television camera using an imaging method in which spatial pixels are shifted. Related to the device.
〈背景技術〉 <Background technology>
カラーテレビカメ ラとしては、 撮像レンズの後ろに 3色分解プリ ズム (ダイ ク ロイ ツク ' プリズム) を設け、 このプリ ズムで分割さ れる 3原色 (赤 R , 緑 G , 青 B ) を、 それぞれに対応した C C D等 の固体撮像素子で電気信号に変換して、 3原色信号を得るようにし た 3板式のものが広く知られている。 As a color TV camera, a three-color separation prism (Die-Cloick's prism) is provided behind the imaging lens, and the three primary colors (red R, green G, and blue B) divided by this prism are respectively used. There is widely known a three-panel type in which a solid-state imaging device such as a CCD corresponding to the above is converted into an electric signal to obtain three primary color signals.
ところで、 上記のように 3板の固体撮像素子を用いた力ラーテレ ビカメ ラでは、 固体撮像素子が離散的な画素の集合であり、 また、 その画素は一定の間隔で周期的に配列された有限の開口部をもつて いる構成であるため、 空間画素 (絵素) ずらしと呼ばれている手法 を用い、 解像度を向上させるようにしているものがある。 By the way, as described above, in the force camera using three solid-state imaging devices, the solid-state imaging device is a set of discrete pixels, and the pixels are finitely arranged periodically at regular intervals. Because of this configuration, the resolution is improved by using a method called spatial pixel (picture element) shift.
即ち、 例えば第 2図に示すように、 緑 Gの信号を取り出す固体撮 像素子の画素に対して、 赤 R用の固体撮像素子及び青 B用の固体撮 像素子の画素が水平方向に ½画素だけずれるように機械的に配置す ることにより、 赤 R又は青 Bの信号と綠 Gの信号とを交互に取り出 すと等価的に画素が 2倍に増加した信号が得られ、 解像度が向上す るものである。 That is, as shown in FIG. 2, for example, the pixels of the solid-state image sensor for red R and the pixels of the solid-state image sensor for blue B are horizontally shifted with respect to the pixels of the solid-state image sensor that extracts the green G signal. By mechanically arranging the pixels so that they are shifted by the pixel, if the signal of red R or blue B and the signal of 綠 G are alternately extracted, a signal in which the number of pixels is equivalently doubled is obtained, and the resolution is obtained. Will be improved.
ここで、 第 2図に示すような空間画素ずらしを行った場合に、 3
原色信号を加算して得られる輝度信号の解像度が最良となる加算比 は、 赤 R及び青 Bを取り出す固体撮像素子の画素が、 緑 Gを取り出 す固体撮像紫蘇の画素に対して水平方向に 画素だけずれているか ら、 緑 G信号に対して赤 R及び青 B信号が 180° の位相遅れとなつ て (第 5図参照) 、 G = R十 Bとなる。 Here, when spatial pixel shift as shown in Fig. 2 is performed, 3 The addition ratio at which the resolution of the luminance signal obtained by adding the primary color signals is the best is that the pixels of the solid-state image sensor that extracts red R and blue B are in the horizontal direction with respect to the pixels of the solid-state imaging device that extracts green G. Therefore, since the red R and blue B signals have a 180 ° phase delay with respect to the green G signal (see Fig. 5), G = R10B.
しかしながら、 前記 3原色 (赤 R, 緑 G, 青 B ) で標準白色 (力 ラーテレビの送信側の基準として使用される白色で、 色座標が X - 0.310, y =0.316 で与えられる 6740K の黒体放射光の白色) を再 生する各原色の輝度の比は、 0.30R : 0.59G : 0.11 Bで表されるた め、 輝度信号と色差信号とを伝送する N T S C方式 (Natinal Tele- - vision System Comittee) 方式のカラ一テレビ放送では、 この比率 に基づいて各原色信号を加算して輝度信号を作成することが規定さ れている。 このため、 前述のように空間面素ずらしが行われるもの でも、 前記規定に基づいて 0.30 R : 0.59G : 0.11Bの加算比で輝度 信号が作成されており、 輝度信号の限界解像レベルを最良に得るこ とができず、 また、 偽信号を発生するという問題があった。 However, with the three primary colors (red R, green G, blue B), a standard white (white color used as a reference on the color television transmission side), a 6740K black color coordinate given by X-0.310, y = 0.316 The luminance ratio of each primary color that reproduces the white light of body radiation is expressed as 0.30R: 0.59G: 0.11B, so the NTSC system (Natinal Tele-vision) that transmits the luminance signal and the color difference signal In the color television broadcasting of the System Committee) system, it is specified that a luminance signal is created by adding each primary color signal based on this ratio. For this reason, even in the case where the spatial displacement is performed as described above, the luminance signal is created with the addition ratio of 0.30 R: 0.59G: 0.11B based on the above-mentioned rule, and the limit resolution level of the luminance signal is There was a problem that the best signal could not be obtained, and a false signal was generated.
