WO1990007725A1 - Method of driving liquid crystal element - Google Patents

Method of driving liquid crystal element Download PDF

Info

Publication number
WO1990007725A1
WO1990007725A1 PCT/JP1986/000396 JP8600396W WO9007725A1 WO 1990007725 A1 WO1990007725 A1 WO 1990007725A1 JP 8600396 W JP8600396 W JP 8600396W WO 9007725 A1 WO9007725 A1 WO 9007725A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
waveform
liquid crystal
signal
voltage
Prior art date
Application number
PCT/JP1986/000396
Other languages
French (fr)
Japanese (ja)
Inventor
Minoru Yazaki
Yuzuru Sato
Akihiko Ito
Original Assignee
Minoru Yazaki
Yuzuru Sato
Akihiko Ito
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minoru Yazaki, Yuzuru Sato, Akihiko Ito filed Critical Minoru Yazaki
Priority to US07/034,176 priority Critical patent/US4850676A/en
Publication of WO1990007725A1 publication Critical patent/WO1990007725A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3681Details of drivers for scan electrodes suitable for passive matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3622Control of matrices with row and column drivers using a passive matrix
    • G09G3/3629Control of matrices with row and column drivers using a passive matrix using liquid crystals having memory effects, e.g. ferroelectric liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3692Details of drivers for data electrodes suitable for passive matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/061Details of flat display driving waveforms for resetting or blanking
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2011Display of intermediate tones by amplitude modulation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2014Display of intermediate tones by modulation of the duration of a single pulse during which the logic level remains constant

Definitions

  • the present invention relates to a method for driving a liquid crystal element, and particularly to a method for driving an electro-optical element using a ferroelectric liquid crystal.
  • a light transmission state of the liquid crystal element is determined as described in US Pat. No. 4,508,429.
  • a driving method in which a pulse voltage is applied at a predetermined cycle, and an average value of voltages applied within the predetermined cycle is set to zero to prevent the ferroelectric liquid crystal from deteriorating.
  • a specific boat motion method disclosed in the above-mentioned US Pat. No. 4,508,429 is a static coarse motion method, which is the most suitable for driving a large-capacity element. There was no disclosure of how to operate the box.
  • the ferroelectric liquid crystal element has a so-called pulse width dependency that a threshold voltage changes according to a pulse width of an applied compressing pulse.
  • the present invention solves the above-mentioned problems, and its object is to sufficiently consider the above-described pulse width dependence and to prevent ferroelectric liquid crystal from deteriorating. It is an object of the present invention to provide an optimal multiplex driving method for a ferroelectric liquid crystal element that can make the average value of a voltage applied to a crystalline liquid crystal zero.
  • the driving method of the present invention is based on a liquid crystal element having a ferroelectric liquid crystal sandwiched between a substrate having a scanning electrode group and a substrate having a signal electrode group.
  • a selection signal or a non-selection signal is applied to the scanning electrode group, and an average potential is applied to the signal electrode plant group with an intermediate potential of a voltage pulse applied to the signal electrode group.
  • the ferroelectric liquid is exposed during the first half of the selection period or during the non-selection period to turn the molecules of the ferroelectric liquid crystal on or off.
  • a voltage pulse to be selected is applied.
  • the molecules of the ferroelectric liquid crystal have an angle of 0 with respect to the moth axis when no electric field is applied.
  • Fig. 1 (a) for example, when an electric field of a negative electrode is applied, as shown in Fig. 1 (a), the molecules of the strongly-induced liquid crystal 1 are oriented in the direction of the electric field, E On the plane perpendicular to and at an angle of 0 with respect to the moth axis 2 in a certain direction.
  • FIG. 1 (b) there is an angle of 0 around the axis of rotation 2 in a direction symmetric to the direction of FIG. 1 (a).
  • the polarity of the voltage to arrange the ferroelectric liquid crystal molecules in the direction shown in Fig. 1 (a) is negative (1), and the voltage is arranged in the direction shown in Fig. 1 (b).
  • the pressure characteristic is defined as positive (+), and the direction of the S row of the molecule and the direction of the polarization axis of the polarizer are in a simple relationship as shown in Fig. 1 (a).
  • the state with the least amount of light is defined as the off state (or simply off), and the state with the largest amount of light transmission is defined as the on state (or simply on) as shown in Fig. 1 (b). .
  • applying a positive voltage will minimize the amount of light passing, The maximum is obtained by applying a voltage of It can be driven by substantially the same driving method only by reversing the registration relationship, and is included in the scope of the invention.
  • the ferroelectric liquid crystal element is always turned on or off. Then, by applying a voltage pulse to select the ON or OFF state that should be maintained until the next selection period, the average value of the voltage applied to the ferroelectric liquid crystal becomes zero It realizes a multiplex driving method, which can prevent the deterioration of ferroelectric liquid crystal and maintain good light transmission characteristics for a long period of time. This has a great effect on the practical use of ferroelectric liquid crystal devices.
  • FIG. 1 (a) and (b) are diagrams showing the arrangement of molecules of a ferroelectric liquid crystal.
  • FIG. 2A is a cross-sectional view showing an example of a liquid crystal element used in each embodiment of the invention.
  • FIG. 2 (b) is a diagram showing the electrode structure of the liquid detonation element shown in FIG. 2 (a).
  • FIG. 3 is a diagram showing a relationship between a driving waveform and a light transmission characteristic shown in Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing one example of a specific circuit for realizing the driving waveform shown in FIG.
  • FIG. 5 is a timing chart showing a signal waveform at each point of the circuit shown in FIG.
  • FIG. 6 is a diagram showing a relationship between a driving waveform and a light transmission characteristic according to the second embodiment of the invention.
  • FIG. 7 is a diagram showing an example of a specific circuit for realizing the driving waveform shown in FIG.
  • FIG. 8 is a timing chart showing a signal waveform at each point of the circuit shown in FIG.
  • FIG. 9 is a diagram showing the relationship between the driving waveform and the light transmission characteristics shown in * Example 3 of the invention
  • FIG. 10 is a diagram showing an example of a specific circuit for realizing the killing waveform shown in FIG.
  • FIG. 11 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG.
  • FIG. 12 is a diagram showing a relationship between a driving waveform and light transmission characteristics shown in Embodiment 4 of the present invention.
  • FIG. 13 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in FIG.
  • FIG. 14 is a timing chart showing a signal waveform at each point of the circuit shown in FIG.
  • FIG. 15 is a diagram showing a relationship between a drive waveform and light transmission characteristics shown in Embodiment 5 of the present invention.
  • FIG. 16 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in FIG.
  • FIG. 17 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG.
  • FIG. 18 is a diagram showing a relationship between a driving waveform and light transmission characteristics shown in Embodiment 6 of the present invention.
  • FIG. 19 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in FIG.
  • FIG. 20 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG.
  • FIG. 21 is a diagram showing a relationship between an IB dynamic waveform and light transmission characteristics shown in Embodiment 7 of the present invention.
  • FIG. 22 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in FIG. 21;
  • FIG. 23 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG. Gchart diagram.
  • FIG. 24 is a diagram showing a relationship between a driving waveform and light transmission characteristics shown in Embodiment 8 of the present invention.
  • FIG. 25 is a diagram showing an example of a specific circuit for realizing the K dynamic waveform shown in FIG.
  • FIG. 26 is a timing chart showing signal waveforms at each point of the circuit shown in Fig. 25,
  • FIG. 27 is a graph showing a relationship between a dynamic waveform and photoperiodism characteristics shown in Example 9 of the invention.
  • FIG. 28 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in FIG.
  • FIG. 29 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG.
  • FIG. 30 is a diagram showing a relationship between a driving waveform and a light speed excess characteristic shown in Embodiment 10 of the present invention.
  • FIG. 31 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in FIG. 30.
  • FIG. 32 is a timing chart showing waveforms at each point of the circuit shown in FIG. 31.
  • FIG. 33 is a diagram showing the relationship between the driving waveform and the light-transmitting characteristic shown in Example 11 of the present invention.
  • FIG. 34 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in FIG. 33.
  • FIG. 35 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG. 34.
  • FIG. 36 shows the relationship between the drive waveform and the optical transmission characteristic shown in Example 12 of the present invention.
  • FIG. 37 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in FIG.
  • FIG. 38 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG. 37.
  • FIG. 39 is a view showing the relationship between the drive waveform and light transmission characteristics shown in Example 13 of the present invention.
  • FIG. 40 is a diagram showing an example of a specific circuit for realizing the drive waveforms shown in FIG.
  • FIG. 41 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG.
  • FIG. 42 is a diagram showing a relationship between a driving waveform and light transmission characteristics shown in * Example 14 of the invention.
  • FIG. 43 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in FIG.
  • FIG. 44 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG. 43.
  • FIG. 45 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in Embodiment 15 of the present invention.
  • FIG. 46 is a diagram showing a timing chart of signal waveforms at each point of the circuit shown in FIG.
  • FIG. 47 is a diagram showing an example of a specific circuit for realizing the swing waveform shown in Embodiment 16 of the present invention.
  • FIG. 48 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG. 47.
  • Fig. 49 is a diagram showing the relationship between the dynamic waveform and the light transmission characteristics shown in the unseen case 16.
  • FIG. 50 is a diagram showing an example of a specific circuit for realizing the driving waveform shown in Example 17 of the present invention.
  • FIG. 51 is a diagram showing timing charts and drive waveforms of sales signal waveforms at each point of the circuit shown in FIG. 50 and the relationship between light transmission characteristics.
  • FIG. 52 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in the embodiment 18 of the invention.
  • FIG. 53 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG.
  • FIG. 54 ⁇ is a graph showing the relationship between the drive waveform and the light transmission characteristics shown in * Example 18 of the invention.
  • FIG. 55 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in Embodiment 19 of the present invention.
  • Figure 56 shows the timing chart of signal waveforms at each point of the circuit shown in Figure 50, and the relationship between the deer waveform and the optical transmission characteristics.
  • FIG. 57 is a diagram showing an example of a concrete circuit for realizing the drive waveform shown in * Example 20 of the invention.
  • FIG. 58 is a timing chart showing a signal waveform at each point of the circuit shown in FIG. 57.
  • FIG. 59 is a diagram showing the relationship between the drive waveform and the light transmission characteristics shown in the present embodiment 20 of the present invention.
  • FIG. 60 shows an example of a specific circuit for realizing the drive waveform shown in the embodiment 21 of the present invention. -.
  • Figure 61 shows the timing of the signal waveforms at each point of the circuit shown in Figure 60. Guchart diagram.
  • FIG. 62 is a diagram showing a relationship between a driving waveform and light transmission characteristics shown in Embodiment 21 of the present invention.
  • FIG. 63 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in the uninvented embodiment 22.
  • FIG. 64 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG. 63.
  • FIG. 65 is a diagram showing a relationship between a driving waveform and light transmission characteristics shown in Example 22 of the present invention.
  • FIG. 66 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in Embodiment 23 of the present invention.
  • FIG. 67 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG.
  • FIG. 68 is a diagram showing a relationship between a driving waveform and light transmission characteristics shown in Example 23 of the present invention.
  • FIG. 69 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in the second embodiment of the present invention.
  • FIG. 70 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG. 69.
  • FIG. 71 is a diagram showing a relationship between a driving waveform and light transmission characteristics shown in Example 24 of the present invention.
  • FIG. 72 is a diagram showing an example of a specific circuit for realizing the drive waveforms shown in Embodiment 25 of the present invention.
  • FIG. 73 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG. 72.
  • FIG. 74 is a diagram showing a relationship between a driving waveform and light transmission characteristics shown in Embodiment 25 of the present invention.
  • FIG. 75 is a diagram showing an example of a specific circuit for realizing the drive waveforms shown in * Example 26 of the invention.
  • FIG. 76 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG. 75.
  • FIG. 77 is a graph showing the relationship between the drive waveform and the light transmission characteristics shown in * Example 26 of the invention.
  • FIG. 78 is a diagram showing an example of a specific circuit for realizing the K dynamic waveform shown in Embodiment 27 of the present invention.
  • FIG. 79 is a timing chart showing chiss waveforms at each point of the circuit shown in FIG. 78.
  • FIG. 80 is a * diagram showing the relationship between the drive waveform and the light transmission characteristics shown in Example 27 of the present invention.
  • FIG. 81 is a diagram showing an example of a drive circuit used in each embodiment of the present invention.
  • FIG. 82 is a diagram showing a change in light transmission characteristics depending on a waveform of an applied voltage.
  • FIG. 83 is a diagram showing a relationship between a driving waveform and a light transmission characteristic when an AC bias voltage is applied.
  • FIG. 2 (a) is a cross-sectional view showing an example of a liquid crystal element used in each embodiment of the present invention described below.
  • a plurality of transparent scanning electrodes S 13 and signal electrodes 14 made of indium oxide or tin oxide are formed on the opposing inner surfaces of transparent substrates 11 and 12 made of glass or plastic.
  • a sa-oriented film is made of polyimide, nickel, or the like was provided, and at least the surface of the alignment film on one of the substrates was rubbed to orient the ferroelectric liquid crystal 16 in a predetermined direction.
  • Reference numeral 19 denotes a sealant made of an epoxy adhesive.
  • Polarizing plates 17 and 18 were in contact with the outer surfaces of the pair of substrates 11 and 12 where the electrodes were not formed, respectively. At this time, the polarization axis of the polarizing plate 17 and the polarization ⁇ of the polarizing plate 18 are substantially orthogonal to each other, and the intensity when a voltage exceeding a saturation value having a negative vegetative property is applied to the ferroelectric liquid crystal 16 is applied.
  • the direction of the connection optical axis of the polarizing plate was set so that the direction of the S column of the dielectric liquid crystal molecules was parallel to the direction of the polarizing axis of one of the polarizing plates.
  • the gap between the substrates that is, the thickness of the liquid crystal layer is about 1.3 ⁇ m
  • the ferroelectric liquid crystal used is P-tetradecyloxybenzylidene-P'-amino (2-methyl) -butyl- d-Siano) One cinnamate (TD OB AMB CC).
  • This liquid crystal has a threshold voltage of 6.5 V when the pulse width is 200 ⁇ sec.
  • the saturation voltage is 8 V
  • the scanning electrode 13 and the signal electrode 14 were each formed in a stripe shape, and were formed so as to be orthogonal to each other. A portion where the scanning electrode and the signal electrode overlap in a plane is a pixel.
  • FIG. 2 (b) shows three typical types of ON and OFF patterns in order to make the following description easy to understand.
  • the number of scan electrodes Xn is 6, and the signal contact Yn is The force at which the number of waters is 3.
  • the invention is not limited to this number of electrodes, and the number of electrodes may be determined according to the required number of pixels.
  • the hatched pixels indicate the off state, and the other pixels indicate the on state.
  • FIG. 3 shows the driving waveform and the light emission characteristics in the example applied to each pixel on the scanning circuit XI for turning on and off as shown in FIG. 2 (b).
  • the on / off state of all pixels was inverted to make it easier to see the change in light transmission characteristics.
  • t 13 is the first frame period
  • t 23 shows the next frame period.
  • the t .GAMMA.1 and t 21 are the selection period
  • t 12 and t 22 show Re a non-selection period, respectively it.
  • t 14, t, 5, t 16, t 17, t 24, t 25, 1: 26 and 1: shows a 27 Waso respectively 2 0 0 sec for showing the pulse width Contact Li wave height value.
  • V is 6 V
  • V 2 is 3 V.
  • (+ Vl-V2) and (1-V! + V2) are smaller than the threshold voltage of the liquid crystal, so the liquid crystal does not respond and is saturated. (+ V, + V 2) and (1 V, -V 2) that are greater than or equal to the value.However, since the ferroelectric liquid crystal responds at a high speed and has the memory property, it looks like It is recognized as being on or off depending on the vegetative nature of the last applied pulse on saturation during the selection.
  • the liquid crystal is applied with positive and negative voltage pulses having a peak value and a pulse width at least equal to or higher than the saturation value of the liquid crystal within the selection period t n ⁇ t 21 ).
  • Positive and negative voltage pulses have the same peak value and pulse width, and select ON or OFF by applying a positive or negative voltage pulse that is equal to or greater than the saturation value, and positive and negative voltage pulses have the same number.
  • Ku the non-selection period t 12 (t 22) is, since the positive having a peak value and pulse width of the lower threshold than the negative voltage BALS is applied, as shown in FIG. 3, the DC component The average value is deprived, and there is no DC component at all. Therefore, the liquid crystal element did not deteriorate.
  • FIG. 4 is a circuit block diagram of an example of a specific circuit for realizing the coarse motion waveform shown in FIG.
  • Reference numeral 111 denotes a transmissive transistor
  • 112 denotes a flip-flop
  • 113 denotes a liquid crystal element.
  • d, h, e, f, g, j, k, 1 is collected by run-scan Mi Tsu Shi 3 Select Nge sheet 1 1 1, Sacri scan electrode signal V t and the signal electric 3 ⁇ 4 signal V d, Applied to the liquid crystal elements 113.
  • ⁇ V! And 0 V, ⁇ V 2 are the dragon source compress of the scanning electrode and the signal compress.
  • FIG. 5 shows signals at respective points for generating the scanning electrode signal V t and the signal electrode signal V d of the circuit shown in FIG.
  • FIG. 6 shows a scanning waveform applied to the scanning electrode I and the signal electrode ⁇ ⁇ for turning on and off as shown in FIG. 2 (b), and a light beam of the chrominance element ( ⁇ 1). Shows transmission characteristics.
  • t habitto t 27 indicate the same as in FIG. 3, and the peak values V,, V 2, V 3 , V 4 , V 5 , and V s are 8 V, 6 V, 5 V, 3 V, 2 V, and 0 V.
  • V m indicates the intermediate voltage of the voltage pulse applied to the signal fleet. In this case, it is 4 V.
  • the difference from the first embodiment is that the lightning pressure level of the scanning plant and the signal plant are made the same in order to reduce the voltage applied to the scanning device.
  • the selection period t t (t 21 ) is applied to V 6, V 6, V, with a pulse width of 200 ⁇ sec, and the non-selection period t 12 (t In 22 ), V 2 and V 5 are applied in an extremely large order as shown in the figure.
  • the voltage applied to the pixel (to XIY) is turned on.
  • Pulses of V 5 — V 6 ) and (V 2 — V,) are not applied, and the pulse width may be 400 ⁇ sec depending on the ON / OFF pattern, but when the peak value is 400 sec Since it is smaller than the threshold value of the liquid crystal, it has little effect on the light transmission characteristics.
  • the driving method according to the 81 example provides a good contrast ratio similar to that of the first embodiment 7 ⁇ .
  • the ffi-moving method in the present embodiment is to apply positive and negative voltage pulses having a pulse value and a pulse value at least equal to or greater than the saturation value of the liquid crystal to the liquid crystal during the selection period t n (t 2 ,).
  • the positive and negative voltage pulses have the same wave value and pulse width, and further select ON or OFF in the order of applying the positive or negative voltage pulse having a saturation value or more.
  • the number of positive and negative voltage pulses is equal to 5 and the non-selection period t 12 (t 22 ) applies positive and negative dragon pressure pulses having a peak value and pulse width below the threshold.
  • the average value of the applied voltage was zero irrespective of the on / off pattern, and the liquid crystal element did not deteriorate.
  • FIG. 7 is a circuit block diagram of an example of a specific circuit for realizing the drive waveform shown in FIG.
  • the transmis- sion 3 gate 11 1 is selected by the signals a and b, and the scanning contact planting waveform of e and the non-selected scanning dragon of ⁇ are selected by the scanning planting data of c.
  • B Select and lance Mi Tsushi a Nge sheet 1 1 1 Ri by the signal of, d signal.
  • Photoelectric S data g select the on-wave and h off waveform in the , Create signal electrode waveforms, liquid crystal element 1 1
  • V,, V 2 , V 3 , V 4 , V 5 , V 6 are the power supply voltages for the scanning contact and the signal electrode.
  • FIG. 8 shows signals at each point of the circuit shown in FIG.
  • FIG. 9 shows a driving waveform applied to each pixel on the scanning electrode ox I for turning on and off as shown in FIG. 2 (b), and a light transmission characteristic.
  • both the tn ⁇ t 27 shows the same as FIG. 3, the peak value V, is 9 V, V 2 is 4 V.
  • the driving method in the embodiment is to apply a positive and negative voltage pulse having a peak value and a pulse width at least equal to or higher than the saturation value of the liquid crystal to the liquid crystal within the selection period tu (t2,).
  • Negative voltage pulses have the same crest value and pulse width, and select ON or OFF in the order of applying positive or negative voltage pulses equal to or higher than the saturation value.Furthermore, positive and negative voltage pulses have the same number.
  • the non-selection period t 12 (t 22 is less than the threshold Since positive and negative voltage pulses with the following peak values and pulse widths are applied, the average value applied to the liquid crystal element is zero regardless of the on / off pattern. Was.
  • FIG. 10 is a circuit block diagram of an example of a specific circuit for realizing the drive waveform shown in FIG. (A), (c), and (i) signals are selected, and a signal for selecting the transmis- sion sig- nal is created. And the scanning electrode signal Vt and the signal electrode signal Vd are generated and applied to the liquid crystal element 113. Further, ⁇ V,, ⁇ V 2 , 0 V is a scanning electrode and a power supply voltage of the signal ⁇ 3 ⁇ 4.
  • FIG. 11 shows the signals at each point of the circuit shown in FIG.
  • FIG. 12 shows a scanning waveform for turning on and off as shown in FIG. 2 (b), a driving waveform applied to the signal electrode 71, and light of the pixel ( ⁇ . ⁇ I). Shows transmission characteristics. In order to facilitate re-divided the change in speed of light over properties, in the next frame period t 23 on, by inverting the OFF state.
  • t H to t 27 are the same as those in FIG. 3, and the peak values V,, V 2, V 3, V 4, V 5, and V e are 10, respectively.
  • Vm indicates the middle potential of the voltage pulse applied to the signal S, and in this case it is 5 V.
  • the difference from the third embodiment lies in that the voltage levels of the scanning electrode and the signal lightning pole are shared in order to reduce the voltage applied to the scanning electrode.
  • the scanning electrode X has a selection period t u (t 21 ) of V, and V 6 , V,, V 6 ,
  • 2 (t «) is obtained by connecting V 2 and V s to V s.
  • V 2 V 5 in this order, and apply to the signal electrodes Y, V 5 , V 2> V 2 , V 5 if you want to turn on the pixel, and 'v 5 , V 2 if you want to turn off the pixel. , V3. Applied to 4 of V 4 .
  • the pulse width is 200 ⁇ sec.
  • the voltage pulse applied to this pixel (Xi Y,) has a waveform similar to that of the driving method of Example 3 shown in FIG. 9 except for the peak value.
  • FIG. 13 is a circuit block diagram of an example of a specific circuit for realizing the drive waveforms shown in FIG. a 3 ⁇ 4 b signals Nyori, Select and La Nsumi Tsushi 3 Nge sheet 1 1 1, the scanning electrodes data c, and unselected run ⁇ 3 ⁇ 4 waveform ⁇ during run ⁇ planted waveform and ⁇ of e Select and make a running waveform. Meanwhile signal ⁇ wave. Form, a, Select and Ransumi Tsushi a Ngeto 1 1 1 by a signal b, by Yamato No. electrodes de one another d, select Off waveform g of ON waveform and h, A signal electrode waveform is created and applied to the liquid crystal elements 113. , V 2, V 3, V 4, VB, V ⁇ are the scanning and signal electrode waterfall voltages.
  • FIG. 14 shows signals at each point of the circuit shown in FIG.
  • Fig. 15 shows the scanning implant for turning on and off as shown in Fig. 2 (b).
  • the driving waveform applied to each pixel above and the light transmission characteristics are shown.
  • a change in light transmission properties in the next frame period t 23 on, by inverting the OFF state.
  • t 13 is the first frame period
  • t 23 shows the next frame period.
  • the tn and t 21 are selection period t 12 and t 22 represents a non-selection period, O 90/07725 (ig) PCT / JP86 / 00 6 further non-selection period t 12, and t, 3 at the end of the immediately preceding i.e. frame period of the first non-selection period t 16 and t 26 and subsequent selection period is divided into two phases have the second non-selection period t, 5 and t 25 that is provided.
  • t 05 indicates the second non-selection period immediately before the first frame period t
  • t indicates the BALS width of 2 0 0 tsec.
  • the peak value V is 1 1 V
  • (+ -V3) and (-V, + V3) or (+ V3) and (-V, -V3) above the saturation value are applied, and the selection period For tn (t 2!), when on (-V, + V 3) and (+ V>-V 3), when off (-V 2 + V 3) and (+ V 2 — V 3) There is applied a first non-selection period t, at 6 (t 26), on, ⁇ V 3 by the off pattern was 2 0 0 it sec or applied with a pulse width of 40 0 sec. Since the value of soil V 3 is smaller than the threshold value of 400 / ⁇ sec, even if the pulsation becomes 400 it sec, the light transmission characteristics are hardly affected.
  • the pixel is turned on immediately before the selection period, then turned off, and a pulse having a positive saturation value or more is applied within the selection period immediately after the pixel is turned on.
  • the time of the selection period can be halved compared to the driving methods of the first to fourth embodiments. This is an effective driving method when high-speed driving is required.
  • the peak value of the pulse applied to the second non-selection period t 05 (t, 5, t 25) Varies depending on the on and off patterns, but the light transmission amount does not change because both are above the saturation value.
  • the contrast ratio slightly decreases, but as the number of scanning electrodes increases, the contrast ratio increases. The rate of decrease in contrast ratio is reduced, and a good contrast ratio can be obtained.
  • the pixel (X i Y 1) is 1
  • a contrast ratio of 7: 1 was obtained for ( ⁇ , ⁇ ) and a ratio of 16: 1 for (Xt Ya). Also in the actual example, the average value of the voltage applied to the liquid crystal was zero, and no deterioration of the liquid crystal element occurred.
  • the second non-selection period is provided at the end of the frame period, that is, immediately before the next selection period.
  • the second non-selection period is set within a time range where human eyes cannot identify. If so, it does not need to be immediately before the selection period.
  • FIG. 16 is a circuit block diagram showing an example of a specific circuit for realizing the satisfactory waveform shown in FIG. 15. 11. Select 1 and select the scanning waveform at the time of selection and the S waveform at the non-selection of the OV in the scanning waveform data of c to create the scanning waveform. On the other hand, for the signal flotation waveform, the transmission gate a 1 1 1 is selected by the signal b, and the ON waveform g and the OFF waveform h are selected by the signal electrode data d to create the signal voltage waveform. Applied to the liquid crystal element 113. Further, ⁇ V,, ⁇ V 2 , ⁇ V 3, OV is a power supply voltage of the run ⁇ beauty signal electrodes.
  • FIG. 17 shows signals at each point of the circuit shown in FIG.
  • FIG. 2 (b) to indicate such on the Hashi ⁇ Den ⁇ Xi, the drive waveform applied to the X 2 and the signal electrode Upsilon iota for the off state, the pixel (X, Upsilon shows the light transmission characteristics of I); Note that for clarity the change in HikariToruamane characteristics, in the next frame period t 23 on, by inverting the oFF state.
  • 05 to 1; 26 indicate that the deviation is the same as in FIG.
  • t ′ n and t ′ 21 are the selection periods in the scan electrode X 2 , t ′ 05 and t ′ 15 the second non-selection period, t '
  • V, V 2, V 5, and V e are 12 V, 10 V, 2 V, and 0 V, respectively, V 3 and V 8 are 8 V, and V 4 and V 9 are 4 V .
  • the difference from the fifth embodiment is that the voltage level of the scanning electrode and the signal electrode are made common in order to reduce the voltage applied to the scanning electrode.
  • Scanning electrodes X in the selection period t ⁇ (t 21) is the V 4 and V 3, the first non-selection period t, 6 tt 26 j> is the V 2 and V 5, the second non In the selection period t 0S (t, 5 .t 25, V
  • a pulse having a waveform is applied. That If on, the selection period in tn (V 4 - V,) and - negative (V s VG), the positive saturation value or more pulses are applied, the case of O off, the selection period t in 2l (V 4 - V 8) and (V 3 - negative V 9), a pulse of a positive threshold value less than the play application.
  • the pulse width is 2 0 0 psec or ⁇ 0 0 ⁇ .
  • the S method is an effective driving method when high-speed driving is required or when the number of scan electrodes is increased, as in the case of &.
  • the contrast ratio was obtained.
  • FIG. 19 is a block diagram showing an example of a specific circuit for realizing the drive waveform shown in FIG.
  • Select the transmission electrodes s 11 1 1 by the signals of a and b select the scan electrode waveform when f is selected and the non-selective scan electrode waveform of g by using the scan electrode data of c, and select the scan electrode waveform. create.
  • h is an even-numbered scan electrode selection waveform.
  • select the transmission sig- nal 1 1 1 for the signals a and b select the on waveform of i and the off waveform of j with the signal power data of e.
  • the signal is generated and applied to the liquid crystal element 113.
  • V l , V 2 l V 3 , V 4 , V 5 , V 6 , V 8> V 9 are scanning electrodes and signal electrodes Power supply voltage.
  • FIG. 20 shows signals at each point of the circuit shown in FIG.
  • Figure 21 shows the scanning waveform ftX for turning on and off as shown in Fig. 2 (b), the driving waveform applied to each pixel, and the light transmission characteristics. Note that for clarity the change in light transmission properties, in the next frame period t 23, one, obtained by inverting the OFF state.
  • t 05 ⁇ t 26 are all shows the same thing as the first 5 figures, the peak value V, is 8 V, V 2 is 4 V.
  • the difference from Embodiments 5 and 6 is that the pulse width of the pulse applied during the non-selection period is set to improve the contrast ratio.
  • the saturation applied to turn on and off the liquid crystal The point is that the pulse does not become larger than the pulse larger than the value.
  • the scanning period 3 ⁇ 4X has a selection period t n (t 21) of ⁇ V,, a first non-selection period and i6 (t 26) ⁇ , 0 V, t 05 (t
  • each pixel has a second non-selection period t immediately before the selection period t n (t 21 ).
  • the boat moving method of the tree embodiment is similar to that of the fifth and sixth embodiments. ,
  • the period of the selection period can be halved compared to the ffi method of Examples 1 to 4, and a high speed opening is required.
  • the second non-selection period was provided immediately before the next selection period in the frame period, that is, immediately before the next selection period. If it is within the range, it does not need to be immediately before the selection period.
  • FIG. 22 is a circuit block diagram showing an example of a specific circuit for realizing the dynamic waveform shown in FIG. 21.Transmit, y signal gate 1 11 1 is selected by signals a and b. (5) Select the scanning waveform at the time of selection and the non-selective scanning electrode waveform of OV from the scanning waveform data at (c) to create the scanning waveform. On the other hand, as for the signal voltage waveform, select the transmission mix gate 1 1 1 for the signal of b, select the ON waveform of g and the OFF waveform of h with the signal electrode data of d, and select the signal electrode. Create waveform> Applied to liquid crystal elements 113. ⁇ V t , ⁇ V 2 , and OV are power supply voltages of the scanning power S and the signal plant.
  • FIG. 23 shows signals at various points in the circuit shown in FIG.
  • FIG. 24 shows the driving waveforms applied to the scanning electrodes SX 1 and X 2 and the signal filY t for turning on and off as shown in FIG. 2 (b) and the light of the pixel (X ⁇ Y 1). Shows transmission characteristics. In order to make it easy to see the change in light transmission characteristics, In the frame period t 23 on, by inverting the OFF state.
  • V, V2, Va, V4, Vs, and VG are 10 V, 9 V, 7 V, 3 V, 1 V, and 0 V, respectively.
  • Vm indicates the intermediate potential of the voltage pulse applied to the signal electrode, and is 5 V in this case.
  • the difference from the seventh embodiment is that the voltage level applied to the scanning electrode and the signal electrode is shared in order to reduce the voltage applied to the scanning contact.
  • the selection period tn ( t2I ) is V 4 and V 3
  • the first non-selection period t, G (t 2 ⁇ ) is V 2 and V 5
  • the second non-selection period t 05 (t, 5 t 25) applies V
  • the scan ⁇ IX is the odd-numbered scan electrode
  • the even-numbered scan electrode X 2 is shown in FIG.
  • a pulse train with the opposite phase to Xi is applied. This is because when the pixel on the scanning electrode ⁇ is in the selection period t (t2), the pixel on the scanning electrode X2 is in the second non-selection period t'05 (t ', 5 ).
  • the pulse applied to the signal compressing electrode Y l needs to have different waveforms for the pulse for turning on the pixel and the pulse for turning off the pixel on the odd-numbered scan electrodes and the pixel on the even-numbered scan electrodes.
  • a pulse with a saturation value or more is applied in the order of positive and negative, and the pixel turns on once and then turns off, then turns on during the next selection or turns off as it is Choose to keep the state.
  • the liquid crystal of 0 V or (V 5 —V 6) and (V 2 —V,) Positive and negative pulses of a value sufficiently smaller than the threshold value are applied.
  • the driving method of the present embodiment is also an effective driving method when higher-speed driving is required or when the scanning power is increased as in the case of the fifth to seventh embodiments.
  • the contrast ratio was obtained.
  • FIG. 25 is a block diagram showing an example of a specific circuit for realizing the drive waveform shown in FIG. a, signal b Nyori preparative lance Mi Tsushi 3 Select Nge sheet 1 1 1, a scanning electric ⁇ data c, and select the unselected run ⁇ type selection during the scanning electrodes waveforms and g of f , ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Here, h is an even-numbered scanning electrode selection waveform.
  • the signal electric S waveform selects a, a re preparative La Nsumi Tsushi 3 down gate 1 1 1 by the b signal, the signal Den ⁇ data e, select On waveform and ⁇ off waveform of i, A signal signal S waveform is created and applied to the liquid crystal elements 113.
  • V,, V 2 , V 3 , V 4 , V 5 , and VG are the power supply voltages for the scanning electrodes and the signal electrodes.
  • FIG. 26 shows signals at each point of the circuit shown in FIG.
  • FIG. 27 shows the driving waveform applied to each pixel on the scanning power Xi for turning on and off as shown in FIG. 2 (b), and the light transmission characteristics.
  • 3 indicates the first frame period
  • t23 indicates the next frame period.
  • t H and t 21 indicate a selection period
  • t 12 and t 22 indicate a non-selection period
  • 4 indicates a pulse width of 200 jit sec.
  • the t ls and t 25 indicates the period for indicia pressurizing last or pulse for the average value correction provided at the end of the frame period of the next selection period. In this case, the period is 200 / sec.
  • the wave values V and V are 10 V, V 2 is 8 V, and V 3 and V 4 are 2 V.
  • the selection period t H (t 21) is applied in the order of + V ,, -V 2
  • the non-selection period t l2 (t 22 ) is 0 V
  • the last period of the frame period t 15 (t 25;. applies an V 3 as a correction pulse signal electrodes Y,, Upsilon 2, the Upsilon 3, if you want to turn on the pixels, the ⁇ V 4 positive, negative Cancer If you want to turn off, apply a negative or positive ⁇ ⁇ .
  • each S element is on, apply a pulse (+ VI — V 4) that is higher than the saturation value.
  • a second pulse having a polarity opposite to that of the first pulse and having a different peak value is applied. On / off is selected depending on whether the second pulse is below the threshold or above the saturation value. At this time, the difference between the peak value of the first pulse and the peak value of the second pulse is made equal, regardless of whether the pulse is on or off.
  • the average value of the voltage applied within one frame period is made zero by correcting the minute in the period of t 1S (t 25).
  • the pulse width of pulse 2 is made equal, but is not necessarily limited to this.
  • IV 1. t 1 I—IV 2 -t 2 I I Vs-t 3 I (where t, t 2, t 3 represents the pulse width of each pulse.) the as Minatoashi may do it by setting the crest value ⁇ Pi Bals ⁇ of each pulse.
  • the time required for selection can be reduced to half of that of the driving methods of the first to fourth embodiments, so that high-speed driving is required.
  • This is an effective driving method when the number of scanning electrodes is increased.
  • the element B since the element B does not turn on and off during the non-selection period, a change in light transmission ⁇ in a short period of time causes a problem with the quality of the liquid crystal shutter. When applied to a terre, it is an Arigiku deer method.
  • FIG. 28 is a block diagram showing an example of a specific circuit for realizing the K dynamic waveform shown in FIG.
  • the scan electrode transfers the scan electrode data signal 1 2 1 to the shift register 1 1 5 with the scan electrode S shift CI By switching to 0 V and the voltage to correct the DC component immediately before the selection period, the scanning contact waveform is improved.
  • the signal signal S 1 is sent to the shift register 1 1 4 by the signal switch 1, and the scan signal data is transferred to the shift register 1 1 4.
  • Latch with latch signal 1 1 9 Switch to the missing transistor and switch on or off (b or c waveform).
  • V,, -V 2, -V 3 , ⁇ V 4 are drive voltages for the scan electrodes and the signal electrodes.
  • FIG. 28 is a timing chart showing the signal waveform of the circuit shown in the twenty-eighth ( ⁇ 1).
  • FIG. 30 shows the driving waveform applied to the scanning electrode X and the signal electrode for turning on and off as shown in FIG. 2 (b), and the light transmission of the element ( ⁇ Y!). Show characteristics. Note that for clarity the change in light transmission properties, in the next frame period t 23 on, by inverting the OFF state.
  • V 1, V 2, V 3, V 4, V 5, V 6, and V 7 are 12 V, 10 V, 8 V, 6 V, 4 V, 2 V, and 0 V, respectively.
  • V m indicates the intermediate potential between the voltage applied to the signal electrode and the bells, in this case 5 V.
  • the difference from the ninth embodiment is that the voltage level of the scanning electrode and the signal electrode are made common in order to reduce the voltage applied to the scanning electrode.
  • V 5 is applied, the threshold by Li small pulse (V 7 - V 4) is applied, O full
  • the pulses ( ⁇ , — v 7 ) and (v 7 — v 2 ) having a saturation value or more are applied in the order shown in the figure.
  • the correction pulse 4 is applied (V 4 — V 2) or (V 4 — V 4) That is, 14 V or 0 V is applied.
  • * Example, similarly to Example 9, to correct the difference between the peak value of the positive and negative pulses play applied during the selection period in the period of t 15 (t 25), applied to one frame period The average value of the applied voltage is set to zero.
  • FIG. 31 is a block diagram showing an example of a specific circuit for realizing the drive waveform shown in FIG. Select the transmissible gate 1 1 1 in response to the signal a, and select the scanning waveform when selecting e and the non-selection scanning waveform f when selecting e using the scanning power b. ⁇ Make a planting waveform.
  • V, V 2 , V 3 , V 4 , V 5 , V 6 , and V r are the power supply voltages of the scanning electrodes and signal electrodes.
  • FIG. 32 shows signals at each point of the circuit shown in FIG.
  • FIG. 33 shows the driving waveform applied to each pixel on the scanning electrode for turning on and off as shown in FIG. 2 (b), and the light transmission characteristics. Note that for clarity the change in light transmission properties, in the next frame period t 23, one was allowed to Han ⁇ off like wisteria.
  • Tu ⁇ t 25 in the third Figure 3 both shows the same thing as the second FIG. 7, the peak value V, is 8 V, V 2 is SV, V 3 and V 4 are 2 V.
  • V 3 — V 4 V 3 is applied.
  • the second pulse having the opposite polarity and a different peak value is applied.
  • the second pulse is turned on and off depending on whether the second pulse is below the threshold or above the saturation value.
  • one, a re involved off Ku, leave Gushi equal the difference between the first and the pulse wave height of the second pulse wave ⁇ of the difference amount with a period of t 15 (t 25)
  • the average value of the applied Yangju in one frame period is set to zero.
  • the pulse radiation of the correction pulse and the pulse of the first pulse and the second pulse are equalized.
  • the driving method of the thick embodiment also requires a high-speed driving because the time of the selection period can be halved as compared with the driving methods of the first to fourth embodiments, similarly to the ninth and tenth embodiments. This is an effective operation method when the number of scanning lightning plants is large.
  • the contrast is 24: 1 for the pixel (X! Yi), 23: 1 for ( ⁇ , ⁇ !), And 23: 1 for (XiYs). A ratio was obtained. Also in the case of the embodiment, the timing for applying the correction pulse is not limited to immediately before the selection period.
  • FIG. 34 is a block diagram showing an example of a specific circuit for realizing the drive waveform shown in FIG.
  • the scanning power data signal 121 is transferred to the shift register 115 with the scanning power shift clock signal 120, and the waveform of d during the selection period and OV during the non-selection period. t Switch the voltage to correct the DC component immediately before the selection period, and output the traveling fridge waveform.
  • the signal electrode data signal 1 17 is transferred to the shift register 1 14 with the signal shift shift clock 1 18 to the signal electrode, and after the data for one scan line is transferred, the latch signal 1 19 is transferred to the signal electrode.
  • Latch 1 16 and switch the transmission missing gate 1 11 with the output to output on or off (b or c waveform).
  • V,, —V 2, -V 3 , and soil V 4 are the K dynamic voltages of the scanning electrode and the signal electrode.
  • FIG. 35 is a timing chart showing signal waveforms of the circuit shown in FIG.
  • Fig. 36 shows the scanning waveform for turning on and off as shown in Fig. 2 (b) and the driving waveform applied to the signal pack, and the light of the pixel ( ⁇ ,). Shows transmission characteristics. In order to facilitate re-divided a change in light transmission characteristics, obtained by inverting the next full, on-off state in the frame period t 23.
  • t n ⁇ t 25 are all shows the same thing as the second 7 FIG.
  • the peak values V, V a, V 3, V 4 , V 6 , and V 7 are 10 V, 8 V, 6 V, 4 V, 2 V, and 0 V, respectively.
  • V m indicates the M potential of the voltage pulse applied to the signal electrode, and in this case, it is 4 V.
  • Example 11 is different from Example 1 in that the voltage levels of the scanning electrode and the signal electrode S are shared in order to reduce the voltage applied to the scanning electrode.
  • the scanning electrode XI has a selection period t. H (t 21 ) is applied in the order of V and V 7, non-selection period t 12 (t 22 ) is applied in the order of V ⁇ and V 3 , and t
  • the fuzzy method of the present embodiment is also an effective driving method when applied to a liquid crystal shutter or the like, and has a contrast ratio similar to that of the embodiment 11.
  • 3 7 figures by the beta a signal is blanking lock diagram showing an example of a practical circuit for realizing the K dynamic waveform shown in the third Figure 6 Li, preparative lance mission-Gerhard Nge sheet 1 1 1 is selected, and the scanning waveform at the time of selection of e and the scanning waveform at the non-selection of f are selected from the scanning data of b, and a scanning waveform is generated.
  • FIG. 38 is a signal at each point of the circuit shown in FIG.
  • t 13 is the first frame period
  • t 23 illustrates the next frame period
  • t 21 and t 22 show the non-selection period.
  • t14 indicates a pulse width of 200 ⁇ s, sec.
  • the peak value is 30 V and V 2 is 12 V.
  • the present embodiment improves the memory contrast of the liquid crystal element by applying a low frequency AC pulse having a frequency of 10 KHz during the non-selection period, thereby improving the contrast ratio. I have done it.
  • crest value (+ V, + V 2) negative peak value (one V, + V 2) in AC pulse and a positive peak value of (+ V 1 - V 2) negative peak value at the (single an AC pulse of V i + V 2) is applied alternately period t 14.
  • Each of the pulses applied during the selection period is equal to or higher than the saturation value, but ON or OFF is selected according to the polarity of the pulse applied last.
  • the peak value of the AC pulse applied during the selection period is very large, but the pulse width is very small at 50 ⁇ sec, so the liquid crystal element does not respond, and The leadability is improved, and the contrast ratio is improved. In this example, an extremely excellent contrast ratio of 40: 1 was obtained. Further, the average value of the voltage pulses applied to the liquid crystal element was zero, and the liquid crystal element did not deteriorate.
  • FIG. 40 is a circuit block diagram of an example of a specific circuit for realizing the defeat waveform shown in FIG. Select the transmis- sion 3 gate 1 11 1 for the signals a and b, and use the scan electrode data c. Selects the scanning waveform at 0 V selection S waveform and the scanning electrode waveform at non-selection of e to create a scanning waveform. On the other hand, the signal signal waveform is selected by selecting the transmission sig- nal s 1 1 1 for the signal a and selecting the f-on waveform and the g-off waveform with the d signal electrode data. And applied to the liquid crystal element 113. ⁇ V t, ⁇ V 2, 0 V is the supply voltage of the run ⁇ and signal electrodes.
  • FIG. 41 shows signals at each point of the circuit shown in FIG.
  • FIG. 42 shows the driving waveform applied to the scanning electrode X and the signal contact Y i for turning on and off as shown in FIG. 2 (b), and the driving waveform of the pixel ( ⁇ ⁇ Y 1). Shows light transmission characteristics. In order to facilitate re-divided a change in light transmission properties, the next on the frame periods t 23, was Han ⁇ off. In the 42 view, t 13 the first frame period, t 23 represents the next frame period, t n and 1 21 selection period, showing a 12 and 1 22 Ho non-selection period. Also, t 14 indicates a noiseless width of 200 ⁇ , sec. ⁇
  • IV 3 't, 4 I - IV 2 - t 14 I 1/2 (IV, - t 12 I - IV 4 • t, 2 I) is set to satisfy.
  • t 12 10 t, 4, so the peak values V, V a, V 3, V 4 were set to 30 V, 10 V, 20 V, 28 V, respectively.
  • ⁇ or V 5 is 5 V.
  • _V 3 and V 2 are negative and positive in the selected period t (t 21 ).
  • the positive peak values are V, and the negative wave.
  • high value is applied to ac BALS of frequency 1 0 KH z in V 4, the signal on electrode YI> ⁇ V 5, positive when it is desired to turn on the pixel, a negative ⁇ , if you want to turn off the negative, applied to the positive ⁇ . in this case the pixel (X, Y!). If on the above saturation value (one V 3 -V
  • An AC pulse of V 4 + V 5) and an AC pulse of a positive peak value of —V 5) and a negative peak value of (—V 4 —V 5 ) are alternately applied for a period of t
  • the difference between the peak values of the positive and eclipse pulses applied during the selection period is (V 3 -V 2) irrespective of on / off, and the difference is corrected by the AC pulse applied during the non-selection period.
  • the average value of the underpressure pulse applied to the element is zero. * Also in the example, the memory property of the liquid crystal element was improved, and an excellent contrast ratio similar to that of the example 13 was obtained. ,
  • FIG. 43 is a circuit block diagram of an example of a specific circuit for realizing the drive waveforms shown in FIG.
  • the transmis- sion a gate 1 1 1 is selected.
  • the signal electrode waveform is selected by selecting the transmis- sion sig- nal 1 1 1 by the signal a, selecting the on waveform of g and the off waveform of h by the signal electrode data of d, and selecting the signal signal waveform.
  • a waveform is created and applied to the liquid crystal elements 113.
  • V,, V 2 > -V 3, -V 4, ⁇ V 5 are the power supply voltages of the scanning electrode and the signal electrode.
  • FIG. 44 shows signals at each point of the circuit shown in FIG.
  • FIG. 45 is a block diagram showing a specific circuit for realizing the drive waveform in the present embodiment.
  • FIG. 81 is a diagram in which the K dynamic waveform created by this circuit is applied to a liquid crystal element.
  • FIG. 3 is a diagram showing an example of a killing circuit for performing the above. 4 5 1 frame signal, 4 5 2 ⁇ Li in the polarity switching signal, Ri due to these signals, door lance Mi Tsu three Nge - door 1 1 1 and S w etching V,, V 2 , — V 3, — Switch the voltage of V 4, and make the selection waveform 453 of the scanning contact.
  • the V [delta]> - a voltage V 6 Setsuri ⁇ Ete make on waveform 4 5 4 and off waveform 4 5 5 signal electrodes.
  • FIG. 46 shows the timing chart of these signal waveforms.
  • These signal waveforms are applied to the drive circuit shown in FIG. 81 to generate drive waveforms to be applied to the scan electrodes and the signal electrodes. That is, the selected waveform 45 3 is set to 8101 and 8102, the non-selected waveform is set to 0 V to 8103, the ON waveform 450 is set to 8105, and the OFF waveform 450 5 is applied to 8104 respectively.
  • 121 is the scan electrode data, which is transferred to the scan electrode side shift register 115 by the scan electrode shift clock 120, and the Outputs the selection signal sequentially and switches the transistor 3 gate 1 1 1 And apply the scanning drive waveform to 810 7.
  • Reference numeral 117 denotes signal electrode data, which is transferred to the signal electrode side shift register 114 by the signal electrode shift clock 118, and data for one scanning contact is transferred.
  • the latch circuit 1 16 latches with the latch signal 1 19. Switching of the resilience sr gate 11 1 by the ffj force of the latch circuit 1 16 and switching of the on waveform 454 and the off waveform 4 5 5 switch the signal electrode dynamic waveform. Is applied to 8106.
  • FIG. 46 the driving waveform applied to the scanning implant 810 and the signal S 810 shown in FIG. 81, the composite waveform applied to the pixel 8111 and the light transmission The characteristics are shown.
  • t 31 and t 4 respectively show the selection period, t, a t 22. t 32 and t 42 are respectively unselected ⁇ .
  • the t 14, t, t 24, t 25. t 34, t 35. t 44 and t 45 represents a pulse spokes, in the present real 3 ⁇ 4 example are both 2 0 0 ⁇ SC.
  • V, and V 4 is 1 0 V
  • V 2 and V 3 are 8 V
  • V 5 and V G is 2 V.
  • the composite waveform applied to the pixel 811 1 is the ON waveform in the frame where the first narrowing waveform is applied to the scanning cell 810 in FIG. 463. If (one V 4-V 5) and (V 2 + V e ) are negative and positive in order, (-V 4 + V 6) and (V 2 -V 5) are applied in the order of negative and positive. In the frame where the second selected waveform is applied, (V!-V 5) and (one V 3
  • a pulse having a positive or negative saturation value or more is applied at the beginning of the selection period to turn on or off, and a pulse to be subsequently applied is a pulse having a saturation value that is greater than or equal to the reverse flute saturation value.
  • ON / OFF is selected depending on whether the on / off state is reversed or the pulse is kept as it is as a pulse smaller than the reverse polarity threshold.
  • the difference between the peak values of the positive pulse and the negative pulse is (V 4 — V 2 ), that is, 12 V.
  • (V, -V 3) that is, +2 V, cancels each other. That is, in the embodiment, the average value of the voltage pulse applied to the pixel every two frames is set to zero to prevent the deterioration of the liquid crystal element.
  • FIG. 46 shows the light transmission characteristics of the pixel 8111.
  • FIG. 47 is a schematic diagram showing a specific circuit for implementing the K dynamic waveform in this embodiment.
  • FIG. 81 is a diagram showing a driving waveform generated by this circuit applied to a liquid crystal element.
  • FIG. 2 is a diagram showing an example of a driving circuit for performing the above. 4 7 1 frame signal, 4 7 2 3 ⁇ 4 of Setsuri recombination signal at ⁇ Li, these signals, preparative lance Mi Tsu sheet a Nge sheet 1 1 1 and S w etching V,, - V 2, -V 7, -V 8 voltage cut-off area Create scan electrode selection waveform 4 7 3 and switch -V 3 , -V 6 voltage to create scan electrode non-selection waveform 4 7 4 .
  • FIG. 48 shows the timing chart of these signal waveforms.
  • These signal waveforms are applied to the driving circuit shown in FIG. 81 to create a driving waveform to be applied to the scanning electrodes and the signal electrodes. That is, select waveform 473 is applied to 8101 and 8102, unselected waveform 474 is applied to 8103, open waveform 475 is applied to 8105, and off waveform 476 is applied to 8104. .
  • reference numeral 121 denotes scanning planting data, which is transferred to the scanning electrode side shift register 115 by the scanning electrode and the safety clock 120, and is sequentially transferred by one scanning potential. By inputting a selection signal, switching is performed on the transmis- sion 3-gate 1 11 1 and a scanning drive waveform is applied to 8107. Also, reference numeral 117 denotes signal electrode data, which is transferred to the S-side shift register 114 by the signal electrode shift block 118 to obtain the signal potential of the first run.
  • the latch circuit 1 16 is latched by the latch signal 1 19, and the output of the latch circuit 1 16 is used as the transmis- sion gate 1 1 1 Is switched, the ON waveform 475 and the OFF waveform 476 are switched, and the signal S drive waveform is applied to 810.
  • FIG. 49 the driving waveform applied to the scanning electrode 8109 and the signal implant 8110 shown in FIG. 81, the composite waveform applied to the pixel 8111 and the light transmission characteristics Is shown.
  • each is 200 itsec. Peak value V, is 0 V, V 2 is 2 V, V 3 is 4 V, V 4 is 6 V> V 5 is 5 V, ⁇ ⁇ 1 0 V, V 7 1 2 V, V 8 1 4 V.
  • 1 Vm indicates the midpoint potential of the voltage pulse applied to the signal voltage. In this case, it is 17 V.
  • Example 15 differs from Example 15 in that the voltage levels applied to the scanning electrodes were reduced so that the voltage levels of the scanning electrode and the signal electrode were shared. (") The point where the waveform was changed by the selected waveform applied to the scanning lightning pole.
  • selection period t (t 21. T 31, t 41) is alternately every one frame, the first selection waveform to one V e and single V 2 gar V 8, - in the order of V 2, also V as the second selecting waveform, and single V 7 is V, is sequentially applied to one V 7 , a non-selection period t
  • 2 (t 22, t 32, t 42) , the first one V 3 in frames that signal is applied and single V 6 gar V 3, - in the order of V 6, also In the frame to which the second selected waveform is applied,
  • the signal electrodes 8 1 1 0, urchin by showing the fourth 9 4 9 2, in the frame of the first signal is applied to one V 2 and single V as the O emissions waveform 7 gar V 2 , one V
  • one V 4 and single V 5 Gar V 4 as an off waveform is sequentially applied to one V 5.
  • one V 4 and one V 5 are applied to one V s , —V 4 ⁇ as an on waveform, and one V as an off waveform.
  • V 2 and single V 7 gar V 7, - is applied in the order of V 2.
  • the composite waveform applied to the pixel 811 1 is (--) when it is on in the frame in which the first selection waveform is applied to the scan electrode.
  • (V 8 + V 2) and (1 V 2 + V 7) are applied in the order of negative and positive, and when off, (1 V 8 + V 4) and (1 V 2 + V s) are applied in the order of negative and positive
  • (V i + V 5) and (one V 7 + V 4) are positive and negative in the order of ON
  • (V, + V 7) and (1 V e + V 2 ) are applied in positive and negative order.
  • ( ⁇ V 6 + V 7) and (1 V 3 + V 2) or (1 V 3 + V 4) and (1 V 6 + V 5) are applied.
  • the pulse which is higher than the positive or negative saturation value is applied at the beginning of the selection period to turn on or off.
  • ON or OFF is selected depending on whether the pulse is held as it is.
  • the difference between the peak values of the positive pulse and the negative pulse is (V 7 -V 8) or (V 4 + V 5 -V 2 -V 8 ) That is, it is 1 V, but in the frame where the t- th selected waveform is applied, it is V 2 or (V 4 + V 5 — V 7), that is, +2 V. , Offset each other. That is, also in this embodiment, the average value of the voltage applied to the pixel every two frames is set to zero to prevent the deterioration of the liquid crystal element.
  • FIG. 49A shows the optical characteristics of the pixel 8111.
  • FIG. 50 is a block diagram showing a specific circuit for realizing the driving waveform in the present embodiment.
  • FIG. 81 is a diagram for applying the driving waveform generated by this circuit to a liquid crystal element.
  • FIG. 3 is a diagram illustrating an example of the drive circuit of FIG.
  • Reference numeral 501 denotes a frame signal
  • reference numeral 502 denotes a contact switching signal.
  • the transmission gate 11 is switched to V,, V2. -V 3, — The voltage of V 4 is cut off, and the selection waveform 503 of the scan electrode is generated.
  • the V 5 , —V 60 V voltage is switched to generate the ON waveform 504 and the OFF waveform 505 of the signal connection.
  • Fig. 51 shows the timing chart of these signal waveforms.
  • These signal waveforms are applied to the drive circuit shown in FIG. 81 to generate drive waveforms to be applied to the scanning electrodes S and the signal electrodes. That is, the selected waveform 503 is set to 8101 and 8102, the non-selected waveform is set to 0 V to 8103, and the ON waveform 504 is set to 8105. 0 5 is applied to 8 104 respectively.
  • 121 is the scanning lever data, which is transferred to the scanning electrode shift register 115 by the scan electrode shift clock; A selection signal is output one by one in order to switch the transmission sig- nal gate 11 1, and a drive contact driving waveform is applied to 8107.
  • 1 1 7 This is fed to the signal-side shift register 1 14 by the signal connection shift clock 118 and latched after the data for the first run of the dragon plant has been transferred.
  • Latch circuit 1 16 is latched by signal 1 19.
  • Fig. 51 shows the K dynamic waveform applied to the scanning tangent 810 and the signal 3 ⁇ 43 ⁇ 4 8110 shown in Fig. 81, the composite waveform applied to the pixel 8111, and the light transmission. The characteristics are shown.
  • V and V 4 are 8 V
  • V 2 and V 3 are 6 V
  • V 5 and .V 6 are 2 V.
  • the scanning electrode 8109 has a selection period t u (t 21, t 3I .t 4
  • waveform and to V 2 and single V 4 are negative, a positive order and V as the second selecting waveform, and single V 3 is applied to the positive negative forward> non-selection period t 12 (t 22, t 32, t 42) is, OV is applied.
  • the composite waveform applied to pixel 8 11 1 is as shown in Fig. 51 13
  • the on-state (one v 4 — V 5) and (V 2 + V 6) are negative
  • the positive order is> negative
  • one v 4 and V 2 is applied to the positive sequence
  • V t and single V 3 positive in the case of O emissions in frame second ⁇ waveform is applied, in the order of food, in the case of off ( V i + V e ) and (one V 3 — V 5 ) are applied positively and negatively.
  • a pulse having a positive or negative saturation value or more is applied at the beginning of the selection period to turn on or off, and a pulse to be applied next is a pulse having a reverse polarity of IS value or more.
  • the on / off state is selected depending on whether the on / off state is inverted or the pulse is kept as a pulse smaller than the reciprocal threshold.
  • the difference between the peak values of the positive pulse and the negative pulse is (V 2 — V 4), that is, 12 V.
  • (V, — V 3 ) that is, +2 V, cancels each other. That is, also in the present embodiment, the average value of the voltage pulse applied to the pixel every two frames is set to zero to prevent the liquid crystal element from deteriorating.
  • the light transmission characteristics of g element 811 1 are shown in FIG.
  • FIG. 52 is a block diagram showing a specific circuit for realizing the driving waveform in the * embodiment
  • Fig. 81 is a diagram in which the K dynamic waveform created by this circuit is applied to the liquid crystal element.
  • FIG. 3 is a diagram illustrating an example of a driving circuit. 5 21 is a frame signal, and 5 22 is a contact switching signal.
  • These signal waveforms are applied to the drive circuit shown in FIG. 81 to generate a driving waveform applied to the scanning electrode and the signal electrode. That is, the selected waveform 5 2 3 is set to 8101 and 8102, the unselected waveform 5 24 is set to 8103, the ON waveform 5255 is set to 8105, and the waveform 526 is set to 8 Applied to 104 respectively.
  • reference numeral 121 denotes scan electrode data, which is transferred to a scan electrode plant shift register 115 by a scanning clock 120, and one scan electrode is transferred.
  • a selection signal is sequentially output, and the transmission B gate 11 1 is switched, and the scan voltage ft drive waveform is applied to 8107.
  • Reference numeral 117 denotes signal electrode data, which is transferred to the signal electrode side shift register 114 by a signal electrode shift clock 118, and data for one scanning electrode is transferred. Then, the latch circuit 1 16 is latched by the latch signal 1 19.
  • the latches circuit 1 1 6 Li preparative lance Mi Tsu sheet 3 Nge sheet 1 1 1 by the output of the and S w etching, the on waveform 5 2 5 and the OFF waveform 5 2 6 Setsuri substitution example the signal electric igffi Apply a dynamic waveform to 816.
  • FIG. 54 shows the driving waveform applied to the scanning electrode 8109 and the signal electrode 8110 shown in FIG. 81, and the combined waveform and light applied to the pixel 8111. Shows transmission characteristics.
  • t, 3 .t 23 1 33 and 1 43 are 1 frame period t H, t 2 , t 31 and t 4 , respectively, are selection periods t 12 , t 22, t 32 and t 42 are not selected respectively Indicates the period.
  • T 35, t 44 ⁇ Hi t 45 shows a pulse, in the present embodiment are both 2 0 0 ⁇ sec.
  • Peak value V is 0 V
  • V 2 is 2 V
  • V 3 is 4 V
  • Example 17 differs from Example 17 in that scanning was performed to reduce the drag pressure applied to the scanning electrodes. The point is that the voltage level of the inspection fence and the signal electrode are shared.
  • the first selecting waveform is one V 3, and single v s gar v in frames applied 3 - V e is applied in the order of, and in frame of the second signal is applied to one V beta , — ⁇ applied in order of V 3
  • V 3 and '1 V 6 are 1 V s , 1 V 3 in order, and 1 V 2 and 1 V 7 are 1
  • the composite waveform applied to the S element 8 11 1 is as follows when the first selected waveform is applied to the scanning fence, when it is on (— V 8 + V 2) and (1 V 2 + V 7) are applied negatively and positively, and when off, (1 V 7 + V 2) and (1 V 2 + V 6) are applied in the order of negative and positive In the frame to which the second selected waveform is applied, (1 V 2 + V 7) and (1 V 7 + V 3 ) are in positive and negative order in the case of ON, and (V, + V 7) and (one V 7 + V 2) are applied in order of positive and negative.
  • the pulse applied at the beginning of the selection period is turned on or off by applying a pulse with a positive or negative saturation value or more.
  • the ON / OFF state is selected depending on whether the ON / OFF state is reversed as a pulse with a value greater than the value or whether the pulse is kept as it is as a pulse smaller than the reverse polarity threshold.
  • the difference between the peak values of the positive pulse and the negative pulse is (V 7 -V 8) or (V 6 -V 7), ie, 1 V, but in the frame to which the second selected waveform is applied, (V 3 ⁇ V 2 ) or V 2, ie, +2 V, cancels each other. That is, in the embodiment, the average value of the voltage pulse applied to the pixel every two frames is set to zero to prevent the deterioration of the liquid crystal element.
  • FIG. 544 shows the light transmission characteristics of the pixel 8111.
  • FIG. 55 is a block diagram showing a specific circuit for realizing the drive waveform in the present embodiment.
  • FIG. 81 is a diagram in which the drive waveform generated by this circuit is applied to a liquid crystal element.
  • FIG. 1 is a diagram showing an example of a driving circuit for the present invention.
  • 55 1 is a frame signal
  • 55 2 is a polarity switching signal>
  • 55 3 is a write pulse switching signal, and these signals are used to transmit the transmission gate 1 1 1 Itching and V!
  • the voltage of V 2 , V 3, -V 4, -V 5 .-V 6 is switched to create the scan electrode selection waveform 554.
  • the V 7 , ⁇ V 8, and 0 V voltages are switched to generate ON waveforms 55 5 and OFF waveforms 5 56 of the signal electrodes.
  • Fig. 56 shows the timing chart of these signal waveforms.
  • These signal waveforms are applied to the K-motion circuit shown in FIG. 81 to generate drive waveforms to be applied to the scanning electrodes and the signal electrodes. That is, the selected waveform 554 is set to 8101 and 8102, the non-selected waveform is set to 0 V to 8103, the open waveform 5555 to 8105, and the off waveform 55 6 is applied to 8 104 respectively.
  • reference numeral 121 denotes scanning electroplantation data, which is transferred to the scanning electrode side shift register 115 by the scanning electrode S shift clock 120, and is used for one scanning signal. . ,
  • Reference numeral 117 denotes signal fence data, which is transferred to the signal electrode side and the resistance register 114 by a signal electrode shift clock 118, and is used for one scanning voltage. rats to switch the latches circuit 1 1 6 by latches signal 1 1 9 After transferring data - by the output of the latches circuit 1 1 6 y preparative lance Mi Tsu sheet 3 Nge sheet 1 1 1 Is switched, and the ON waveform 555 and the OFF waveform 555 are switched to apply the signal F fluctuating waveform to 810.
  • FIG. 56 shows the driving waveforms applied to the scanning lines 8109 and the signal electrodes 8110 shown in FIG. 81, the combined waveforms applied to the pixels 8111 and the optical transmission lines. Characteristics.
  • t 41 respectively selection period t 12, tt 32 and t «each unselected period. Shown. ,, T and pulse radiation are shown. * In the case of the embodiment, all are 200 ⁇ sec. Further, the pulse width of the write pulse switching signal is referred to as tZ4 or less, which is 1/4 of the pulse radiation, that is, 50 sec.
  • Peak value V I and V 4 is 9 V, V 2 and V s 6 V, V 3 and V 6 are 1 1 VV ⁇ and V 8 are 3 V.
  • the pulse signal applied to the pixel is superimposed on the moving waveform to reduce the pulse radiation applied to the pixel during the non-selection period, thereby minimizing the effect on the light transmission characteristics. Coming up.
  • the signal compress 811 has an ON waveform as shown in Fig. 56, and after 0 V and V 7 are applied alternately by two at t Z4 pulse radiation. However, two 1 V 8 and 0 V are alternately applied at the same pulse width. A pulse having a phase opposite to that of the ON waveform is applied as the OFF waveform.
  • the composite waveform applied to pixel 811 1 is 1 V when it is on in the frame where the first selection waveform is applied to the scan electrode.
  • 0 V, V 7 and 1 V 8 are applied with a pulse width of t Z4.
  • the on / off state is selected depending on whether it is above or smaller than the threshold value, depending on whether the on / off state is inverted or kept as it is.
  • the force with the pulse width of the pulse superimposed on the drive waveform set to tZ4 is not limited to this.
  • the pulse radiation may be further reduced to increase the number of superimposed pulses.
  • FIG. 57 is a block diagram showing a specific circuit for realizing the drive waveform in the embodiment *.
  • Fig. 81 applies the drive waveform generated by this circuit to the liquid crystal element.
  • FIG. 1 is a diagram showing an example of a driving circuit for the present invention.
  • 57 1 is a frame signal
  • 57 2 is a flap switching signal
  • 573 is a write pulse switching signal.
  • FIG. 8 shows a timing chart of these signal waveforms. These signal waveforms are applied to the drive circuit shown in FIG. 81 to create dynamic waveforms to be applied to the traveling flute and the signal electrodes. That is, the selected waveform 5 7 4 is set to 8101 and 8102, the unselected waveform 5755 is set to 8103, the on waveform 576 is set to 8105, and the off waveform 577 is set to 81. 04 respectively.
  • reference numeral 1 21 denotes scanning fence data, which is transferred to the scanning plant shift register 1 15 by a scanning flock shift clock 120, and is scanned once.
  • a transition signal is output one by one, and the transmis- sion gate 1111 is switched to apply the scanning plant drive waveform to 8107.
  • 1 1 7 (5J) , and feeds it to the signal electrode side register 114 by the signal electrode shift clock 118, and latches the data for one scan electrode.
  • the signal is connected to the latch circuit 1 16 by the signal 1 19.
  • the output of the latch circuit 1 16 is used to switch the transmission switch 3 11 After switching, the ON waveform 5776 and the B OFF waveform 577 7 are switched, and the signal power K dynamic waveform is applied to 8106.
  • Fig. 59 shows the driving waveform applied to the scanning line S810 and the signal pole 8110 shown in Fig. 81, and the combined waveform and light applied to the pixel 8111. Shows transmission characteristics.
  • the pulse width (hereinafter referred to as tZ4) of the write pulse switching signal is 14 of the pulse radiation, that is, 50 fisec.
  • V Peak value V
  • V 2 is 2 V>
  • V a 4 V
  • V 4 is 6 V
  • V 5 is 8 V
  • V 6 is 10 V
  • V 7 is 12 V
  • V 8 is At 12 V
  • Vm indicates the intermediate potential of the pulse applied to the signal electrode, which is 7 V in this case.
  • the difference from the embodiment 19 is that the voltage level of the scanning electrode and the signal electrode is made common in order to reduce the compressibility applied to the scanning electrode.
  • the ON and OFF waveforms are selected. It changed according to
  • ;) are alternately every frame, the first pulse write pulse switching signal to one V beta and single V 3 is superimposed with the selected waveform, as the second selecting waveform, V, and single v 7 ⁇ can lump pulse switching signal is superimposed on the B pulse is applied with the non-selection period t
  • Non-selection period is, 0 V, (- V e + V 7) and (- V 3 + V 2) is applied with a pulse width of t / 4.
  • the composite waveform applied to the pixel according to the driving method of the embodiment is basically the same as that of the embodiment 19, and the frame to which the first selected waveform is applied has a positive pulse.
  • the applied frame, (V 6/2 + V 7/2 + V 3 - V 7) (V 5 /
  • Fig. 594 shows the optical characteristics of the light source 811.
  • the respective voltage levels are set in accordance with the threshold characteristics of the ferroelectric liquid crystal TDOB AM BCC.
  • the voltage level may be set to an appropriate value according to the threshold characteristics of the ferroelectric liquid crystal used.
  • FIGS. 82 (a) and (b) are diagrams showing the relationship between the waveform of the applied compressive pulse and the light transmission characteristics.
  • the threshold voltage and saturation value voltage of the strongly electrophoretic liquid crystal are determined by the pulse width. As mentioned earlier, we found that it also changes with the applied pulse. 'That is, when a pulse having the waveform shown in Fig. 82 (b) 821 is applied as shown by the solid line in Fig. 82 (a) 824, the positive and negative thresholds are V! ; ! ! ,as well as ! ; ! And the saturation values are V sat "and V sat, however, when a pulse as shown in Fig.
  • 82 (b) 822 is applied, positive and negative values are obtained as shown by the dotted lines in Fig. 82 (a) 825.
  • FIG. 60 is a block diagram showing a specific circuit for realizing the drive waveform in the embodiment of t : *.
  • FIG. 81 is a block diagram showing the drive waveform produced by this circuit in a liquid crystal element.
  • FIG. 9 is a diagram illustrating an example of a dynamic circuit for applying. 6 0 1 frame signal, 6 0 2 is ⁇ Setsuri substitution tut signals, these signals Nyori, preparative lance Mi Tsu Shi a Nge over sheet 1 1 1 by Sui etching V,, V a, — Reset the voltage of V 3, ⁇ V 4, and create the running waveform selection waveform 604.
  • FIG. 61 shows a timing chart of these signal waveforms.
  • These signal waveforms are applied to the drive circuit shown in FIG. 81 to generate drive waveforms to be applied to the scan electrodes and the signal electrodes. That is, the selected waveform 6104 is set to 8101 and 8102, the non-transition waveform is set to 0V to 8103, the ON waveform is set to 8105, and the OFF waveform is set to 8105. A 6 is applied to each of 8 I 04.
  • reference numeral 121 denotes scanning flute data, which is transferred to the scanning contact side shift register 115 by the scanning electrode shift clock 120, and is sequentially scanned one scanning plant at a time.
  • the selection signal is ⁇ intensified ⁇ to switch the transmis- sion sig- nal 111, and the scanning waveform is applied to 8107.
  • Reference numeral 117 denotes signal contact data, which is transferred to the signal shift register 114 by the signal shift clock 118, and data for one scanning cell is transferred.
  • the latch signal 1 19 is connected to the latch circuit 1 16.
  • the on-waveform 605 and the off-waveform 606 are switched, and the signal voltage drive waveform is applied to 810.
  • Fig. 62 the scan 8109 and the signal S8110 shown in Fig. 81 are marked.
  • the JS waveform applied and the composite waveform applied to pixel 811 and the light transmission characteristics are shown.
  • Each selection period, t 12, t 22 t 32 and t 42 represent, respectively, the non-selection ⁇ .
  • the t, 4, t 24, t 34 ⁇ and t 44, the pulse width of a pulse applied to the first half of each selection period, t 15, t 25, t 35, and t 4S are their respective select period Indicates the pulse radiation of the pulse applied in the latter half of ⁇ circle around (2) ⁇ . Further t 0 indicates the t 15 (t 25, t 35 , t 45) 1 Bruno second pulse width.
  • the wave values V, -V5 are set so as to satisfy the following conditions.
  • V i V 4 ⁇ V sati, IV sat 2 I
  • V th 21 (V 2 + V s)> V sat
  • the ⁇ S 8 1 0 9 run, 6 2 6 2 selected period b is as shown in 1 first selection ⁇ type and to one V 4 and V 2 is negative, the positive order, second selection waveform and to V ⁇ beauty one V 3 positive, negative sequence, are alternately applied to every frame, the non-selection period 0 V is applied.
  • the composite waveform applied to pixel 811 1 is the same as that shown in Fig. 62, when the first selected waveform is applied to the scan electrodes, ,,
  • the peak value of t 0 in the first half is (one V 3 — V 5 ) and the peak value of t 0 in the second half is A pulse with a peak value of (1 V 3 + V 5) is applied.
  • V t is applied first, and then the peak value of t 0 in the first half is (1 V 3 + V s). Then, the pulse whose peak value of to in the latter half is (one V 3 — V 5) is applied.
  • soil 5 having 0 V and pulse width t 0 is applied.
  • the pulse applied to the second half of the selection period t ⁇ Pi t 21 is not less than the saturation value, t 31 and t 4l
  • the pulse applied in the latter half of the waveform has the same peak value, it has a smaller value than the threshold value because the waveform is different.
  • the driving method of the embodiment also sets the on or off state by the pulse applied at the beginning of the selection period, which is equal to or more than the positive or negative saturation value, and then changes the state by the inverted pulse applied next. You can select on or off by selecting whether to invert or keep as it is.
  • FIG. 62 shows the light transmission characteristics of the pixel 811.
  • Example 2 2
  • the drive method using the threshold value characteristics of the ferroelectric liquid crystal as shown in FIGS. 82 (a) and (b) is also used in the non-example.
  • FIG. 63 is a block diagram showing a specific circuit for realizing the drive waveform in the present embodiment
  • FIG. 81 is a block diagram for applying the drive waveform generated by this circuit to a liquid crystal element.
  • FIG. 3 is a diagram illustrating an example of a drive circuit. 6 3 1 frame signal, 6 3 2 ⁇ Li in ⁇ switching signals, these signals Nyo Li, preparative lance Mi Tsu sheet 3 Nge sheet 1 1 1 and S w etching V,, - V a , — V 7, — V 8 voltage is switched, and the selection waveform of scanning electrode 6 3 4 is created. One V 3 , -V 6 voltage is switched and!
  • reference numeral 121 denotes scan electrode data, which is transferred to the scan compress side shift register 115 by scan electrode shift clock 120, and one scan electrode successively the door lance Mi Tsushi a Nge sheet 1 1 1 scan I production kitchen grayed outputs a selection signal, and applies the run ⁇ S drive waveform 8 1 0 7 by.
  • Reference numeral 117 denotes signal electrode data, which is fed to the signal filter side shift register 114 by the signal electrode shift clock 118, and data for one scanning electrode is sent. After the transfer, it is latched to the latch circuit 1 16 by the latch signal 1 19.
  • this latch circuit 116 is switched to the 5-transistor a-gate 11 1, and the on-waveform 6 3 6 Switch the waveform 637 to apply the signal generator drive waveform to 8106. Apply to the scanning connector 8109 and signal generator 8110 shown in Fig. 65 and Fig. 81 in Fig. 65. The dynamic waveform, the composite waveform applied to the pixels 811 and the light transmission characteristics are shown.
  • t are respectively one frame period
  • t ", t 21, t 31 and t 41 are respectively selected period
  • t 34 and t 44 Bals pulse congestion t 15 is to be marked pressure in the first half of each selection period, t 25 t 35 and t 4S respectively ⁇ period *
  • the pulse width is equal to each other, and t 0 is the pulse width of 1 Z2 of the above t (t 2 5.t 35, t 45;). Is shown.
  • the difference from the actual example 21 is that in order to lower the voltage applied to the scanning generator, the voltage level applied to the scanning generator is shared, and the ON and OFF waveforms are changed accordingly. At the point changed according to the selected waveform *
  • Peak value V set to Minatoashi the following conditions ⁇ V e and Vmi.
  • V t h 2i (V 7 —V 2)> V s a t n
  • one V3 is first set as the ON waveform, and then the pulse width t0
  • One V 5 and one V 7 are applied in the order of ⁇ V 5 , one V 7 , and as an off waveform, after I; ⁇ — V 3, one V? And — V 5.
  • 1 v e is applied as the ON waveform
  • 1 V 4 and 1 V 2 with pulse width t 0 are applied in the order of ⁇ V 2 and — V 4 in the latter half. is, after the same Ku one V 6 as an off waveform, one V 4, - is applied in the order of V 2.
  • the composite waveform applied to the pixel 8111 is the first waveform when the first selected waveform is applied to the scanning electrode.
  • -V 8 + V 3) is applied, the peak value of to in the first half is (1 V 2 + V 5 ) and t in the second half.
  • first (1 V 8 + V 3) is applied, and then the peak value of to in the first half is ( One V 2 + V 7), and a pulse with a peak value of t 0 in the latter half of (1 V 2 + V 5) is applied.
  • the peak value of t 0 in the first half is (one V 7 + V
  • a pulse with a peak value of t 0 of (1 V 7 + V 4) is applied.
  • a pulse of (V! + V 6 ) is applied as well, peak value pulse is the peak value of the second half of to in (one V 7 + V 4) is (one V 7 + V 2) is applied.
  • 0 V, (1 V e + V 7) and (1 V e + V 5) are applied during the non-selection period.
  • the synthesized waveform according to the present embodiment is substantially the same as that of the embodiment 21 and can be selectively turned on and off in the same manner.
  • the average value of the voltage pulse applied to the pixel every two frames is obtained. Becomes zero.
  • FIG. 65 shows the light transmission characteristics of the pixel 8111.
  • the embodiment is also a K-movement method using the threshold characteristics of ferroelectric liquid crystal as shown in FIGS. 82 (a) and (b).
  • FIG. 66 is a block diagram showing a specific circuit for realizing the driving waveform in the actual example.
  • Reference numeral 661 denotes a frame signal
  • 662 denotes a polarity switching signal.
  • reference numeral 666 denotes a delayed signal 666 of the frame signal 661
  • reference numeral 665 denotes an inverted signal of the contact release signal 662.
  • the transmission gate 11 1 is switched by the clock pulse 1 I 1, and the voltage of V s , -V 5 is switched to switch the ON waveform 66 8 of the signal plant and the signal.
  • the electrode off waveform 6 6 9 is being made.
  • Fig. 67 shows the timing chart of these waveforms.
  • Fig. 66 Input the signal of 66, 66, 66, 66, 69 to the drive circuit of Fig. 81, 6610 is 8101, and 667 is 81. 2 and 6688 are connected to 8105, 669 to 811, and 8103 to 0V.
  • 8 1 12 1 shows the scanning fence data, which is transferred to the scanning implanting side shift register 115 by the 120 shift clock, and the selection signal is sequentially output one scanning line at a time. With this selection signal, the 1111 transmission gate is switched to produce an 817 odd scan electrode S waveform and an 8108 even scan electrode waveform. Fig.
  • the transmission circuit of 111 is switched by the tfi force of this latch circuit, and the signal of 8104 and 8105 is switched to change the signal contact waveform of 8106.
  • Making 8 1 0 7, 8 1 0 8 .8 1 6 6 Waveform The synthesized waveforms are shown in the timing charts of 681, 682, 683, and 684 in FIG.
  • the driving conditions of this driving waveform are as follows.
  • V I — V
  • V I — V
  • an erase pulse is applied to the next selected liquid crystal element as indicated by 682, and the previous memory Is being erased.
  • the erase pulse t "is applied to the even frame immediately before, a reverse polarity pulse as in the odd frame immediately preceding t 04 (V, + V 5 )> is turned on and off TIP Lee state before 5 of the liquid crystal element by applying a voltage pulse V sat 21, in the selection period between t 21, the signal electric ⁇
  • V sat 21 in the selection period between t 21
  • the signal electric ⁇ depending on whether the applied waveform is an ON waveform or an OFF waveform, whether the composite waveform with the scanning electrode waveform is the waveform indicated by 8 21 or 8 22 in FIG.
  • the liquid crystal element is turned off if the waveform is indicated by 8221, and remains on if the waveform is indicated by 8221. Then, during the non-selection period t 22 ho, to hold the state of being written to have the same a t 2I and when the odd frames. Further, when writing data to the liquid crystal element during the selection period t 21, at the same time the next liquid crystal element to be selected, the pre-erase pulse is applied to by La indicated by 6 8 2 memory state Has been erased. As described above, the selection period can be halved by applying an erasing pulse to the next selected liquid crystal element as well as writing data to the liquid crystal element. In this embodiment, the erasing pulse is applied immediately before the selection of the liquid crystal element. However, it is not necessary to issue the erasing pulse immediately before the selection period W. May be applied.