ところが、 標準白色の再生に準拠した前記加算比 0.30 R : 0.59G : 0.11 Bの規定は、 NT S C方式における映像帯域幅 4.2MHz内で規 定されるものであって、 映像帯域幅 4.2MHzを越える帯域で標準白色 に対応した前記加算比を遵守する必要はない。 However, the above-mentioned addition ratio of 0.30 R: 0.59G: 0.11 B based on standard white reproduction is specified within the 4.2 MHz video bandwidth in the NTSC system, and the It is not necessary to comply with the above-mentioned addition ratio corresponding to the standard white in the band exceeding.
本発明は上記のような実情に鑑みなされたものであり、 所定の映 像帯域 (例えば NT S C方式の映像帯域幅 4.2MH2内) では、 輝度信 号作成を標準白色に対応した 3原色比で行いつつ、 前記所定の映像 帯域以外 (例えば N T S C方式の映像帯域幅 4.2MHzを越える高域) では空間画素ずらし量に対応した最良解像度の輝度信号が得られる
ようにして、 送信前のカラーテレビ信号における輝度信号の解像度 を向上させることを目的とする。 The present invention has been made in view of the above-described circumstances, and in a predetermined video band (for example, within a 4.2 MHz 2 video bandwidth of the NTSC system), the luminance signal generation is performed using three primary color ratios corresponding to standard white. In other than the above-mentioned predetermined video band (for example, a high frequency band exceeding the NTSC video bandwidth of 4.2 MHz), a luminance signal of the best resolution corresponding to the spatial pixel shift amount can be obtained. Thus, it is an object to improve the resolution of a luminance signal in a color television signal before transmission.
〈発明の開示〉 <Disclosure of the Invention>
このため本発明では、 複数の固体撮像素子を空間的に画素がずれ るようにして配置し、 これらの複数の固体撮像素子に対応する色系 統に分割された入射光線を前記複数の固体撮像素子それぞれで電気 信号に変換して 3原色信号を得る構成のカラーテレビカメ ラにおい て、 所定の映像帯域では標準白色の再生に対応した 3原色比で各原 色信号を加算して輝度信号を作成し、 前記所定の映像帯域以外では 前記画素ずらし量に対応した時間関係比の 3原色比で各原色信号を 加算して輝度信号を作成するようにして輝度信号作成装置を構成し た。 For this reason, in the present invention, a plurality of solid-state imaging devices are arranged so that pixels are spatially shifted, and incident light beams divided into color systems corresponding to the plurality of solid-state imaging devices are transmitted to the plurality of solid-state imaging devices. In a color TV camera configured to obtain three primary color signals by converting each element to an electric signal, in a predetermined video band, each primary color signal is added at a three primary color ratio corresponding to reproduction of standard white and a luminance signal is added. The luminance signal generating device is configured to generate the luminance signal by adding the primary color signals at three primary color ratios corresponding to the pixel shift amount and the three primary color ratios corresponding to the pixel shift amount outside the predetermined video band.
かかる構成によると、 所定の映像帯域では、 標準白色の再生に応 じた 3原色の比で各原色信号を加算して輝度信号が作成され、 前記 標準白色に対応した輝度信号が得られるのに対し、 前記所定の映像 帯域以外では、 複数の固体撮像素子の画素ずらし量に対応した時間 関係比の 3原色比で各原色信号を加算して輝度信号が作成され、 画 素ずらしにおける最良解像度の輝度信号が得られる。 According to such a configuration, in a predetermined video band, a luminance signal is created by adding each primary color signal at a ratio of three primary colors corresponding to reproduction of the standard white, and a luminance signal corresponding to the standard white is obtained. On the other hand, outside the predetermined video band, a luminance signal is created by adding each primary color signal at the three primary color ratios corresponding to the pixel shift amounts of the plurality of solid-state imaging elements at a time relationship ratio, and the best resolution in pixel shift is obtained. A luminance signal is obtained.
即ち、 例えば N T S C方式では、 カ ラーテレビ信号として送信さ れる映像帯域幅が 4. 2MHzに規定され、 この映像帯域幅では標準白色 に応じた加算比 (0. 30 R : 0. 59 G : 0. 11 B ) で 3原色を加算して輝 度信号が作成され、 この輝度信号がそのままカラーテレビ信号とし て出力されるが、 送信される前の段階においては、 映像帯域幅を越 える高域での輝度信号の作成を規定するものがないから、 空間画素 ずらし量に対応する時間関係比で各原色信号を加算して、 映像帯域
幅に対して輝度信号再現誤差を生じるものの、 高域で最良の輝度信 号解像度が得られるようにした。 That is, for example, in the NTSC system, the video bandwidth transmitted as a color television signal is specified as 4.2 MHz, and in this video bandwidth, an addition ratio (0.30 R: 0.59 G: 0) corresponding to the standard white color is used. In 11B), a luminance signal is created by adding the three primary colors, and this luminance signal is output as it is as a color TV signal.However, before transmission, the high-frequency range exceeds the video bandwidth. Since there is no provision for the creation of a luminance signal at the time, each primary color signal is added at a time relationship ratio corresponding to the spatial pixel shift amount, and the Although a luminance signal reproduction error occurs with respect to the width, the best luminance signal resolution is obtained in the high frequency range.