  • the embodiment is also a driving method using the threshold characteristics of ferroelectric liquid crystal as shown in Fig. 82 (a) and (b).
  • FIG. 69 is a block diagram showing a specific circuit for realizing the driving waveform in the embodiment, where 691 is a frame signal and 692 is a polarity switching signal.
  • the 6 9 1, 6 9 2 preparative lance Mi Tsu Shi 3 by a signal Nge sheet 1 1 1 and sweep rate Tsu quenching t V,, - V 2, - V 7, - V 8, - V 3, - instead switching Li a voltage of V beta are making odd scan Den ⁇ selecting waveform 6 9 4 and the even Hashi ⁇ electrode waveform 6 9 5 and run ⁇ oFF signal 6 9 6.
  • the signals of 691 and 692 and the clock valve 693 are used to control the transmis- sion.
  • Gate 1 1 1 is switched to switch the voltage of —V 2, —V 4, —V 5, —V 7 to create the signal electrode ON waveform 697 and the signal electrode OFF waveform 698 .
  • the timing chart of these waveforms is shown in FIG. Fig. 70
  • Input each waveform of 694, 695, 696, 697, 698 to the drive circuit of Fig. 81, and 694 is 8101 and 6 9 5 is 8 102, 6 96 is 8 103, 6 97 is 8 105, and 6 98 is 8 105.
  • FIG. 8 1 FIG. 11 1, 11 8, 11 9, 12 0, 12 1
  • the odd-numbered scan electrode waveform, the 712 even scan electrode contact waveform, and the 713 signal electrode waveform are created and applied to the liquid crystal element.
  • the composite waveform is shown in 714.
  • the driving condition of this drive waveform is as follows.
  • V, 0
  • FIG. 8 1 The operation of the liquid crystal element for the pixel of FIG. (B4) t erase Bals that between 04 is applied immediately before the odd frame, 7 1 1 run ⁇ planting waveform and 7 1 3 always I one signal conductive ⁇ shaped synthetic ⁇ of V 8 + V 2 I> IV sat 22 I compress pulse applied to erase the memory state in front of the liquid crystal element to turn it off, and tu is applied to the Yamago electrode during the odd frame selection period Selects whether the combined voltage with the scanning and S waveforms is the waveform indicated by 821 or 8222 in Fig. 82, depending on whether the output waveform is the ON waveform or the OFF waveform.
  • the scanning waveform S 711 is a composite waveform of the signal voltage waveform of 7 13 and the voltage of 1 V 3 and 1 V 6 alternately applied, and As shown by, only the voltage whose absolute value is smaller than the threshold voltage is always applied to the liquid crystal element, so that the written state is maintained during t n .
  • the scanning electric plant waveform indicated by 7 12 is applied to the next selected liquid crystal element at the same time, so that t 04 and t 04 During the period between 14, a reverse-geometry erasing pulse is applied to erase the previous memory state and turn it on.
  • the erase pulse during the immediately preceding t 14 is a pulse of the opposite polarity to that at t 04 immediately before the odd frame, and (V, + V 7) > V sat 2
  • applying a voltage pulse is turned on ⁇ erase the previous memory state of the liquid crystal element, in the selection period between t 21, the waveform applied to the signal conductive contact O Select the waveform indicated by 821 or 822 in Fig. 8 2 depending on whether the waveform is the scan waveform or the off waveform, and indicated by 821 If the waveform is a waveform, the liquid crystal element is turned off, and if the waveform is indicated by 822, the liquid crystal element is kept on.
  • the non-selection period holds the written state between t 21 similar to the odd frames. Further>
  • ho liquid crystal element is selected, 7 1 for 2 run indicated by ⁇ form is applied, t An erase pulse having a polarity opposite to that during l4 is applied, and the previous memory state is erased and the memory is turned off.
  • an erasing pulse is applied to the liquid crystal element selected next, and the odd-numbered liquid crystal element and the even-numbered liquid crystal element Since the polarity of the applied erase pulse and that of the selection pulse are opposite to each other, the selection period can be reduced to half the conventional period.
  • the erasing pulse is applied immediately before selecting the liquid crystal element.
  • the erasing pulse does not need to be issued immediately before the selection period, and the erasing pulse is applied some time before the selection period. You may.
  • FIG. 72 is a block diagram showing a driving circuit for realizing a driving waveform in the present embodiment.
  • 721 is a frame signal
  • 822 is a clock signal.
  • This 72 1, 7 2 2 signals by preparative lance Mi Tsu, down 3 Nge sheet 1 1 1 and S w Tsu switch ing a, V,, V 2, - switching of V 4 voltage - V 3, Scan electrode selection waveform 7 25
  • V 5, - by switching the voltage of V 5 are making signal Den ⁇ on waveform 7 2 6 and the signal electric S-off waveform 7 2 7.
  • Fig. 73 shows the timing chart of these waveforms.
  • Figure 7 3 Input the signals of 7 2 5, 7 2 6 and 7 2 7 to the drive circuit of Figure 8 1, and 7 2 5 is 8 10 1 and 8 10 2 and 8 2 6 is Connect 8105, 7277 to 8104, and 8103 to 0V.
  • Fig. 8 1 Fig. 12 1 is the scan electrode data, which is transferred to the scan line S shift register 115 by shift clock 120 and> sequentially outputs signals one scan line at a time. You. With this selection signal, the transmission mission gate 111 is switched to generate an 8107 scanning waveform.
  • Fig. 81 Figure 17 shows data on the signal electrode side, which is shifted by the shift clock 118 to the signal plant side shift register 1.
  • the Latch circuit 1 16 With this latch force, the 1111 transmission gate is switched and the 8110 and 811 signals are switched to form the 8106 signal electrode waveform. ing.
  • the waveforms of 807 and 816 and their combined waveforms are shown in the timing charts of 74 ⁇ 741, 742, and 743.
  • the driving conditions of this driving waveform are as follows.
  • V I— v
  • the liquid crystal element is turned on.
  • Their to, during t 25 is not write BALS, if the signal electrode waveform is on waveform, the voltage applied to the liquid crystal element, the Li, liquid crystal elements, such absolute value is rather smaller than the negative threshold voltage erase If the signal contact waveform remains off and the signal contact waveform is the off waveform, the voltage applied to the liquid crystal element is applied with a voltage pulse whose absolute value is larger than the negative saturation voltage. Is turned off.
  • the voltage of indicia pressurized run ⁇ to between t 2S is a 0 V.
  • 3 ⁇ 4 of the non-selection period t 22 holds the state of being written to ⁇ similar a t 2S in the case of an odd frame.
  • the pulse width of the voltage pulse applied during the non-selection period is always constant at the width of t ", and the contrast becomes uniform.
  • Fig. 75 is a block diagram showing a specific circuit for realizing the drive waveform in the * embodiment.
  • 751 is a frame signal
  • 752 is a clock signal.
  • This 7 5 1, 7 5 by 2 signals the door lance Mi Tsu sheet s Nge sheet 1 1 1 S w Tsu switch ring to 'V,, - V 2, - V 3, - V e, - V
  • the scan electrode selection waveform 7 55 is created by switching the voltage of 7 and — V 8
  • the scan electrode non-selection waveform 7 56 is created by switching the voltages of -V a and -V 6.
  • Fig. 76 shows the timing chart of these waveforms.
  • Fig. 76 Fig. 75 5, 7 56. 7 5 5 is 8 1 0 1, 8 1 0 2, 7 5 6 is 8 10 3, 7 5 7 is 8 10 5 and 7 5 8 is 8 10 4 and each other.
  • the same operation as that of the embodiment 25 is performed by the signals of FIG. 8 1 1 1 7> 1 1 8, 1 1 1 9, 1 2 0, 1 2 1, and FIG.
  • a scan electrode waveform and a 7772 signal electrode waveform were applied to the liquid crystal element, and the composite waveform is shown in 773. The following shows the fluctuating conditions of this drive waveform.
  • V, 0
  • the non-selection period t 12 the scan waveform 7 7 1 one V 3, - voltage V 6 is applied alternately in the synthesized waveform of the 7 7 2, always the I la indicated by 7 7 3 Since only a voltage whose absolute value is smaller than the threshold voltage is applied to the liquid crystal element, the state between t and 5 is maintained. Then, the even looking at the frame, between ⁇ between t 21 is heritage, ⁇ Li in erase Bals between t 24, a voltage pulse of opposite polarity positive or saturation voltage than when the odd frame The liquid crystal element is turned on by being applied.
  • the liquid crystal The device remains in the on state as it is erased, and the signal compressing waveform is turned off. If the waveform is a waveform, the voltage applied to the liquid crystal device is a voltage pulse whose absolute value is larger than the negative saturation voltage. The liquid crystal element is turned off. Their, the voltage applied to scan electrodes during the t 26 is as one v 6. Further, during the non-selection period t 22 holds the state of between 1 2S Like the odd frames.
  • FIG. 83 shows the effect of maintaining the memory state by the AC bias.
  • V is the voltage applied to the liquid crystal element, and I indicates the transmission state of the liquid crystal element.
  • the state of I is applied, and then the applied voltage is set to 0 V, the memory of the liquid crystal element gradually deteriorates from the state of II, and is indicated by a dotted line.
  • Memory one can go down to sea urchin I 5. However, they come to be held in the I 3 to improve the memory one of the poor by applying an AC bias.
  • FIG. 78 is a block diagram showing a specific circuit for realizing the driving waveform of the * embodiment using the effect of the AC bias.
  • Reference numeral 781 denotes a frame signal
  • reference numeral 782 denotes a vegetative cutting stream signal.
  • the scanning hail selection waveform 7 8 4 is made, and the signal of 7 8 3 produces V! , Are making ⁇ selection waveform 7 8 5 run instead Setsuri the voltage of one V 6.
  • the signal voltage on waveform 786 and the signal power off waveform 787 are created by switching the voltages of V7 and -V8.
  • the timing chart for these waveforms is shown in Figure 79. Fig.
  • Fig. 8I Fig. 12 1 shows the scanning data, which is sent to the scanning register 1 15 by the shift clock 120 and the selection signal is sequentially sent one scanning signal at a time. The transmission signal 1111 is switched by this selection signal to create an 8107 driving waveform.
  • Fig. 8 1 Fig. 117 shows signal S data, which is transferred to the signal electrode shift register 114 by shift clock 118, and when data for one scanning line is transferred.
  • Latch signal 1 19 latches into latch circuit 1 16, and the output of this latch switches transmission gate 1 1 1 1, and 8 1 4 4
  • the 810 signal is switched to create the 810 signal electrode waveform.
  • the timing charts of the waveforms of 8107 and 8106 and the composite waveform of this waveform are shown in Nos. 81 ⁇ 801, 802, and 803.
  • the driving conditions of this waveform are as follows.
  • the frequency and voltage of this high-frequency AC bias are the frequency and voltage at the very limit that liquid crystal molecules can respond, and the frequency is several KHz to several ⁇ ⁇ ⁇ ⁇ The voltage is several 10 V .
  • the AC bias in the non-selection period improves the memory properties of the liquid crystal element and retains data.
  • B shows that during t 21 is the selection period, and during t 24 during this period is the erase pulse, and the odd period (? z) A compressing pulse having a polarity opposite to the polarity of the frame and less than the positive voltage is applied, and the liquid crystal element is turned on.
  • the signal pulse at t 25 is a write pulse and the signal waveform is an ON waveform
  • a voltage pulse having an absolute value smaller than the negative threshold voltage is applied to the liquid crystal element, and the liquid crystal element is turned on.
  • the signal waveform is off
  • the liquid crystal element is applied with a voltage pulse having a larger absolute value than the negative saturation voltage, and the liquid crystal element is turned off.
  • the memory state is maintained by the high-frequency AC bias as in the case of the odd frame.
  • the driving method in the binary display it can also be driven in the same way for the tone Display, waveform information about to be applied to the run ⁇ planting, the above examples
  • the voltage to be applied to the signal voltage S is changed by the data in gradation, and the voltage to be applied to the liquid crystal element during the write pulse t 1Slt 25 is changed from the threshold voltage to the saturation voltage. Just change it.
  • gradation display can be performed by changing the pulse width of the signal contact waveform according to the gradation data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

Method of driving a liquid crystal element wherein in multiplex-driving of a liquid crystal element made up of a ferroelectric liquid crystal, a voltage pulse, of which the peak value and the pulse width are greater than their saturation values, is applied to render the liquid crystal element turned on or off in the former half of a selection period or in a non-selection period just before the selection period, and then a voltage pulse having a polarity opposite to that of the above voltage pulse and of which the peak value and pulse width are smaller than a threshold value or larger than the saturation value is applied to maintain the liquid crystal element turned on or off, or to invert the liquid crystal element. Therefore, even in the case of multiplex-driving of the ferroelectric liquid crystal which has a property to be differently oriented, i.e., turned on or off, depending upon the polarity of the voltage pulse greater than the saturation value thereof, a mean value of the voltage that is applied can be brought into zero irrespective of the on or off pattern, and the liquid crystal element can be prevented from being deteriorated and its life can be lengthened.

Description

明 細 液晶素子の ffi動方法 技 術 分 野  Liquid crystal device ffi-moving method
本発明は, 液晶素子の駆動方法、 特に強誘電性液晶を用いた電気光学素子 ルチプレ ッ ク ス駆動方法。 背 景 技 術  The present invention relates to a method for driving a liquid crystal element, and particularly to a method for driving an electro-optical element using a ferroelectric liquid crystal. Background technology
米国特許第 4, 3 6 7 , 9 2 4号明細書に記載されているように、 カイ ラ ルスメ クチッ ク C相も し くはカイ ラルスメ クチッ ク H相を示す強誘電性液晶 を用いた電気光学素子は、 印加電圧に対して非常に高速で対応し、 かつメ モ リ性があるとぃラ特徴を有することが知られてぉリ, 画素数が.多く なる大型 大容畺ディ スプレ イ 、 髙速電子シャ ツ タ、 偏光器などへの応用が期待されて レゝる  As described in U.S. Pat. No. 4,367,922, an electric device using a ferroelectric liquid crystal exhibiting a chiral smectic C phase or a chiral smectic H phase. It is known that optical elements respond to applied voltage at very high speed and have memory characteristics if they have memory properties. Large-sized large-capacity displays with a large number of pixels and pixels. Is expected to be applied to high-speed electronic shutters, polarizers, etc.
従来、 このよ うな強誘電性液晶素子の駆勦方法と しては、 米国特許第 4 . 5 0 8 , 4 2 9号明細書に記載されているような、 液晶素子の光透過状態を 定めるパルス電圧を所定周期で印加し、 かつ、 この所定周期内に印加される 電圧の平均値を零に して強誘電性液晶の劣化を防止する駆動方法が知られて いる。 しかし前記米国特許第 4 , 5 0 8 , 4 2 9号明細會に開示されている 具体的な艇動方法は、 スタティ ッ ク粗動方法でぁリ、 大容量素子の駆動に最 適なマルチプレ ッ ク ス ¾動方法は何ら開示されていない。 また、 強誘電性液 晶素子は、 印加される罨圧バルスのパルス幅によって、 しきい値電圧が変化 するという、 いわゆるパルス幅依存性を有することが知られているが、 前記 米国特許第 4 , 5 0 8 , 4 2 9号明細書に記載された駆動方法は、 このパル ス輻伎存性について何の考慮も しておらず > 実際の駆動は困難である。 Conventionally, as a method for destroying such a ferroelectric liquid crystal element, a light transmission state of the liquid crystal element is determined as described in US Pat. No. 4,508,429. There is known a driving method in which a pulse voltage is applied at a predetermined cycle, and an average value of voltages applied within the predetermined cycle is set to zero to prevent the ferroelectric liquid crystal from deteriorating. However, a specific boat motion method disclosed in the above-mentioned US Pat. No. 4,508,429 is a static coarse motion method, which is the most suitable for driving a large-capacity element. There was no disclosure of how to operate the box. Further, it is known that the ferroelectric liquid crystal element has a so-called pulse width dependency that a threshold voltage changes according to a pulse width of an applied compressing pulse. The driving method described in US Pat. No consideration has been given to the existence of suspicion.> Actual driving is difficult.
そこで我々は、 日: Φ:特許出願昭和 5 9年第 1 1 9 , 6 8 0号 (特開昭 6 0 - 2 6 3 1 2 4号公報参照) および日 *特許出鼷昭和 6 0年第 1 7 7 , 8 1 8号 (特開昭 6 1 - 5 5 6 3 0号公報参照) において、 前述のパルス幅依存 性'を考慮した、 実用的なマルチブレッ ク ス駆勖方法を提案した。 しかし、 こ の S動方法では、 強誘電性液晶に印加される罨圧の平均値について格別の考 盧をはらっていないため、 強誘電性液晶に印加される電圧の平均値が正ま は負のどちらかに偏る可能性があリ、 強誘電性液晶の劣化を促進して液晶素 子の寿命を短くするといラ欠点を有している。 発 明 の 開 示  Therefore, we have set the following date: Φ: Patent application No. 119,680 of Showa 59 (refer to Japanese Patent Application Laid-Open No. 60-26631) No. 177, 818 (see Japanese Patent Application Laid-Open No. 61-55630) proposes a practical multi-break driving method in consideration of the above-mentioned “pulse width dependence”. did. However, in this S-movement method, since no particular consideration is given to the average value of the compressibility applied to the ferroelectric liquid crystal, the average value of the voltage applied to the ferroelectric liquid crystal is positive or negative. It has the disadvantage of promoting the deterioration of ferroelectric liquid crystal and shortening the life of the liquid crystal element. Disclosure of the invention
本発明は、 前述のような問題点を解决するもので、 その目的とするところ は、 前述のパルス幅依存性を充分考慮し、 しかも強誘電性液晶の劣化を防止 するために、 強誘駕性液晶に印加される電圧の平均値を零にするこ とができ る強誘電性液晶素子に最遛なマルチプレックス¾動方法を提供するこ とにあ る。  The present invention solves the above-mentioned problems, and its object is to sufficiently consider the above-described pulse width dependence and to prevent ferroelectric liquid crystal from deteriorating. It is an object of the present invention to provide an optimal multiplex driving method for a ferroelectric liquid crystal element that can make the average value of a voltage applied to a crystalline liquid crystal zero.
*発明の駆動方法は、 走查電接群を有する基板と、 信号電極群を有する基 板との間に強誘電性液晶を挟持してなる液晶素子を、 線顧次走査にょリマル チプレッ ク ス駆動する駆動方法に関し、 前記走査電極群には選択信号も しく は非選択信号を印加し、 前記信号電植群には平均電位が前記信号電¾群に印 加される電圧パルスの中間電位と等しくなる電圧パルスを印加するこ とによ り 前記強誘電性液暴には選択期間の前半もしくは非選択期間に前記強誘電 性液晶の分子をオンもしくはオフのどちらかの状藤にするための所定の配列 方向に摘える少なくとも 1個の飽和値以上の電圧パルスを印加し、 前記選択 期間の後半もしくは前記非選択期間後の選択期間にオンもしくはオフ状態を 選択する電圧パルスを印加するものである。 * The driving method of the present invention is based on a liquid crystal element having a ferroelectric liquid crystal sandwiched between a substrate having a scanning electrode group and a substrate having a signal electrode group. Regarding a driving method for driving, a selection signal or a non-selection signal is applied to the scanning electrode group, and an average potential is applied to the signal electrode plant group with an intermediate potential of a voltage pulse applied to the signal electrode group. By applying an equal voltage pulse, the ferroelectric liquid is exposed during the first half of the selection period or during the non-selection period to turn the molecules of the ferroelectric liquid crystal on or off. Apply a voltage pulse of at least one saturation value or more that is picked in a predetermined arrangement direction, and turns on or off in a latter half of the selection period or a selection period after the non-selection period. A voltage pulse to be selected is applied.
米国特許第 4 , 5 0 8, 4 2 9号明細書に記載されているように、 強誘 ¾ 性液晶の分子は、 電界を印加しない状態では, 蛾旋軸に対して 0の角度を有 して蛾旋上に配列しているが、 第 1 図 ( a ) に示すように、 例えば負の電極 の電界一 Eを印加すると、 強誘 ¾性液晶の分子 1 は、 電界一 Eの方向と垂直 な平面上に蛾旋軸 2 に対して角度 0 を有して一定方向に S列する。 また、 電 界の極性を反転させると、 第 1 図 ( b ) に示すように、 驟旋軸 2 を中心と し て第 1 図 ( a ) 方向とは対称な方向に角度 0 を有して配列する。 この時、 第 1 図 ( a ) 及び ( b ) に示すように、 2枚の偏光板を強誘電性液晶の上下に 設け、 上儡光板の偏光轴の方向が 3の方向、 下偏光板の偏光軸の方向が 4の 方向となるように互いに直交させると、 強誘電性液晶の分子が第 1 図 ( a ) の方向に配列している場合は, 光の透過量が最も少な く なリ、 第 1 図 ( ) の方向に配列している場合は、 光の透過畺が最も多く なる。 またこのような 強誘電性液晶の分子の配列状態は、 次に逆極性のしきい値^上の電圧が印加 されるまで、 そのままで安定している。 これが、 メ モ リー性と言われている 強誘電性液晶の特色の一つである。  As described in U.S. Pat. No. 4,508,429, the molecules of the ferroelectric liquid crystal have an angle of 0 with respect to the moth axis when no electric field is applied. As shown in Fig. 1 (a), for example, when an electric field of a negative electrode is applied, as shown in Fig. 1 (a), the molecules of the strongly-induced liquid crystal 1 are oriented in the direction of the electric field, E On the plane perpendicular to and at an angle of 0 with respect to the moth axis 2 in a certain direction. Also, when the polarity of the electric field is reversed, as shown in FIG. 1 (b), there is an angle of 0 around the axis of rotation 2 in a direction symmetric to the direction of FIG. 1 (a). Arrange. At this time, as shown in Fig. 1 (a) and (b), two polarizing plates are provided above and below the ferroelectric liquid crystal, the direction of the polarization の of the upper optical plate is 3, and the lower polarizer is If the directions of the polarization axes are orthogonal to each other so as to be the direction of 4, when the ferroelectric liquid crystal molecules are arranged in the direction shown in Fig. 1 (a), the light transmission amount is the smallest. In the case of the arrangement in the direction shown in FIG. 1 (), the amount of transmitted light becomes the largest. In addition, the alignment state of the molecules of the ferroelectric liquid crystal is stable as it is until the next voltage above the threshold value of the opposite polarity is applied. This is one of the characteristics of ferroelectric liquid crystal, which is said to be memory.
*発明では、 第 1 図 ( a ) に示すような方向に強誘電性液晶の分子を配列 させる電圧の棰性を負 (一) 、 第 1 図 ( b ) に示すような方向に配列させる 罨圧の棰性を正 ( + ) と定義し、 分子の S列方向と偏光板の偏光軸の方向と が第 1 図 ( a ) に示すょラな関係になっていて、 光の透 ¾量が最も少ない状 態をオフ状態 (または単にオフ) 、 第 1 図 ( b ) に示すような閧係になって いて、 光の透過量が最も多い状態をオン状態 (または単にオン) と定義する。 もちろん、 分子の配列方向と偏光軸の方向の関係を第 1 図 ( a ) と ( b ) とで逆にすれば、 正の電圧を印加すれば、 光の速過量が最小になリ、 負の電 圧を印加すれば最大となるが, これは単に電圧の槿性とオン > オフ状態の組 み合わせの関係が逆になるだけで' 実質的に同じ駆動方法で駆動できるもの であリ、 末発明の範囲に含まれるものである。 * In the invention, the polarity of the voltage to arrange the ferroelectric liquid crystal molecules in the direction shown in Fig. 1 (a) is negative (1), and the voltage is arranged in the direction shown in Fig. 1 (b). The pressure characteristic is defined as positive (+), and the direction of the S row of the molecule and the direction of the polarization axis of the polarizer are in a simple relationship as shown in Fig. 1 (a). The state with the least amount of light is defined as the off state (or simply off), and the state with the largest amount of light transmission is defined as the on state (or simply on) as shown in Fig. 1 (b). . Of course, if the relationship between the arrangement direction of the molecules and the direction of the polarization axis is reversed in FIGS. 1 (a) and 1 (b), applying a positive voltage will minimize the amount of light passing, The maximum is obtained by applying a voltage of It can be driven by substantially the same driving method only by reversing the registration relationship, and is included in the scope of the invention.
すなわち、 本癸 ¾は、 これまでに述べたょラな、 強誘電性液晶に特有なパ ルス輻依存性、 メ モリー性を考慮し、 強誘電性液晶素子を必ずいつたんオン またはオフ状態と してから、 次の選択期間まで保持したいオンも しくはオフ 状態を遺択するための電圧パルスを印加することによリ、 強誘電性液晶に印 加される電圧の平均値が零となるマルチプレッ クス駆動方法を実現したもの であり 、 強誘電性液晶の劣化を防止し、 長期間良好な光透過特性を維持でき るとぃラ点で、 実用性の高いマルチプレッ ク ス駆動方法でぁリ、 強誘電性液 晶素子の実用化に多大の効果を有するものである。 図 面 の 簡 単 な 説 明  In other words, taking into account the pulse radiation dependence and memory characteristics peculiar to ferroelectric liquid crystals described above, the ferroelectric liquid crystal element is always turned on or off. Then, by applying a voltage pulse to select the ON or OFF state that should be maintained until the next selection period, the average value of the voltage applied to the ferroelectric liquid crystal becomes zero It realizes a multiplex driving method, which can prevent the deterioration of ferroelectric liquid crystal and maintain good light transmission characteristics for a long period of time. This has a great effect on the practical use of ferroelectric liquid crystal devices. Brief explanation of drawings
第 1 図 ( a ) および ( b ) は、 強誘電性液晶の分子の配列状態を示す図。 第 2図 ( a ) は、 *発明の各実施例で用いた液晶素子の一例を示す断面図。 第 2図 ( b ) は、 第 2図 ( a ) に示す液轟素子の電極構造を示す図。  FIG. 1 (a) and (b) are diagrams showing the arrangement of molecules of a ferroelectric liquid crystal. FIG. 2A is a cross-sectional view showing an example of a liquid crystal element used in each embodiment of the invention. FIG. 2 (b) is a diagram showing the electrode structure of the liquid detonation element shown in FIG. 2 (a).
第 3図は、 本発明の実施例 1 に示す駆動波形と光透過特性の関係を示す図 第 4図は, 第 3図に示す駆動波形を実現する具体的回路の一钩を示す図。 第 5図は、 第 4図に示す回路の各点における信号波形を示すタ イ ミ ングチ ヤート図。  FIG. 3 is a diagram showing a relationship between a driving waveform and a light transmission characteristic shown in Embodiment 1 of the present invention. FIG. 4 is a diagram showing one example of a specific circuit for realizing the driving waveform shown in FIG. FIG. 5 is a timing chart showing a signal waveform at each point of the circuit shown in FIG.
第 6図は、 発明の実施例 2 に示す駆動波形と光透通特性の関係を示す図 < 第 7図は、 第 6図に示す駆動波形を実現する具体的回路の一例を示す図。 第 8図は、 第 7図に示す回路の各点における信号波形を示したタイ ミ ング チャー ト図。  FIG. 6 is a diagram showing a relationship between a driving waveform and a light transmission characteristic according to the second embodiment of the invention. FIG. 7 is a diagram showing an example of a specific circuit for realizing the driving waveform shown in FIG. FIG. 8 is a timing chart showing a signal waveform at each point of the circuit shown in FIG.
第 9図は、 *発明の実施例 3 に示す駆動波形と光透過特性の関係を示す図, 第 1 0図は、 第 9図に示す駆勦波形を実現する具体的回路の一例を示す図, 第 1 1 図は、 第 1 0図に示す回路の各点における信号波形を示すタ ィ ミ ン グチャー ト図。 FIG. 9 is a diagram showing the relationship between the driving waveform and the light transmission characteristics shown in * Example 3 of the invention, and FIG. 10 is a diagram showing an example of a specific circuit for realizing the killing waveform shown in FIG. , FIG. 11 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG.
第 1 2図は、 本発明の実施例 4 に示す駆動波形と光透過特性の簡係を示す 図。  FIG. 12 is a diagram showing a relationship between a driving waveform and light transmission characteristics shown in Embodiment 4 of the present invention.
第 1 3図は、 第 1 2図に示す駆動波形を実現する具体的回路の一例を示す 図。  FIG. 13 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in FIG.
第 1 4図は、 第 1 3図に示す回路の各点における信号波形を示すタ ィ ミ ン グチャー ト図。  FIG. 14 is a timing chart showing a signal waveform at each point of the circuit shown in FIG.
第 1 5 図は、 永発明の実施例 5 に示す駆動波形と光透通特性の閧係を示す 図。  FIG. 15 is a diagram showing a relationship between a drive waveform and light transmission characteristics shown in Embodiment 5 of the present invention.
第 1 6図は、 第 1 5図に示す駆動波形を実現する具体的回路の一例を示す 図。  FIG. 16 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in FIG.
第 1 7図は、 第 1 6図に示す回路の各点における信号波形を示すタ イ ミ ン グチャー ト 図。  FIG. 17 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG.
第 1 8図は、 木発明の実施例 6 に示す駆動波形と光透過特性の関係を示す 図。  FIG. 18 is a diagram showing a relationship between a driving waveform and light transmission characteristics shown in Embodiment 6 of the present invention.
第 1 9図は、 第 1 8図に示す駆動波形を実現する具体的回路の一例を示す 図。  FIG. 19 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in FIG.
第 2 0図は、 第 1 9図に示す回路の各点における信号波形を示すタ ィ ミ ン グチャー ト図。  FIG. 20 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG.
第 2 1 図は、 本発明の実施例 7 に示す IB動波形と光透過特性の関係を示す 図。  FIG. 21 is a diagram showing a relationship between an IB dynamic waveform and light transmission characteristics shown in Embodiment 7 of the present invention.
第 2 2図は、 第 2 1 図に示す駆動波形を実現する具体的回路の一例を示す 図。  FIG. 22 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in FIG. 21;
第 2 3 図は、 第 2 2図に示す回路の各点における信号波形を示すタ ィ ミ ン グチャート図。 FIG. 23 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG. Gchart diagram.
第 2 4図は本発钥の実施例 8に示す駆動波形と光透過特性の関係を示す図。 第 2 5図は、 第 2 4図に示す K動波形を実現する具体的回路の一例を示す 図。  FIG. 24 is a diagram showing a relationship between a driving waveform and light transmission characteristics shown in Embodiment 8 of the present invention. FIG. 25 is a diagram showing an example of a specific circuit for realizing the K dynamic waveform shown in FIG.
5 '第 2 6図は、 第 2 5図に示す回路の各点における信号波形を示すタィ ミ ン グチャー ト図,  5 'Fig. 26 is a timing chart showing signal waveforms at each point of the circuit shown in Fig. 25,
第 2 7図は、 *発明の実施例 9に示す 動波形と光達遏特性の関係を示-す 図。  FIG. 27 is a graph showing a relationship between a dynamic waveform and photoperiodism characteristics shown in Example 9 of the invention.
第 2 8図は、 第 2 7図に示す駆動波形を実現する具体的回路の一例を示す 10 図。  FIG. 28 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in FIG.
第 2 9図は、 第 2 8図に示す回路の各点における信号波形を示すタィ ミ ン グチャー ト図。  FIG. 29 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG.
第 3 0図は、 本発明の実施例 1 0に示す駆動波形と光速過特性の関係を示 す図。  FIG. 30 is a diagram showing a relationship between a driving waveform and a light speed excess characteristic shown in Embodiment 10 of the present invention.
i s 第 3 1図は、 第 3 0図に示す駆動波形を実現する具体的回路の一例を示す 図。 FIG. 31 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in FIG. 30.
第 3 2図は、 第 3 1図に示す回路の各点における儘号波形を示すタィ ミ ン グチャー ト図。  FIG. 32 is a timing chart showing waveforms at each point of the circuit shown in FIG. 31.
第 3 3図は、 末発明の実施例 1 1 に示す駆動波形と光透邊特性の関係を示 20 す図。  FIG. 33 is a diagram showing the relationship between the driving waveform and the light-transmitting characteristic shown in Example 11 of the present invention.
第 3 4図は、 第 3 3図に示す駆動波形を実現する具体的回路の一例を示す 図。  FIG. 34 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in FIG. 33.
第 3 5図は、 第 3 4図に示す回路の各点における信号波形を示すタィ ミ ン グチャー ト図。  FIG. 35 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG. 34.
25 第 3 6図は、 本発明の実施例 1 2に示す駆動波形と光透 ¾特性の関係を示 す図。 25 FIG. 36 shows the relationship between the drive waveform and the optical transmission characteristic shown in Example 12 of the present invention. Figure.
第 3 7図は、 第 3 6図に示す駆動波形を実現する具体的回路の一例を示す 図。  FIG. 37 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in FIG.
第 3 8図は、 第 3 7図に示す回路の各点における信号波形を示すタ イ ミ ン グチャー ト図。  FIG. 38 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG. 37.
第 3 9図は本発明の実施例 1 3 に示す駆動波形と光透過特性の関係を示す 図。  FIG. 39 is a view showing the relationship between the drive waveform and light transmission characteristics shown in Example 13 of the present invention.
第 4 0図は、 第 3 9図に示す駆動波形を実現する具体的回路の一例を示す 図。  FIG. 40 is a diagram showing an example of a specific circuit for realizing the drive waveforms shown in FIG.
第 4 1 図は、 第 4 0ずに示す回路の各点における信号波形を示すタ ィ ミ ン グチャー ト図。  FIG. 41 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG.
第 4 2図は、 *発明の実施例 1 4に示す駆動波形と光透過特性の関係を示 す図。  FIG. 42 is a diagram showing a relationship between a driving waveform and light transmission characteristics shown in * Example 14 of the invention.
第 4 3図は、 第 4 2図に示す駆動波形を実現する具体的回路の一例を示す 図。  FIG. 43 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in FIG.
第 4 4図は、 第 4 3図に示す回路の各点における信号波形を示すタ ィ ミ ン グチャー ト図。  FIG. 44 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG. 43.
第 4 5図は、 本発明の実施例 1 5 に示す駆動波形を実現する具体的回路の 一例を示す図。  FIG. 45 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in Embodiment 15 of the present invention.
第 4 6図は > 第 4 5図に示す回路の各点における信号波形のタ ィ ミ ングチ ャ一トおよび駆勦波形と光透過特性の関係を示す図。  FIG. 46 is a diagram showing a timing chart of signal waveforms at each point of the circuit shown in FIG.
第 4 7図は、 本発明の実施例 1 6 に示す蹈動波形を実現する具体的回路の 一例を示す図。  FIG. 47 is a diagram showing an example of a specific circuit for realizing the swing waveform shown in Embodiment 16 of the present invention.
第 4 8図は、 第 4 7図に示す回路の各点における信号波形を示すタ イ ミ ン グチャー ト図。 第 4 9図は、 未発钥の実旌例 1 6に示す 動波形と光透過特性の関係を示 す図。 FIG. 48 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG. 47. Fig. 49 is a diagram showing the relationship between the dynamic waveform and the light transmission characteristics shown in the unseen case 16.
第 5 0図は 术発明の実旛例 1 7に示す駆動波形を実現する具体的回路の 一例を示す図。  FIG. 50 is a diagram showing an example of a specific circuit for realizing the driving waveform shown in Example 17 of the present invention.
5 第 5 1図は、 第 5 0図に示す回路の各点における售号波形のタィ ミ ングチ ヤートおよび駆動波形と光透 ¾特性の閧係を示す図。  5 FIG. 51 is a diagram showing timing charts and drive waveforms of sales signal waveforms at each point of the circuit shown in FIG. 50 and the relationship between light transmission characteristics.
第 5 2図は、 ;*:発明の実施例 1 8に示す駆動波形を実現する具体的回路の 一例を示す図。  FIG. 52 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in the embodiment 18 of the invention;
第 5 3図は 第 5 2図に示す回路の各点における信号波形を示すタイ ミ ン 10 グチャー ト図。  FIG. 53 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG.
第 5 4·図は、 *発明の実施例 1 8に示す駆勳波形と光透過特性の関係を示 す図。  FIG. 54 · is a graph showing the relationship between the drive waveform and the light transmission characteristics shown in * Example 18 of the invention.
第 5 5図は、 本発明の実施例 1 9に示す駆動波形を実現する具体的回路の 一例を示す図。  FIG. 55 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in Embodiment 19 of the present invention.
i s 第 5 6図は, 第 5 0図に示す回路の各点における信号波形のタイ ミ ングチ ヤートおよび鹿動波形と光透 ¾特性の関係を示す図。 is Figure 56 shows the timing chart of signal waveforms at each point of the circuit shown in Figure 50, and the relationship between the deer waveform and the optical transmission characteristics.
第 5 7図は、 *発明の実施例 2 0に示す駆動波形を実現する具体的回路の 一例を示す図。  FIG. 57 is a diagram showing an example of a concrete circuit for realizing the drive waveform shown in * Example 20 of the invention.
第 5 8図は、 第 5 7図に示す回路の各点における信号波形を示すタィ ミ ン 20 グチャー ト図。  FIG. 58 is a timing chart showing a signal waveform at each point of the circuit shown in FIG. 57.
第 5 9図は、 本発 ¾の実旌锊 2 0に示す駆動波形と光透過特性の関係を示 す図。  FIG. 59 is a diagram showing the relationship between the drive waveform and the light transmission characteristics shown in the present embodiment 20 of the present invention.
第 6 0図は、 术発明の実施例 2 1に示す駆動波形を実現する具体的回路の —例を示す図る。 - .  FIG. 60 shows an example of a specific circuit for realizing the drive waveform shown in the embodiment 21 of the present invention. -.
25 第 6 1図は、 第 6 0図に示す回路の各点における信号波形を示すタィ ミ ン グチャー ト図。 25 Figure 61 shows the timing of the signal waveforms at each point of the circuit shown in Figure 60. Guchart diagram.
第 6 2図は、 本発明の実施例 2 1 に示す駆動波形と光透過特性の閧係を示 す図。  FIG. 62 is a diagram showing a relationship between a driving waveform and light transmission characteristics shown in Embodiment 21 of the present invention.
第 6 3図は、 未発明の実施例 2 2 に示す駆動波形を実現する具体的回路の 一例を示す図。  FIG. 63 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in the uninvented embodiment 22.
第 6 4図は、 第 6 3図に示す回路の各点における信号波形を示すタ ィ ミ ン グチャー ト図。  FIG. 64 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG. 63.
第 6 5図は、 本発明の実施例 2 2 に示す駆動波形と光透過特性の関係を示 す図。  FIG. 65 is a diagram showing a relationship between a driving waveform and light transmission characteristics shown in Example 22 of the present invention.
第 6 6図は、 本発明の実施例 2 3 に示す駆動波形を実現する具体的回路の 一例を示す図。  FIG. 66 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in Embodiment 23 of the present invention.
第 6 7図は 第 6 6図に示す回路の各点における信号波形を示すタ ィ ミ ン グチャー ト図。  FIG. 67 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG.
第 6 8図は、 本発明の実施例 2 3 に示す駆動波形と光透過特性の関係を示 す図。  FIG. 68 is a diagram showing a relationship between a driving waveform and light transmission characteristics shown in Example 23 of the present invention.
第 6 9図は、 本発明の実施例 2 に示す駆動波形を実現する具体的回路の —例を示す図。  FIG. 69 is a diagram showing an example of a specific circuit for realizing the drive waveform shown in the second embodiment of the present invention.
第 7 0図は、 第 6 9図に示す回路の各点における信号波形を示すタ ィ ミ ン グチヤー ト図。  FIG. 70 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG. 69.
第 7 1 図は、 本発明の実施例 2 4に示す駆動波形と光透過特性の関係を示 す図。  FIG. 71 is a diagram showing a relationship between a driving waveform and light transmission characteristics shown in Example 24 of the present invention.
第 7 2図は、 本発明の実施例 2 5 に示す駆動波形を実現する具体的回路の —例を示す図。  FIG. 72 is a diagram showing an example of a specific circuit for realizing the drive waveforms shown in Embodiment 25 of the present invention.
第 7 3図は、 第 7 2図に示す回路の各点における信号波形を示すタ ィ ミ ン グチャー ト図。 第 7 4図は、 本発明の実施例 2 5 に示す駆動波形と光透通特性の関係を示 す図である。 FIG. 73 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG. 72. FIG. 74 is a diagram showing a relationship between a driving waveform and light transmission characteristics shown in Embodiment 25 of the present invention.