また、 空間画素ずらし量に対応する時間関係比で各原色信号を加 算して輝度信号を作成することは、 空間画素ずらしによつて解像度 を向上させた帯域について特に有効であるから、 N T S C方式にお ける映像帯域幅が 4. 2MHz以上から行うのではなく、 もつと高い周波 数から行っても効果があり、 P A L方式, S E C A M方式, 高品位 方式 (ハイ ビジョ ン) においても実施可能である。 In addition, it is particularly effective to add a luminance signal by adding each primary color signal at a time relationship ratio corresponding to the amount of spatial pixel shift, particularly in a band where the resolution is improved by spatial pixel shift. It is effective to use a high frequency rather than a video bandwidth of 4.2 MHz or more in PAL, SECAM, and high-definition (high-vision) systems. .
〈図面の簡単な説明〉 <Brief description of drawings>
第 1図は本発明の一実施例を示すシステムブロ ック図である。 第 2図は空間画素ずらしの一例を示す状態図である。 FIG. 1 is a system block diagram showing one embodiment of the present invention. FIG. 2 is a state diagram showing an example of spatial pixel shifting.
第 3図は第 2図示の空間画素ずらしにおける出力の時間関係を示 す線図である。 FIG. 3 is a diagram showing the time relationship of the output in the spatial pixel shift shown in FIG.
第 4図は空間画素ずらしの他の例を示す状態図である。 FIG. 4 is a state diagram showing another example of spatial pixel shifting.
第 5図は第 4図示の空間画素ずらしにおける出力の時間関係を示 す線図である。 FIG. 5 is a diagram showing the time relationship of the output in the spatial pixel shift shown in FIG.
〈発明の実施例〉 <Example of the invention>
以下に本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described.
第 1図は、 カ ラーテレビカメ ラの 3原色信号 ( R , G , B ) に基 づいて輝度信号 Yを作成する本発明にかかる輝度信号作成装置の一 実施例を示す。 FIG. 1 shows an embodiment of a luminance signal generating apparatus according to the present invention for generating a luminance signal Y based on three primary color signals (R, G, B) of a color television camera.
この第 1図において、 撮像レンズ 1 の後ろにダイ ク ロイ ツク - プ リ ズム 2が設けられ、 このダイ ク ロイ ツク ' プリ ズム 2で、 入射光 線が赤 R , 緑 G , 青 Bの 3原色の色系統に分割される。 そして、 こ れらの独立した 3原色の光路の結像位置に、 それぞれ固体撮像素子
として 3板の C C D 3 , 4 , 5を配置してあり、 これらの 3板の C C D 3 , 4 , 5により 3原色がそれぞれ電気信号に変換される。 In FIG. 1, a dichroic prism-prism 2 is provided behind an imaging lens 1, and in this dichroic prism 'prism 2, the incident light rays are red R, green G, and blue B. It is divided into primary color systems. The solid-state image sensors are located at the imaging positions of these independent three primary color optical paths. The three CCDs 3, 4, and 5 are arranged, and the three primary colors are converted into electric signals by these three CCDs 3, 4, and 5, respectively.
N T S C方式のカラーテレビにおいては、 カメ ラから取り出した 3原色信号をそのままの形で送信するのではな く、 明るさを表す輝 度信号 Yと色あいを表す色差信号に作り変え、 白黒テレビと同じ伝 送系で送信するようにしている。 このため、 第 1 図では、 C C D 3 , 4 , 5から出力される 3原色信号に基づいて輝度信号 Yを作成する ハー ドウェァ構成のみを示してある力く、 N T S C方式の力ラーテレ ビにおいては、 この他に輝度信号 Yと赤 R , 青 Bの信号とから色差 ί言号を作り出す構成を備えている。 In NTSC color television, the three primary color signals extracted from the camera are not transmitted as they are, but instead converted into a luminance signal Y representing brightness and a color difference signal representing hue, which is the same as a monochrome television. It is transmitted by the transmission system. For this reason, FIG. 1 shows only a hardware configuration that creates a luminance signal Y based on the three primary color signals output from the CCDs 3, 4, and 5, and in an NTSC-type power television, In addition, a configuration is provided to create a color difference symbol from the luminance signal Y and the red R and blue B signals.
第 1図に示すカラーテレビカメ ラにおける輝度信号作成装置では、 R , G , Βの 3原色信号を、 N T S C方式で規定されている所定の 加算比 (0.30R : 0.59G : 0.11B ) で加えて通常の輝度信号 Yを作 り出す第 1 ミ ックスアンプ 6が設けられている。 前記加算比 0.30 R : 0.59G : 0.11 Bは、 標準白色 (カラーテレビの送信側の基準とし て使用される白色で、 色座標が x =0.310, y =0.316 で与えられ る 6740Kの黒体放射光の白色)を再生する各原色の輝度の比に対応す るものであり、 N T S C方式のカラーテレビでは映像帯域幅 4.2MHz でこの加算比で輝度信号 Yを作成することが規定されている。 The luminance signal generator for a color TV camera shown in Fig. 1 adds R, G, and 原 three primary color signals at a predetermined addition ratio (0.30R: 0.59G: 0.11B) specified in the NTSC system. A first mix amplifier 6 for generating a normal luminance signal Y is provided. The addition ratio 0.30 R: 0.59 G: 0.11 B is standard white (white used as a reference on the transmitting side of a color television, black body radiation of 6740K given by the color coordinates x = 0.310, y = 0.316). It corresponds to the ratio of the luminance of each primary color that reproduces (white of light). In the NTSC color television, it is specified that the luminance signal Y is created with this addition ratio in a video bandwidth of 4.2 MHz.
しかしながら、 映像帯域幅 4.2MHzを越える高域は実際のテレビ送 信には用いられないため、 輝度信号 Yを作成するための加算比が規 定されてな く、 0.30R : 0.59G : 0·11Βの比で輝度信号 Yを作成す る必要はない。 このため、 映像帯域幅 4.2MHzを越える高域で、 前記 0.30R : 0.59G : 0.11Bの加算比とは異なる加算比で輝度信号 Yを 作成して最良の解像度を得るための構成として、 第 2 ミ ックスア ン
プ 7 , ノヽィパスフィ ルター 8 , 第 3 ミ ッ クスアンプ 9を設けてある c 前記第 2 ミ ックスアンプ 7 は、 第 1 ミ ックスアンプと異なる加算 比で 3原色信号を加算して輝度信号 Y ' を作成するものであり、 前 記ハィパスフ ィ ルタ一 8 は、 4.2 MHzを越えるときには第 2 ミ ックス アンプ 7で作成された輝度信号 Y' を通過させ、 4.2MHz以下では第 2 ミ ッ クスアンプ 7からの輝度信号 Y' を通過させないものである c また、 第 3 ミ ッ クスアンプ 9 は、 第 1 ミ ックスアンプ 6で作成され た輝度信号 Yと、 ハイパスフィ ルター 8を通過した第 2 ミ ックスァ ンプ 7で作成された輝度信号 Y ' とを加算するものである。 However, since the high frequency band exceeding the video bandwidth of 4.2 MHz is not used for actual television transmission, the addition ratio for creating the luminance signal Y is not specified, and 0.30R: 0.59G: 0. There is no need to create a luminance signal Y with a ratio of 11Β. For this reason, in a high frequency range exceeding the video bandwidth of 4.2 MHz, the luminance signal Y is generated at an addition ratio different from the 0.30R: 0.59G: 0.11B addition ratio to obtain the best resolution. 2 Mix Ann Flop 7, Nono Ipasufi Luther 8, wherein c third is provided with a mission-Kusuanpu 9 second Mi Kkusuanpu 7 creates a luminance signal Y 'by adding the three primary color signals at different addition ratio first Mi Kkusuanpu The high-pass filter 18 passes the luminance signal Y 'created by the second mix amplifier 7 when the frequency exceeds 4.2 MHz, and passes the luminance signal from the second mix amplifier 7 when the frequency exceeds 4.2 MHz. those that do not pass through the Y 'c the third mission-Kusuanpu 9, the luminance signal Y written in the first Mi Kkusuanpu 6, brightness created by the second Mi Kkusua amplifier 7 which has passed through the highpass Luther 8 The signal Y ′ is added.
従って、 上記構成の輝度信号作成装置によると、 N T S C方式の 映像帯域幅 4.2MH2内にあるときには、 第 1 ミ ックスアンプ 6で 0.30 R : 0.59G : 0.11 Bの加算比で作成された輝度信号 Yがそのまま出 力されるのに対し、 映像帯域幅 4.2MHzを越えるときには、 第 2 ミ ツ クスア ンプ 7 における加算比で第 1 ミ ッ クスアンプ 6での加算比が 補正されて最終的な輝度信号 Yが出力されるこ とになる。 Therefore, according to the luminance signal generation device having the above configuration, when the video bandwidth of the NTSC system is within 4.2MH2, the luminance signal Y generated by the first mix amplifier 6 with the addition ratio of 0.30 R: 0.59G: 0.11B is obtained. When the video bandwidth exceeds 4.2 MHz, the output ratio is corrected as is in the first mix amplifier 6 when the video bandwidth exceeds 4.2 MHz, and the final luminance signal Y is corrected. Will be output.