第 7 5図は、 *発明の実施例 2 6 に示す駆動波形を実現する具体的回路の 一例を示す図。  FIG. 75 is a diagram showing an example of a specific circuit for realizing the drive waveforms shown in * Example 26 of the invention.
第 7 6図は、 第 7 5図に示す回路の各点における信号波形を示すタ ィ ミ ン グチャー ト図。  FIG. 76 is a timing chart showing signal waveforms at respective points of the circuit shown in FIG. 75.
第 7 7図は、 *発明の実旌例 2 6 に示す駆動波形と光透過特性の関係を示 す図。  FIG. 77 is a graph showing the relationship between the drive waveform and the light transmission characteristics shown in * Example 26 of the invention.
第 7 8図は、 末発明の実施例 2 7に示す K動波形を実現する具体的回路の 一例を示す図,  FIG. 78 is a diagram showing an example of a specific circuit for realizing the K dynamic waveform shown in Embodiment 27 of the present invention.
第 7 9図は、 第 7 8図に示す回路の各点における苣号波形を示すタィ ミ ン グチャー ト図。  FIG. 79 is a timing chart showing chiss waveforms at each point of the circuit shown in FIG. 78.
第 8 0図は、 *発明の実施例 2 7 に示す駆動波形と光透過特性の関係を示 ナ図。  FIG. 80 is a * diagram showing the relationship between the drive waveform and the light transmission characteristics shown in Example 27 of the present invention.
第 8 1 図は、 末発明の各実施例で用いた駆動回路の一例を示す図。  FIG. 81 is a diagram showing an example of a drive circuit used in each embodiment of the present invention.
第 8 2図は、 印加電圧の波形による光透過特性の変化を示す図。  FIG. 82 is a diagram showing a change in light transmission characteristics depending on a waveform of an applied voltage.
第 8 3図は 交流バィァス宽圧印加時の駆動波形と光透過特性の関係を示 ナ図。 発明を実施するための最良の形態  FIG. 83 is a diagram showing a relationship between a driving waveform and a light transmission characteristic when an AC bias voltage is applied. BEST MODE FOR CARRYING OUT THE INVENTION
第 2図 ( a ) は、 以下に述べる本発明の各実旌例で用いた液晶素子の一例 を示す断面図である。 ガラスあるいはプラスチッ クからなる透 な基板 1 1 、 1 2の互いに対向する内側表面には、 酸化 ンジウムあるいは酸化スズから なる複数の透明な走査電 S 1 3および信号電植 1 4が形成されている。 必要 に応じてこれらの電極上に、 酸化シリ コ ンなどからなる絶縁層を設けた後、 ボリ イ ミ ド、 ナイ aンなどからなる sa向膜 i sを設け、 少なく とも一方の基 板の配向膜の表面をラ ビングして強誘電性液晶 1 6を所定の方向に配向させ た。 FIG. 2 (a) is a cross-sectional view showing an example of a liquid crystal element used in each embodiment of the present invention described below. On the opposing inner surfaces of transparent substrates 11 and 12 made of glass or plastic, a plurality of transparent scanning electrodes S 13 and signal electrodes 14 made of indium oxide or tin oxide are formed. . After providing an insulating layer made of silicon oxide or the like on these electrodes as necessary, A sa-oriented film is made of polyimide, nickel, or the like was provided, and at least the surface of the alignment film on one of the substrates was rubbed to orient the ferroelectric liquid crystal 16 in a predetermined direction.
1 9は、 ェポキシ接着剤からなるシール剤である。 また, 一対の基板 1 1 および 1 2の電極が形成されていない外側表面には偏光板 1 7および 1 8を それぞれ瞵接させた。 この時、 偏光板 1 7の偏光軸と偏光板 1 8の偏光轴と は互いに略直交させ, かつ強誘電性液晶 1 6に負の植性を有する飽和値以上 の電圧を印加した時の強誘電性液晶分子の S列方向とどちらか一 ¾の偏光板 の偏光軸の方向とが平行になるように偏光板の儡光軸の方向を設定した。 基板間の隙間、 すなわち液晶層の厚みは、 約 1 . 3 ^m、 使用 した強誘電 性液晶は, P—テ ト ラデシロキシベンジリデン一 P '—ア ミ ノー ( 2—メチ ル) 一プチルー ( d—シァノ ) 一シンナメー ト (TD O B AMB C C ) であ る。 この液晶は、 バルス幅が 2 0 0 μ s e cの時のしきい値電圧が 6. 5 V . 飽和電圧が 8 Vであリ、 またパルス幅が 40 0 μ- s e cの時のしきい値電圧 が 4. 2 V、 飽和電圧が 6. 3 Vであった。 この値は極性を逆に してもほぼ 同 じであった。  Reference numeral 19 denotes a sealant made of an epoxy adhesive. Polarizing plates 17 and 18 were in contact with the outer surfaces of the pair of substrates 11 and 12 where the electrodes were not formed, respectively. At this time, the polarization axis of the polarizing plate 17 and the polarization 轴 of the polarizing plate 18 are substantially orthogonal to each other, and the intensity when a voltage exceeding a saturation value having a negative vegetative property is applied to the ferroelectric liquid crystal 16 is applied. The direction of the connection optical axis of the polarizing plate was set so that the direction of the S column of the dielectric liquid crystal molecules was parallel to the direction of the polarizing axis of one of the polarizing plates. The gap between the substrates, that is, the thickness of the liquid crystal layer is about 1.3 ^ m, and the ferroelectric liquid crystal used is P-tetradecyloxybenzylidene-P'-amino (2-methyl) -butyl- d-Siano) One cinnamate (TD OB AMB CC). This liquid crystal has a threshold voltage of 6.5 V when the pulse width is 200 μsec. The saturation voltage is 8 V, and the threshold voltage when the pulse width is 400 μ-sec. Was 4.2 V and the saturation voltage was 6.3 V. This value was almost the same even if the polarity was reversed.
走査電極 1 3 と信号電極 1 4 とは、 第 2図 ( b ) に示すように、 それぞれ ス ト ラ イ プ状に形成し、 かつ互いに直交するよ うに形成した。 この走査電極 と信号電極が平面的に重なり合った部分が画素となる。 なお、 第 2図 ( b ) は以下の説明をわかリ易く するために、 代表的な 3種類のオン、 オフパター ンを示しており 、 走査電極 X nの本数が 6 , 信号電接 Y nの水数が 3 と なつ ている力 もちろん *発明は、 この電極数に限定されるものでな く 必要な 画素数に応じて電榷数を決定すれば良い。 第 2図 ( b ) において斜線を付し た画素はオフ状態、 それ以外の画素はォン状態であることを示している。 以下にこの液晶素子を駆動する具体的な駆動方法の例を示す。 実 施 例 1 As shown in FIG. 2 (b), the scanning electrode 13 and the signal electrode 14 were each formed in a stripe shape, and were formed so as to be orthogonal to each other. A portion where the scanning electrode and the signal electrode overlap in a plane is a pixel. FIG. 2 (b) shows three typical types of ON and OFF patterns in order to make the following description easy to understand.The number of scan electrodes Xn is 6, and the signal contact Yn is The force at which the number of waters is 3. Of course, the invention is not limited to this number of electrodes, and the number of electrodes may be determined according to the required number of pixels. In FIG. 2 (b), the hatched pixels indicate the off state, and the other pixels indicate the on state. An example of a specific driving method for driving the liquid crystal element will be described below. Example 1
第 3図に、 第 2図 (b ) に示すようオン、 オフ状態にするための走查電槿 X I 上にある各画素に印加される *実施例における駆動波形と光透遒特性を 示す。 なお、 光透過特性の変化をわかリ易くするために、 次のフ レーム周期 では、 全画素のオン、 オフ状態を反転させた,  FIG. 3 shows the driving waveform and the light emission characteristics in the example applied to each pixel on the scanning circuit XI for turning on and off as shown in FIG. 2 (b). In the next frame cycle, the on / off state of all pixels was inverted to make it easier to see the change in light transmission characteristics.
第 3図において、 t 13は最初のフ レーム周期、 t 23は次のフ レーム周期を 示す。 また t Γ1及び t 21は選択期間を、 t 12及び t 22は非選択期間をそれぞ れ示す。 さらに、 t 14, t ,5 , t 16 , t 17 , t 24 , t 25 , 1: 26及び1; 27はそ れぞれ 2 0 0 s e cのパルス幅を示しておリ . 波高値を示す V , は 6 V、In FIG. 3, t 13 is the first frame period, t 23 shows the next frame period. The t .GAMMA.1 and t 21 are the selection period, t 12 and t 22 show Re a non-selection period, respectively it. Further, t 14, t, 5, t 16, t 17, t 24, t 25, 1: 26 and 1: shows a 27 Waso respectively 2 0 0 sec for showing the pulse width Contact Li wave height value. V, is 6 V,
V 2 は 3 Vである。 V 2 is 3 V.
走査 ¾極 X! には, 選択斯間 t „ ( t 21) は、 ± V i を、 非遘択期間 t 12 Scan ¾pole X! In addition, the selection interval t „(t 21 ) is ± V i and the non-selection period t 12
( t 21 ) ほ 0 Vを印加し、 信号鶩 SY i , Y 2 、 Y 3 には、 画素をオンさせ たい場合は波高値 V 2 でバルス輻 20 0 it s e cのパルスを正、 負、 正、 負 の順に印加し、 オフさせたい場合は負、 正、 負、 正の順に印加すると、 各画 素に印加される電圧バルスは、 オンの場合は V 2 ) 、 (― V , +(t 21) Apply approximately 0 V and apply a pulse of 200 itsec with pulse value V 2 to the signals SY i, Y 2, and Y 3 if you want to turn on the pixel. , Negative order, and if you want to turn off, apply negative, positive, negative, positive order.If the voltage is applied to each pixel, the voltage pulse applied to each pixel is V 2), (− V, +
V 2 ) 、 (- V , — V 2 ) 、 ( + V 1 + V 2 ) の顧序になリ オフの場合はV 2 ), (-V, — V 2), (+ V 1 + V 2)
(+ V , + V 2 ) v (― V r -V 2 ) , (- V , + V 2 ) . (+ V! -V 2(+ V, + V 2) v (− V r -V 2 ), (-V, + V 2). (+ V! -V 2
) の靦序になる, この時、 ( + V l ― V 2 ) 及び (一 V! + V 2 》 は、 液晶 のしきい値電圧よリ小さい値であるため、 液晶は応答せず、 飽和値以上であ る (+ V , + V 2 ) 及び (一 V , ― V 2 ) に応答する。 しかし、 強誘電性液 晶は高速で応答し、 かつメモリ一性があるため、 見かけ上は選択斯間の最後 に印加された飽和 上のパルスの植性に応じてオン又はオフ状態になったよ ラに認識される。 At this time, (+ Vl-V2) and (1-V! + V2) are smaller than the threshold voltage of the liquid crystal, so the liquid crystal does not respond and is saturated. (+ V, + V 2) and (1 V, -V 2) that are greater than or equal to the value.However, since the ferroelectric liquid crystal responds at a high speed and has the memory property, it looks like It is recognized as being on or off depending on the vegetative nature of the last applied pulse on saturation during the selection.
非遘択期間には ( + ― V 2 ) 及び (一V , + V 2 ) のパルスが印加さ れ、 そのパルス輻は最大 40 0 s e cとなるが、 波高値は液晶の 40 0 s e c時のしきい値電圧よリ小さいため、 光透過特性にはほとんど影審を与 えない。 またオン、 オフのコ ン ト ラ ス ト比は, 画素 (X i Y I ) で 1 8 : 1 、 ( X 1 Y 2 ) で 1 6 : 1 > ( X , Υ 3 ) で 1 8 : 1 であ り 、 オンオフパター ンにかかわらずほぼ一定のコ ン ト ラ ス ト比が得られた。 During the non-selection period, (+-V 2) and (-1 V, + V 2) pulses are applied, and the pulse radiation is 400 sec at maximum, but the peak value is 400 Since it is smaller than the threshold voltage at the time of sec, the light transmission characteristic hardly gives any shadow. Further on, Control This setup la scan Ratio off, 1 pixel (X i YI) 8: 1 , 1 6 in (X 1 Y 2): 1 > (X, Υ 3) 1 8: 1 Thus, a substantially constant contrast ratio was obtained regardless of the on / off pattern.
本実施例における Κ動方法は、 液晶に選択期間 t n < t 21 ) 内に少な く と も液晶の飽和値以上の波高値、 パルス幅を有する正及び負の電圧パルスを印 加し、 前記正、 負の電圧パルスは波高値及びパルス幅が等し く、 更に飽和値 以上の正又は負の電圧パルスを印加する顒序でオン又はオフを選択し、 更に 正負の電圧バルスは数が等し く又、 非選択期間 t 12 ( t 22 ) は、 しきい値以 下の波高値及びパルス幅を有する正、 負の電圧バルスを印加しているため、 第 3図に示す如く、 直流成分の平均値は奪となり、 直流成分が全く存在しな い。 そのため液晶素子の劣化が生じることはなかった。 In the driving method according to the present embodiment, the liquid crystal is applied with positive and negative voltage pulses having a peak value and a pulse width at least equal to or higher than the saturation value of the liquid crystal within the selection period t n <t 21 ). Positive and negative voltage pulses have the same peak value and pulse width, and select ON or OFF by applying a positive or negative voltage pulse that is equal to or greater than the saturation value, and positive and negative voltage pulses have the same number. and Ku Further, the non-selection period t 12 (t 22) is, since the positive having a peak value and pulse width of the lower threshold than the negative voltage BALS is applied, as shown in FIG. 3, the DC component The average value is deprived, and there is no DC component at all. Therefore, the liquid crystal element did not deteriorate.
第 4図は、 第 3図に示す粗動波形を実現する具体的回路の一例の回路ブ B ッ ク図である。 1 1 1 は ト ラ ンス ミ ッ ジ s ンゲー ト 、 1 1 2はプ リ ッ ププ ロ ッ プ、 1 1 3は液晶素子である。 d , h , e , f , g , j , k , 1 は, ト ラ ン ス ミ ツ シ 3 ンゲー ト 1 1 1 を選択し、 走査電極信号 V t及び信号電¾信号 V d を作リ、 液晶素子 1 1 3に印加される。 又 ± V ! 及び 0 V、 ± V 2 は走 查電極及び信号罨極の竜源罨圧である。 第 5図は、 第 4図に示した回路の走 査電極信号 V t , 及び信号電極信号 V dを作るための各点における信号であ る。 FIG. 4 is a circuit block diagram of an example of a specific circuit for realizing the coarse motion waveform shown in FIG. Reference numeral 111 denotes a transmissive transistor, 112 denotes a flip-flop, and 113 denotes a liquid crystal element. d, h, e, f, g, j, k, 1 is collected by run-scan Mi Tsu Shi 3 Select Nge sheet 1 1 1, Sacri scan electrode signal V t and the signal electric ¾ signal V d, Applied to the liquid crystal elements 113. ± V! And 0 V, ± V 2 are the dragon source compress of the scanning electrode and the signal compress. FIG. 5 shows signals at respective points for generating the scanning electrode signal V t and the signal electrode signal V d of the circuit shown in FIG.
実 施 例 2  Example 2
第 6図に、 第 2図 ( b ) に示すようなオン、 オフ状態にするための走査電 I 及び信号電 ¾Υ ι に印加される蹈動波形と、 圉素 (Χ ι γ 1 ) の光透 過特性を示す。 なお、 光透過特性の変化をわかリ易くするために、 次のフ レ ーム周期 t 23では ' オン、 オフ状態を反転させた。 第 6図において、 t „〜 t 27はいずれも第 3図と同じことを示しておリ、 波高値 V , , V 2 , V 3 , V 4 , V 5 , V s は、 それぞれ 8 V , 6 V , 5 V 3 V , 2 V , 0 Vである。 また、 V mは信号電桎に印加される電圧パルスの 中間電圧を示し、 この場合は 4 Vになる。 FIG. 6 shows a scanning waveform applied to the scanning electrode I and the signal electrode 電 ι for turning on and off as shown in FIG. 2 (b), and a light beam of the chrominance element (Χιγ1). Shows transmission characteristics. In order to facilitate re-divided a change in light transmission properties, in the next full record over arm period t 23 'on, obtained by inverting the OFF state. In FIG. 6, t „to t 27 indicate the same as in FIG. 3, and the peak values V,, V 2, V 3 , V 4 , V 5 , and V s are 8 V, 6 V, 5 V, 3 V, 2 V, and 0 V. V m indicates the intermediate voltage of the voltage pulse applied to the signal fleet. In this case, it is 4 V.
実施例 1 と異なるのは、 走查電槿に印加される電圧を低下させるために > 走査電植と信号電植の雷圧レベルを同じにしたことにある。  The difference from the first embodiment is that the lightning pressure level of the scanning plant and the signal plant are made the same in order to reduce the voltage applied to the scanning device.
走查電植 X , には、 選択期藺 t ( t 21 ) は、 2 0 0 ^ s e cのパルス幅 で 、 V 6 、 V 6 、 V , の顧に印加し、 非選択期間 t 12 ( t 22) は V 2 、 V 5 を図に示すような頗序に印加する。 また信号電桎 Y , には、 画素をオン させたい場合は、 2 0 0 it s e cのバルス幅で V 4 、 V 3 V ι 、 V G の順 に印加し、 オフさせたい場合は、 これと逆の頫序で印加する。 この時画素 ( X I Y に) に印加される電圧ほ、 オンの場合は (V , - V 4 ) 、 ( V 6 - V 3 ) 、 ( V 6 — V , ) 、 (V , — V e ) の顒になり 、 オフの場会は、 (V ! — V 6 ) . ( V e - V , ) . ( V β -V a ) ( V , —V 4 ) の順になリ 、 飽 和値以上のパルスで後から印加されるパルスの極性によってオン又はオフ状 態となる。 なお、 選択期間に印加される (V ! — V 4 ) 及び (V s — V 3 ) は、 それぞれ + 5 V及び一 5 Vで、 バルス權4 0 0 ^ 8 6 0時の液晶のしき い値よ 大きいが、 このパルスはパルス幅が 2 0 0 μ- s e cであるため、 2 O O it s e c時のしきい値よリは小さ く、 液晶は応答しない β また、 非選択 斯間には (V 5 — V 6 ) と (V 2 — V , ) のパルスが印加ざれ、 オン、 オフ パターンによってはパルス幅が 4 0 0 μ. s e cになる場合もあるが、 波高値 が 4 0 0 s e c時の液晶のしきい値よリ小さいため、 光透過特性にはほと んど影響を芋えない。 In the scanning implant X, the selection period t t (t 21 ) is applied to V 6, V 6, V, with a pulse width of 200 ^ sec, and the non-selection period t 12 (t In 22 ), V 2 and V 5 are applied in an extremely large order as shown in the figure. The signal Den桎Y, and, if it is desired to turn on the pixel, V 4 in Bals width of 2 0 0 it sec, V 3 V ι, applied in the order of V G, if it is desired to OFF, and this Apply in reverse order. At this time, the voltage applied to the pixel (to XIY) is turned on. (V, -V4), (V6-V3), (V6-V,), (V, -Ve )顒, the off-state is (V! — V 6). (V e -V,). (V β -V a) (V, —V 4 ) The pulse is turned on or off depending on the polarity of the pulse applied later. Incidentally, it applied to the selected period (V -! V 4) and (V s - V 3) are respectively + 5 V and single 5 V, have threshold of the liquid crystal of BALS dominion 4 0 0 ^ 8 6 0:00 This pulse has a pulse width of 200 μ-sec, so it is smaller than the threshold at 2 OO it sec, and the liquid crystal does not respond β. Pulses of V 5 — V 6 ) and (V 2 — V,) are not applied, and the pulse width may be 400 μsec depending on the ON / OFF pattern, but when the peak value is 400 sec Since it is smaller than the threshold value of the liquid crystal, it has little effect on the light transmission characteristics.
本実; 81例による駆動方法は、 実施例 1 と同様の良好なコン ト ラ ス ト比が得 られ 7^。 本実施例における ffi動方法は、 液晶に選択期間 t n ( t 2, ) 内に少な く と も液晶の飽和値以上の波髙値、 パルス幅を有する正及び負の電圧バルスを印 加し、 前記正、 負の電圧パルスは波髙値及びパルス幅が等し く , 更に飽和値 以上の正又は、 負の電圧パルスを印加する順序でオン又はオフを選択し、 更In the present embodiment, the driving method according to the 81 example provides a good contrast ratio similar to that of the first embodiment 7 ^. The ffi-moving method in the present embodiment is to apply positive and negative voltage pulses having a pulse value and a pulse value at least equal to or greater than the saturation value of the liquid crystal to the liquid crystal during the selection period t n (t 2 ,). The positive and negative voltage pulses have the same wave value and pulse width, and further select ON or OFF in the order of applying the positive or negative voltage pulse having a saturation value or more.
5 に正負の電圧パルスは数が等し く又、 非選択期間 t 12 ( t 22 ) は、 しきい値 以下の波高値及びパルス幅を有する正、 負の竜圧パルスを印加しているため、 オン、 オフバターンにかかわらず印加される電圧の平均値が零となリ、 液晶 素子の劣化が生ずることはなかった。 The number of positive and negative voltage pulses is equal to 5 and the non-selection period t 12 (t 22 ) applies positive and negative dragon pressure pulses having a peak value and pulse width below the threshold. The average value of the applied voltage was zero irrespective of the on / off pattern, and the liquid crystal element did not deteriorate.
第 7図は、 第 6図に示す駆動波形を実現する具体的回路の一例の回路プロ i n ッ ク図である。 a 、 b の信号によリ 、 ト ラ ンス ミ ツ シ 3 ンゲー ト 1 1 1 を選 択し、 c の走査電植データで、 e の選択時走查電接波形及び ί の非選択走査 竜極波形を選択し、 走査 ¾極波形を作る。 一方信号電極波形は、 a . b の信 号によ り ト ラ ンス ミ ツシ a ンゲー ト 1 1 1 を選択し、 dの信号.電 Sデータで g のオ ン波形及び h のオフ波形選択し、 信号電極波形を作リ 、 液晶素子 1 1FIG. 7 is a circuit block diagram of an example of a specific circuit for realizing the drive waveform shown in FIG. The transmis- sion 3 gate 11 1 is selected by the signals a and b, and the scanning contact planting waveform of e and the non-selected scanning dragon of ί are selected by the scanning planting data of c. Select a polar waveform and scan ¾Create a polar waveform. Meanwhile the signal electrodes waveform, a. B Select and lance Mi Tsushi a Nge sheet 1 1 1 Ri by the signal of, d signal. Photoelectric S data g select the on-wave and h off waveform in the , Create signal electrode waveforms, liquid crystal element 1 1
!5 3 に印加される。 又、 V , , V 2 , V 3 , V 4 , V 5 , V 6 は走查電接及び 信号電極の電源電圧である。 第 8図は、 第 7図に示した回路の各点における 信号である。 ! 5 Applied to 3. V,, V 2 , V 3 , V 4 , V 5 , V 6 are the power supply voltages for the scanning contact and the signal electrode. FIG. 8 shows signals at each point of the circuit shown in FIG.
実 施 例 3  Example 3
第 9図に、 第 2図 ( b ) に示すようなオン、 オフ状態にするための走査電o x I 上の各画素に印加される駆動波形と、 光透過特性を示す。 なお、 光透 過特性の変化をわかリ易くするために、 次のフ レーム周期 t 23では、 オン、 オフ状態を反転させた。 FIG. 9 shows a driving waveform applied to each pixel on the scanning electrode ox I for turning on and off as shown in FIG. 2 (b), and a light transmission characteristic. In order to facilitate re-divided a change in light transmission over properties, in the next frame period t 23, one, obtained by inverting the OFF state.
第 9図において、 t n 〜 t 27はいずれも第 3図と同じことを示しており 、 波高値 V , は 9 V 、 V 2 は 4 Vである。In Figure 9, both the tn ~ t 27 shows the same as FIG. 3, the peak value V, is 9 V, V 2 is 4 V.
5 実施例 1 及び 2 と異なるのは、 コ ン ト ラ ス ト比を向上させるために、 非選 択期間に印加されるパルスのパルス幅が 液晶のオン、 オフ状態を選択する ために印加される飽和値以上のパルス幅よリ も大き く ならないように した点 にある。 5 The difference from Examples 1 and 2 is that in order to improve the contrast ratio, The point is that the pulse width of the pulse applied during the selection period is not larger than the pulse width that is equal to or greater than the saturation value applied to select the on / off state of the liquid crystal.
走査電極 X , には選択期間 ( t 2|; は ± V , を, 非選択期間には o Vを印加し、 信号電極には、 画素をオンさせたい場合は O Vを、 オフさせた い場合は、 最初の 4 0 0 ^ s e cは 0 V 次の 4 0 0 ^ s e cでは 2 0 0 ^ s e cずつ一 V2 、 + V 2 の順に印加する。 この時各画素に印加される電圧 バルスは、 オンの場合は ) (― V , ) 、 C— V , ) 、 (+ V , ) の順序になり、 オフの場合は ( + ) (- V , ) (― V , + V 2 ) , C + V , — V 2 ) の順序になる。 (一 V f + V 2 ) 及び C+ V i — V 2 ) は パルス幅 2 0 0 s e c時の液晶のしきい値よ 小さい値であるため、 液晶 は応答せず、 の選択期間では、 オン、 オフを繰り返して t で最後に印 加される + V i に応答してオン状態となり 、 t 21の選択期間では、 t 24でォ ンとなった後 t 25で印加される一 V , に応答してオフ状態となる。 また、 非 選択期間には、 0 も し <はパルス輻 2 0 0 ^ 3 6 0の+ ¥ 2 又は、 一 2 が印加されるが、 V 2 は液晶のしきい値よ ϋ小さいため, 光透過特性にはほ とんど影響を与えない。 Apply ± V, to the scanning electrode X, for the selection period (t 2 | ; for the non-selection period, apply o V to the signal electrode, and turn OV off if you want to turn on the pixel to the signal electrode. Is applied in the order of 1 V 2 , + V 2 in the order of 0 V for the first 400 ^ sec and 200 ^ sec for the next 400 ^ sec. At this time, the voltage applied to each pixel is When on, the order is) (− V,), C— V,), (+ V,). When off, (+) (-V,) (− V, + V 2), C + V, — V 2). (1 Vf + V 2) and C + V i — V 2 ) are smaller than the liquid crystal threshold at the pulse width of 200 sec. Finally turned on in response to the + V i is marked pressurized with t Repeat off, in the selection period t 21, one V is applied at t 25 after a t 24 Do emissions, the response Then, it is turned off. Moreover, since the non-selection period, 0 also <pulse congestion 2 0 0 ^ 3 6 0 + ¥ 2 or one 2 but is applied, V 2 is ϋ small by the liquid crystal threshold, light Has little effect on transmission characteristics.
本実施例により得られるコ ン ト ラス ト比は、 画素 (Χ ι Υ 1 で 2 4 : 1 、 (Χ ι Υ2 ) で 2 2 : 1 (Χ , Υ3 ) で 2 0 : 1 であリ , 実施例 1及び 2 より もさらに良好なコ ン ト ラ ス ト比が得られた。 Co emissions trusses Ratio obtained by the present embodiment, the pixel (chi iota Upsilon 1 with 2 4: 1, (Χ ι Υ 2) 2 2: 1 (chi, Upsilon 3) 2 0: 1 der Thus, a better contrast ratio was obtained than in Examples 1 and 2.
*実施例における駆動方法は、 液晶に選択期間 t u ( t 2, ) 内に少なく と も液晶の飽和値以上の波高値、 パルス幅を有する正及び負の電圧パルスを印 加し、 前記正、 負の電圧パルスは波高値及びパルス幅が等しく、 更に飽和値 以上の正又は負の電圧バルスを印加する順序でォン又ほオフを選択し、 更に 正負の電圧パルスは数が等し く又、 非選択期間 t 12 ( t 22 は、 しきい値以 下の波高値及びパルス幅を有する正、 負の電圧パルスを印加しているため、 オン、 オフパターンにかかわらず > 液晶素子に印加される平均値は零となリ 液晶素子の劣化は生じなかった。 * The driving method in the embodiment is to apply a positive and negative voltage pulse having a peak value and a pulse width at least equal to or higher than the saturation value of the liquid crystal to the liquid crystal within the selection period tu (t2,). Negative voltage pulses have the same crest value and pulse width, and select ON or OFF in the order of applying positive or negative voltage pulses equal to or higher than the saturation value.Furthermore, positive and negative voltage pulses have the same number. The non-selection period t 12 (t 22 is less than the threshold Since positive and negative voltage pulses with the following peak values and pulse widths are applied, the average value applied to the liquid crystal element is zero regardless of the on / off pattern. Was.
第 1 0図は、 第 9図に示す駆動波形を実現する具体的回路の一例の回路ブ ッ ク図である。 (a ) 、 ( c ) , ( i ) の信号にょリ、 ト ラ ンス ミ ツ シ s ンゲー ト 1 1 1 を選択する信号を作リ、 それらの信号によ り ト ラ ンス ミ ツ シ a ンゲー ト 1 1 1 を選択し、 走査電 ¾信号 V t及び信号電極信号 V dを作リ 液晶素子 1 1 3に印加される。 又、 ± V , 、 ± V 2 , 0 Vは走査電極及び信 号罨¾の電源電圧である。 第 1 1図は、 第 1 0図に示した回路の各点におけ る信号である。 FIG. 10 is a circuit block diagram of an example of a specific circuit for realizing the drive waveform shown in FIG. (A), (c), and (i) signals are selected, and a signal for selecting the transmis- sion sig- nal is created. And the scanning electrode signal Vt and the signal electrode signal Vd are generated and applied to the liquid crystal element 113. Further, ± V,, ± V 2 , 0 V is a scanning electrode and a power supply voltage of the signal罨¾. FIG. 11 shows the signals at each point of the circuit shown in FIG.
実 施 例 4  Example 4
第 1 2図に、 第 2図 ( b ) に示すようなオン、 オフ状態にするための走査 «¾Χ , 及び信号電¾71 に印加される駆動波形と、 画素 (Χ.ι Υ I ) の光 透過特性を示す。 なお、 光速過特性の変化をわかリ易くするために、 次のフ レーム周期 t 23ではオン、 オフ状態を反転させた。 FIG. 12 shows a scanning waveform for turning on and off as shown in FIG. 2 (b), a driving waveform applied to the signal electrode 71, and light of the pixel (Χ.ιΥI). Shows transmission characteristics. In order to facilitate re-divided the change in speed of light over properties, in the next frame period t 23 on, by inverting the OFF state.
第 1 2図において、 t H 〜 t 27はいずれも第 3図とおなどこ とを示してお リ ' 波高値 V , , V 2 , V 3 , V 4 , V 5 , V e はそれぞれ 1 0 V , 8 V , 6 V , 4 V , 2 V , 0 Vである。 また Vmは信号電 Sに印加される電圧パル スの中閱電位を示し、 この場合は 5 Vになる。 In FIG. 12, t H to t 27 are the same as those in FIG. 3, and the peak values V,, V 2, V 3, V 4, V 5, and V e are 10, respectively. V, 8 V, 6 V, 4 V, 2 V, and 0 V. Vm indicates the middle potential of the voltage pulse applied to the signal S, and in this case it is 5 V.
実施例 3 と異なるのは、 走査電極に印加される電圧を低下させるために、 走查電槿と信号雷極の電圧レベルを共通化したこ とにある。  The difference from the third embodiment lies in that the voltage levels of the scanning electrode and the signal lightning pole are shared in order to reduce the voltage applied to the scanning electrode.
走査電極 X , には選択期間 t u ( t 21 ) は、 V , と V6 を、 V , 、 V 6The scanning electrode X, has a selection period t u (t 21 ) of V, and V 6 , V,, V 6 ,
V s 、 V , の順に、 非選択期藺 t |2 ( t «) は、 V 2 と V s を V s . V a 、In the order of V s , V, the non-selection period t | 2 (t «) is obtained by connecting V 2 and V s to V s.
V 2 、 V 5 の順に印加し、 信号電極 Y , には、 画素をオンさせたい場合は、 V 5 、 V 2 > V 2 、 V 5 の順に、 オフ させたい場合は' v 5 , V 2 、 V 3 . V 4 の顒に印加する。 いずれもバルス幅は 2 0 0 ^ s e cである。 この睁画 素 (Xi Y , ) に印加される電圧パルスは、 波高値が異なるのみで第 9図に 示すような実旌例 3の駆動方法と同じような波形となる。 すなわち (V ! 一 V 5 ) 及び (V6 - V 2 ) はそれぞれ + 8 V及び一 8 Vで液晶の飽和値以上、 ( V 1 —V 4 ) 及び (V 6 — V 3 ) はそれぞれ + 6 V及び一 6 Vで、 バルス 輻 20 0 (L s e c時のしきい値よリ小さく、 (V2 -V 3 ) 及び (V5 -V 4 ) はそれぞれ + 2 V及び一 2 Vで液晶のしきい値よリ充分小さい値となつ ている。 従って液晶素子は, 実施例 3 と同じように応答し, 同じように良好 なコ ン ト ラ ス ト比が得られた。 Apply V 2, V 5 in this order, and apply to the signal electrodes Y, V 5 , V 2> V 2 , V 5 if you want to turn on the pixel, and 'v 5 , V 2 if you want to turn off the pixel. , V3. Applied to 4 of V 4 . In each case, the pulse width is 200 ^ sec. The voltage pulse applied to this pixel (Xi Y,) has a waveform similar to that of the driving method of Example 3 shown in FIG. 9 except for the peak value. That (V one V 5!) And (V 6 - V 2), respectively + 8 V and single 8 V in the liquid crystal of the saturation value or more, (V 1 -V 4) and (V 6 - V 3) each + At 6 V and 16 V, the pulse radiation is 200 (less than the threshold value at L sec), (V 2 -V 3) and (V 5 -V 4) are +2 V and 12 V, respectively. Therefore, the liquid crystal element responded in the same manner as in Example 3, and a similarly good contrast ratio was obtained.
第 1 3図は、 第 1 2図に示す駆動波形を実現する具体的回路の一例の回路 ブ D ッ ク図である。 a ¾ bの信号にょリ、 ト ラ ンスミ ツシ 3 ンゲー ト 1 1 1 を選択し、 cの走査電極データで、 eの遘択時走查電植波形及び ίの非選択 走查電 ¾波形を選択し、 走查電植波形を作る。 一方信号罨槿波.形は、 a、 b の信号により ト ランスミ ツシ aンゲート 1 1 1 を選択し、 dの倭号電極デ一 タで、 gのオン波形及び h のオフ波形を選択し、 信号電極波形を作リ、 液晶 素子 1 1 3に印加される。 又、 、 , V 2 , V 3 , V 4 , V B , V ε は走査 及び信号電極の電瀑電圧である。 第 1 4図は、 第 1 3図に示した回路の 各点における信号である。 FIG. 13 is a circuit block diagram of an example of a specific circuit for realizing the drive waveforms shown in FIG. a ¾ b signals Nyori, Select and La Nsumi Tsushi 3 Nge sheet 1 1 1, the scanning electrodes data c, and unselected run查電¾ waveform遘択during run查電planted waveform and ί of e Select and make a running waveform. Meanwhile signal罨槿wave. Form, a, Select and Ransumi Tsushi a Ngeto 1 1 1 by a signal b, by Yamato No. electrodes de one another d, select Off waveform g of ON waveform and h, A signal electrode waveform is created and applied to the liquid crystal elements 113. , V 2, V 3, V 4, VB, V ε are the scanning and signal electrode waterfall voltages. FIG. 14 shows signals at each point of the circuit shown in FIG.
実 施 例 5  Example 5
第 1 5図に、 第 2図 ( b ) に示すようなオン、 オフ状態にするための走査 電植 X! 上の各画素に印加される駆動波形と、 光透過特性を示す。 なお、 光 透過特性の変化をわかリ易くするために、 次のフレーム周期 t 23ではオン、 オフ状態を反転させた。 Fig. 15 shows the scanning implant for turning on and off as shown in Fig. 2 (b). The driving waveform applied to each pixel above and the light transmission characteristics are shown. In order to facilitate re-divided a change in light transmission properties, in the next frame period t 23 on, by inverting the OFF state.
第 1 5図において、 t 13は最初のフ レーム周期、 t 23は次のフ レーム周期 を示す。 また t n及び t 21は選択期間、 t 12及び t 22は非選択期間を示し、 O 90/07725 (ig) PCT/ JP86/00 6 更に非選択期間 t 12及び t ,3は、 第 1 の非選択期間 t 16と t 26及び次の選択 期間の直前すなわちフ レーム周期の最後に設けられた第 2の非選択期間 t ,5 と t 25の 2つの期藺に区分けされている。 t 05は最初のフ レーム周期 t |3の 直前の第 2の非選択期間を示している。 t "は 2 0 0 t s e cのバルス幅を 示す。 また、 波高値 V , は 1 1 V, V2 は 6 V, V3 は 2 , 5 Vである。 In the first 5 view, t 13 is the first frame period, t 23 shows the next frame period. The tn and t 21 are selection period t 12 and t 22 represents a non-selection period, O 90/07725 (ig) PCT / JP86 / 00 6 further non-selection period t 12, and t, 3 at the end of the immediately preceding i.e. frame period of the first non-selection period t 16 and t 26 and subsequent selection period is divided into two phases have the second non-selection period t, 5 and t 25 that is provided. t 05 indicates the second non-selection period immediately before the first frame period t | 3 . t "indicates the BALS width of 2 0 0 tsec. Moreover, the peak value V, is 1 1 V, V 2 6 V , V 3 is 2, 5 V.
走査電極 X! には、 選択期蘭 t n ( t 21 ) は ± V 2 、 第 1 の非選択期間 t ,6 ( t 26) は、 0 V、 第 2の非選択期間 t os ( t ,5 , t 25 ) は、 ± V , を 印加し、 信号電 ¾Y l . Υ 2 . Υ 3 には、 画素をオンさせたい場合は、 土 V 3 を正、 負の顧に、 オフさせたい場合は、 負、 正の順に印加する。 この時各 画素には、 選択期間 t ( t 2, ) の直前の第 2の非選択期間 t 05 ( t 15、 tScan electrode X! The selection period orchid tn (t 21) is ± V 2, the first non-selection period t, 6 (t 26) is 0 V, the second non-selection period t os (t, 5, t 25) Apply ± V, and apply signal voltage ¾Y l. Υ2. Υ3 to turn on the pixel if you want to turn on the pixel. Are applied in this order. At this time the pixels, the selection period t (t 2,) a second non-selection period t 05 immediately before the (t 15, t
25 ) では、 いずれも飽和値以上の ( + - V 3 ) 及び (一V , + V 3 ) も し くは ( + + V 3 ) 及び (一V , - V 3 ) が印加され、 選択期間 t n ( t 2! ) では、 オンの場合 (- V , + V 3 ) 及び (+ V > - V 3 ) が、 オフの 場合 (― V 2 + V 3 ) 及び ( + V 2 — V 3 ) が印加され、 第 1 の非選択期間 t ,6 ( t 26 ) では、 オン、 オフパターンによって ± V3 が 2 0 0 it s e cま たは 40 0 s e cのパルス幅で印加される。 土 V 3 は 4 0 0 /^ s e cの し きい値よ リ小さい値であるため、 バルス輻が 40 0 it s e cになっても、 光 透過特性にはほとんど影響を与えない。 In (25), (+ -V3) and (-V, + V3) or (+ V3) and (-V, -V3) above the saturation value are applied, and the selection period For tn (t 2!), when on (-V, + V 3) and (+ V>-V 3), when off (-V 2 + V 3) and (+ V 2 — V 3) There is applied a first non-selection period t, at 6 (t 26), on, ± V 3 by the off pattern was 2 0 0 it sec or applied with a pulse width of 40 0 sec. Since the value of soil V 3 is smaller than the threshold value of 400 / ^ sec, even if the pulsation becomes 400 it sec, the light transmission characteristics are hardly affected.
本実施例の駆動方法は、 選択期間の直前で画素をいつたんオンさせてから オフ状態に し, その直後の選択期間内に正の飽和値以上のパルスを印加する か、 しきい傕以下のパルスを印加するかで, オン状態に反転させるか、 オフ 状態をそのまま保持するかを選択しているため、 実施例 1 〜 4の駆動方法に 比べて選択期間の時間を半分にするこ とができ、 よリ高速の駆動を必要とす る場合せ走查鷺桎を多くする場合に有効な駆動方法である。  In the driving method of this embodiment, the pixel is turned on immediately before the selection period, then turned off, and a pulse having a positive saturation value or more is applied within the selection period immediately after the pixel is turned on. Depending on whether a pulse is applied or whether the state is inverted to the on-state or whether the off-state is maintained, the time of the selection period can be halved compared to the driving methods of the first to fourth embodiments. This is an effective driving method when high-speed driving is required.
また、 第 2の非選択期間 t 05 ( t ,5 , t 25 ) に印加されるバルスの波高値 はオン、 オフバターンによって異なるが、 いずれも飽和値以上であるため、 光透過量は変らない。 更に本実施例では、 非選択期間内で液晶の飽和值以上 のパルスを印加してオン、 オフさせているため、 若干コン ト ラ ス ト比が低下 するが、 走查電植数が多くなるほどコ ン ト ラ ス ト比の低下率が少なくなり良 好なコ ン ト ラ ス ト比が得られる。 本実施例の場合は、 画素 (X i Y 1 ) で 1Also, the peak value of the pulse applied to the second non-selection period t 05 (t, 5, t 25) Varies depending on the on and off patterns, but the light transmission amount does not change because both are above the saturation value. Further, in the present embodiment, since the pulse is turned on and off by applying a pulse that is equal to or larger than the saturation of the liquid crystal during the non-selection period, the contrast ratio slightly decreases, but as the number of scanning electrodes increases, the contrast ratio increases. The rate of decrease in contrast ratio is reduced, and a good contrast ratio can be obtained. In the case of this embodiment, the pixel (X i Y 1) is 1
7 : 1、 (Χ, Υζ ) で 1 6 : 1 (Xt Ya ) で 1 7 : 1 のコン ト ラ ス ト 比が得られた。 また *実旄例においても液晶に印加される電圧の平均値は零 とな 、 液晶素子の劣化が生じることはなかった。 A contrast ratio of 7: 1 was obtained for (Χ, Υζ) and a ratio of 16: 1 for (Xt Ya). Also in the actual example, the average value of the voltage applied to the liquid crystal was zero, and no deterioration of the liquid crystal element occurred.
なお、 *実施例では第 2の非選択期間をフレーム周期の最後すなわち次の 選択期間の直前に設けたが、 表示装置に応用する場合は、 人間の目が識別で きない時間の範囲内であれば、 選択期間の直前である必要はない。  In the embodiment, the second non-selection period is provided at the end of the frame period, that is, immediately before the next selection period. However, when applied to a display device, the second non-selection period is set within a time range where human eyes cannot identify. If so, it does not need to be immediately before the selection period.
第 1 6図は 第 1 5図に示す堪勐波形を実現する具体的回路の一例を示す 回路ブロック図であリ 、 a、 bの信号によ り 、 ト ラ ンス ミ ツシ -sンゲー ト 1 1 1を茧択し、 cの走査電槿データで、 eの選択時走查電毪波形及び O Vの 非選択走查電 S波形を選択し、 走査罨接波形を作る。 一方信号電桎波形は b の信号により ト ラ ンスミ ツシ aンゲート 1 1 1 を選択し、 dの信号電極デー タで、 gのオン波形及び hのオフ波形を選択し、 信号電¾波形を作リ、 液晶 素子 1 1 3に印加される。 又、 ±V , 、 ±V2 、 ± V3 、 O Vは走查電桎及 び信号電極の電源電圧である。 第 1 7図は、 第 1 6図に示した回路の各点に おける信号である。 FIG. 16 is a circuit block diagram showing an example of a specific circuit for realizing the satisfactory waveform shown in FIG. 15. 11. Select 1 and select the scanning waveform at the time of selection and the S waveform at the non-selection of the OV in the scanning waveform data of c to create the scanning waveform. On the other hand, for the signal flotation waveform, the transmission gate a 1 1 1 is selected by the signal b, and the ON waveform g and the OFF waveform h are selected by the signal electrode data d to create the signal voltage waveform. Applied to the liquid crystal element 113. Further, ± V,, ± V 2 , ± V 3, OV is a power supply voltage of the run查電桎及beauty signal electrodes. FIG. 17 shows signals at each point of the circuit shown in FIG.
実 施 例 6  Example 6
第 1 8図に、 第 2図 (b ) に示すようなオン、 オフ状態にするための走查 電棰 Xi 、 X2 及び信号電極 Υ ι に印加される駆動波形と、 画素 (X, Υ I ) の光透過特性を示す; なお、 光透遍特性の変化をわかり易くするために, 次のフ レーム周期 t 23ではオン、 オフ状態を反転させた。 第 1 8図において, 05〜 1; 26はぃずれも第 1 5図と同じことを示しており 、 t ' n及び t ' 21は走査電極 X2 における選択期間、 t ' 05及び t ' 15は第 2の非選択期間、 t ' |6は第 1 の非選択期間 t ' 12は第 1 及び第 2の非選 択期間を含むフ レーム周期内の非選択期間を示している。 First FIG. 8, FIG. 2 (b) to indicate such on the Hashi查Den棰Xi, the drive waveform applied to the X 2 and the signal electrode Upsilon iota for the off state, the pixel (X, Upsilon shows the light transmission characteristics of I); Note that for clarity the change in HikariToruamane characteristics, in the next frame period t 23 on, by inverting the oFF state. In FIG. 18, 05 to 1; 26 indicate that the deviation is the same as in FIG. 15, and t ′ n and t ′ 21 are the selection periods in the scan electrode X 2 , t ′ 05 and t ′ 15 the second non-selection period, t '| 6 first non-selection period t is' 12 shows the non-selection period in the frame period including between the first and second non-selection択期.
波高値 V , , V 2 , V 5 , V e はそれぞれ 1 2 V , 1 0 V , 2 V , 0 Vで あり, V 3 及び V 8 は 8 V, V 4 及び V 9 は 4 Vである。 The peak values V, V 2, V 5, and V e are 12 V, 10 V, 2 V, and 0 V, respectively, V 3 and V 8 are 8 V, and V 4 and V 9 are 4 V .
実施例 5 と異なるのは、 走査電極に印加される電圧を低下させるために、 走査電極と信号電極の電圧レベルを共通化したこ とにある。  The difference from the fifth embodiment is that the voltage level of the scanning electrode and the signal electrode are made common in order to reduce the voltage applied to the scanning electrode.
走査電極 X, には、 選択期間 t Η ( t 21 ) は、 V 4 及び V 3 を、 第 1 の非 選択期間 t ,6 t t 26 j> は、 V 2 及び V 5 を、 第 2 の非選択期簡 t 0S ( t ,5 . t 25 は、 V | 及び V s を印加する。 走査電極 X i を奇数番目の走査電極と すると、 偶数番目の走査電極である X 2 には、 第 1 8図に示すように X , と は位相が逆のパルス列を印加する。 これは、 走査電槿 X l 上の酒素が選択期 m t n ( 1 2| である時、 走査電極 X2 上の画素は第 2の非選択期間 t ' 05 ( t ' ,5 ) であり、 この時に画素をオン及びオフさせるための飽和値以上の パルスを印加するためである。 すなわち > 术実施例では各走查電棰に、 交互 に逆位相のパルスを印加する必要がある。 またこの結果 > 信号電極 に印 加されるバルスは、 画素をオ ンさせるパルスと オフ させるパルスを、 奇数番 目の走査電棰上の画素と偶数番目の走査電¾上の画素とでは異なる波形にす る必要がある。 すなわち > 奇数番目の走査電極 (例えば X , ; 上の画素をォ ンさせる場合は、 V , 及び V 6 を V , , V 6 の順に、 オフさせる場合は v8 及ひ V 9 を V 8 、 V 9 の順に印加し, 偶数番目の走査電極 (例えば x2 ) 上 の画素をオンさせる場合は. V a 及び V a を V 3 、 V 8 の順に、 オフさせる 場合は V , 及び V s を V s 、 V , の順に印加する。 この時画素 (X , Y I ) に印加されるパルスは、 実施例 5 と波髙値が異なるのみで、 実質的に同一の 90 077 (22) 波形のパルスが印加される。 すなわちオンの場合、 選択期間 t nでは (V 4 — V , ) 及び (V s — V G ) の負、 正の飽和値以上のパルスが印加され、 ォ フの場合、 選択期間 t 2lでは (V 4 - V 8 ) 及び (V 3 - V 9 ) の負、 正の しきい値より小さい値のパルスが印加ざれる。 また 選択期間の直前の第 2 の非選択期間 t 05 ( t ,5 , t 25 ) では、 (V , — V 4 ) 及び (V & — V 8 ) も し くは ( V , — V 6 ) 及び ( V G — V , ) のいずれも飽和値以上のパルス が正負の頋に印加され、 画素はいったんォン状態となった後オフ状態となリ . 次の選択期間でオンに反転するか、 そのままオフ状態を保持するかを選択さ れる。 Scanning electrodes X, in the selection period t Η (t 21) is the V 4 and V 3, the first non-selection period t, 6 tt 26 j> is the V 2 and V 5, the second non In the selection period t 0S (t, 5 .t 25, V | and V s are applied. If the scan electrode X i is an odd-numbered scan electrode, the even-numbered scan electrode X 2 has the first 8 as shown in FIG. X, phase applies a reverse pulse train and this is, Sakemoto on scanning Den槿X l is selected period mt n (1 2 |. when a, on the scanning electrode X 2 of The pixel is in the second non-selection period t'05 (t ', 5), at which time a pulse of a saturation value or more for turning on and off the pixel is applied. It is necessary to alternately apply opposite-phase pulses to the electrodes, and as a result, the pulse applied to the signal electrode is changed to an odd-numbered pulse that turns the pixel on and off. It is necessary to make the waveforms different between the pixel on the scanning electrode and the pixel on the even-numbered scanning electrode:> Odd-numbered scanning electrode (for example, when turning on the pixel on X,; and V, and V 6,, in the order of V 6, when turning off the v 8及Hi V 9 is applied in the order of V 8, V 9, turning on the pixels on the even-numbered scanning electrodes (e.g. x 2) When V a and V a are turned off in the order of V 3 and V 8, and when they are turned off, V, and V s are applied in the order of V s, V, and the pulse applied to the pixel (X, YI) Is substantially the same as in Example 5 except for the wave value. 90 077 (22) A pulse having a waveform is applied. That If on, the selection period in tn (V 4 - V,) and - negative (V s VG), the positive saturation value or more pulses are applied, the case of O off, the selection period t in 2l (V 4 - V 8) and (V 3 - negative V 9), a pulse of a positive threshold value less than the play application. In the second non-selection period t 05 (t, 5, t 25) immediately before the selection period, (V, — V 4) and (V & — V 8 ) or (V, — V 6) And (V G — V,), a pulse exceeding the saturation value is applied to positive and negative 頋, and the pixel turns on once and then turns off. Does the pixel turn on in the next selection period? Select whether to keep the off state.
第 1 の非選択期間 t IG C t 2G) では、 実施例 5 と同じようにオン、 オフバ ターンによって、 パルス幅が 2 0 0 p s e c または · 0 0 μ. s e c の ( V 5 一 V s ) 及び (V 2 — V ! ) もしくは (V 2 — V 8 〉 及び (V & —V s ) の いずれもパルス耱 4 0 0 s e c時のしきい値よリ小さい値のパルスが印加 される。 In the first non-selection period t IG C t 2G), on the same way as in Example 5, by Ofuba turn, the pulse width is 2 0 0 psec or · 0 0 μ. Sec of (V 5 one V s) and (V 2 — V!) Or (V 2 — V 8 ) and (V & — V s), a pulse with a value smaller than the threshold value at the time of pulse 耱 400 sec is applied.
本実施例の駆動: S法は、 実施例 &と同様、 ょリ高速の駆動を必要とする場 合や走査電極を多くする場合に有効な駆動方法であリ、 実施例 5 と同様のコ ン ト ラ ス ト比が得られた。  Driving of this embodiment: The S method is an effective driving method when high-speed driving is required or when the number of scan electrodes is increased, as in the case of &. The contrast ratio was obtained.
第 1 9図は、 第 1 8図に示す駆動波形を実現する具体的回路の一例を示す ブ B ッ ク図である。 a , b の信号により ト ラ ンスミツシ s ンゲー ト 1 1 1 を 選択し、 c の走査電極データで、 f の選択時走査電極波形及び gの非選択走 查電極波形を選択し、 走査電極波形を作る。 尚、 hは偶数番目の走査電極選 択波形である。 一方信号電槿波形は、 a 、 bの信号にょリ ト ラ ンスミ ツ シ s ンゲー ト 1 1 1 を選択し、 e の信号電¾データで、 i のオン波形及び j のォ フ波形を選択し、 信号電&波形を作リ、 液晶素子 1 1 3に印加される。 又、 V l 、 V 2 l V 3 、 V 4 、 V 5 、 V 6 、 V 8 > V 9 は走查電植及び信号電極 の電源電圧である。 第 2 0図は、 第 1 9図に示した回路の各点における信号 である。 FIG. 19 is a block diagram showing an example of a specific circuit for realizing the drive waveform shown in FIG. Select the transmission electrodes s 11 1 1 by the signals of a and b, select the scan electrode waveform when f is selected and the non-selective scan electrode waveform of g by using the scan electrode data of c, and select the scan electrode waveform. create. Here, h is an even-numbered scan electrode selection waveform. On the other hand, for the signal waveform, select the transmission sig- nal 1 1 1 for the signals a and b, and select the on waveform of i and the off waveform of j with the signal power data of e. The signal is generated and applied to the liquid crystal element 113. V l , V 2 l V 3 , V 4 , V 5 , V 6 , V 8> V 9 are scanning electrodes and signal electrodes Power supply voltage. FIG. 20 shows signals at each point of the circuit shown in FIG.
実 施 例 7  Example 7
第 2 1 図に, 第 2図 ( b ) に示すようなオン, オフ状態にするための走査 電 ftX , 上の各画素に印加される駆動波形と、 光透過特性を示す。 なお、 光 透過特性の変化をわかり易くするために、 次のフ レーム周期 t 23では、 オン、 オフ状態を反転させた。 Figure 21 shows the scanning waveform ftX for turning on and off as shown in Fig. 2 (b), the driving waveform applied to each pixel, and the light transmission characteristics. Note that for clarity the change in light transmission properties, in the next frame period t 23, one, obtained by inverting the OFF state.
第 2 1 図において、 t 05〜 t 26は、 いずれも第 1 5図と同じことを示して おり、 波高値 V , は 8 V , V 2 は 4 Vである。 In the second 1 view, t 05 ~ t 26 are all shows the same thing as the first 5 figures, the peak value V, is 8 V, V 2 is 4 V.
実施例 5及び 6 と異なるのは、 コ ン ト ラ ス ト比を向上させるために > 非選 択期間に印加されるパルスのパルス幅が、 液晶をオン、 オフさせるために印 加される飽和値以上のパルスよ リ も大き く ならないように した点にある。 走査電 ¾X , には、 選択期間 t n ( t 21 ) は, ± V , 、 第 1 の非選択期間 し i6 ( t 26 ) ϋ、 0 V、
Figure imgf000025_0001
t 05 ( t |5 t 25 ) は > 土 v , を 選択期間とは逆の順序で印加し、 信号電極 Υ ! , Y 2 , Y 3 には、 画素オン させたい場合は、 0 V , オフさせたい場合は、 ± V 2 を負、 正の顢に印加す る。 この時各画素には、 選択期間 t n ( t 21 ) の直前の第 2の非選択期間 t
The difference from Embodiments 5 and 6 is that the pulse width of the pulse applied during the non-selection period is set to improve the contrast ratio. The saturation applied to turn on and off the liquid crystal The point is that the pulse does not become larger than the pulse larger than the value. The scanning period ¾X, has a selection period t n (t 21) of ± V,, a first non-selection period and i6 (t 26) ϋ, 0 V,
Figure imgf000025_0001
t 05 (t | 5 t 25) applies> soil v, in the reverse order of the selection period, and 0 V, off if you want to turn on the pixel to the signal electrodes Υ!, Y 2, Y 3 If you want to, it applies a ± V 2 negative, positive顢. At this time, each pixel has a second non-selection period t immediately before the selection period t n (t 21 ).
05 ( t ,5 > t 25) では、 いずれも飽和値以上の ± V , も し く は + V 2 ) 及び (一V , — V 2 ) が印加され、 選択期間 t H ( t 21 ) では、 オンの 場合 ± V , が、 オフの場合 (- V , + V 2 ) 及び ( + V , - V 2 ) が印加さ れ、 第 1 の非選択期間 t 16 ( t 26 ) では. オン、 オフパターンによって、 (At 05 (t, 5> t 25 ), ± V, or + V 2) and (-1 V, — V 2), which are all higher than the saturation value, are applied, and during the selection period t H (t 21), ± V, when on, (-V, + V 2) and (+ V, -V 2) when off, and during the first non-selection period t 16 (t 26 ). By the off pattern, (
+ V , ― V 2 ) 及び (一V , + V 2 も し く は 0 Vが印加される。 このよう に非選択期間には, 2 0 0 μ s e c ょ リ大きいパルス幅のパルスが印加され るこ とはな く 、 光透過特性に与える影響がよリ小さ く なる。 + V,-V 2) and (1 V, + V 2 or 0 V are applied. In this way, a pulse with a pulse width 200 μs larger than that applied during the non-selection period is applied. Therefore, the influence on the light transmission characteristics is further reduced.
木実施例の艇動方法も、 実施例 5及び 6 と同様選択期間の直前で画素をい 、 The boat moving method of the tree embodiment is similar to that of the fifth and sixth embodiments. ,
(24)  (twenty four)
つたんオンさせてからオフ状態にし、 その直後の選択期間内に正の飽和値以 上のバルスを印加するか、 しきい値以下のバルスを印加するかで、 オン状態 に反耘させるか、 オフ状態をそのまま保持するかを選択しているため、 実施 例 1 ~ 4の ffi勖方法に比べて遘択期間の睁間を半分にすることができ、 ょリ 高速の鬆動を必要とする場合や走査電植を多くする場合に有効な駆動方法あ る。 *実施例の場合は、 画素 (Χι Y 1 ) で 2 2 : 1、 (X , Y 2 ) で 2 1 : 1. (X! Ys ) で 2 0 : 1のコ ン ト ラ ス ト比が得られた。 また本実施例 においても液晶に印加される電圧の平均値は零となり、 液晶素子の劣化が生 ずることはなかった。 It is turned on after turning it on for a while, and it is necessary to apply a pulse above the positive saturation value or to apply a pulse below the threshold value during the selection period immediately after that. Since the selection of whether to keep the off state is selected, the period of the selection period can be halved compared to the ffi method of Examples 1 to 4, and a high speed opening is required. There is a driving method that is effective when increasing the number of scanning implants. * In the case of the embodiment, the contrast ratio of 22: 1 for the pixel (Χι Y1), 21: 1 for (X, Y2) and 20: 1 for (X! Ys) Obtained. Also in this example, the average value of the voltage applied to the liquid crystal was zero, and the liquid crystal element did not deteriorate.
なお、 *実旌例でも第 2の非選択期間をフ レーム周期の最斯すなわち次の 選択期間の直前に設けたが、 表示装置に応用する場合は、 人間の目が識別で きない時間の範囲内であれば 選択期間の直前である必要はない。  Note that in the actual example, the second non-selection period was provided immediately before the next selection period in the frame period, that is, immediately before the next selection period. If it is within the range, it does not need to be immediately before the selection period.
第 22図は 第 2 1図に示す 動波形を実現する具体的回路の一例を示す 回路ブロック図であり、 a、 bの信号により、 ト ラ ンス ミ 、 yシ》 ンゲー ト 1 1 1を選択レ、 cの走査電植データで、 eの選択時走查電植波形及び O Vの 非選択走査電極波形を選択し走查鼋植波形を作る。 一方信号電楗波形は、 b の信号にょ リ ト ラ ンス ミ ツ シ - ンゲート 1 1 1 を選択し、 dの信号電極デー タで、 gのオン波形及び hのオフ波形を選択し、 信号電極波形を作リ > 液晶 素子 1 1 3に印加される。 又、 ± V t 、 ± V2 , OVは走査電 S及び信号電 植の電源電圧である。 第 2 3図は 第 22図に示した回路の各点における信 号である。 FIG. 22 is a circuit block diagram showing an example of a specific circuit for realizing the dynamic waveform shown in FIG. 21.Transmit, y signal gate 1 11 1 is selected by signals a and b. (5) Select the scanning waveform at the time of selection and the non-selective scanning electrode waveform of OV from the scanning waveform data at (c) to create the scanning waveform. On the other hand, as for the signal voltage waveform, select the transmission mix gate 1 1 1 for the signal of b, select the ON waveform of g and the OFF waveform of h with the signal electrode data of d, and select the signal electrode. Create waveform> Applied to liquid crystal elements 113. ± V t , ± V 2 , and OV are power supply voltages of the scanning power S and the signal plant. FIG. 23 shows signals at various points in the circuit shown in FIG.
実 施 例 8  Example 8
第 24図に、 第 2図 (b ) 示すようなオン、 オフ状態にするための走査電 SX 1 、 X2 及び信号竜 filY t に印加される駆動波形と 画素 (X〖 Y 1 ) の光透過特性を示す。 なお、 光透過特性の変化をわか 易くするために、 次 のフ レーム周期 t 23ではオン、 オフ状態を反転させた。 FIG. 24 shows the driving waveforms applied to the scanning electrodes SX 1 and X 2 and the signal filY t for turning on and off as shown in FIG. 2 (b) and the light of the pixel (X 〖Y 1). Shows transmission characteristics. In order to make it easy to see the change in light transmission characteristics, In the frame period t 23 on, by inverting the OFF state.
第 24図において、 t os〜 t 2S及び t ' os〜 t ' 2|はいずれも第 1 8図と 同じこ とを示す。 In FIG. 24, t os to t 2S and t ′ os to t ′ 2 | all indicate the same as in FIG.
波高値 V , , V 2 , V a , V 4 . V s , V G はそれぞれ 1 0 V , 9 V , 7 V , 3 V , 1 V , 0 Vである。 V mは信号電極に印加される電圧パルスの中 間電位を示し、 この場合は 5 Vである。  The peak values V, V2, Va, V4, Vs, and VG are 10 V, 9 V, 7 V, 3 V, 1 V, and 0 V, respectively. Vm indicates the intermediate potential of the voltage pulse applied to the signal electrode, and is 5 V in this case.
実施例 7 と異なるのは, 走查電接に印加される電圧を低下させるために、 走査電¾と信号電極の電圧レペルを共通化したこ とにある。  The difference from the seventh embodiment is that the voltage level applied to the scanning electrode and the signal electrode is shared in order to reduce the voltage applied to the scanning contact.
走査電 ft X! には、 選択期間 t n ( t 2I ) は、 V 4 及び V 3 を、 第 1の非 選択期簡 t ,G ( t 2β ) は、 V 2 及び V 5 を第 2の非選択期間 t 05 ( t ,5 t 25 ) は、 V | 及び V6 を印加する, 走査宽 «IX , を奇数番目の走査電極とする と、 偶数番目の走査電極である X 2 には、 第 24図に示すように. Xi とは 位相が逆のパルス列を印加する。 これは、 走査電極 Χ ι 上の画素が選択期間 t ( t 2. である時、 走査鴛極 X 2 上の画素は、 第 2の非選択期間 t ' 05 ( t ' ,5 ) であリ 、 この時に画素をオン及びオフさせるための飽和値以上の パルスを印加するためである。 すなわち, 本実施例では各走査電極に 交互 に逆位相のバルスを印加する必要がある。 また、 この結果、 信号罨極 Y l に 印加されるバルスは、 画素をオンさせるパルス とオフ させるパルスを、 奇数 番目の走査電極上の画素と偶数番目の走査電極上の Β素とでは異なる波形に する必要がある。 すなわち、 奇数番目の走査電極 (例えば X l ) 上の画素を オンさせる場合は V , 及び V 6 を V , 、 V 6 の順に、 オフさせる場合は V 2 及び V s を v2 、 V 5 の順に印加し、 偶数番目の走査電極 (例えば x2 ) 上 の画素をオンさせる場合は v 2 及び V 5 を V 5 、 V 2 の順に、 オフさせる場 合は、 V , 及び V 6 を V 6 、 V , の順に印加する。 この時画素 (X , Y . ) に印加されるパルスは, オンの場合、 選択期間 では (V4 - V , ) 及び ( V 3 — V ε ) の負、 正の飽和値以上のパルスが印加され オフの場合、 選 択期間 t 21では (V4 -V a ) 及び (V a - V 5 ) の負、 正のしきい值ょリ 小さい値のパルスが印加される。 また、 選択期間の直前の第 2の非選択期間 t 05 t ,5 , t 25 では (V ! - V 5 ) 及び ( V 6 - V 2 ) も し くは (V 【 — 6 ) 及び (V6 — V , ) のいずれも飽和値以上のパルスが正、 負の順に 印加され、 画素はいつたんオン状態となった後オフ状態となり、 次の選択斯 間でオンに反転するか、 そのままオフ状態を保つかを選択される。 Scanning power ft X! , The selection period tn ( t2I ) is V 4 and V 3 , the first non-selection period t, G (t 2 β) is V 2 and V 5, the second non-selection period t 05 (t, 5 t 25) applies V | and V 6. If the scan 宽 IX, is the odd-numbered scan electrode, the even-numbered scan electrode X 2 is shown in FIG. Thus, a pulse train with the opposite phase to Xi is applied. This is because when the pixel on the scanning electrode Χι is in the selection period t (t2), the pixel on the scanning electrode X2 is in the second non-selection period t'05 (t ', 5 ). This is because, at this time, a pulse of a saturation value or more for turning on and off the pixel is applied, that is, in this embodiment, it is necessary to alternately apply a pulse of opposite phase to each scanning electrode. However, the pulse applied to the signal compressing electrode Y l needs to have different waveforms for the pulse for turning on the pixel and the pulse for turning off the pixel on the odd-numbered scan electrodes and the pixel on the even-numbered scan electrodes. there. that is, when turning on the pixels on the odd-numbered scanning electrode (eg X l) of V, and V 6 V,, in the order of V 6, the V 2 and V s when turning off v 2, V 5 is applied sequentially to turn on the pixels on the even-numbered scanning electrodes (e.g. x 2) If the a v 2 and V 5 in the order of V 5, V 2, if to be off, V, and applies the V 6 V 6, V, in the order of. This time pixel (X, Y.) Is applied to the When the pulse is on, (V 4 -V) and Negative - (V 3 V ε), if the positive saturation value or more off pulse is applied, the selection択期between t 21 (V 4 -V a) and - negative (V a V 5), Positive Threshold A small value pulse is applied. In the second non-selection period t 05 t, 5, t 25 immediately before the selection period, (V! -V 5) and (V 6 -V 2) or (V [— 6 ) and (V 6 — V,) A pulse with a saturation value or more is applied in the order of positive and negative, and the pixel turns on once and then turns off, then turns on during the next selection or turns off as it is Choose to keep the state.
第 1 の非選択期間 t 16 ( t 26) では、 実施例 7 と同じように、 オン、 オフ パターンによって, 0 Vも しくは (V 5 — V 6 ) 及び (V2 — V , ) の液晶 のしきい値よリ充分小さい値の正、 負のパルスが印加される。 In the first non-selection period t 16 (t 26 ), as in the seventh embodiment, depending on the on / off pattern, the liquid crystal of 0 V or (V 5 —V 6) and (V 2 —V,) Positive and negative pulses of a value sufficiently smaller than the threshold value are applied.
本実施例の駆動方法も、 実施例 5 ~ 7 と同様、 より高速の駆動を必要とす る場合や走査電棰を多くする場合に有効な駆動方法であリ、 実施例 7 と同様 のコ ン ト ラ ス ト比が得られた。  The driving method of the present embodiment is also an effective driving method when higher-speed driving is required or when the scanning power is increased as in the case of the fifth to seventh embodiments. The contrast ratio was obtained.
第 2 5図は、 第 2 4図に示す駆動波形を実現する具体的回路の一例を示す ブ Dッ ク図である。 a、 b の信号にょリ ト ラ ンス ミ ツシ 3 ンゲー ト 1 1 1 を 選択し、 cの走査電桎データで、 f の選択時走査電極波形及び gの非選択走 査電柽波形を選択し、 走查竜桎波形を作る。 尚、 hは偶数番目の走査電¾選 択波形である。 一方信号電 S波形は a、 bの信号によリ ト ラ ンスミ ツシ 3 ン ゲー ト 1 1 1 を選択し, eの信号電毪データで、 i のオン波形及び〗 のオフ 波形を選択し、 信号電 S波形を作リ、 液晶素子 1 1 3 に印加される。 また、 V , , V 2 , V 3 , V 4 , V5 , V G は走查電瘸及び信号電極の電源電圧で ある。 第 2 6図は、 第 2 5図に示した回路の各点にぉける信号でぁる。 FIG. 25 is a block diagram showing an example of a specific circuit for realizing the drive waveform shown in FIG. a, signal b Nyori preparative lance Mi Tsushi 3 Select Nge sheet 1 1 1, a scanning electric桎data c, and select the unselected run査電柽波type selection during the scanning electrodes waveforms and g of f , 查 查 桎 桎 波形 波形 波形 波形Here, h is an even-numbered scanning electrode selection waveform. On the other hand the signal electric S waveform selects a, a re preparative La Nsumi Tsushi 3 down gate 1 1 1 by the b signal, the signal Den毪data e, select On waveform and〗 off waveform of i, A signal signal S waveform is created and applied to the liquid crystal elements 113. V,, V 2 , V 3 , V 4 , V 5 , and VG are the power supply voltages for the scanning electrodes and the signal electrodes. FIG. 26 shows signals at each point of the circuit shown in FIG.
実 施 例 9  Example 9
第 2 7図に、 第 2図 ( b ) に示すようなオン、 オフ状態にするための走査 電 ¾X i 上の各画素に印加される駆動波形と、 光透通特性を示す。 なお, 光 逸過特性の変化をわかリ易くするために、 次のフ レーム周期 t 23では、 オン、 オフ状態を反転させた。 FIG. 27 shows the driving waveform applied to each pixel on the scanning power Xi for turning on and off as shown in FIG. 2 (b), and the light transmission characteristics. The light To facilitate re-divided changes in Yat over properties, in the next frame period t 23, one, obtained by inverting the OFF state.
第 2 7図において、 t |3は最初のフ レーム周期、 t 23は次のフ レーム周期 を示す。 また t H及び t 21は選択期間、 t 12及び t 22は非選択期間を示し、 t |4は 2 0 0 jit s e cのパルス幅を示す。 また t ls及び t 25は次の選択期間 の直前すなわちフ レーム周期の最後に設けられた平均値補正用のパルスを印 加するための期間を示す。 この場合は、 2 0 0 / s e cの期間である。 In FIG. 27 , t | 3 indicates the first frame period, and t23 indicates the next frame period. Also, t H and t 21 indicate a selection period, t 12 and t 22 indicate a non-selection period, and t | 4 indicates a pulse width of 200 jit sec. The t ls and t 25 indicates the period for indicia pressurizing last or pulse for the average value correction provided at the end of the frame period of the next selection period. In this case, the period is 200 / sec.
また、 波髙値 V, は 1 0 V、 V 2 は 8 V、 V 3 及び V 4 は 2 Vである。 走査電極 X , には、 選択期間 t H ( t 21 ) は、 + V , 、 - V 2 の順に、 非 選択期間 t l2 ( t 22) は 0 Vを印加し、 フ レーム周期の最後の期間 t 15 ( t 25; は補正用パルスと して一 V 3 を印加する。 信号電極 Y, 、 Υ2 、 Υ 3 に は、 画素をオンさせたい場合は、 ± V 4 を正、 負の願に、 オフさせたい場合 は、 負、 正の顒に印加する。 この時各 S素には、 オンの場合は、 飽和値以上 のパルス ( + V I — V 4 ) が印加された後しきい値よ り小さいパルス (一 V 2 + V 4 が印加され、 オフの場合はいずれも飽和値以上のパルス (+ V , + V 4 及び (一 V 2 - V 4 ) が正、 負の順に印加される。 また非選択期間 t i2 ( t 22 ) は、 オン、 オフノ、♦ター ンによって ± V4 が 2 0 0 /t s e c また は 4 0 0 n s e cのパルス幅で印加されるが, フ レーム周期の最後の期間 tThe wave values V and V are 10 V, V 2 is 8 V, and V 3 and V 4 are 2 V. To the scan electrode X, the selection period t H (t 21) is applied in the order of + V ,, -V 2, the non-selection period t l2 (t 22 ) is 0 V, and the last period of the frame period t 15 (t 25;. applies an V 3 as a correction pulse signal electrodes Y,, Upsilon 2, the Upsilon 3, if you want to turn on the pixels, the ± V 4 positive, negative Cancer If you want to turn off, apply a negative or positive こ の. At this time, if each S element is on, apply a pulse (+ VI — V 4) that is higher than the saturation value. When a smaller pulse (1 V 2 + V 4) is applied, and when off, pulses (+ V, + V 4 and (1 V 2 -V 4) above the saturation value are applied in order of positive and negative. that. the non-selection period t i2 (t 22) is turned on, Ofuno, ♦ although ± V 4 by coater emission is applied in 2 0 0 / tsec or 4 0 0 nsec pulse width, the frame period Last period t
15 ( t 25) のみは、 補正用パルス一 V 3 が加えられるため (一 V 3 ― V 4 ) または (一V3 + V4 ) すなわち一 4 Vまたは 0 Vが印加される。 15 (t 25) only, because the correction pulse one V 3 applied (one V 3 - V 4) or (one V 3 + V 4) In other words one 4 V or 0 V is applied.
本実施例では、 選択期間の最初に画素をォンさせる正の極性の飽和値以上 の第 1 のパルスを印加した後、 それと逆極性でかつ波高値の異なる第 2のパ ルスを印加し, この第 2のパルスを しきい値以下とするか, 飽和値以上とす るかでオ ン > オフを選択している。 この時、 オン、 オフにかかわり な く 、 第 1 のバルスの波高値と第 2のパルスの波高値の差を等し く しておき、 この差 分を t 1S ( t 25 ) の期間で補正してやることにより、 1 フレーム周期内に印 加される電圧の平均値を零にしている。 In this embodiment, after applying a first pulse having a positive polarity or more which causes the pixel to turn on at the beginning of the selection period, a second pulse having a polarity opposite to that of the first pulse and having a different peak value is applied. On / off is selected depending on whether the second pulse is below the threshold or above the saturation value. At this time, the difference between the peak value of the first pulse and the peak value of the second pulse is made equal, regardless of whether the pulse is on or off. The average value of the voltage applied within one frame period is made zero by correcting the minute in the period of t 1S (t 25).
なお、 実施例では補正用バルスのパルス輻、 前記第 1のパルスおよび第 In the embodiment, the pulse radiation of the correction pulse, the first pulse and the
2のパルスのパルス幅を等し く しているが, 必ずしもこれに限られるもので はなく . I V 1 . t 1 I— I V2 - t 2 I = I Vs - t 3 I (ただし、 t , t 2 、 t 3 はそれぞれのパルスのパルス幅を示す。 ) を港足するように、 各 パルスの波高値及ぴバルス輜を設定してやれば良い。 The pulse width of pulse 2 is made equal, but is not necessarily limited to this. IV 1. t 1 I—IV 2 -t 2 I = I Vs-t 3 I (where t, t 2, t 3 represents the pulse width of each pulse.) the as Minatoashi may do it by setting the crest value及Pi Bals輜of each pulse.
本実施例の駆動方法も、 実施例 5 ~ 8と同様、 実施例 1〜4の駆動方法に 比べて選択斯間の時間を半分にすることができるため、 ょリ高速の駆動を必 要とする場合や走査電極を多くする場合に有効な駆動方法である。 また実施 例 5〜 8の駆動方法のように、 非選択期間に B素がオン、 オフすることがな いため く短時間での光の透過鼉の変化でも品質上問題となるような液晶 シャ ッ ターなどに応用する場合、 有菊な鹿動方法である。  In the driving method of the present embodiment, as in the case of the fifth to eighth embodiments, the time required for selection can be reduced to half of that of the driving methods of the first to fourth embodiments, so that high-speed driving is required. This is an effective driving method when the number of scanning electrodes is increased. In addition, unlike the driving methods of Examples 5 to 8, since the element B does not turn on and off during the non-selection period, a change in light transmission 鼉 in a short period of time causes a problem with the quality of the liquid crystal shutter. When applied to a terre, it is an Arigiku deer method.
*実施例の場合は 画素 (Xt Y , ) で 20 : 1、 ( 1 ¥ 2 ) で 1 7 : 1、 (X t Y 3 ) で 2 0 : 1のコン ト ラ ス ト比が得られた。 また本実施例で は、 補正用パルスをフ レーム周期の最後すなわち次の選択期間の直前に印加 するようにしているが、 この補正用パルスは、 光透通特性にほとんど影響を 与えないので、 非選択期 M内であれば、 任意のタィ ミ ングで印加しても良い。 第 2 8図は、 第 27図に示す K動波形を実現する具体的回路の一例を示す ブロック図である。 走査電¾には、 走査電極データ信号 1 2 1 を、 走查電 S シフ ト ク CI ッ ク信号 1 20でシフ ト レジスタ 1 1 5に転送し、 選択期間に d の波形、 非遺択期闉に 0 V、 選択期間直前の直流成分を補正する電圧を切り 換えて、 走查電接波形を ffi力する。 一方餐号電 Sには、 信号電桎データ信号 1 1 7を信号電桎、ンフ ドク tsック 1 1 8でシフ ト レジスタ 1 1 4に耘送して —走査線分のデータを転送したらラッチ信号 1 1 9でラッチし、 その出力で ト ラ ンス ミ ッ シュ ンゲー ト 1 1 1 を切リ換えて, オン、 又はオフ ( b又は c の波形) を W力する。 V , , - V 2 , - V 3 , ± V 4 は、 走査電極及び信号 電極の駆動電圧である。 * Pixel in the case of Example (Xt Y,) at 20: 1, (1 ¥ 2) 1 7: Con preparative la scan Ratio of 1 were obtained: 2 0 1, (X t Y 3) . In this embodiment, the correction pulse is applied at the end of the frame period, that is, immediately before the next selection period. However, since this correction pulse has almost no effect on the light transmission characteristics, Any timing may be applied within the non-selection period M. FIG. 28 is a block diagram showing an example of a specific circuit for realizing the K dynamic waveform shown in FIG. The scan electrode transfers the scan electrode data signal 1 2 1 to the shift register 1 1 5 with the scan electrode S shift CI By switching to 0 V and the voltage to correct the DC component immediately before the selection period, the scanning contact waveform is improved. On the other hand, the signal signal S 1 is sent to the shift register 1 1 4 by the signal switch 1, and the scan signal data is transferred to the shift register 1 1 4. Latch with latch signal 1 1 9 Switch to the missing transistor and switch on or off (b or c waveform). V,, -V 2, -V 3 , ± V 4 are drive voltages for the scan electrodes and the signal electrodes.
第 2 9図は。 第 2 8 (^1に示した回路の信号波形を示したタ イ ミ ングチヤ一 ト図である。  Figure 29. FIG. 28 is a timing chart showing the signal waveform of the circuit shown in the twenty-eighth (^ 1).
実 施 例 1 0  Example 1 0
第 3 0図に、 第 2図 ( b ) に示すようなオン、 オフ状態にするための走査 電極 X , 及び信号電極 に印加される ¾動波形と、 酉素 (ΧΊ Y! ) の光 透過特性を示す。 なお、 光透過特性の変化をわかり易くするために、 次のフ レーム周期 t 23ではオン, オフ状態を反転させた。 FIG. 30 shows the driving waveform applied to the scanning electrode X and the signal electrode for turning on and off as shown in FIG. 2 (b), and the light transmission of the element (ΧΊY!). Show characteristics. Note that for clarity the change in light transmission properties, in the next frame period t 23 on, by inverting the OFF state.
第 3 0図において、 t ,,〜 t 25はいずれも第 2 7図と同じことを示す。 波高値 V , , V 2 , V 3 , V 4 , V 5 , V 6 , V 7 は、 それぞれ 1 2 V , 1 0 V , 8 V , 6 V , 4 V , 2 V , 0 Vである。 V mは信号電極に印加され る電圧-ベルスの中間電位を示し、 この場合は 5 Vである。 In FIG. 30, t,..., T 25 indicate the same as in FIG. 27 . The peak values V 1, V 2, V 3, V 4, V 5, V 6, and V 7 are 12 V, 10 V, 8 V, 6 V, 4 V, 2 V, and 0 V, respectively. V m indicates the intermediate potential between the voltage applied to the signal electrode and the bells, in this case 5 V.