ここで、 3原色に対応して設けられた C C D 3 , 4 , 5 は、 空間 画素 (絵素) ずらしと一般に呼ばれている手法を用い、 解像度を向 上させるようにしている。 即ち、 例えば第 2図に示すように、 緑 G 信号を取り出す C C D 4の画素に対し、 赤 R用の C C D 3及び青 B 用の C C D 5 の画素が、 水平方向に 画素だけずれるように機械的 に配置することにより、 赤 R又は青 Bの信号と綠 Gの信号とを交互 に取り出すと等価的に画素が 2倍に増加した信号が得られ、 解像度 が向上するようにしている。 Here, the CCDs 3, 4, and 5 provided corresponding to the three primary colors use a method generally called spatial pixel (picture element) shifting to improve the resolution. In other words, as shown in FIG. 2, for example, the CCD 3 pixel for red R and the CCD 5 pixel for blue B are mechanically displaced from the CCD 4 pixel for extracting the green G signal by a pixel in the horizontal direction. When the red R or blue B signal and the 綠 G signal are alternately extracted, a signal in which the number of pixels is doubled is equivalently obtained, and the resolution is improved.
第 2図に示すように、 空間画素ずらしを行っている場合には、 緑 Gの信号用の C C D 4 の出力に対し、 赤 R用の C C D 3及び青 B用
の C C D 5 の出力は、 画素周期を Xとすると XZ 2だけ遅れること になる (緑 G信号に対して 180 ° だけ遅れることになる) から、 各 C C D 3 , 4 , 5の出力を E ^ E h E s とすると、 第 3図に示すよ うな時間閬係となる。 As shown in Fig. 2, when spatial pixel shifting is performed, the output of CCD 4 for red G and the output of CCD 3 for red R and blue B Since the output of CCD 5 is delayed by XZ 2 when the pixel period is X (it is delayed by 180 ° with respect to the green G signal), the output of each CCD 3, 4, 5 is E ^ E If h E s, the time relationship is as shown in FIG.
従って、 第 2図の空間画素ずらしの場合には、 0.25R : 0.50G : 0.25B ( G - R + B ) の加箕比で輝度信号 Yを作成すれば、 画素ず らしによる時間誤差を吸収することができ、 輝度信号 Yの解像度を 最良に得ることができる。 Therefore, in the case of the spatial pixel shift shown in Fig. 2, if the luminance signal Y is created with the addition ratio of 0.25R: 0.50G: 0.25B (G-R + B), the time error due to pixel shift will be absorbed. It is possible to obtain the best resolution of the luminance signal Y.
但し、 前記加算比 0.25 R : 0.50G : 0.25Bは、 N T S C方式で規 定される輝度信号の加箕比 0.30 R : 0.59G : 0.11 B と異なるため、 この加算比で作成した輝度信号 Yを映像帯域幅 4.2MHz内で出力させ ることはできないが、 送信前の段階で映像帯域幅 4.2MHzを越える帯 域では、 前記加算比 0.25 R : 0.50G : 0.25 Bで輝度信号 Yを作成す ることは N T S C方式の規定に反するものではない。 However, since the addition ratio 0.25 R: 0.50 G : 0.25 B is different from the luminance signal addition ratio 0.30 R: 0.59 G: 0.11 B specified in the NTSC system, the luminance signal Y created by this addition ratio is used. Although it is not possible to output within the video bandwidth of 4.2 MHz, the luminance signal Y is created with the above addition ratio 0.25 R: 0.50 G: 0.25 B in the band exceeding the video bandwidth of 4.2 MHz before transmission. This does not violate the provisions of the NTSC system.
このため、 本実施例における輝度信号作成装置では、 N T S C方 式の映像帯域幅 4.2MHz内では、 Y =0.30R : 0.59G : 0.11 Bで輝度 信号 Yを作成し、 映像帯域幅 4.2MHzを越える高域では、 前記加算比 0.25R : 0.50G : 0.25 Bで輝度信号 Yを作成して、 N T S C方式の 規定に対応しつつ、 高域で最良の解像度が得られるようにしている。 For this reason, in the luminance signal generating apparatus of the present embodiment, within the NTSC video bandwidth of 4.2 MHz, the brightness signal Y is generated at Y = 0.30R: 0.59G: 0.11 B, and the video bandwidth exceeds 4.2 MHz. In the high frequency range, the luminance signal Y is created with the addition ratio 0.25R: 0.50G: 0.25B so that the highest resolution can be obtained in the high frequency range while complying with the NTSC standard.
具体的には、 映像帯域幅 4.2MHzを越える帯域であって、 第 2 ミ ッ クスアンプ 7からの輝度信号 Y ' が第 3 ミ ックスアンプ 9に入力さ れるときに、 第 3 ミ ックスアンプ 9において Y = 0.25 R : 0.50 G : 0.25Bなる関係が成立すれば良いから、 第 1 ミ ッ クスアンプ 6から の輝度信号 Yと第 2 ミ ッ クスア ンプ 7からの輝度信号 Y ' との加算 値が Y =0.25R : 0.50 G : 0.25B となれば良いことになる。 第 1 ミ
ックスアンプ 6における Y = 0.30 R : 0.59G : 0.11 Bは変更できな いので、 第 2 ミ ッ ク スア ンプ 7における輝度信号 Y ' を、 Y ' =— 0.05R— 0.09G +0.14Bなる加算比で作成すれば、 第 3 ミ ッ ク スァ ンプ 9で Y = 0.30 R : 0.59G : 0.11Bと Y' =— 0.05 R— 0.09 G十 0.14Bとを加算した結果が、 Y -0.25R : 0.50G : 0.25Bとなって、 第 2図に示すような空間画素ずらしを行ったときの映像帯域幅 4.2MHz を越える高域で輝度信号が最良解像度となる。 More specifically, when the luminance signal Y ′ from the second mix amplifier 7 is input to the third mix amplifier 9 when the video bandwidth exceeds 4.2 MHz, Y = Since the relationship of 0.25 R: 0.50 G: 0.25 B only needs to be established, the sum of the luminance signal Y from the first mix amplifier 6 and the luminance signal Y ′ from the second mix amplifier 7 is Y = 0.25. R: 0.50 G: 0.25B 1st Mi Since Y = 0.30 R: 0.59G: 0.11 B in the mix amplifier 6 cannot be changed, the luminance signal Y 'in the second mix amplifier 7 is added to the sum of Y' =-0.05R-0.09G + 0.14B. Then, the result of adding Y = 0.30R: 0.59G: 0.11B and Y '= — 0.05R—0.09G-0.14B in the third mix pump 9 is Y-0.25R: 0.50 G: 0.25B, and the luminance signal has the best resolution in the high frequency range exceeding 4.2MHz when the spatial pixel is shifted as shown in Fig. 2.
但し、 映像帯域幅 4.2MH2以外において Y =0.25 R : 0.50G : 0.25 Bによつて輝度信号 Yを作成すると、 通常の映像帯域幅 4.2MHz内の 輝度に対して映像帯域幅 4.2MHzを越えると再現誤差を生ずるので、 Y =0.30 R : 0.59G : 0.11Bに近い、 例えば Y =0.33 R : 0.50G : 0. Π Bで映像帯域幅 4.2MHzを越えるときの輝度信号 Yが作成される ように第 2 ミ ッ ク スア ンプ 7 の加箕比を変更しても良い。 However, if the luminance signal Y is created by Y = 0.25 R: 0.50 G: 0.25 B except for the video bandwidth of 4.2 MHz2, if the video bandwidth exceeds 4.2 MHz for the brightness within the normal video bandwidth of 4.2 MHz Since a reproduction error occurs, Y = 0.30 R: 0.59G: close to 0.11B, for example, Y = 0.33 R: 0.50G: 0. 輝 度 The luminance signal Y is generated when the video bandwidth exceeds 4.2 MHz in B. Alternatively, the ratio of the second mix amplifier 7 may be changed.
また、 3板の C C D 3 , 4 , 5の空間画素ずらしとしては、 第 4 図に示すように、 1 Z3画素周期 Xずつずらして配置される場合も ある。 この場合は、 第 5図に示すように、 緑 G信号用の C C D 4の 出力 E ,に対し、 赤 R信号用 C C D 3 の出力 E zが、 画素周期を Xと すると XZ 3だけ遅れ、 更に、 この赤 R信号用 C C D 3の出力 E 2 に対し、 青 B信号用の C C D 5の出力 E3 が X/ 3だけ遅れる。 従 つて、 この場合第 5図に示すような時間関係となり、 0.33R : 0.50 G : 0.17Bの加算比で輝度信号 Yを作成すれば、 画素ずらしによる 時間誤差を吸収して輝度信号 Yの解像度を最良に得ることができる。 このため、 この場合には、 映像帯域幅 4.2MHzを越えるときに 0.33R : 0.50G : 0.17Bで輝度信号 Yが作成されるように第 2 ミ ッ ク スァ ンプ 7における加箕比を設定すれば良い。
尚、 本実施例では、 固体撮像素子を 3板備えたカ ラ一テレビカメ ラについて述べたが、 プリズムによって入射光線を赤 · 青と緑との 2系統に色分割し、 2板の固体撮像素子を用い、 一方の固体撮像素 子から緑信号を得て、 赤 ' 青の色ス トライプフィルタを備えた他方 の固体撮像素子により赤 · 青の 2つの信号を点順次信号として取り 出すように構成された 2板式のものであつても良い。 In addition, as shown in FIG. 4, the spatial CCDs of the three CCDs 3, 4, and 5 may be shifted by 1Z3 pixel periods X in some cases. In this case, as shown in Fig. 5, the output E z of the CCD 3 for the red R signal is delayed by XZ 3 when the pixel period is X, with respect to the output E of the CCD 4 for the green G signal. The output E 3 of the CCD 5 for the blue B signal lags the output E 2 of the CCD 3 for the red R signal by X / 3. Therefore, in this case, the time relationship is as shown in Fig. 5. If the luminance signal Y is created with the addition ratio of 0.33R: 0.50G: 0.17B, the time error due to pixel shift is absorbed and the resolution of the luminance signal Y Can be best obtained. Therefore, in this case, the video signal ratio should be set in the second mix pump 7 so that the luminance signal Y is created at 0.33R: 0.50G: 0.17B when the video bandwidth exceeds 4.2 MHz. Good. In this embodiment, a color television camera having three solid-state imaging devices has been described. However, the incident light is color-divided into two systems of red, blue, and green by a prism, and the solid-state imaging of two plates is performed. A green signal is obtained from one of the solid-state imaging devices, and two red and blue signals are extracted as dot-sequential signals by the other solid-state imaging device equipped with a red and blue color stripe filter. The two-plate type configured may be used.