実施例 9 と異なるのは、 走査電極に印加される電圧を低下させるために > 走査電極と信号電極の電圧レベルを共通化したこ と にある。  The difference from the ninth embodiment is that the voltage level of the scanning electrode and the signal electrode are made common in order to reduce the voltage applied to the scanning electrode.
走査電極 X , には、 選択期間 ( t 21 ) は、 V , , V 7 の順に、 非選択 期間 t |2 ( t 22 ) は、 V 6 , V 3 の順に印加し、 t ,5 ( t 25 ) の期間は、 補 正用パルスと して v4 を印加する。 信号電極 Y , には、 画素をオンさせたい 場合は、 Vs . V 4 の順に、 オフさせたい場合は、 V 7 、 2 の頗に印加す る。 この時各画素には、 オンの場合は、 飽和値以上のパルス (V ! - V 5 ) が印加された後、 しきい値よ リ小さいパルス (V 7 — V 4 ) が印加され、 ォ フの場合はいずれも飽和値以上のパルス (ν, — v7 ) 及び (v7— v2 ) が図のような順に印加される。 また、 非選択期間 t l2 ( t 22 ) は、 オン > ォ フパターンによって (V 6 — V 7 ) 及び (V 3 — V 2 ) が 2 0 0 it s e c又 は 4· 0 0 μ. s e cのパルス幅で印加されるが、 フ レーム周期の最後の期間 t 15 ( t 25 ) のみは、 補正パルス 4 が加えられるため (V 4 — V 2 ) 又は ( V 4 — V 4 ) すなわち一 4 V又は 0 Vが印加される。 :*:実施例も、 実施例 9 と同様に、 選択期間に印加ざれる正及び負のパルスの波高値の差分を t 15 ( t 25 ) の期間で補正し、 1 フ レーム周期内に印加される電圧の平均値を零 に している。 Scanning electrodes X, in the selection period (t 21) is V,, in the order of V 7, the non-selection period t | 2 (t 22) is applied in the order of V 6, V 3, t, 5 (t period of 25) applies a v 4 as a complement Tadashiyo pulse. Vs.V4 is applied to the signal electrode Y, in order to turn on the pixel, and V7, 2 is applied to the signal electrode Y, in order to turn off the pixel. At this time each pixel, if the ON saturation value or more pulses - after (V! V 5) is applied, the threshold by Li small pulse (V 7 - V 4) is applied, O full In any case, the pulses (ν, — v 7 ) and (v 7 — v 2 ) having a saturation value or more are applied in the order shown in the figure. In the non-selection period t l2 (t 22), (V 6 —V 7 ) and (V 3 —V 2 ) are set to 200 itsec or Is applied with a pulse width of 400 μs. However, during the last period t 15 (t 25 ) of the frame period, the correction pulse 4 is applied (V 4 — V 2) or (V 4 — V 4) That is, 14 V or 0 V is applied. : *: Example, similarly to Example 9, to correct the difference between the peak value of the positive and negative pulses play applied during the selection period in the period of t 15 (t 25), applied to one frame period The average value of the applied voltage is set to zero.
本実施例の駆動方法も、 実施例 9 と同様、 液晶シャ ッ ターなどに応用する 場合、 有効な駆動方法でぁリ、 実旌例 9 と同様のコン ト ラ ス ト比が得られた。 第 3 1 図は 第 3 0図に示す駆動波形を実現する具体的回路の一例を示す ブロッ ク図である。 aの信号にょリ、 ト ラ ンスミ ッシュンゲート 1 1 1 を選 択し、 b の走査電裎でータで e の選択時走査電槿波形及び f の非選択走查電 ¾波形を選択し、 走查電植波形を作る。 一方信号電¾波形は、 a の信号によ リ ト ラ ンス ミ ッ シュ ンゲー ト 1 1 1 を選択し、 d の信号電極データで gのォ ン波形、 h のオフ波形を選択し、 信号電 ¾波形を作リ、 液晶素子 1 1 3 に印 加それる。 又, V , , V 2 , V 3 , V 4 , V 5 , V 6 , V r は走查電極及び 信号電柽の電源電圧である。 第 3 2図は 第 3 1 図に示した回路の各点にお ける信号である。 Similarly to the ninth embodiment, when applied to a liquid crystal shutter and the like, the driving method of the present embodiment obtained the same contrast ratio as that of the ninth embodiment using an effective driving method. FIG. 31 is a block diagram showing an example of a specific circuit for realizing the drive waveform shown in FIG. Select the transmissible gate 1 1 1 in response to the signal a, and select the scanning waveform when selecting e and the non-selection scanning waveform f when selecting e using the scanning power b.查 Make a planting waveform. On the other hand, for the signal voltage waveform, select the response missing gate 1 1 1 according to the signal a, select the ON waveform of g and the OFF waveform of h with the signal electrode data of d, and select the signal voltage.を Create a waveform and apply it to liquid crystal elements 1 1 3. V,, V 2 , V 3 , V 4 , V 5 , V 6 , and V r are the power supply voltages of the scanning electrodes and signal electrodes. FIG. 32 shows signals at each point of the circuit shown in FIG.
実 施 例 1 1  Example 1 1
第 3 3図に、 第 2図 ( b ) に示すようなオン、 オフ状態にするための走査 電植 上の各画素に印加される駆動波形と、 光透過特性を示す。 なお、 光 透過特性の変化をわかり易くするために、 次のフ レーム周期 t 23では、 オン、 オフ状藤を反耘させた。 FIG. 33 shows the driving waveform applied to each pixel on the scanning electrode for turning on and off as shown in FIG. 2 (b), and the light transmission characteristics. Note that for clarity the change in light transmission properties, in the next frame period t 23, one was allowed to Han耘off like wisteria.
第 3 3図において t u ~ t 25は、 いずれも第 2 7図と同じことを示して おり、 波高値 V , は 8 V、 V 2 は S V、 V 3 及び V 4 は 2 Vである。 Tu ~ t 25 in the third Figure 3, both shows the same thing as the second FIG. 7, the peak value V, is 8 V, V 2 is SV, V 3 and V 4 are 2 V.
実施例 9及び 1 0 と異なるのは、 コ ン ト ラ ス ト比を向上させるために、 非 選択期間に印加されるパルスのパルス幅が > 液晶をオン オフさせるために 印加される飽和値以上のパルスより も大き く ならないように した点にある。 走查電榡 X , には、 選択期間 t H ( t 21 ) は、 + V I 、 一 V 2 の順に、 非 選択期閱 t 12 ( t 22 ) は 0 Vを印加し、 t 15 ( t 25 ) の期間は補正用パルス と して一 V 3 を印加する。 信号電極 Y i , Y 2 , Y 3 には、 画素をオンざせ たい場合は o v、 オフさせたい場合は、 ±v4 を負 > 正の順に印加する。 こ の時各画素には、 オンの場合は、 飽和値以上のパルス + V , が印加された後 しきい値より小さいバルス一 v2 が印加され、 オフの場合はいずれも飽和値 以上のパルスが + V 4 ) > (― V 2— V 4 ) の頫に印加される。 ま た非選択期間 t ,2 ( t 22 ) は、 オン、 オフパターンによって、 パルス幅 2 0 0 3 6 0: のバルス ±マ 4 も し くは 0 Vが印加されるが、 フ レーム周期の最 後の期間 t ( t 25) のみは、 補正用バルス一 V 3 が加えられるため、 (一The difference from Examples 9 and 10 is that in order to improve the contrast ratio, The point is that the pulse width of the pulse applied during the selection period must not be greater than> the saturation value applied to turn on and off the liquid crystal. To the scanning electrode X, the selection period t H (t 21) is + VI, then one V 2 in order, and 0 V is applied to the non-selection period t 12 (t 22 ), and t 15 (t 25 period) applies an V 3 as a correction pulse. Apply ov to the signal electrodes Y i, Y 2, and Y 3 to turn the pixel on, and apply ± v 4 in the order of negative> positive to turn the pixel off. At this time, when on, a pulse + V, which is higher than the saturation value, is applied to each pixel, and then a pulse smaller than the threshold value v 2 is applied.When off, a pulse above the saturation value is applied to each pixel. Is applied to 頫 of + V 4)> (−V 2 — V 4). Also non-selection period t, 2 (t 22) is turned on, the off pattern, the pulse width 2 0 0 3 6 0: Although also rather BALS ± Ma 4 of 0 V is applied, the frame period During the last period t (t 25 ) only, the correction pulse V 3 is added.
V 3 — V4 ) も し くは一 V3 が印加される。 V 3 — V 4 ) or one V 3 is applied.
*実施例でも、 選択期間の最初に画素をォンさせる正の槿性の飽和値以上 の第 1 のハ'ルスを印加した後、 それと逆極性でかつ波高値の異なる第 2のパ ルスを印加し、 この第 2のパルスを しきい値以下とするか、 飽和値以上とす るかでオン、 オフを選択している。 この時、 オン、 オフにかかわリ な く 、 第 1 のパルスの波高値と第 2のパルスの波髙値の差を等し ぐしておき、 この差 分を t 15 ( t 25 ) の周期で補正してやるこ とによリ、 1 フ レーム周期の内に 印加される鴦庄の平均値を零に している。 * Also in the embodiment, after applying the first pulse having a positive Geunsity equal to or higher than the saturation value of the positive Geunity for turning on the pixel at the beginning of the selection period, the second pulse having the opposite polarity and a different peak value is applied. The second pulse is turned on and off depending on whether the second pulse is below the threshold or above the saturation value. At this time, one, a re involved off Ku, leave Gushi equal the difference between the first and the pulse wave height of the second pulse wave髙値of the difference amount with a period of t 15 (t 25) By making corrections, the average value of the applied Yangju in one frame period is set to zero.
なお、 术実施例では補正用パルスのパルス輻、 前記第 1のパルス及び第 2 のパルスのパルス帼を等し く しているが、 必ずしもこれに限られるものでは な く 、 I V , - t ! I - I V 2 - t 2 I = I V 3 - t 3 I (ただし、 t , , t 2 , t 3 はそれぞれのパルスのパルス幅を示す。 ) を満足するように、 各 パルスの波高値及びパルス輻を設定してやれば良い。 太実施例の駆勖方法も、 実施树 9及び 1 0と同様実施例 1 〜 4の駆動方法 に比べて選択期間の時間を半分にすることができるため、 ょリ高速の駆動を 必要とする場合や走査雷植を多くする場合に有効な褽動方法である。 また' 実施例 5〜 8の駆動方法のように、 非選択期間に画素がオン、 オフするこ と がないため、 ごく短時間での光の透過畺の変化でも品質上問 Sとなるような 液晶シャッターなどに応用する場合、 有効な ffi動方法である。 In the embodiment, the pulse radiation of the correction pulse and the pulse of the first pulse and the second pulse are equalized. However, the present invention is not limited to this, and IV, -t! I-IV 2-t 2 I = IV 3-t 3 I (where t,, t 2, and t 3 indicate the pulse width of each pulse.) What is necessary is just to set the radiation. The driving method of the thick embodiment also requires a high-speed driving because the time of the selection period can be halved as compared with the driving methods of the first to fourth embodiments, similarly to the ninth and tenth embodiments. This is an effective operation method when the number of scanning lightning plants is large. Also, since the pixels do not turn on or off during the non-selection period as in the driving methods of Examples 5 to 8, even a change in the light transmission 畺 in a very short time may cause a quality problem S. This is an effective ffi-moving method when applied to liquid crystal shutters.
本実旅例の場合は、 画素 (X ! Y i ) で 24 : 1 、 (Χ , Υ ί! ) で 2 3 : 1 、 (X i Y s ) で 2 3 : 1のコン ト ラ ス ト比が得られた。 また *実施例の 場合も、 補正用バルスを印加するタイ ミ ングは、 選択期間の直前に限定され ない。  In the actual travel example, the contrast is 24: 1 for the pixel (X! Yi), 23: 1 for (Χ, ΥΧ!), And 23: 1 for (XiYs). A ratio was obtained. Also in the case of the embodiment, the timing for applying the correction pulse is not limited to immediately before the selection period.
第 3 4図は、 第 3 3図に示す駆動波形を実現する具体的回路の一例を示す ブロック図である。 走査電植には、 走査電¾データ信号 1 2 1を、 走査電¾ シフ ト クロック信号 1 2 0でシフ ト レジスタ 1 1 5に転送し、 潭択期間に d の波形、 非選択期間に O V t 選枳期間直前の直流成分を補正する電圧を切リ 換えて、 走查電桎波形を出力する。 一方信号電極には、 信号電¾データ信号 1 1 7を信号電 Sシフ ト クロック 1 1 8でシフ ト レジスタ 1 1 4に転送して 一走査線分のデータを転送したらラッチ信号 1 1 9でラッチ 1 1 6 し、 その 出力でト ラ ンス ミ ッ シュンゲー ト 1 1 1を切り換えて、 オン又はオフ ( b ま たは cの波形) を出力する。 V , , —V 2 , -V3 , 土 V 4 は、 走査電極及 び信号電槿の K動電圧である。 FIG. 34 is a block diagram showing an example of a specific circuit for realizing the drive waveform shown in FIG. For the scanning power plant, the scanning power data signal 121 is transferred to the shift register 115 with the scanning power shift clock signal 120, and the waveform of d during the selection period and OV during the non-selection period. t Switch the voltage to correct the DC component immediately before the selection period, and output the traveling fridge waveform. On the other hand, the signal electrode data signal 1 17 is transferred to the shift register 1 14 with the signal shift shift clock 1 18 to the signal electrode, and after the data for one scan line is transferred, the latch signal 1 19 is transferred to the signal electrode. Latch 1 16, and switch the transmission missing gate 1 11 with the output to output on or off (b or c waveform). V,, —V 2, -V 3 , and soil V 4 are the K dynamic voltages of the scanning electrode and the signal electrode.
第 3 5図は、 第 3 4図に示した回路の信号波形を示レたタィ ミ ングチヤ一 ト図である。  FIG. 35 is a timing chart showing signal waveforms of the circuit shown in FIG.
実 施 例: 1 2  Example: 1 2
第 3 6図に、 第 2図 (b ) に示すようなオン、 オフ状態にするための走査 電 及び信号罨搔 Υ ι に印加される駆動波形と、 画素 (Χ ι Υ , ) の光 透過特性を示す。 なお、 光透過特性の変化をわかリ易くするために, 次のフ、 レーム周期 t 23ではオン オフ状態を反転させた。 Fig. 36 shows the scanning waveform for turning on and off as shown in Fig. 2 (b) and the driving waveform applied to the signal pack, and the light of the pixel (ΧιΥ,). Shows transmission characteristics. In order to facilitate re-divided a change in light transmission characteristics, obtained by inverting the next full, on-off state in the frame period t 23.
第 3 6図において、 t n〜 t 25は、 いずれも第 2 7図と同じことを示す。 波高値 V , , V a , V 3 , V 4 , V 6 , V 7 は、 それぞれ 1 0 V, 8 V , 6 V , 4 V , 2 V , 0 Vである。 V mは信号電¾に印加される電圧パルスの 中 M電位を示し、 この場合は 4 Vである。 In the third 6 view, t n ~ t 25 are all shows the same thing as the second 7 FIG. The peak values V, V a, V 3, V 4 , V 6 , and V 7 are 10 V, 8 V, 6 V, 4 V, 2 V, and 0 V, respectively. V m indicates the M potential of the voltage pulse applied to the signal electrode, and in this case, it is 4 V.
実施例 1 1 と異なるのは、 走查罨極に印加される電圧を低下させるために 走査電極と信号電 Sの電圧レベルを共通化したこ とにある- 走査電極 X I には、 選択期間 t H ( t 21 ) は、 V , V 7 の順に、 非選択 期間 t 12 ( t 22) は、 V β , V 3 の順に印加し、 t |5 ( t 2S) の期間は、 補 正用パルス と して V 4 を印加する。 信号罨接 Y , には > 画素をオンさせたい 場合は V 6 , V 3 の順に、 オフさせたい場合は、 V 7 , V , の順に印加する この時各画素には, オンの場合は, 飽和値以上のパルス (V i .— V s ) が印 加された後、 しきい値よ リ小さいパルス ( V 7 — V 3 ) が印加され、 オフの 場合は、 いずれも飽和値以上のパルス (V , - V 7 ) 及び (V 7 - V 2 ) 力 図のよ うな順に印加される。 また非選択期間 t 12 ( t 22 ) は、 オン、 オフバ ターンによって、 ( V 6 - V 7 ) 及び ( V 3 - V 2 ) も し く は 0 Vが印加さ れるが、 フ レーム周期の最後の期間 t 15 ( t 25) のみは、 補正用パルス v 3 が加えられるため、 ( V 4 - V 2 ) も し くは (V 4 - V 3 ) が印加される。 本実施例も、 実施例 1 1 と同様、 選択期間に印加される正及び負のパルス の波高値の差分を t 15 ( t :) の期間で補正し、 1 フ レーム周期内に印加さ れる電圧の平均値を零に している。 Example 11 is different from Example 1 in that the voltage levels of the scanning electrode and the signal electrode S are shared in order to reduce the voltage applied to the scanning electrode. The scanning electrode XI has a selection period t. H (t 21 ) is applied in the order of V and V 7, non-selection period t 12 (t 22 ) is applied in the order of V β and V 3 , and t | 5 (t 2S ) is the correction pulse V 4 is applied. Signal罨接Y, the> in the order of V 6, V 3 If you want to turn on the pixel, if you want to turn off, in this case each pixel of applying V 7, V, in the order of, if on, After a pulse (V i .—V s) above the saturation value is applied, a pulse (V 7 —V 3 ) smaller than the threshold is applied. When the pulse is off, any pulse above the saturation value (V,-V 7) and (V 7 -V 2) are applied in the order shown in the figure. In the non-selection period t 12 (t 22), (V 6 -V 7 ) and (V 3 -V 2) or 0 V are applied depending on the on and off patterns, but at the end of the frame period. During the period t 15 (t 25 ), since the correction pulse v 3 is applied, (V 4 -V 2) or (V 4 -V 3 ) is applied. This embodiment, similarly to Example 1 1, to correct the difference between the peak value of the positive and negative pulse applied during the selection period in the period of t 1 5 (t :), applied is the one frame period The average value of the applied voltage is set to zero.
本実施例の鹿動方法も、 実施例 1 1 と同様、 液晶シャ ッ ターなどに応用す る場合、 有効な駆動方法であリ、 実施例 1 1 と同様のコ ン ト ラ ス ト比が得ら れた。 第 3 7図は、 第 3 6図に示す K動波形を実現する具体的回路の一例を示すブ ロ ッ ク図である β aの信号によ リ 、 ト ラ ンス ミ ッ シュ ンゲー ト 1 1 1 を選択 し、 bの走查電槿データで eの選択時走查電棰波形及び f の非選択走査電棰 波形を選択し、 走查電植波形を作る。 一方信号電¾波形は、 aの信号によリ ト ラ ンス ミ ッ シュ ンゲー ト 1 1 1を選択し、 dの信号電接データで gのオン 波形、 hのオフ波形を選択し、 信号菴槿波形を作リ、 液晶素子 1 1 3に印加 される。 又、 V , , V2 , V3 , V 4 , V 6 , V 7 は、 走査電¾及び信号電 Sの電灝電圧である。 第 3 8図は、 第 3 7図に示した回路の各点における信 号である。 As in the case of the embodiment 11, the fuzzy method of the present embodiment is also an effective driving method when applied to a liquid crystal shutter or the like, and has a contrast ratio similar to that of the embodiment 11. I got it. 3 7 figures by the beta a signal is blanking lock diagram showing an example of a practical circuit for realizing the K dynamic waveform shown in the third Figure 6 Li, preparative lance mission-Gerhard Nge sheet 1 1 1 is selected, and the scanning waveform at the time of selection of e and the scanning waveform at the non-selection of f are selected from the scanning data of b, and a scanning waveform is generated. On the other hand, for the signal voltage waveform, select the transmissive missing gate 1 1 1 according to the signal a, select the ON waveform of g and the OFF waveform of h with the signal contact data d, and select the signal A Gesn waveform is created and applied to the liquid crystal elements 113. Also, V,, V 2 , V 3 , V 4, V 6, V 7 are the supply voltages of the scanning power and the signal power S. FIG. 38 is a signal at each point of the circuit shown in FIG.
実 施 例 1 3  Example 1 3
第 3 9図に、 第 2図 (b ) に示すようなオン、 オフ状態にするための走査 電接 X t 及び信号電 に印加される駆動波形と、 画素 (X, Υ 1 ) の光 透過特性を示す。 なお、 光透過特性の変化をわかリ易くするために、 次のフ レーム周期 t 23ではオン、 オフ状態を反転させた。 Third FIG. 9, on as shown in FIG. 2 (b), a drive waveform applied to the scan Dense' X t and the signal conductive to the off state, the pixel (X, Upsilon 1) of the light transmission Show characteristics. In order to facilitate re-divided a change in light transmission properties, in the next frame period t 23 on, by inverting the OFF state.
第 3 9図において、 t 13は最初のフ レーム周期、 t 23は次のフ レーム周期 を示し、 t u及び t は選択期間、 t 21及び t 22は非選択期間を示す。 また t 14は 2 0 0 μ, s e c のパルス幅を示す。 In the third 9 view, t 13 is the first frame period, t 23 illustrates the next frame period, t u and t 2I selection period, t 21 and t 22 show the non-selection period. Also, t14 indicates a pulse width of 200 μs, sec.
波高値 は 3 0 V , V2 は 1 2 Vである。 The peak value is 30 V and V 2 is 12 V.
本実施例の特徵ほ、 非選択期間に周波数 1 0 K H z という、 髙周波の交流 パルスを印加して液晶素子のメモリ性を改善するこ とによリ ^コ ン ト ラ ス ト 比を向上させたことにある。  In particular, the present embodiment improves the memory contrast of the liquid crystal element by applying a low frequency AC pulse having a frequency of 10 KHz during the non-selection period, thereby improving the contrast ratio. I have done it.
走査電接 X , には、 選択期間 t u ( t 2, ) は 0 Vを t 非選択期間 t 12 ( t 22 ) は ±V ! の交流パルスを印加し、 脣号電 には、 ± V 2 を、 画素 をオンさせたい場合正: 負の顚に、 オフさせたい場合は、 負 正の順に印加 する。 この時, (X i Y i ) に印加されるパルスは、 オンの場合は ± ν2 が負、 正の順に、 オフの場合は正、 負の順に印加され、 非選択期間には、 正の波高 値が ( + V , + V 2 ) で負の波高値が (一V , + V 2 ) の交流パルス と正の 波高値が ( + V 1 - V 2 ) で負の波高値が (一 V i + V 2 ) の交流パルス と が t 14の期間ずつ交互に印加される。 選択期間に印加されるパルスは、 いず れも飽和値以上であるが、 最期に印加されたパルスの極性によってオン、 ォ フが選択される。 また選択期間に印加される交流パルスは、 波高値は非常に 大きい値となっているが, パルス幅が 5 0 μ, s e c と非常に小さいため、 液 晶素子は応答せず、 逆にメ モ リー性が改善されて、 コ ン ト ラ ス ト比が向上す る。 本実施例では 4 0 : 1 という極めてすぐれたコ ン ト ラ ス 卜比が得られた。 また、 液晶素子に印加される電圧パルスの平均値は零でぁリ 、 液晶素子の 劣化を生ずることもなかった。 Scanning electron contact X, in the selection period tu (t 2,) is 0 V t the non-selection period t 12 (t 22) applies a ± V! AC pulse, the脣号electrodeposition, ± V 2 Is applied when the pixel is to be turned on: Apply to negative 顚, and to turn off the pixel, apply in the order of negative and positive. In this case, the pulse applied to (X i Y i) is such that ± ν 2 is applied in the order of negative and positive when on, and positive and negative in the case of off. crest value (+ V, + V 2) negative peak value (one V, + V 2) in AC pulse and a positive peak value of (+ V 1 - V 2) negative peak value at the (single an AC pulse of V i + V 2) is applied alternately period t 14. Each of the pulses applied during the selection period is equal to or higher than the saturation value, but ON or OFF is selected according to the polarity of the pulse applied last. The peak value of the AC pulse applied during the selection period is very large, but the pulse width is very small at 50 μsec, so the liquid crystal element does not respond, and The leadability is improved, and the contrast ratio is improved. In this example, an extremely excellent contrast ratio of 40: 1 was obtained. Further, the average value of the voltage pulses applied to the liquid crystal element was zero, and the liquid crystal element did not deteriorate.
第 4 0図は、 第 3 9図に示す鹿勦波形を実現する具体的回路の一例の回路 ブ C3 ッ ク図である。 a 、 b の信号にょ リ、 ト ラ ンス ミ ツ シ 3 ンゲー ト 1 1 1 を選択し、 c の走査電極データ で。 0 Vの選択時走查電 S波形及び e の非選 択時走査電極波形を選択し、 走査電桎波形を作る。 一方信号電槿波形ほ、 a の信号にょリ ト ラ ンス ミ ツ シ s ンゲー ト 1 1 1 を選択し dの信号電極データ で f のオン波形、 gのオフ波形を選択し、 信号電極波形を作り、 液晶素子 1 1 3 に印加される。 ± V t 、 ± V 2 , 0 Vは走查電毪及び信号電極の電源電 圧である。 第 4 1 図は、 第 4 0図に示した回路の各点における信号である。 FIG. 40 is a circuit block diagram of an example of a specific circuit for realizing the defeat waveform shown in FIG. Select the transmis- sion 3 gate 1 11 1 for the signals a and b, and use the scan electrode data c. Selects the scanning waveform at 0 V selection S waveform and the scanning electrode waveform at non-selection of e to create a scanning waveform. On the other hand, the signal signal waveform is selected by selecting the transmission sig- nal s 1 1 1 for the signal a and selecting the f-on waveform and the g-off waveform with the d signal electrode data. And applied to the liquid crystal element 113. ± V t, ± V 2, 0 V is the supply voltage of the run查電毪and signal electrodes. FIG. 41 shows signals at each point of the circuit shown in FIG.
実 施 例 1 4  Example 1 4
第 4 2図に、 第 2図 ( b ) に示すようなオン、 オフ状態にするための走査 電極 X , 及び信号電接 Y i に印加される駆動波形と、 画素 (Χ ι Y 1 ) の光 透過特性を示す。 なお、 光透過特性の変化をわかリ易くするために、 次のフ レーム周期 t 23ではオン、 オフ状態を反耘させた。 第 42図において、 t 13最初のフレーム周期、 t 23は次のフ レーム周期を 示し、 t n及び 1 21は選択期間、 12及び 1 22ほ非選択期間を示す。 また、 t 14は 2 00 μ, s e cのノ Jレス幅を示す。■ FIG. 42 shows the driving waveform applied to the scanning electrode X and the signal contact Y i for turning on and off as shown in FIG. 2 (b), and the driving waveform of the pixel (Χ ι Y 1). Shows light transmission characteristics. In order to facilitate re-divided a change in light transmission properties, the next on the frame periods t 23, was Han耘off. In the 42 view, t 13 the first frame period, t 23 represents the next frame period, t n and 1 21 selection period, showing a 12 and 1 22 Ho non-selection period. Also, t 14 indicates a noiseless width of 200 μ, sec. ■
実施例 1 3 と異なるのは、 選択期間 t n ( t 2, ) に印加される正 負のバ ルスの波高値の差分を、 非選択期間 t l2 ( t 22) に印加される高周波の交流 パルスで補正する点にぁリ 、 そのため, この交流パルスの波高値 V, 及び VWhat differs from embodiment 1 3, a high frequency alternating current to be applied the difference between the peak value of the positive negative bus pulse is applied during the selection period t n (t 2,), the non-selection period t l2 (t 22) The point to be corrected by the pulse, therefore, the peak values V and V of this AC pulse
4 は、 I V 3 ' t ,4 I - I V 2 - t 14 I = 1 / 2 ( I V , - t 12 I - I V 4 • t ,2 I ) を満足するように設定される。 本実施例の場合、 t 12 = 1 0 t ,4 となるので、 波高値 V , , V a , V 3 , V 4 をそれぞれ 3 0 V , 1 0 V , 2 0 V , 2 8 Vと した β また V5 は 5 Vである。 4, IV 3 't, 4 I - IV 2 - t 14 I = 1/2 (IV, - t 12 I - IV 4 • t, 2 I) is set to satisfy. In the case of the present embodiment, t 12 = 10 t, 4, so the peak values V, V a, V 3, V 4 were set to 30 V, 10 V, 20 V, 28 V, respectively. β or V 5 is 5 V.
走查電植 にほ、 選択期間 t ( t 21 ) は _V3 及び V2 が負, 正の順 に、 非選択期間 t 12 ( t 22 > は、 正の波高値が V , 、 負の波高値が V4 で周 波数 1 0 K H zの交流バルスを印加し、 信号電極 Y I には > ± V 5 を、 画素 をオンさせたい場合は正、 負の靦に、 オフさせたい場合は負、 正の頗に印加 する。 この時 画素 (X, Y! ) . オンの場合は飽和値以上の (一 V3 -VIn the scanning period, _V 3 and V 2 are negative and positive in the selected period t (t 21 ). In the non-selected period t 12 (t 22 >, the positive peak values are V,, and the negative wave. high value is applied to ac BALS of frequency 1 0 KH z in V 4, the signal on electrode YI> ± V 5, positive when it is desired to turn on the pixel, a negative靦, if you want to turn off the negative, applied to the positive頗. in this case the pixel (X, Y!). If on the above saturation value (one V 3 -V
5 ) 及び (+ V2 + V 5 ) が印加されオフの場合は飽和値以上の食のパルス (- V 3 + V 5 ) 及びしきい値よリ小さい (+ V 2 - V 5 ) が印加される。 また、 非選択期間には、 正の波高値が ( + V , -V 5 ) で負の波高値が (一5) and (+ V 2 + V 5) are applied and when off, an eclipse pulse (-V 3 + V 5) above the saturation value and (+ V 2 -V 5) smaller than the threshold are applied Is done. During the non-selection period, the positive peak value is (+ V, -V5) and the negative peak value is (1-V5).
V 4 + V 5 ) の交流パルスと正の波高値が — V 5 ) で負の波高値が (― V4 — V5 ) の交流パルスとが t |4の期間ずつ交互に印加される。 選択 期間に印加される正及び食のパルスの波高値の差は オン オフにかかわら ず (V3 -V 2 ) であり、 その差分は非選択期間に印加される交流パルスに よって補正され、 液晶素子に印加される ¾圧パルスの平均値は零となる。 * 実施例においても、 液晶素子のメモリー性が改善され、 実施例 1 3 と同様の すぐれたコ ン ト ラ ス ト比が得られた。 , 、 An AC pulse of V 4 + V 5) and an AC pulse of a positive peak value of —V 5) and a negative peak value of (—V 4 —V 5 ) are alternately applied for a period of t | 4 . The difference between the peak values of the positive and eclipse pulses applied during the selection period is (V 3 -V 2) irrespective of on / off, and the difference is corrected by the AC pulse applied during the non-selection period. The average value of the underpressure pulse applied to the element is zero. * Also in the example, the memory property of the liquid crystal element was improved, and an excellent contrast ratio similar to that of the example 13 was obtained. ,,
(37)  (37)
第 4 3図は、 第 4 2図に示す駆動波形を実現する具体的回路の一例の回路 ブロ ッ ク図である。 a、 b の信号によリ、 ト ラ ンス ミ ツ シ a ンゲー ト 1 1 1 を選択し、 c の走査電植データで、 e の選択時走査電極波形及び f の非選択 時走査電極波形を選択し、 走査電極波形を作る。 一方信号電¾波形は、 a の 信号によ り ト ラ ンス ミ ツ シ s ンゲー ト 1 1 1 を選択し dの信号電極データで gのオン波形、 h のオフ波形を選択し、 信号電槿波形を作リ、 液晶素子 1 1 3 に印加される。 V , 、 V 2 > - V 3 、 - V 4 、 ± V 5 は走査電極及び信号 罨極の電源電圧である。 第 4 4図は、 第 4 3図に示した回路の各点における 信号である。 FIG. 43 is a circuit block diagram of an example of a specific circuit for realizing the drive waveforms shown in FIG. In response to the signals a and b, the transmis- sion a gate 1 1 1 is selected. Select to create a scan electrode waveform. On the other hand, the signal electrode waveform is selected by selecting the transmis- sion sig- nal 1 1 1 by the signal a, selecting the on waveform of g and the off waveform of h by the signal electrode data of d, and selecting the signal signal waveform. A waveform is created and applied to the liquid crystal elements 113. V,, V 2 > -V 3, -V 4, ± V 5 are the power supply voltages of the scanning electrode and the signal electrode. FIG. 44 shows signals at each point of the circuit shown in FIG.
実 施 例 1 5  Example 1 5
第 4 5図は、 本実施例における駆動波形を実現する具体的回路を示すブロ ツ ク図でぁリ、 第 8 1 図は、 この回路で作られた K動波形を、 液晶素子に印 加するための ¾勦回路の一例を示す図である。 4 5 1 はフ レーム信号、 4 5 2は極性切り換え信号でぁリ、 これらの信号によ り、 ト ラ ンス ミ ツ シ 3 ンゲ — ト 1 1 1 を ス イ ッチングして V , 、 V 2 、 — V 3 、 — V 4 の電圧を切リ換 え, 走查電接の選択波形 4 5 3 を作る。 また V δ > - V 6 の電圧を切リ換 えて信号電極のオン波形 4 5 4及びオフ波形 4 5 5 を作る。 第 4 6図に、 こ れらの信号波形のタ イ ミ ングチャー ト を示す。 FIG. 45 is a block diagram showing a specific circuit for realizing the drive waveform in the present embodiment. FIG. 81 is a diagram in which the K dynamic waveform created by this circuit is applied to a liquid crystal element. FIG. 3 is a diagram showing an example of a killing circuit for performing the above. 4 5 1 frame signal, 4 5 2 § Li in the polarity switching signal, Ri due to these signals, door lance Mi Tsu three Nge - door 1 1 1 and S w etching V,, V 2 , — V 3, — Switch the voltage of V 4, and make the selection waveform 453 of the scanning contact. The V [delta]> - a voltage V 6 Setsuri換Ete make on waveform 4 5 4 and off waveform 4 5 5 signal electrodes. FIG. 46 shows the timing chart of these signal waveforms.
これらの信号波形を第 8 1 図に示す駆動回路に印加し、 走査電極及び信号 電極に印加する駆動波形を作る。 すなわち、 選択波形 4 5 3 を 8 1 0 1及び 8 1 0 2 に、 非選択波形と して 0 Vを 8 1 0 3 に、 オン波形 4 5 4を 8 1 0 5 に, オフ波形 4 5 5 を 8 1 0 4にそれぞれ印加する。  These signal waveforms are applied to the drive circuit shown in FIG. 81 to generate drive waveforms to be applied to the scan electrodes and the signal electrodes. That is, the selected waveform 45 3 is set to 8101 and 8102, the non-selected waveform is set to 0 V to 8103, the ON waveform 450 is set to 8105, and the OFF waveform 450 5 is applied to 8104 respectively.
第 8 1 図において、 1 2 1 は走査電極データで、 これを走査電極シフ ト ク ロ ッ ク 1 2 0 によつて走査電極側シフ ト レジスタ 1 1 5 に転送し、 一走查電 接ずつ順次選択信号を出力して ト ラ ンス ミ ツ シ 3 ンゲー ト 1 1 1 をスィ ッチ ングし、 走査電¾¾動波形を 8 1 0 7に印加する。 また 1 1 7は信号電轾デ ータで、 これを信号電棰シフ ト クロック 1 1 8によつて信号電¾側シフ ト レ ジスタ 1 14に転送し、 一走査電接分のデータを転送したらラ ッチ信号 1 1 9によリ ラ ツチ回路 1 1 6 らラ ッチする。 このラ ッチ回路 1 1 6の ffj力によ リ ト ラ ンス ミ ツ シ srンゲー ト 1 1 1をスイ ッチングし、 ォン波形 454及び オフ波形 4 5 5を切リ換えて信号電極 動波形を 8 1 0 6に印加する。 In FIG. 81, 121 is the scan electrode data, which is transferred to the scan electrode side shift register 115 by the scan electrode shift clock 120, and the Outputs the selection signal sequentially and switches the transistor 3 gate 1 1 1 And apply the scanning drive waveform to 810 7. Reference numeral 117 denotes signal electrode data, which is transferred to the signal electrode side shift register 114 by the signal electrode shift clock 118, and data for one scanning contact is transferred. After that, the latch circuit 1 16 latches with the latch signal 1 19. Switching of the resilience sr gate 11 1 by the ffj force of the latch circuit 1 16 and switching of the on waveform 454 and the off waveform 4 5 5 switch the signal electrode dynamic waveform. Is applied to 8106.
第 46図に、 第 8 1図に示す走查電植 8 1 0 9及び信号電 S 8 1 1 0に印 加される駆動波形と、 画素 8 1 1 1に印加される合成波形及び光透過特性を 示す。  In FIG. 46, the driving waveform applied to the scanning implant 810 and the signal S 810 shown in FIG. 81, the composite waveform applied to the pixel 8111 and the light transmission The characteristics are shown.
t 13、 t 23. 1 33及び1 43は, それぞれ 1 フ レーム周期、 π . t 21、 tt 13, t 23. 1 33 and 1 43, 1 frame period, respectively, [pi. t 21, t
31及び t 4,は、 それぞれ選択期間、 t 、 t 22. t 32及び t 42はそれぞれ非 選択斯間を示す。 また t 14、 t 、 t 24、 t 25. t 34, t 35. t 44及び t 45 はパルス輻を示し、 本実 ¾例の場合は、 いずれも 2 0 0 ^ S Cである。 31 and t 4, respectively show the selection period, t, a t 22. t 32 and t 42 are respectively unselected斯間. The t 14, t, t 24, t 25. t 34, t 35. t 44 and t 45 represents a pulse spokes, in the present real ¾ example are both 2 0 0 ^ SC.
また、 波高値 V , 及び V4 は 1 0 V、 V2 及び V3 は 8 V, V 5 及び VG は 2 Vである。 Further, the peak value V, and V 4 is 1 0 V, V 2 and V 3 are 8 V, V 5 and V G is 2 V.
走查電 S 8 1 0 9には、 第 46図 46 1 に示すように 選択期間 t u ( t 21、 t 31 . t 41 ) は、 1 フ レームごとに交互に、 第 1の選択波形と して + V 2 及び一 V4 が負、 正の順に、 また第 2の選択波形と して + V , 及び一 V 3 が正負の顒に印加され、 非選択期間 t 12 ( t 22、 t 32. t 42 ) は、 O Vが印 加される。 また、 信号電槿 8 1 1 0には、 第 46図 462に示すように、 画 素をオンさせたい場合は + V5 及び一 V6 が正、 負の順に、 オフさせたい場 合は + V 5 及び一 Vs が負、 正の順に印加される。 The查電S 8 1 0 9 run, the selection period tu, as shown in FIG. 46 46 1 (t 21, t 31 . T 41) is alternately every one frame, the first selecting waveform + V 2 and one V 4 are applied in the order of negative and positive, and as the second selected waveform, + V and one V 3 are applied to the positive and negative 顒, and the non-selection period t 12 (t 22 , t 32 For t 42), OV is added. Also, as shown in FIG. 46, the signal generator 811 10 has + V 5 and one V 6 in the order of positive and negative in order to turn on the pixel, and + V5 and one Vs are applied in the order of negative and positive.
この時画素 8 1 1 1に印加される合成波形は、 第 46図 46 3に示すょラ に 走查電植 8 1 0 9に第 1の選狭波形が印加されたフ レームでは、 オンの 場合は (一 V 4 - V 5 ) 及び (V2 + V e ) が負、 正の順に、 オフの場合は (- V 4 + V 6 ) 及び (V 2 - V 5 ) が負、 正の順に印加され、 第 2の選択 波形が印加されたフ レームでは、 オンの場合は (V ! - V 5 ) 及び (一 V 3 At this time, the composite waveform applied to the pixel 811 1 is the ON waveform in the frame where the first narrowing waveform is applied to the scanning cell 810 in FIG. 463. If (one V 4-V 5) and (V 2 + V e ) are negative and positive in order, (-V 4 + V 6) and (V 2 -V 5) are applied in the order of negative and positive. In the frame where the second selected waveform is applied, (V!-V 5) and (one V 3
+ V 6 ) が正、 負の順に、 オフの場合は (V i + V e ) 及び (一V 3 - V 5 ) が正、 負の順に印加される。 また非選択期間は一 及び + V s が印加さ れる。 + V 6) is applied in the order of positive and negative, and when off, (V i + V e ) and (one V 3 -V 5 ) are applied in the order of positive and negative. In addition, 1 and + V s are applied during the non-selection period.