また、 本実施例では、 N T S C方式の映像帯域幅 4.2MH2を越える 高域で、 空間画素ずらし量に対応する時間関係比で各原色信号を加 箕して輝度信号を作成するようにしたが、 かかる輝度信号の作成は 空間画素ずらしによつて解像度を向上させた帯域 (例えば 4.2MHzよ り も高い 6〜 7 MH2 以上の周波数域) について特に有効であるから、 N T S C方式における映像帯域幅 4.2MHz以上の周波数から行うので はなく、 もっと高い周波数から行っても効果があり、 P A L方式, S E C A M方式, 高品位方式 (ハイ ビジョ ン) においても実施可能 である。 In this embodiment, the luminance signal is created by adding each primary color signal at a time relation ratio corresponding to the spatial pixel shift amount in a high frequency region exceeding the NTSC video bandwidth of 4.2 MHz2. Since the creation of such a luminance signal is particularly effective for a band whose resolution is improved by shifting spatial pixels (for example, a frequency band of 6 to 7 MH2 or higher, which is higher than 4.2 MHz), the video bandwidth of the NTSC system is 4.2 MHz. It is effective to operate from a higher frequency instead of the above frequency, and it can be implemented in the PAL system, SECAM system, and high-definition system (high vision).
以上のように本発明によると、 所定の映像帯域 (例えば N T S C 方式の映像帯域幅 4.2MHz) では、 標準白色の再生に対応した 3原色 比 ( N T S C方式では 0.30 R : 0.59G : 0.11 B ) で各原色信号を加 算して輝度信号を作成し、 前記所定の映像帯域以外では、 空間画素 ずらし量に対応した時間関係比で輝度信号を作成するようにしたの で、 カ ラーテレビの方式に従った輝度信号の作成を行いつつ、 映像 帯域幅を越える高域については最良の解像度が得られる加算比で輝 度信号を作成することが可能となり、 テレビ信号として送信されま 前の高域での解像度が向上する。 As described above, according to the present invention, in a predetermined video band (for example, the video bandwidth of the NTSC system is 4.2 MHz), the three primary color ratios (0.30 R: 0.59 G: 0.11 B in the NTSC system) corresponding to the reproduction of standard white are used. A luminance signal is created by adding each of the primary color signals, and a luminance signal is created at a time relationship ratio corresponding to the amount of spatial pixel shift outside of the predetermined video band. While creating a luminance signal in accordance with the above, it is possible to create a luminance signal with an addition ratio that provides the best resolution for high frequencies exceeding the video bandwidth. Resolution is improved.
〈産業上の利用可能性〉
以上のように本発明にかかるカラ一テ レビカ メ ラにおける輝度信 号作成装置は、 特に空間画素ずらしを施したカラーテレビカメ ラ に おいて映像帯域幅を越える高域における解像度を向上させることが でき、 カラーテレビカメ ラの性能を高め、 引いては商品性を高める ことができるもので、 極めて有効なものである。
<Industrial applicability> As described above, the luminance signal generating apparatus for a color television camera according to the present invention can improve the resolution in a high frequency region exceeding the video bandwidth, especially in a color television camera in which spatial pixels are shifted. It can enhance the performance of color TV cameras and, in turn, enhance its commercial value, which is extremely effective.