実施例の K動方法は、 選択期藺の最初に正または負の飽和値以上のバル スを印加してオンまたはオフ状態と し、 次に印加するパルスを逆桎性の飽和 値以上のパルス と してオン > オフ状態を反転させるか、 逆極性のしきい値よ リ小さいパルスと してそのまま保持させるかでオン、 オフを選択している。 また、 第 1 の選択波形が印加されたフ レームでは、 正のパルス と負のパルス との波高値の差が (V 4 — V 2 ) すなわち一 2 V となっているが、 第 2の選 択波形が印加されたフ レームでは、 (V , - V 3 ) すなわち + 2 V となって いて、 互いに相殺される。 すなわち、 実施例では 2 フ レームごとに画素に 印加される電圧パルスの平均値を零に して液晶素子の劣化を防止しているも のである。 なお、 画素 8 1 1 1 の光透過特性を第 4 6図 4 6 4 に示す。 In the K-motion method of the embodiment, a pulse having a positive or negative saturation value or more is applied at the beginning of the selection period to turn on or off, and a pulse to be subsequently applied is a pulse having a saturation value that is greater than or equal to the reverse flute saturation value. ON / OFF is selected depending on whether the on / off state is reversed or the pulse is kept as it is as a pulse smaller than the reverse polarity threshold. In the frame to which the first selected waveform is applied, the difference between the peak values of the positive pulse and the negative pulse is (V 4 — V 2 ), that is, 12 V. In the frame to which the alternative waveform is applied, (V, -V 3), that is, +2 V, cancels each other. That is, in the embodiment, the average value of the voltage pulse applied to the pixel every two frames is set to zero to prevent the deterioration of the liquid crystal element. FIG. 46 shows the light transmission characteristics of the pixel 8111.
実 施 例 1 6  Example 1 6
第 4 7図は、 本実施例における K動波形を実 ¾する具体的回路を示すフ口 ッ ク図でぁリ 、 第 8 1 図は、 この回路で作られた駆動波形を液晶素子に印加 するための駆動回路の一例を示す図である。 4 7 1 はフ レーム信号、 4 7 2 は ¾性切リ換え信号でぁリ、 これらの信号により 、 ト ラ ンス ミ ツ シ a ンゲー ト 1 1 1 をス イ ッチングして V , 、 - V 2 、 - V 7 、 - V 8 の電圧切リ换ぇ 走査電極の選択波形 4 7 3 を作リ、 - V 3 、 - V 6 の電圧を切り換えて走査 電極の非選択波形 4 7 4を作る。 また、 一 V 2 、 - V 4 、 - V 5 、 - V 7 の 電圧を切り換えて信号電接のオン波形 4 7 5及びオフ波形 4 7 6 を作る。 第 4 8図に、 これらの信号波形のタ イ ミ ングチャー ト を示す。 これらの信号波形を第 8 1図に示す 動回路に印加し、 走査電樣及び信号 電極に印加する駆動波形を作る。 すなわち、 選択波形 47 3を 8 1 0 1及び 8 1 0 2に、 非選択波形 474を 8 1 03に、 ォン波形 475を 8 1 0 5に オフ波形 47 6を 8 1 04にそれぞれ印加する。 FIG. 47 is a schematic diagram showing a specific circuit for implementing the K dynamic waveform in this embodiment. FIG. 81 is a diagram showing a driving waveform generated by this circuit applied to a liquid crystal element. FIG. 2 is a diagram showing an example of a driving circuit for performing the above. 4 7 1 frame signal, 4 7 2 ¾ of Setsuri recombination signal at § Li, these signals, preparative lance Mi Tsu sheet a Nge sheet 1 1 1 and S w etching V,, - V 2, -V 7, -V 8 voltage cut-off area Create scan electrode selection waveform 4 7 3 and switch -V 3 , -V 6 voltage to create scan electrode non-selection waveform 4 7 4 . Further, the voltage of one V 2 , -V 4, -V 5, and -V 7 is switched to generate the ON waveform 475 and the OFF waveform 476 of the signal contact. FIG. 48 shows the timing chart of these signal waveforms. These signal waveforms are applied to the driving circuit shown in FIG. 81 to create a driving waveform to be applied to the scanning electrodes and the signal electrodes. That is, select waveform 473 is applied to 8101 and 8102, unselected waveform 474 is applied to 8103, open waveform 475 is applied to 8105, and off waveform 476 is applied to 8104. .
第 8 1図において、 1 2 1は走査電植データで、 これと走査電極、ンフ ト ク ロ ッ ク 1 20によって走査電極側シフ ト レジスタ 1 1 5に転送し、 一走查電 棰ずつ順次選択信号を 力して ト ラ ンス ミ ツシ 3 ンゲー ト 1 1 1 をスィ ッチ ングし、 走查 ¾¾駆動波形を 8 1 0 7に印加する。 また 1 1 7は信号電極デ ータで, これを信号電極シフ ト ク αッ ク 1 1 8によつて信号電 S側シフ ト レ ジスタ 1 1 4に転送し、 一走查電植分のデータを転送したらラ ッチ信号 1 1 9によリ ラ ツチ回路 1 1 6にラ ッチする, このラ ッチ回路 1 1 6の出力によ リ ト ラ ンス ミ ツ シ sンゲート 1 1 1 をスイ ッチングし、 オン波形 47 5及び オフ波形 47 6を切リ换えて信号電 S駆動波形を 8 1 0 6に印加する。  In FIG. 81, reference numeral 121 denotes scanning planting data, which is transferred to the scanning electrode side shift register 115 by the scanning electrode and the safety clock 120, and is sequentially transferred by one scanning potential. By inputting a selection signal, switching is performed on the transmis- sion 3-gate 1 11 1 and a scanning drive waveform is applied to 8107. Also, reference numeral 117 denotes signal electrode data, which is transferred to the S-side shift register 114 by the signal electrode shift block 118 to obtain the signal potential of the first run. After the data is transferred, the latch circuit 1 16 is latched by the latch signal 1 19, and the output of the latch circuit 1 16 is used as the transmis- sion gate 1 1 1 Is switched, the ON waveform 475 and the OFF waveform 476 are switched, and the signal S drive waveform is applied to 810.
第 49図に、 第 8 1図に示す走查罨極 8 1 0 9及び信号電植 8 1 1 0に印 加される駆動波形と、 画素 8 1 1 1 に印加させる合成波形及び光透過特性を 示す。  In FIG. 49, the driving waveform applied to the scanning electrode 8109 and the signal implant 8110 shown in FIG. 81, the composite waveform applied to the pixel 8111 and the light transmission characteristics Is shown.
t 13 、 t 23 , 1^ 33及び 1; 43は, それぞれ 1 フ レーム周期、 t l l t 2し t 31及び t 41は、 それぞれ選択期間、 t ,2 , t 22 、 t 32及び t 42はそれぞれ非 選択期間を示す。 また 14 . t 15 ^ 24 » t 25、 t 34 , I 35 » t 44 び レ 45 はパルス幅を示し、 *実施例の場合は、 いずれも 2 0 0 it s e cである。 波高値 V , は 0 V、 V2 は 2 V、 V3 は 4 V、 V4 は 6 V > V5 は 5 V、 ν ε は 1 0 V、 V 7 は 1 2 V、 V 8 は 1 4 Vである。 また、 一 Vmは信号電 搔に印加する電圧パルスの中藺電位を示し、 この場合は一 7 Vである。 t 13, t 23, 1 ^ 33 and 1; 43, 1 frame period, respectively, t ll t 2 said t 31 and t 41, respectively selection period, t, 2, t 22, t 32 and t 42 are Each shows the non-selection period. Also, 14.t15 ^ 24 »t25, t34, I35» t44 and レ 45 indicate the pulse width. * In the case of the embodiment, each is 200 itsec. Peak value V, is 0 V, V 2 is 2 V, V 3 is 4 V, V 4 is 6 V> V 5 is 5 V, ν ε 1 0 V, V 7 1 2 V, V 8 1 4 V. In addition, 1 Vm indicates the midpoint potential of the voltage pulse applied to the signal voltage. In this case, it is 17 V.
実施例 1 5 と異なるのは、 走查電棰に印加する電圧を低くするため、 走査 電極と信号電極の電圧レベルを共通化したことと > 信号電極のオン及びオフ (") 波形を走査雷極に印加する選択波形によって変えた点である。 Example 15 differs from Example 15 in that the voltage levels applied to the scanning electrodes were reduced so that the voltage levels of the scanning electrode and the signal electrode were shared. (") The point where the waveform was changed by the selected waveform applied to the scanning lightning pole.
すなわち走查電植 8 1 0 9 には、 第 4 9図 4 9 1 に示すょ ラに、 選択期間 t ( t 21 . t 31、 t 41 ) は、 1 フ レームごとに交互に、 第 1 の選択波形と して一V e 及び一 V 2 がー V 8 、 - V 2 の順に、 また第 2の選択波形と して V , 及び一V 7 が V, 、 一 V 7 の順に印加され、 非選択期間 t |2 ( t 22、 t 32、 t 42 ) は、 第 1 の選択波形が印加されたフ レームでは一 V 3 及び一V 6 がー V 3 、 - V 6 の順に、 また第 2の選択波形が印加されたフ レームでは一I.e. run查電planting 8 1 0 9, the Yo La shown in the fourth 9 4 9 1, selection period t (t 21. T 31, t 41) is alternately every one frame, the first selection waveform to one V e and single V 2 gar V 8, - in the order of V 2, also V as the second selecting waveform, and single V 7 is V,, is sequentially applied to one V 7 , a non-selection period t | 2 (t 22, t 32, t 42) , the first one V 3 in frames that signal is applied and single V 6 gar V 3, - in the order of V 6, also In the frame to which the second selected waveform is applied,
V 6 、 — V 3 の順に印加される。 V 6, — Applied in the order of V 3.
信号電極 8 1 1 0 には、 第 4 9図 4 9 2 に示すよ うに、 第 1 の選択波形が 印加されたフ レームでは、 ォン波形と して一 V 2 及び一 V 7 がー V 2 、 一 VThe signal electrodes 8 1 1 0, urchin by showing the fourth 9 4 9 2, in the frame of the first signal is applied to one V 2 and single V as the O emissions waveform 7 gar V 2 , one V
7 の順に印加され、 オフ波形と して一 V 4 及び一 V5 がー V 4 、 一V 5 の順 に印加される。 また第 2の選択波形が印加されたフ レームでは、 オン波形と して一 V 4 及び一 V 5 が一 V s 、 — V 4 の顒に印加され、 オフ波形と して一It is applied in the order of 7, one V 4 and single V 5 Gar V 4 as an off waveform is sequentially applied to one V 5. In the frame to which the second selected waveform is applied, one V 4 and one V 5 are applied to one V s , —V 4 顒 as an on waveform, and one V as an off waveform.
V 2 及び一 V 7 がー V 7 、 — V 2 の順に印加される。 V 2 and single V 7 gar V 7, - is applied in the order of V 2.
この時画素 8 1 1 1 に印加される合成波形は、 第 4 9図 4 9 3 に示すよ う に、 走査電極に第 1 の選択波形が印加されたフ レームでは、 オンの場合は ( - V 8 + V 2 ) 及び (一V 2 + V 7 ) が負、 正の順に、 オフの場合は (一V 8 + V 4 ) 及び (一 V 2 + V s ) が負、 正の順に印加され、 第 2の選択波形 が印加されたフ レームでは、 オンの場合は (V i + V 5 ) 及び (一 V 7 + V 4 ) が正、 負の順に、 オフの場合は (V , + V 7 ) 及び (一 V e + V 2 ) が 正、 負の順に印加される。 また非選択期間は、 ( - V 6 + V 7 ) 及び (一V 3 + V 2 ) も し くは (一 V 3 + V 4 ) 及び (一V 6 + V 5 ) が印加される。 At this time, as shown in Fig. 49, the composite waveform applied to the pixel 811 1 is (--) when it is on in the frame in which the first selection waveform is applied to the scan electrode. (V 8 + V 2) and (1 V 2 + V 7) are applied in the order of negative and positive, and when off, (1 V 8 + V 4) and (1 V 2 + V s) are applied in the order of negative and positive In the frame to which the second selected waveform is applied, (V i + V 5) and (one V 7 + V 4) are positive and negative in the order of ON, and (V, + V 7) and (1 V e + V 2 ) are applied in positive and negative order. In the non-selection period, (−V 6 + V 7) and (1 V 3 + V 2) or (1 V 3 + V 4) and (1 V 6 + V 5) are applied.
*実施例の駆動方法も、 選択期間の最初に正または負の飽和値以上のパル スを印加してオンまたはオフ状態と し、 次に印加するパルスを逆 S性の飽和 値以上のパルスと してオン、 オフ状態を反転させるか、 逆檨性のしきい値よ リ小さいパルスと してそのまま保持させるかでオン、 オフを選択している。 また、 第 1の選択波形が印加されたフレームでは、 正のバルスと負のパルス との波高値の差が (V 7 -V 8 ) も しくは (V4 + V 5 - V 2 一 V8 ) すな わち一 2 Vとなっているが t 第 2の選択波形が印加されたフレームでは、 V 2 も し くは ( V 4 + V 5 — V 7 ) すなわち + 2 Vとなっていて、 互いに相殺 される。 すなわち、 本実施例でも 2フ レームごとに画素に印加される電压バ ルスの平均値を零にして液晶素子の劣化を防止しているものである。 なお、 画素 8 1 1 1 の光透遒特性を第 49図 494に示す。 * In the driving method of the embodiment, the pulse which is higher than the positive or negative saturation value is applied at the beginning of the selection period to turn on or off. To reverse the on / off state, or ON or OFF is selected depending on whether the pulse is held as it is. In the frame to which the first selected waveform is applied, the difference between the peak values of the positive pulse and the negative pulse is (V 7 -V 8) or (V 4 + V 5 -V 2 -V 8 ) That is, it is 1 V, but in the frame where the t- th selected waveform is applied, it is V 2 or (V 4 + V 5 — V 7), that is, +2 V. , Offset each other. That is, also in this embodiment, the average value of the voltage applied to the pixel every two frames is set to zero to prevent the deterioration of the liquid crystal element. FIG. 49A shows the optical characteristics of the pixel 8111.
実 施 例 1 7  Example 1 7
第 5 0図は、 本実施例における駆動波形を実現する具体的回路を示すプロ ッ ク図であり、 第 8 1図は、 この回路で作られた駆動波形を、 液晶素子に印 加するための駆動回路の一例を示す図である。 5 0 1はフ レーム信号、 5 0 2は接性切り換え信号でぁリ、 これらの信号にょリ、 ト ラ ンス.ミ ッ シ ョ ンゲ ー ト 1 1 1 をスイ ッチングして V , 、 V 2 - V 3 、 — V 4 の電圧を切リ换 え、 走査電極の選択波形 5 0 3を作る。 また、 V5 、 — V6 0 Vの電圧を 切リ換えて信号竜接のオン波形 5 04及びオフ波形 5 0 5を作る。 第 5 1図 に、 これらの信号波形のタ イ ミ ングチャー トを示す。 FIG. 50 is a block diagram showing a specific circuit for realizing the driving waveform in the present embodiment. FIG. 81 is a diagram for applying the driving waveform generated by this circuit to a liquid crystal element. FIG. 3 is a diagram illustrating an example of the drive circuit of FIG. Reference numeral 501 denotes a frame signal, and reference numeral 502 denotes a contact switching signal. In response to these signals, the transmission gate 11 is switched to V,, V2. -V 3, — The voltage of V 4 is cut off, and the selection waveform 503 of the scan electrode is generated. In addition, the V 5 , —V 60 V voltage is switched to generate the ON waveform 504 and the OFF waveform 505 of the signal connection. Fig. 51 shows the timing chart of these signal waveforms.
これらの信号波形を第 8 1図に示す駆動回路に印加し、 走查電 S及び信号 電極に印加する駆動波形を作る。 すなわち、 選択波形 5 0 3を 8 1 0 1及び 8 1 0 2に、 非邇択波形と して 0 Vを 8 1 0 3に、 ォン波形 5 04を 8 1 0 5に . オフ波形 5 0 5を 8 1 04にそれぞれ印加する。  These signal waveforms are applied to the drive circuit shown in FIG. 81 to generate drive waveforms to be applied to the scanning electrodes S and the signal electrodes. That is, the selected waveform 503 is set to 8101 and 8102, the non-selected waveform is set to 0 V to 8103, and the ON waveform 504 is set to 8105. 0 5 is applied to 8 104 respectively.
第 8 1図において 1 2 1は走查電梃データで、 これを走査電極シフ ト ク ロ ッ ク ; 1 2 0によつて走查電柽シフ ト レジスタ 1 1 5に転送し、 一走查電桎 ずつ順次選択信号を出力して ト ラ ンス ミ ツ シ s ンゲート 1 1 1をスィ ッチン グし、 走查電接駆動波形を 8 1 07に印加する。 また 1 1 7は信号電桎デ一 タで、 これを信号電接シフ ト ク ロ ッ ク 1 1 8によつて信号 ¾植側シフ ト レジ スタ 1 1 4に耘送し > 一走查竜植分のデータを転送したらラ ッチ信号 1 1 9 によ リ ラ ツチ回路 1 1 6 にラ ッチする。 このラ ッチ回路 1 1 6の出力にょリ ト ラ ンス ミ ツ シ 3 ンゲー ト 1 1 1 をスイ ッチングし, オン波形 5 0 4及びォ フ波形 5 0 5 を切リ换えて信号 駆動波形を 8 1 0 6に印加する。 In FIG. 81, 121 is the scanning lever data, which is transferred to the scanning electrode shift register 115 by the scan electrode shift clock; A selection signal is output one by one in order to switch the transmission sig- nal gate 11 1, and a drive contact driving waveform is applied to 8107. In addition, 1 1 7 This is fed to the signal-side shift register 1 14 by the signal connection shift clock 118 and latched after the data for the first run of the dragon plant has been transferred. Latch circuit 1 16 is latched by signal 1 19. Output Nyori preparative lance Mi Tsu sheet 3 Nge sheet 1 1 1 of the latches circuit 1 1 6 Sui etching, the on waveform 5 0 4 and O full waveform 5 0 5 Setsuri substitution example the signal driving waveform Apply to 8 106.
第 5 1 図に、 第 8 1 図に示す走査竜接 8 1 0 9及び信号 ¾¾ 8 1 1 0 に印 加される K動波形と、 画素 8 1 1 1 に印加される合成波形及び光透過特性を 示す。  Fig. 51 shows the K dynamic waveform applied to the scanning tangent 810 and the signal ¾¾ 8110 shown in Fig. 81, the composite waveform applied to the pixel 8111, and the light transmission. The characteristics are shown.
t 13、 t 23. 1 33及び 1; 43は、 それぞれ 1 フ レーム周期、 t n、 t 2し t 31及び t 4lは、 それぞれ選択期間 t 12、 t 22. t 32及び t 42はそれぞれ非選 択期間を示す。 また t l4 、 t ,5. t 24. t 25、 t 34. t 35 , t 44及び t 4Sは バルス輻を示し、 本実施例の場合は、 いずれも 2 0 0 /tt s e cである。 t 13, t 23. 1 33 and 1; 43, 1 frame period, respectively, t n, t 2 said t 3 1 and t 4l are each selection period t 12, t 22. t 32 and t 42, respectively Indicates the non-selection period. Further, t l4 , t, 5.t 24.t 25 , t 34.t 35 , t 44 and t 4S indicate pulse radiation, and in the case of the present embodiment, each is 200 / tt sec.
波高値 V , 及び V 4 は 8 V、 V 2 及び V 3 は 6 V、 V 5 及び. V 6 は 2 Vで ある。 The peak values V and V 4 are 8 V, V 2 and V 3 are 6 V, V 5 and .V 6 are 2 V.
走査電極 8 1 0 9には、 第 5 1 図 5 1 1 に示すように、 選択期間 t u ( t 21 、 t 3I . t 4| ) は、 1 フ レームごとに交互に、 第 1 の選択波形と して V 2 及び一 V 4 が負、 正の順に、 また第 2の選択波形と して V , 及び一 V 3 が正 負の順に印加され > 非選択期間 t 12 ( t 22、 t 32、 t 42) は, O Vが印加さ れる。 As shown in FIG. 5 11, the scanning electrode 8109 has a selection period t u (t 21, t 3I .t 4 | ) that alternates with the first selection period every frame. waveform and to V 2 and single V 4 are negative, a positive order and V as the second selecting waveform, and single V 3 is applied to the positive negative forward> non-selection period t 12 (t 22, t 32, t 42) is, OV is applied.
信号電 S8 1 1 0 には, 第 5 1 図 5 1 2 に示すように、 第 1 の選択波形が 印加されたフ レームでは、 オン波形と して V 5 及び一 V 6 が正、 負の順に印 加され、 オフ波形と して 0 Vが印加される。 また第 2の選択波形が印加され たフ レームでは、 オン波形と して 0 Vが印加され、 オフ波形と して V s 及び — V 6 が負、 正の順に印加される 9 The signal electric S8 1 1 0, as shown in 5 1 5 1 2, in the frame of the first signal is applied on the waveform and to V 5 and single V 6 positive, negative 0 V is applied as an off waveform. In addition frames that the second signal is applied, 0 V is applied to the on waveform, V s and an off waveform - V 6 is negative, is applied to the positive order 9
この時画素 8 1 1 1 に印加される合成波形は、 第 5 1 図 5 1 3 に示すよう に、 走查電 Sに第 lの選択波形が印加されたフ レームでは、 オンの場合 (一 v4 — V 5 ) 及び ( V 2 + V 6 ) が負、 正の順に > オフの場合は一 v4 及び V 2 が負、 正の順に印加され、 第 2の遷択波形が印加されたフレームではォ ンの場合は V t 及び一 V3 が正、 食の順に、 オフの場合は (V i + V e ) 及 び (一 V3 — V5 ) が正、 負の頓に印加される。 At this time, the composite waveform applied to pixel 8 11 1 is as shown in Fig. 51 13 On the other hand, in the frame in which the first selected waveform is applied to the scanning current S, the on-state (one v 4 — V 5) and (V 2 + V 6) are negative, the positive order is> negative one v 4 and V 2 is applied to the positive sequence, V t and single V 3 positive in the case of O emissions in frame second遷択waveform is applied, in the order of food, in the case of off ( V i + V e ) and (one V 3 — V 5 ) are applied positively and negatively.
また非選択期間は、 0 V も し くは V 5 及び一 V s が印加される。 During the non-selection period, 0 V or V 5 and 1 V s are applied.
本実施例の鬆動方法も、 遴択期間の最初に正または負の飽和値以上のバル スを印加してオンまたはオフ状態と し、 次に印加するパルスを逆極性の IS和 値以上のパルスと してオン、 オフ状態を反転させるか、 逆 ¾性のしきい値よ リ小さいパルスと してそのまま保持させるかでオン、 オフを選択している。 また、 第 1の選択波形が印加ざれたフレームでは、 正のバルスと負のバルス との波高値の差が (V2 — V 4 ) すなわち一 2 Vとなっているが、 第 2の選 択波形が印加されたフ レームでは、 ( V , — V 3 ) すなわち + 2 Vとなって いて、 互いに相殺される。 すなわち、 本実施例でも 2フ レームごとに画素に 印加される電圧パルスの平均値を零にして、 液晶素子の劣化を防止している ものである。 なお、 g素 8 1 1 1 の光透過特性を第 5 1図 5 1 4に示す。 Also in the pour method of this embodiment, a pulse having a positive or negative saturation value or more is applied at the beginning of the selection period to turn on or off, and a pulse to be applied next is a pulse having a reverse polarity of IS value or more. The on / off state is selected depending on whether the on / off state is inverted or the pulse is kept as a pulse smaller than the reciprocal threshold. In the frame where the first selected waveform is applied, the difference between the peak values of the positive pulse and the negative pulse is (V 2 — V 4), that is, 12 V. In the frame to which the waveform is applied, (V, — V 3 ), that is, +2 V, cancels each other. That is, also in the present embodiment, the average value of the voltage pulse applied to the pixel every two frames is set to zero to prevent the liquid crystal element from deteriorating. The light transmission characteristics of g element 811 1 are shown in FIG.
実 施 例 1 8  Example 1 8
第 5 2図は、 *実施例における駆動波形を実現する具体的回路を示すプロ ッ ク図でぁリ、 第 8 1図は この回路で作られた K動波形を、 液晶素子に印 加するため ¾動回路の一例を示す図である。 5 2 1はフ レーム信号、 5 22 は接性切り換え信号でぁ 、 これらの信号にょリ、 ト ラ ンス ミ ツシ 3 ンゲー ト 1 1 1 をス イ ッチングして V , 、 — V 2 、 - V 7 、 — V 8 の電圧を切リ換 え、 走查電槿の選択波形 5 23を作り、 -V 3 、 -V G の電圧を切り換えて 走査電極の非選択波形 5 24を作る, また一 V2 、 -V 3 、 -V G 、 -V 7 の電圧を切リ換えて信号電搔のオン波形 5 2 5及びオフ波形 5 2 6を作る。 第 53図に、 これらの信号波形のタ イ ミ ングチャー ト を示す。 Fig. 52 is a block diagram showing a specific circuit for realizing the driving waveform in the * embodiment, and Fig. 81 is a diagram in which the K dynamic waveform created by this circuit is applied to the liquid crystal element. FIG. 3 is a diagram illustrating an example of a driving circuit. 5 21 is a frame signal, and 5 22 is a contact switching signal. These signals are switched, and the transmis- sion 3 gate 11 1 is switched to V,, — V 2, -V 7, - Setsuri換give a voltage V 8, make a selection waveform 5 23 run查電槿, -V 3, by switching the voltage of -V G making OFF signal 5 24 scan electrodes, also one By switching the voltages of V 2 , -V 3, -VG, and -V 7 , the ON waveform 525 and the OFF waveform 526 of the signal power are generated. FIG. 53 shows the timing chart of these signal waveforms.
これらの信号波形を第 8 1図に示す駆動回路に印加し、 走査 ¾極及び信号 電極に印加する ¾動波形を作る。 すなわち、 選択波形 5 2 3を 8 1 0 1及び 8 1 0 2に、 非選択波形 5 24を 8 1 0 3に、 ォン波形 5 2 5を 8 1 0 5に フ波形 5 2 6を 8 1 04にそれぞれ印加する。  These signal waveforms are applied to the drive circuit shown in FIG. 81 to generate a driving waveform applied to the scanning electrode and the signal electrode. That is, the selected waveform 5 2 3 is set to 8101 and 8102, the unselected waveform 5 24 is set to 8103, the ON waveform 5255 is set to 8105, and the waveform 526 is set to 8 Applied to 104 respectively.
第 8 1図において、 1 2 1は走査電極データで、 これを走查雷槿シ フ ト ク ロ ッ ク 1 2 0によつて走査電植シフ ト レジスタ 1 1 5に転送し、 一走査電極 ずつ順次選択信号を出力して ト ラ ンス ミ ツ シ B ンゲー ト 1 1 1 をス ィ ッ チン グし、 走査電 ft駆動波形を 8 1 0 7に印加する。 また、 1 1 7は信号電極デ ータで、 これを信号電極シフ ト ク ロ ッ ク 1 1 8によって信号電棰側シフ ト レ ジスタ 1 1 4に転送し、 一走査電極分のデータを転送したらラ ッチ信号 1 1 9によ り ラ ッチ回路 1 1 6にラ ッチする。 このラ ッチ回路 1 1 6の出力によ リ ト ラ ンス ミ ツ シ 3 ンゲー ト 1 1 1 をス イ ッチングし、 オン波形 5 2 5及び オフ波形 5 2 6を切リ换えて信号電 igffi動波形を 8 1 0 6に印加する。 In FIG. 81, reference numeral 121 denotes scan electrode data, which is transferred to a scan electrode plant shift register 115 by a scanning clock 120, and one scan electrode is transferred. A selection signal is sequentially output, and the transmission B gate 11 1 is switched, and the scan voltage ft drive waveform is applied to 8107. Reference numeral 117 denotes signal electrode data, which is transferred to the signal electrode side shift register 114 by a signal electrode shift clock 118, and data for one scanning electrode is transferred. Then, the latch circuit 1 16 is latched by the latch signal 1 19. The latches circuit 1 1 6 Li preparative lance Mi Tsu sheet 3 Nge sheet 1 1 1 by the output of the and S w etching, the on waveform 5 2 5 and the OFF waveform 5 2 6 Setsuri substitution example the signal electric igffi Apply a dynamic waveform to 816.
第 5 4図に、 第 8 1図に示す走查電 ¾ 8 1 0 9及び信号電極 8 ί 1 0に印 加される ¾動波形と、 画素 8 1 1 1 に印加される合成波形及び光透過特性を 示す。  FIG. 54 shows the driving waveform applied to the scanning electrode 8109 and the signal electrode 8110 shown in FIG. 81, and the combined waveform and light applied to the pixel 8111. Shows transmission characteristics.
t ,3 . t 23 1 33及び 1 43は、 それぞれ 1 フ レーム周期 t H、 t 2い t 31 及び t 4,は、 それぞれ選択期間 t 12、 t 22 , t 32及び t 42はそれぞれ非選択 期間を示す。 また t 14、 t IS、 t 24 . t 25 > t 34 . t 35、 t 44及ひ t 45は、 パルスを示し、 本実施例の場合は、 いずれも 2 0 0 μ s e cである。 t, 3 .t 23 1 33 and 1 43 are 1 frame period t H, t 2 , t 31 and t 4 , respectively, are selection periods t 12 , t 22, t 32 and t 42 are not selected respectively Indicates the period. The t 14, t IS, t 24 . T 25> t 34. T 35, t 44及Hi t 45 shows a pulse, in the present embodiment are both 2 0 0 μ sec.
波高値 V , は 0 V、 V 2 は 2 V、 V3 は 4 V、 V 6 は 8 V ' Vマ は 1 0 V V 8 は 1 2 Vである。 また、 Vm信号電 Sに印加される電圧パルスの中間電 位を示し, この場合は 6 Vである。 Peak value V, is 0 V, V 2 is 2 V, V 3 is 4 V, V 6 is 1 0 VV 8 is 8 V 'V Ma is 1 2 V. Also, it indicates the intermediate potential of the voltage pulse applied to the Vm signal power S, in this case 6 V.
実施例 1 7 と異なるのは、 走査電極に印加する竜圧を低くするために、 走 査電桎と信号電棰の電圧レベルを共通化したことにある。 Example 17 differs from Example 17 in that scanning was performed to reduce the drag pressure applied to the scanning electrodes. The point is that the voltage level of the inspection fence and the signal electrode are shared.
走查電植 8 1 0 9には、 第 54図 54 1に示すよラに、 選択期間 t n ( t 21、 t 31、 t 41 ) ほ、 1 フ レームごとに交互に、 第 1の遺択波形と して一 VThe run查電planting 8 1 0 9, the O La shown in FIG. 54 54 1, selection period tn (t 21, t 31, t 41) Ho, alternately every frame, the first Noko択1 V as waveform
8 及び一 V 2 がー V 8 、 一 V 2 の順に、 また第 2の選択波形と して V ί 及び 一 V7 が V! 、 一 V7 の頓に印加され、 非選択期間 t ,2 ( t 22、 t 32 v t 428 and single V 2 gar V 8, in the order of one V 2, also V I and single V 7 as the second selection waveform V! , Is applied to the incarcerated one V 7, the non-selection period t, 2 (t 22, t 32 vt 42
) は、 第 1の選択波形が印加されたフ レームでは一 V 3 及び一 vs がー v3 — V e の順に印加され、 また第 2の選択波形が印加されたフ レームでは一 V β 、 — V 3 の順に印加される β ), The first selecting waveform is one V 3, and single v s gar v in frames applied 3 - V e is applied in the order of, and in frame of the second signal is applied to one V beta , — Β applied in order of V 3
信号電槿 8 1 1 0には 第 54図 542に示すように、 第 1の選択波形が 印加されたフ レームでは、 オン波形と して一 V 2 及び一 V7 がー V2 、 一V 7 の順に、 オフ波形と して一 V3 及び一 V6 がー V3 、 一 Vs の頋に印加ざ れ、 また第 2の選択波形が印加されたフ レームでは、 オン波形と して一 V3 及び'一 V 6 が一 Vs 、 一 V 3 の順に、 オフ波形と して一 V2 及び一 V 7 が一The signal Den槿8 1 1 0 as shown in FIG. 54 542, in the frame in which the first signal is applied to one and the on waveform V 2 and single V 7 gar V 2, single V In the order of 7, 1 V 3 and 1 V 6 are applied to the −V 3 and 1 Vs 頋 as off waveforms, and in the frame to which the second selected waveform is applied, 1 V 3 and 1 Vs are applied as on waveforms. V 3 and '1 V 6 are 1 V s , 1 V 3 in order, and 1 V 2 and 1 V 7 are 1
V 7 、 — V 2 の順に印加される。 V 7, — Applied in the order of V 2 .
この時 S素 8 1 1 1 に印加される合成波形は、 第 54図 543に示すよう に、 走査電桎に第 1の選択波形が印加されたフ レームでは、 オンの場合は ( — V 8 + V 2 ) 及び (一 V2 + V 7 ) が負、 正の頓に、 オフの場合は (一V 7 + V 2 ) 及び (一 V2 + V 6 ) が負、 正の順に印加され、 第 2の選択波形 が印加されたフ レームでは、 オ ンの場合は (一 V2 + V 7 ) 及び (一 V 7 + V 3 ) が正、 負の順に、 オフの場合は (V , + V 7 ) 及び (一 V7 + V 2 ) が正、 負の順に印加される。 At this time, as shown in Fig. 54, 543, the composite waveform applied to the S element 8 11 1 is as follows when the first selected waveform is applied to the scanning fence, when it is on (— V 8 + V 2) and (1 V 2 + V 7) are applied negatively and positively, and when off, (1 V 7 + V 2) and (1 V 2 + V 6) are applied in the order of negative and positive In the frame to which the second selected waveform is applied, (1 V 2 + V 7) and (1 V 7 + V 3 ) are in positive and negative order in the case of ON, and (V, + V 7) and (one V 7 + V 2) are applied in order of positive and negative.
また非選択期間は、 0 Vも し くは (一 Ve + V 7 ) 及び (一 V3 + V 2 ) が印加される。 During the non-selection period, 0 V or (1 V e + V 7) or (1 V 3 + V 2 ) is applied.
*実施例の駆動方法も、 選択期間の最初に正または負の飽和値以上のパル スを印加してオンまたはオフ状態と し, 次に印加するパルスを逆接性の飽和 値以上のパルスと してオン、 オフ状態を反耘させるか、 逆極性のしきい値よ リ小さいパルスと してそのまま保持させるかでォン, オフを選択している。 また、 第 1の選択波形が印加されたフ レームでは、 正のパルスと負のバルス との波高値の差が (V 7 - V 8 ) も し くは (V6 - V 7 ) すなわち一 2 Vと なっているが、 第 2の選択波形が印加されたフ レームでは、 (V3 — V2 ) も し く は V 2 すなわち + 2 Vとなっていて、 互いに相殺される。 すなわち、 *実施例でも 2フ レームごとに画素に印加される電圧パルスの平均値を零に して液晶素子の劣化を防止しているものである。 なお > 画素 8 1 1 1 の光透 過特性を第 5 4図 544に示す。 * In the driving method of the embodiment, the pulse applied at the beginning of the selection period is turned on or off by applying a pulse with a positive or negative saturation value or more. The ON / OFF state is selected depending on whether the ON / OFF state is reversed as a pulse with a value greater than the value or whether the pulse is kept as it is as a pulse smaller than the reverse polarity threshold. In the frame to which the first selected waveform is applied, the difference between the peak values of the positive pulse and the negative pulse is (V 7 -V 8) or (V 6 -V 7), ie, 1 V, but in the frame to which the second selected waveform is applied, (V 3 −V 2 ) or V 2, ie, +2 V, cancels each other. That is, in the embodiment, the average value of the voltage pulse applied to the pixel every two frames is set to zero to prevent the deterioration of the liquid crystal element. FIG. 544 shows the light transmission characteristics of the pixel 8111.
実 施 例 1 9  Example 1 9
第 5 5図は, 本実施例における駆動波形を実現する具体的回路を示すプロ ッ ク図でぁリ、 第 8 1図は、 この回路で作られた駆動波形を、 液晶素子に印 加するための駆動回路の一例を示す図である。 5 5 1はフ レーム信号、 5 5 2は極性切り換え信号 > 5 5 3は書き込みパルス切リ換え信号でぁリ、 これ らの信号にょ リ 、 ト ラ ンス ミ ッ ショ ンゲー ト 1 1 1 をス イ ッ チングして V! V 2 , V 3 , - V 4 、 - V 5 . - V 6 の電圧を切り換え、 走査電極の選択波 形 5 5 4を作る。 また、 V 7 、 - V 8 、 0 Vの電圧を切リ换えて信号電極の オン波形 5 5 5及びオフ波形 5 5 6を作る。 第 5 6図に、 これらの信号波形 のタ イ ミ ングチャー ト を示す。 FIG. 55 is a block diagram showing a specific circuit for realizing the drive waveform in the present embodiment. FIG. 81 is a diagram in which the drive waveform generated by this circuit is applied to a liquid crystal element. FIG. 1 is a diagram showing an example of a driving circuit for the present invention. 55 1 is a frame signal, 55 2 is a polarity switching signal> 55 3 is a write pulse switching signal, and these signals are used to transmit the transmission gate 1 1 1 Itching and V! The voltage of V 2 , V 3, -V 4, -V 5 .-V 6 is switched to create the scan electrode selection waveform 554. In addition, the V 7 , −V 8, and 0 V voltages are switched to generate ON waveforms 55 5 and OFF waveforms 5 56 of the signal electrodes. Fig. 56 shows the timing chart of these signal waveforms.
これらの信号波形を第 8 1 図に示す K動回路に印加し、 走査電極及び信号 雹極に印加する駆動波形を作る。 すなわち、 選択波形 5 54を 8 1 0 1及び 8 1 0 2に、 非選択波形と して 0 Vを 8 1 0 3に、 ォン波形 5 5 5を 8 1 0 5に、 オフ波形 5 5 6を 8 1 04にそれぞれ印加する。  These signal waveforms are applied to the K-motion circuit shown in FIG. 81 to generate drive waveforms to be applied to the scanning electrodes and the signal electrodes. That is, the selected waveform 554 is set to 8101 and 8102, the non-selected waveform is set to 0 V to 8103, the open waveform 5555 to 8105, and the off waveform 55 6 is applied to 8 104 respectively.
第 8 1 図において、 1 2 1は走查電植データで、 これを走査電 Sシフ ト ク ロ ッ ク 1 20によつて走査電極側シフ ト レジスタ 1 1 5に転送し、 一走査電 。、 In FIG. 81, reference numeral 121 denotes scanning electroplantation data, which is transferred to the scanning electrode side shift register 115 by the scanning electrode S shift clock 120, and is used for one scanning signal. . ,
(48)  (48)
接ずっ頗次選択信号を出力して ト ラ ンス ミ ツ シ s ンゲー ト 1 1 1 をスィ ッチ ングし > 走査竃植駆動波形を 8 1 0 7 に印加する。 また 1 1 7は信号電桎デ ータで、 これを信号電極シフ ト ク ロ ッ ク 1 1 8 によつて信号電極側、ンフ ト レ ジスタ 1 1 4に転送し、 一走査電¾分のデータを転送したらラ ッチ信号 1 1 9 により ラ ッチ回路 1 1 6 にラ ッチする- このラ ッチ回路 1 1 6の出力によ y ト ラ ンス ミ ツ シ 3 ンゲー ト 1 1 1 をスイ ッチングし ォン波形 5 5 5及び オフ波形 5 5 6 を切リ換えて信号鼋桎 S動波形を 8 1 0 6に印加する。 Outputs the contact selection signal and switches the transmission sig- nal 1 11 1> Apply the scan firing drive waveform to 810 7. Reference numeral 117 denotes signal fence data, which is transferred to the signal electrode side and the resistance register 114 by a signal electrode shift clock 118, and is used for one scanning voltage. rats to switch the latches circuit 1 1 6 by latches signal 1 1 9 After transferring data - by the output of the latches circuit 1 1 6 y preparative lance Mi Tsu sheet 3 Nge sheet 1 1 1 Is switched, and the ON waveform 555 and the OFF waveform 555 are switched to apply the signal F fluctuating waveform to 810.