Claims
特 許請求 の 筆 囲 Patent request envelope
複^の固体撮像素子を空間的に画素がずれるようにして配置し、 該複数の固体撮像素子に対応する色系統に分割された入射光線を前 記複数の固体撮像素子それぞれで電気信号に変換して 3原色信号を 得る構成のカ ラーテレビカメ ラにおいて、 A plurality of solid-state imaging devices are arranged so that pixels are spatially shifted, and incident light beams divided into color systems corresponding to the plurality of solid-state imaging devices are converted into electric signals by the plurality of solid-state imaging devices, respectively. Color television camera that obtains three primary color signals
所定の映像帯域では標準白色の再生に対応した 3原色比で各原色 信号を加算して輝度信号を作成し、 前記所定の映像帯域以外では前 記画素ずらし量に対応した時間関係比の 3原色比で各原色信号を加 算して輝度信号を作成するよう に構成したカ ラーテレビカメ ラにお ける輝度信号作成装置。
In a predetermined video band, a luminance signal is created by adding each primary color signal at three primary color ratios corresponding to the reproduction of standard white, and in the other than the predetermined video band, the three primary colors having a time relation ratio corresponding to the pixel shift amount described above. A luminance signal generation device for a color television camera configured to generate a luminance signal by adding each primary color signal by a ratio.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE904090742T DE4090742T1 (en) | 1989-04-28 | 1990-04-27 | DEVICE FOR FORMING A BRIGHTNESS SIGNAL IN A COLOR TELEVISION CAMERA |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1107755A JPH02288578A (en) | 1989-04-28 | 1989-04-28 | Luminance signal generator in color television camera |
JP1/107755 | 1989-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1990013977A1 true WO1990013977A1 (en) | 1990-11-15 |
Family
ID=14467158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1990/000569 WO1990013977A1 (en) | 1989-04-28 | 1990-04-27 | Device for forming brightness signals in a color tv camera |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH02288578A (en) |
WO (1) | WO1990013977A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0476421A1 (en) * | 1990-09-12 | 1992-03-25 | Ikegami Tsushinki Co., Ltd. | Circuit for producing brightness signal from output signal of solid state image pick-up apparatus using spatial pixel shift |
US5414465A (en) * | 1993-01-14 | 1995-05-09 | Sony Corporation | Luminance signal generator with interpolation |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5346571B2 (en) * | 1974-01-29 | 1978-12-14 | ||
JPS61251290A (en) * | 1985-04-30 | 1986-11-08 | Hitachi Ltd | Signal processing circuit for video camera |
JPS62253285A (en) * | 1986-04-11 | 1987-11-05 | ニユ−ヨ−ク インステイテユ−ト オブ テクノロジイ | Method and apparatus for processing color video signal |
JPS63121382A (en) * | 1986-11-10 | 1988-05-25 | Matsushita Electric Ind Co Ltd | Outline corrector |
JPS63158990A (en) * | 1986-12-23 | 1988-07-01 | Sony Corp | Illuminance signal forming circuit |
JPS63175594A (en) * | 1987-01-14 | 1988-07-19 | Sony Corp | Luminance signal forming circuit |
-
1989
- 1989-04-28 JP JP1107755A patent/JPH02288578A/en active Pending
-
1990
- 1990-04-27 WO PCT/JP1990/000569 patent/WO1990013977A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5346571B2 (en) * | 1974-01-29 | 1978-12-14 | ||
JPS61251290A (en) * | 1985-04-30 | 1986-11-08 | Hitachi Ltd | Signal processing circuit for video camera |
JPS62253285A (en) * | 1986-04-11 | 1987-11-05 | ニユ−ヨ−ク インステイテユ−ト オブ テクノロジイ | Method and apparatus for processing color video signal |
JPS63121382A (en) * | 1986-11-10 | 1988-05-25 | Matsushita Electric Ind Co Ltd | Outline corrector |
JPS63158990A (en) * | 1986-12-23 | 1988-07-01 | Sony Corp | Illuminance signal forming circuit |
JPS63175594A (en) * | 1987-01-14 | 1988-07-19 | Sony Corp | Luminance signal forming circuit |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0476421A1 (en) * | 1990-09-12 | 1992-03-25 | Ikegami Tsushinki Co., Ltd. | Circuit for producing brightness signal from output signal of solid state image pick-up apparatus using spatial pixel shift |
US5184212A (en) * | 1990-09-12 | 1993-02-02 | Ikegami Tsushinki Co., Ltd. | Circuit for producing brightness signal from output signal of solid state image pick-up apparatus using spatial pixel shift |
US5414465A (en) * | 1993-01-14 | 1995-05-09 | Sony Corporation | Luminance signal generator with interpolation |
Also Published As
Publication number | Publication date |
---|---|
JPH02288578A (en) | 1990-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5414465A (en) | Luminance signal generator with interpolation | |
US5712680A (en) | Image pickup device for obtaining both moving and still images | |
EP0634875A1 (en) | Solid state image pick-up apparatus | |
JPH04269091A (en) | Color television camera device | |
JPH0724422B2 (en) | Luminance signal generation circuit for color TV camera | |
JPS6148315B2 (en) | ||
US5349381A (en) | Video camera with aperture correction having reduced power consumption | |
US7688362B2 (en) | Single sensor processing to obtain high resolution color component signals | |
US3647943A (en) | Transducer system and method | |
US5247351A (en) | High definition television system compatible with NTSC system | |
WO1990013977A1 (en) | Device for forming brightness signals in a color tv camera | |
JPH0371838B2 (en) | ||
JPS6324596B2 (en) | ||
JP3452712B2 (en) | Single color video camera | |
JPH0366282A (en) | Color image pickup device | |
JP2002354492A (en) | Multi-lens and multi-ccd type image pickup device | |
JPH089395A (en) | Color image pickup device | |
JPH06205422A (en) | Color image pickup device | |
JP3232577B2 (en) | Color television camera device | |
JPH06113310A (en) | Video-signal processing apparatus | |
JPS6238390Y2 (en) | ||
JP3087013B2 (en) | Color video camera signal processing circuit and video signal processing method | |
JPH1155680A (en) | Video camera system | |
JPS5931920B2 (en) | Color image transmission method | |
JPS62140585A (en) | Solid-state image pickup device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): DE US |
|
RET | De translation (de og part 6b) |
Ref document number: 4090742 Country of ref document: DE Date of ref document: 19910606 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 4090742 Country of ref document: DE |