第 5 6図に、 第 8 1 図に示す走査 ¾¾ 8 1 0 9及び信号電棰 8 1 1 0 に印 加される駆動波形と、 画素 8 1 1 1 に印加される合成波形及び光透 ¾特性を す。  FIG. 56 shows the driving waveforms applied to the scanning lines 8109 and the signal electrodes 8110 shown in FIG. 81, the combined waveforms applied to the pixels 8111 and the optical transmission lines. Characteristics.
1; 33及び 1: 43は、 それぞれ 1 フレーム周期 、 1; 33 and 1: 43 are each 1 frame period,
及び t 41は、 それぞれ選択期間 t 12、 t t 32及び t «はそれぞれ非選択 期 を.示す。 た 、 、 、 t 及ひ ほ、 パルス輻を示し、 *実施例の場合は、 いずれも 2 0 0 ^ s e cである。 また 書き込みパルス切り換え信号のパルス幅ズ以下 t Z 4 と言う) は 前記パル ス輻の 1 / 4すなわち 5 0 s e cである。 And t 41, respectively selection period t 12, tt 32 and t «each unselected period. Shown. ,,, T and pulse radiation are shown. * In the case of the embodiment, all are 200 ^ sec. Further, the pulse width of the write pulse switching signal is referred to as tZ4 or less, which is 1/4 of the pulse radiation, that is, 50 sec.
波高値 V ί 及び V 4 は 9 V、 V 2 及び V s は 6 V、 V 3 及び V 6 は 1 1 V V Ί 及び V 8 は 3 Vである。 Peak value V I and V 4 is 9 V, V 2 and V s 6 V, V 3 and V 6 are 1 1 VV Ί and V 8 are 3 V.
*実施例では、 お動波形に書き込みパルス切リ换ぇ信号を重畳させて、 非 選択期間に画素に印加されるパルスのバルス輻を小さ く し、 光透通特性への 影響をよ リ小さ く している。  * In this embodiment, the pulse signal applied to the pixel is superimposed on the moving waveform to reduce the pulse radiation applied to the pixel during the non-selection period, thereby minimizing the effect on the light transmission characteristics. Coming up.
走查罨 S8 1 0 9 には、 第 5 6図 5 6 1 に示すように、 選択斯間 t ( t , t 31 . t 41 ) は 1 フ L ^一ムごとに交互に、 第 1 の選択波形と して一 V s 及び V 2 に書き込みパルス切リ换ぇ信号が重畳されたバルスが負 ^ 正の順に 第 2の選択波形と して V , 及び一 V s に書き込みパルス切リ換え信号が重 ( ) 畳されたバルスが正、 負の頫に印加され、 非選択期閱 t 12 ( t 22、 t 32、 t 42) は 0 Vが印加される。 The run查罨S8 1 0 9, as shown in 5 6 5 6 1, selected斯間t (t, t 31. T 41) is alternately every full L ^ one arm, a first V BALS the write pulse Setsuri substitution tut signal to an V s and V 2 as the selected waveform is superimposed negative ^ the positive order and the second selecting waveform, and the write pulse Setsuri place on one V s Heavy signal () Tatami been Bals positive, is applied to the negative頫, unselected period閱 t 12 (t 22, t 32 , t 4 2) is 0 V is applied.
信号罨植 8 1 1 0には、 第 5 6図 5 6 2に示すようにオン波形と して、 ま ず t Z4のバルス輻で 0 V及び V7 が交互に 2個ずつ印加された後、 同じバ ルス幅で一 V 8 及び 0 Vが交互に 2個ずつ印加ざれる。 またオフ波形と して ォン波形と逆位相のパルスが印加される。 As shown in Fig. 56, the signal compress 811 has an ON waveform as shown in Fig. 56, and after 0 V and V 7 are applied alternately by two at t Z4 pulse radiation. However, two 1 V 8 and 0 V are alternately applied at the same pulse width. A pulse having a phase opposite to that of the ON waveform is applied as the OFF waveform.
この時画素 8 1 1 1 に印加される合成波形は、 第 5 6図 5 6 3に示すよう に、 走査電極に第 1の選択波形が印加されたフ レームでは, オンの場合一 V At this time, as shown in Figure 56, the composite waveform applied to pixel 811 1 is 1 V when it is on in the frame where the first selection waveform is applied to the scan electrode.
6 に一部一 V 7 が重畳されたパルス及び (V 2 + V 8 ) = V , が印加され、 オフの場合一 V 6 に一^ V 8 が重畳されたパルス及び (V , — V 7 ) = V 2 が印加される。 また第 2の選択波形が印加されたフ レームでは、 オンの場合6 pulses and some one V 7 is superimposed on (V 2 + V 8) = V, is applied, in the case of off-one V 6 one ^ V 8 pulses and are superimposed (V, - V 7 ) = V 2 is applied. In the frame to which the second selected waveform is applied,
V 3 に一部一 V7 が重畳されたバルス及び (一 V4 + V 8 ) =— V 5 が印加 され、 オフの場合は V 3 に一部 V 8 が重畳されたバルス及び (一V 5 - V 7 )A pulse in which V 7 is partially superimposed on V 3 and (1 V 4 + V 8) = — V 5 are applied. When off, a pulse in which V 8 is partially superimposed on V 3 and (1 V 5 -V 7)
=— V 4 が印加される。 = — V 4 is applied.
非選択期間は 0 V、 V 7 及び一 V8 が t Z4のパルス幅で印加される。During the non-selection period, 0 V, V 7 and 1 V 8 are applied with a pulse width of t Z4.
*実施例では、 選択期間の最初に印加される V 3 または一 Ve に一部土 V* In the example, V 3 applied at the beginning of the selection period or one V e
7 も し く は ± V 8 が重畳されたバルスは、 いずれも飽和値以上であるため、 画素はいつたんオンまたはオフ状態となり、 次に印加される最初のパルスと 逆極性のパルスが飽和値以上かしきい値よリ小さいかで、 オン、 オフ状態を 反転させるか、 そのまま保持させるかでオン、 オフを選択している。 また, 第 1の選択波形が印加されたフ レームでは, 正のパルスと負のパルス との差 力; ( V 6 + V 7 X2— V , ) = ( V 6 - V 8 / 2 - V 2 ) すなわち一 3. 5 Vとなっているが第 2の選択波形が印加されたフ レームでは、 (V 3 ― V 7 / 2 - V 5 ) = ( V 3 + V 8 /" 2 - V 4 ) + 3. 5 Vとなっていて互いに相 殺される。 すなわち本実施例でも 2フ レームごとに画素に印加される電圧パ (5Q) ルスの平均値を零にして液晶素子の劣化を防止しているものである, なお、 画素 8 1 1 1 の光透過特性を第 56図 5 64に示す。 7 or ± V 8 are superimposed on the saturation value, so that the pixel is always turned on or off, and the next pulse applied with a polarity opposite to that of the first pulse is applied to the saturation value. The on / off state is selected depending on whether it is above or smaller than the threshold value, depending on whether the on / off state is inverted or kept as it is. In the frame to which the first selected waveform is applied, the difference between the positive pulse and the negative pulse; (V6 + V7X2-V,) = (V6-V8 / 2-V2 ) In other words, in the frame where one 3.5 V is applied but the second selected waveform is applied, (V 3 -V 7/2-V 5) = (V 3 + V 8 / "2-V 4 ) +3.5 V, which cancel each other out, that is, the voltage applied to the pixel every two frames in this embodiment as well. (5Q) The average value of the luz is set to zero to prevent the deterioration of the liquid crystal element. The light transmission characteristics of the pixel 8111 are shown in Fig. 56 and Fig. 564.
また本実施例では、 駆動波形に重畳するパルスのパルス幅を t Z4とした 力 本発明はこれに限られるものではなく、 よりパルス輻を小さく して重畳 パルスの個数を増やしても良い。 実 施 例 20  Further, in the present embodiment, the force with the pulse width of the pulse superimposed on the drive waveform set to tZ4 is not limited to this. The pulse radiation may be further reduced to increase the number of superimposed pulses. Example 20
第 5 7図は、 *実施例における駆動波形を実現する具体的回路を示すプロ ック図でぁリ、 第 8 1図は、 この回路で作られた駆動波形を、 液晶素子に印 加するための駆動回路の一例を示す図である。 5 7 1はフ レーム信号、 5 7 2は桎性切リ換え信号、 57 3は書き込みパルス切リ換える信号でぁリ、 こ れらの信号により、 ト ラ ンスミ ツシ sンゲート 1 1 1 をスイ ッチングして V Fig. 57 is a block diagram showing a specific circuit for realizing the drive waveform in the embodiment *. Fig. 81 applies the drive waveform generated by this circuit to the liquid crystal element. FIG. 1 is a diagram showing an example of a driving circuit for the present invention. 57 1 is a frame signal, 57 2 is a flap switching signal, 573 is a write pulse switching signal. And V
1 、 - V 2 - V 3 、 - V 6 、 — V 7 、 - V 8 の電圧を切り換え、 走査電極 の選択波形 5 74を作り、 一 V3 、 — V 6 の電圧を切リ换えて走査電桎の非 選択波形 5 7 5を作る。 また — V 2 、 — V 3 , - V 4 、 — V 5 、 — V G 、 — V 7 の電圧を切リ换えて信号電桂のオン波形 5 7 6及びオフ波形 5 7 7を 作る》 第5 8図に、 これらの信号波形のタ イ ミ ングチャートを示す。 これ らの信号波形を第 8 1図に示す駆動回路に印加し、 走查電桎及び信号電極に 印加する 動波形を作る。 すなわち、 選択波形 5 7 4を 8 1 0 1及び 8 1 0 2に、 非選択波形 5 7 5を 8 1 0 3に、 オン波形 5 76を 8 1 05にオフ波 形 5 7 7を 8 1 04にそれぞれ印加する。 1, - V 2 - V 3 , - V 6, - V 7, - switching the voltage V 8, make a selection waveform 5 74 scan electrodes, one V 3, - voltage Setsuri substitution example the scanning of V 6 Make a non-selective waveform of the fence 5 7 5 Also, cut off the voltage of — V 2, — V 3 ,-V 4, — V 5, — VG, — V 7 to create ON waveform 5 7 6 and OFF waveform 5 7 7 of the signal cable. FIG. 8 shows a timing chart of these signal waveforms. These signal waveforms are applied to the drive circuit shown in FIG. 81 to create dynamic waveforms to be applied to the traveling flute and the signal electrodes. That is, the selected waveform 5 7 4 is set to 8101 and 8102, the unselected waveform 5755 is set to 8103, the on waveform 576 is set to 8105, and the off waveform 577 is set to 81. 04 respectively.
第 8 1図において、 1 2 1は走査電桎データで、 これを走查電桎シフ ト ク ロ ッ ク 1 2 0によつて走查電植側シフ トレジスタ 1 1 5に転送し、 一走查電 槿ずつ踬次遷択信号を—出力して ト ラ ンス ミ ツ シ s ンゲート 1 1 1 をスィ ッチ ングし 走査電植駆動波形を 8 1 0 7に印加する。 また 1 1 7ほ信号電極デ (5J) ータで、 これを信号電極シフ ト ク ロ ッ ク 1 1 8によつて信号電極側シプ ト レ ジスタ 1 1 4 に耘送し、 一走査電極分のデータを転送したらラ ッチ信号 1 1 9 によ リ ラ "ノ チ回路 1 1 6 にラ 、 チする。 このラ ッ チ回路 1 1 6 の出力によ リ ト ラ ンス ミ ッ ジ 3 ンゲー ト 1 1 1 をス イ ッチ ングし、 オン波形 5 7 6及び B オフ波形 5 7 7 を切リ换えて信号電篯 K動波形を 8 1 0 6 に印加する。 In FIG. 81, reference numeral 1 21 denotes scanning fence data, which is transferred to the scanning plant shift register 1 15 by a scanning flock shift clock 120, and is scanned once. A transition signal is output one by one, and the transmis- sion gate 1111 is switched to apply the scanning plant drive waveform to 8107. Also 1 1 7 (5J) , and feeds it to the signal electrode side register 114 by the signal electrode shift clock 118, and latches the data for one scan electrode. The signal is connected to the latch circuit 1 16 by the signal 1 19. The output of the latch circuit 1 16 is used to switch the transmission switch 3 11 After switching, the ON waveform 5776 and the B OFF waveform 577 7 are switched, and the signal power K dynamic waveform is applied to 8106.
第 5 9図に、 第 8 1 図に示す走查電 S 8 1 0 9及び信号竜極 8 1 1 0 に印 加される駆動波形と, 画素 8 1 1 1 に印加される合成波形及び光透過特性を 示す。  Fig. 59 shows the driving waveform applied to the scanning line S810 and the signal pole 8110 shown in Fig. 81, and the combined waveform and light applied to the pixel 8111. Shows transmission characteristics.
t 13、 t 23 > 1^ 33及び 1; 43は、 それぞれ 1 フ レーム周期 t " > t 21 , t 31 10 及び t 4,は、 それぞれ選択期藺 t 12、 t 22、 t 32及び t 42はそれぞれ非選択 期間を示す。 また t " > t |5 > t 24 . t 25、 t 34 , t 35 . 1; 44及び 1; 45は、 バルス幅を示し, *実施例の場合は、 いずれも 2 0 0 it s e c である。 また 書き込みパルス切リ換え信号のパルス幅 (以下 t Z 4 と言う).は、 前記パル ス輻の 1 4すなわち 5 0 fi s e c である。t 13, t 23> 1 ^ 33 and 1; 43, respectively one frame period t "> t 21, t 31 10 and t 4, respectively selected phase Lee t 12, t 22, t 32 and t 42 shows the non-selection period, respectively also t "> t | 5> t 24 t 25, t 34, t 35 1;... 44 and 1; 45 indicates a BALS width, in the case of * example, either Is also 200 it sec. The pulse width (hereinafter referred to as tZ4) of the write pulse switching signal is 14 of the pulse radiation, that is, 50 fisec.
s 波高値 V , は 0 V、 V 2 は 2 V > V a は 4 V、 V 4 は 6 V、 V 5 は 8 V , V 6 は 1 0 V、 V 7 は 1 2 V、 V 8 は 1 2 Vであれ、 V mは信号電極に印加 されるパルスの中間電位を示し、 この場合は 7 Vである。 s Peak value V, is 0 V, V 2 is 2 V> V a is 4 V, V 4 is 6 V, V 5 is 8 V, V 6 is 10 V, V 7 is 12 V, V 8 is At 12 V, Vm indicates the intermediate potential of the pulse applied to the signal electrode, which is 7 V in this case.
実施例 1 9 と異なるのは、 走查電槿に印加される罨圧を低くするために、 走査電極と信号電極の電圧レベルを共通化したこ と と . オン、 オフ波形を選0 択波形に応じて変えたこ とである。  The difference from the embodiment 19 is that the voltage level of the scanning electrode and the signal electrode is made common in order to reduce the compressibility applied to the scanning electrode. The ON and OFF waveforms are selected. It changed according to
走査電極 8 1 0 9 には、 第 5 9図 5 9 1 に示すょラに、 選択期間 t ( t 2i、 t 31 , t 4|;) は、 1 フ レームごとに交互に, 第 1 の選択波形と して一 V β 及び一 V 3 に書き込みパルス切り換え信号が重畳されたパルスが、 第 2の 選択波形と して、 V , 及び一 v 7 に畲き込みパルス切り換え信号が重畳されB たパルスが印加され、 非選択期間 t |2 ( t 22、 t 32、 t 42) は一 V 3 及び一 V e が, 一 V3 . — V e の頗も しくは一 V e 、 — V 3 の頗に印加される。 信号電槿 8 1 1 0 には、 第 5 9図 5 9 2に示すように、 第 1 の選択波形が 印加されたフ レームでは、 オン波形と して一 V 3 及び一 V 4 が t Z4のパル ス幅で交互に 2個ずつ印加された後、 同じパルス幅で — V 7 及び一 V 6 が 2個ずつ交互に印加され、 オフ波形と しては同じパルス幅で一 V 3 及び一 V 4 が交互に 2個ずつ印加された後 — V 6 及び一 Vs が同じパルス幅で交互 に 2個ずつ印加される。 また第 2の選択波形が印加されたプ レームではオン 波形と して前記のオフ波形と逆位相のパルスが印加され、 オフ波形と して前 記のオン波形と逆位相のパルスが印加される。 The scanning electrodes 8 1 0 9, the Yo La shown in 5 9 5 9 1, selection period t (t 2i, t 31, t 4 |;) are alternately every frame, the first pulse write pulse switching signal to one V beta and single V 3 is superimposed with the selected waveform, as the second selecting waveform, V, and single v 7畲can lump pulse switching signal is superimposed on the B pulse is applied with the non-selection period t | 2 (t 22, t 32, t 42) one V 3 and one V e is applied to one V 3 .—V e, or to one V e, —V 3 . Signal to the Den槿8 1 1 0, as shown in 5 9 5 9 2, in the frame of the first signal is applied to one V 3 and one V 4 to the ON waveform t Z4 After alternately applying two pulses with the same pulse width, two pulses of V 7 and one V 6 are alternately applied with the same pulse width, and as the off waveform, one V 3 and one V of the same pulse width are applied. after V 4 is applied by two alternately - V 6 and single V s is applied by two alternately in the same pulse width. In the frame to which the second selection waveform is applied, a pulse having a phase opposite to that of the above-described off waveform is applied as an on waveform, and a pulse having a phase opposite to that of the above on waveform is applied as an off waveform. .
この時 8 1 1 1 に印加される合成波形は、 第 5 9図 5 9 3 に示すように、 走査電桎に第 1 の選択波形が印加されたフ L ^一ムでは、 オンの場合 (- V 8 + V 3 ) に一部 (V 2 — V 3 ) が重畳されたパルス及び (一 V3 + V 7 ) =At this time, as shown in Fig. 593, the composite waveform applied to 811 1 in the case where the first selected waveform is applied to the scanning fence is turned on ( -V 8 + V 3) with a part (V 2 — V 3) superimposed on it and (one V 3 + V 7) =
(― V 2 + V G ) が印加され、 オフの場合 (― V 8 + V 4 ) に一部 (V 3When (− V 2 + VG) is applied and turned off (− V 8 + V 4), a portion (V 3
V 4 ) が重昼されたパルス及び (一 V3 + V 6 ) = (― 2 + V 5 ) が印加 される。 また第 2の選択波形が印加されたフ レームでは、 オンの場合 (V |A pulse in which V 4) is heavy and (one V 3 + V 6) = (− 2 + V 5) are applied. In the frame to which the second selection waveform is applied, when the switch is on (V |
+ V G ) に一部 (V s ― V 6 ) が重畳されたパルス及び (一V 6 + V 3 ) = (- V 7 + V 4 ) が印加され、 オフの場合 (V , + V 7 ) に一部 ( V s ― V 7 ) が重畳されたバルス及び (一 V s + V 2 ) = (― V 7 + V 3 ) が印加さ れる。 + VG) and (-V 6 + V 3) = (-V 7 + V 4) with a part of (V s -V 6) superimposed on it and off (V, + V 7) (Vs-V7) and (-Vs + V2) = (-V7 + V3) are applied.
非選択期間は、 0 V、 (― V e + V 7 ) 及び (― V 3 + V 2 ) が t /4の パルス幅で印加される。 Non-selection period is, 0 V, (- V e + V 7) and (- V 3 + V 2) is applied with a pulse width of t / 4.
*実施例の駆動方法によリ画素に印加される合成波形は、 基 *的には実施 例 1 9 と同一であ 、 第 1 の選択波形が印加されたフ レームでは、 正のパル スと負のパルスとの差が (V 8 ― V 2 / 2—V 3 / 2― V e + V 2 ) = (V 8 ― V 3 / 2—V 4 / 2—V 5 + V 2 ) すなわち一 3 V、 第 2の選択波形が 印加されたフ レームでは、 (V6 / 2 + V 7 / 2 + V 3 ― V 7 ) = ( V 5 /* The composite waveform applied to the pixel according to the driving method of the embodiment is basically the same as that of the embodiment 19, and the frame to which the first selected waveform is applied has a positive pulse. The difference from the negative pulse is (V 8 -V 2/2-V 3/2-V e + V 2 ) = (V 8-V 3/2-V 4/2-V 5 + V 2) 3 V, second selected waveform The applied frame, (V 6/2 + V 7/2 + V 3 - V 7) = (V 5 /
2 + V 6 / 2 + V 4 - V 7 ) すなわち + 3 Vで互いに相殺され, 同じように 2 フ レームごとに平均値が零となる。 圉素 8 1 1 1 の光逮暹特性を第 5 9図 5 94に示す。 2 + V 6/2 + V 4-V 7) That is, they are offset by +3 V, and the average value becomes zero every two frames. Fig. 594 shows the optical characteristics of the light source 811.
なお、 これまで説明した実施例では、 強誘電性液晶 T D O B AM B C Cの しきい値特性に合わせて各電圧レベルを設定したが、 もちろん、 本発明はこ れに限定されるものではな く 、 各電圧レベルは、 使用する強誘電性液晶のし きい値特性に応じて適切な値を設定すれば良い。  In the embodiments described so far, the respective voltage levels are set in accordance with the threshold characteristics of the ferroelectric liquid crystal TDOB AM BCC. However, of course, the present invention is not limited to this. The voltage level may be set to an appropriate value according to the threshold characteristics of the ferroelectric liquid crystal used.
実 施 例 2 1  Example 2 1
第 8 2図 ( a ) 及び ( b ) は、 印加罨圧バルスの波形と光透過特性との閬 係を示す図である, 強遊電性液晶のしきい値及び飽和値電圧は、 パルス幅に よつて変化するこ とは先に述べたが、 我々は印加するパルスによっても変化 するこ とを見出した。' すなわち第 82図 ( a ) 824に実線で示したように 第 82図 ( b ) 82 1 に示すような波形のパルスを印加した場合は、 正、 負 のしきい値が V !; !! !,及び !; !! 、 飽和値が V s a t "及び V s a t で あるが、 第 82図 ( b ) 822に示すようなバルスを印加すると、 第 82図 ( a ) 82 5に点線で示したように, 正, 負のしきい値が V t h 21及び V t h 22飽和値が V s a t 2l及び V t h 22と、 82 1の波形を印加した時よ り絶 対値が大き く なリ、 82 3に示すような波形のパルスを印加すると、 82 6 に一点鎖線で示したように正、 負のしきい値が V t h , 及び V t h 2 、 飽和 値が V s a t , 及び V s a t 2 と絶対値が小さ く なる。 FIGS. 82 (a) and (b) are diagrams showing the relationship between the waveform of the applied compressive pulse and the light transmission characteristics. The threshold voltage and saturation value voltage of the strongly electrophoretic liquid crystal are determined by the pulse width. As mentioned earlier, we found that it also changes with the applied pulse. 'That is, when a pulse having the waveform shown in Fig. 82 (b) 821 is applied as shown by the solid line in Fig. 82 (a) 824, the positive and negative thresholds are V! ; ! ! ,as well as ! ; ! And the saturation values are V sat "and V sat, however, when a pulse as shown in Fig. 82 (b) 822 is applied, positive and negative values are obtained as shown by the dotted lines in Fig. 82 (a) 825. threshold V th 21 and V th 22 saturation value and V sat 2l and V th 22, 82 1 of the waveform by Rize' pair value magnitude rather Li when applying, the waveform as shown in 82 3 the application of a pulse, positive as indicated by a one-dot chain line in 82 6, the negative threshold V th, and V th 2, the saturation value V sat, and V sat 2 absolute value is rather small.
特に、 1: 11 21 :> ¥ 3 & 1; |1及び | 1; 11 22 | 〉 | ¥ 8 & 1; 2| | であるた め, 82 1 の波形のバルスを印加した時には飽和値以上となる電圧レベルで あっても、 82 2の波形のパルスを印加した時には、 しきい値よ リ も小さ く なリ、 液晶素子は応答しない。 従って、 同じ電圧レベルで応答、 非応答を制 ハ 御することが可能となる。 ; Φ:実施例は、 このような強誘電性液晶のしきい値 特性を利用した ffi動方法である。 In particular, since 1: 1 1 21 :> ¥ 3 &1; | 1 and | 1; 11 22 |〉 | ¥ 8 &1; 2 | |, the saturation value is obtained when a pulse with a waveform of 82 1 is applied. Even when the voltage level is as described above, the liquid crystal element does not respond when a pulse having a waveform of 822 is applied, because the voltage is smaller than the threshold value. Therefore, response and non-response are controlled at the same voltage level. C. Φ: The embodiment is an ffi-moving method utilizing the threshold characteristics of such a ferroelectric liquid crystal.
第 6 0図は t :*:実施例における駆動波形を実現する具体的回路を示すプロ ッ ク図でぁリ、 第 8 1図は、 この回路で作られた ¾動波形を、 液晶素子に印 加するための 動回路の一例を示す図である。 6 0 1 はフ レーム信号、 6 0 2は槿性切リ换ぇ信号であり、 これらの信号にょリ 、 ト ラ ンス ミ ツ シ a ンゲ ー ト 1 1 1 をスイ ッチングして V , 、 V a 、 — V 3 、 - V 4 の電圧を切リ换 え、 走查電棰の選択波形 6 0 4を作る。 また、 楱性切り換え信号 6 0 2 とク ロ ッ クパルス 6 0 3 とによ tJ 0 V、 V 5 、 — V 5 の電圧を切リ換えて信号電 檣のオン波形 6 0 5及びオフ波形 6 0 6を作る。 第 6 1 図に、 これらの信号 波形のタ イ ミ ングチャートを示す。 FIG. 60 is a block diagram showing a specific circuit for realizing the drive waveform in the embodiment of t : *. FIG. 81 is a block diagram showing the drive waveform produced by this circuit in a liquid crystal element. FIG. 9 is a diagram illustrating an example of a dynamic circuit for applying. 6 0 1 frame signal, 6 0 2 is槿性Setsuri substitution tut signals, these signals Nyori, preparative lance Mi Tsu Shi a Nge over sheet 1 1 1 by Sui etching V,, V a, — Reset the voltage of V 3, −V 4, and create the running waveform selection waveform 604. In addition, the voltage of tJ 0 V, V 5, and —V 5 is switched by the polarity switching signal 60 2 and the clock pulse 60 3 to turn on the signal waveform ON waveform 605 and OFF waveform 6. Make 0 6. FIG. 61 shows a timing chart of these signal waveforms.
これらの信号波形を第 8 1 図に示す駆動回路に印加し、 走査電極及び信号 電槿に印加する駆動波形を作る。 すなわち、 選択波形 6 0 4を 8 1 0 1及び 8 1 0 2 に、 非遷択波形と して 0 Vを 8 1 0 3 に、 オン波形 6 ひ 5を 8 1 0 5 に、 オフ波形 6 ひ 6 を 8 I 0 4·にそれぞれ印加する。  These signal waveforms are applied to the drive circuit shown in FIG. 81 to generate drive waveforms to be applied to the scan electrodes and the signal electrodes. That is, the selected waveform 6104 is set to 8101 and 8102, the non-transition waveform is set to 0V to 8103, the ON waveform is set to 8105, and the OFF waveform is set to 8105. A 6 is applied to each of 8 I 04.
第 8 1 図において、 1 2 1 は走査電桎データで、 これを走査電極シフ ト ク ロ ッ ク 1 2 0 によって走査電接側シフ ト レジスタ 1 1 5 に転送し、 一走査電 植ずつ順次選択信号を {±ί力して ト ラ ンス ミ ツ シ s ンゲー ト 1 1 1 をス ィ ッ チ ングし、 走査雷槿駆動波形を 8 1 0 7に印加する。 また 1 1 7は信号電接デ ータで、 これを信号葷棲シフ ト クロ ッ ク 1 1 8 によって信号電槿シフ ト レジ スタ 1 1 4に転送し、 一走査電植分のデータを転送したらラ ッチ信号 1 1 9 によリ ラ ッチ回路 1 1 6 にラ ッチする このラ ッチ回路 1 1 6の ftt力により ト ラ ンス ミ ッ ショ ンゲー ト 1 1 1 をスイ ッチングし、 ォン波形 6 0 5及びォ フ波形 6 0 6 を切リ換えて信号電桎駆動波形を 8 1 0 6 に印加する。  In FIG. 81, reference numeral 121 denotes scanning flute data, which is transferred to the scanning contact side shift register 115 by the scanning electrode shift clock 120, and is sequentially scanned one scanning plant at a time. The selection signal is {± intensified} to switch the transmis- sion sig- nal 111, and the scanning waveform is applied to 8107. Reference numeral 117 denotes signal contact data, which is transferred to the signal shift register 114 by the signal shift clock 118, and data for one scanning cell is transferred. Then, the latch signal 1 19 is connected to the latch circuit 1 16. The on-waveform 605 and the off-waveform 606 are switched, and the signal voltage drive waveform is applied to 810.
第 6 2図に、 第 8 1 図に示す走査 8 1 0 9及び信号電 S 8 1 1 0 に印 加される JS勤波形と画素 8 1 1 1 に印加される合成波形及び光透通特性を示 す。 In Fig. 62, the scan 8109 and the signal S8110 shown in Fig. 81 are marked. The JS waveform applied and the composite waveform applied to pixel 811 and the light transmission characteristics are shown.
t ,3 . t 23 . 1; 33及び 1: 43は、 それぞれ 1 フ レーム周期 t n 、 t 2l、 t.. t, 3 t 23 1 ; 33 and 1: 43, respectively one frame period t n, t 2l, t
31及び t 4|はそれぞれ選択期間、 t 12、 t 22 . t 32及び t 42はそれぞれ非選 択期閱を示す。 また t ,4、 t 24 , t 34\ 及び t 44は、 それぞれ選択期間の前 半に印加されるパルスのパルス幅、 t 15、 t 25、 t 35、 及び t 4Sは、 それぞ れ選択期間の後半に印加されるパルスのパルス輻を示し、 术実施例の場合は いずれも等しいパルス賴となっている。 さらに t 0 は、 前記 t 15 ( t 25、 t 35、 t 45 ) の 1ノ 2 のパルス幅を示す。 31 and t 4 |. Each selection period, t 12, t 22 t 32 and t 42 represent, respectively, the non-selection択期閱. The t, 4, t 24, t 34 \ and t 44, the pulse width of a pulse applied to the first half of each selection period, t 15, t 25, t 35, and t 4S are their respective select period Indicates the pulse radiation of the pulse applied in the latter half of {circle around (2)}. Further t 0 indicates the t 15 (t 25, t 35 , t 45) 1 Bruno second pulse width.
波髙値 V , - V 5 は、 以下の条件を満足するように設定する。  The wave values V, -V5 are set so as to satisfy the following conditions.
V i = V 4 〉 V s a t i 、 I V s a t 2 I V i = V 4 〉 V sati, IV sat 2 I
V 5 < V t h i . | V t h 2 I V 5 <V thi. | V th 2 I
V , = ( V 2 + V 5 ) = C V 3 + V 5 ) V, = (V 2 + V 5 ) = CV 3 + V 5 )
V t h 21 > ( V 2 + V s ) > V s a t V th 21 > (V 2 + V s)> V sat
I V t h 22 I > ( V 3 + V 5 ) > I V s a t ,2 I  I V t h 22 I> (V 3 + V 5)> I V s a t, 2 I
走查電 S 8 1 0 9 には、 第 6 2図 6 2 1 に示すように選択期藺は第 1 の選 択波形と して一 V 4 及び V 2 が負、 正の順に、 第 2の選択波形と して V ^ 及 び一 V 3 が正、 負の順に、 1 フ レームごとに交互に印加され、 非選択期間は 0 Vが印加される。 The查電S 8 1 0 9 run, 6 2 6 2 selected period b is as shown in 1 first selection択波type and to one V 4 and V 2 is negative, the positive order, second selection waveform and to V ^及beauty one V 3 positive, negative sequence, are alternately applied to every frame, the non-selection period 0 V is applied.
信号罨極 8 1 1 0 には、 第 6 2図 6 2 2 に示すように、 オンさせたい場合 は 2 t 。 の期間 0 Vが印加された後パルス幅 t 。 の V 5 及び一 V 5 が正、 負 の顢に印加され, オフさせたい場合は同じ く 2 t o の期間 0 Vが印加された た後パルス幅 t 0 の V 5 及び一 V s が負、 正の順に印加される。 If you want to turn on the signal pole 811, as shown in Fig. 62, 2 t is 2 t. The pulse width t after 0 V is applied for a period of. Of V 5 and single V 5 is positive, is applied to the negative顢, V 5 and single V s of the pulse width t 0 after If you want to off period 0 V in the same Ku 2-to is applied is negative, Applied in positive order.
この時画素 8 1 1 1 に印加される合成波形は, 第 6 2図 6 2 3 に示すょラ に、 走査電極に第 1 の選択波形が印加されたフ レームでは、 オンの場合まず , 、 At this time, the composite waveform applied to pixel 811 1 is the same as that shown in Fig. 62, when the first selected waveform is applied to the scan electrodes, ,,
(56)  (56)
— V 4 が印加された後、 前半の t 0 の波高値が (V2 — V 5 ) で後半の t 0 の波高値が (V 2 + V 5 ) であるパルスが印加され、 オフの場合は同じ く ま ず一 V 4 が印加された後、 前半の t 。 の波高値が (V 2 + V 5 ) で後半の t 0 の波高値が (V 2 — V5 ) であるパルスが印加される。 また第 2の選択波 形が印加されたフ L ^一ムでは、 オンの場合まず が印加された後、 前半の t 0 の波高値が (一 V3 — V5 ) で後半の t 0 の波高値が (一 V 3 + V 5 ) であるパルスが印加され、 オフの場合は同じ く まず V t が印加された後、 前 半の t 0 の波高値が (一 V 3 + V s ) で後半の t o の波高値が (一 V 3 — V 5 ) であるパルスが印加される。 非選択期間には 0 V及びパルス幅 t 0 の土 5 が印加ざれる。 — After V 4 is applied, when the pulse with the peak value of t 0 in the first half is (V 2 — V 5) and the peak value of t 0 in the second half is (V 2 + V 5) is applied and the pulse is off The same is true for the first half of t after V 4 is applied. A pulse having a peak value of (V 2 + V 5) and a peak value of t 0 in the latter half of (V 2 −V 5 ) is applied. On the other hand, when the second selective waveform is applied, when the first ON is applied, after the first ON, the peak value of t 0 in the first half is (one V 3 — V 5 ) and the peak value of t 0 in the second half is A pulse with a peak value of (1 V 3 + V 5) is applied. When the pulse is off, V t is applied first, and then the peak value of t 0 in the first half is (1 V 3 + V s). Then, the pulse whose peak value of to in the latter half is (one V 3 — V 5) is applied. During the non-selection period, soil 5 having 0 V and pulse width t 0 is applied.
本実施例では、 第 82図 (a ) 及び ( b ) に示したょラに、 選択期間 t 及ぴ t 21の後半に印加されるパルスは、 飽和値以上であるが、 t 31及び t 4l の後半に印加されるパルスは、 同じ波高値を有しているにもかかわらず、 波 形が異なるため、 しきい値より小さい値となっている。 その結果、 *実施例 の駆動方法も、 選択期間の最初に印加された正または負の飽和値以上のバル スによってオンまたはオフ状態と し、 次に印加する逆棰性のパルスによって その状態を反転させるかそのまま保持するかを選択してオン、 オフを選択す るこ とができ る。 In this embodiment, the Yo La shown in 82 Figure (a) and (b), the pulse applied to the second half of the selection period t及Pi t 21 is not less than the saturation value, t 31 and t 4l Although the pulse applied in the latter half of the waveform has the same peak value, it has a smaller value than the threshold value because the waveform is different. As a result, the driving method of the embodiment also sets the on or off state by the pulse applied at the beginning of the selection period, which is equal to or more than the positive or negative saturation value, and then changes the state by the inverted pulse applied next. You can select on or off by selecting whether to invert or keep as it is.
また、 第 1の選択波形が印加されたフ レームでは 正のパルスと負のパル スとの波高値の差が (V 2 + V 5 ) X 2 + (V2 -V 5 ) / 2— V 4 = V 2 — V 4 、 第 2の選択波形が印加されたフ レームでは (一 V 3 — V 5 ) κ 2 +In the frame to which the first selected waveform is applied, the difference between the peak values of the positive pulse and the negative pulse is (V 2 + V 5) X 2 + (V 2 -V 5 ) / 2—V 4 = V 2 — V 4, (1 V 3 — V 5) κ 2 +
(― V 3 + V 5 ) / 2 + V 1 = V J — V 3 となり, V I = V 4 、 V 2 = V 3 であるから互いに相殺される。 すなわち, 未実施例でも 2フ レーム とに画 素に印加される電圧パルスの平均値が零となリ、 液晶素子の劣化を防止する こ とができる。 なお 画素 8 1 1 1の光透過特性を第 6 2図 6 24に示す。 実 施 例 2 2 (−V 3 + V 5) / 2 + V 1 = VJ−V 3 , and are mutually offset because VI = V 4 and V 2 = V 3 . That is, the average value of the voltage pulses applied to the pixels in two frames is zero even in the non-embodiment, and the deterioration of the liquid crystal element can be prevented. FIG. 62 shows the light transmission characteristics of the pixel 811. Example 2 2
未実施例も、 第 8 2図 ( a ) 及び ( b ) に示すような、 強誘電性液晶のし きい値特性を利用した駆動方法である。  The drive method using the threshold value characteristics of the ferroelectric liquid crystal as shown in FIGS. 82 (a) and (b) is also used in the non-example.
第 6 3図は、 本実施例における駆動波形を実現する具体的回路を示すブロ 5 ッ ク図であり , 第 8 1 図は、 この回路で作られた駆動波形を液晶素子に印加 するための駆動回路の一例を示す図である。 6 3 1 はフ レーム信号、 6 3 2 は檫性切り換え信号でぁリ、 これらの信号にょ リ , ト ラ ンス ミ ツ シ 3 ンゲー ト 1 1 1 をス イ ッチングして V , , — V a , — V 7 , — V 8 の電圧を切リ换 え、 走查電接の選択波形 6 3 4を作リ, 一 V 3 、 - V 6 の電圧を切り換えて !0 走査電極の非選択波形 6 3 5 を作る。 また、 接性切り換え信号 6 3 2 と ク ロ ッ ク ノ、リレス 6 3 3 とにょリ、 一 V 2 、 — V 3 、 — V 4 , ― V 5 、 — V 6 > 一 V 7 の電圧を切リ換えて信号電植のオン波形 6 3 6及びオフ波形 6 3 7 を作 る。 第 6 4図に, これらの信号波形のタ イ ミ ングチャー ト を示す。 FIG. 63 is a block diagram showing a specific circuit for realizing the drive waveform in the present embodiment, and FIG. 81 is a block diagram for applying the drive waveform generated by this circuit to a liquid crystal element. FIG. 3 is a diagram illustrating an example of a drive circuit. 6 3 1 frame signal, 6 3 2 § Li in檫性switching signals, these signals Nyo Li, preparative lance Mi Tsu sheet 3 Nge sheet 1 1 1 and S w etching V,, - V a , — V 7, — V 8 voltage is switched, and the selection waveform of scanning electrode 6 3 4 is created. One V 3 , -V 6 voltage is switched and! 0 scanning electrode non-selection waveform Make 6 3 5 Further, contact resistance switching signal 6 3 2 and click lock Roh, Riresu 6 3 3 Tonyo Li one V 2, - V 3, - V 4, - V 5, - the voltage of V 6> one V 7 Switch to create ON waveform 636 and OFF waveform 637 of the signal plant. Figure 64 shows the timing chart of these signal waveforms.
これらの信号波形を第 8 1 図に示す ¾動回路に印加し、 走査電桎及び信号 iB 電極に印加する艇動波形を作る。 すなわち, 選択波形 6 3 4 を 8 1 0 1 及び  These signal waveforms are applied to the driving circuit shown in Fig. 81 to create a boat motion waveform to be applied to the scanning fence and the signal iB electrode. That is, the selected waveform 6 3 4 is converted into 8 1 0 1 and
8 1 0 2 に, 非選択波形 6 3 5 を 8 1 0 3 に、 オン波形 6 3 6 を 8 1 0 5 に オフ波形 6 3 7 を 8 1 0 4にそれぞれ印加する。  Apply the unselected waveform 6365 to 8103, the on waveform 6336 to 8105, and the off waveform 637 to 8104.
第 8 1 図において、 1 2 1 は走査電¾データでこれと走査電極シフ ト ク ロ ッ ク 1 2 0 によつて走查罨植側シフ ト レジスタ 1 1 5 に転送し、 一走査電極0 ずつ順次選択信号を出力して ト ラ ンス ミ ツシ a ンゲー ト 1 1 1 をス ィ ッチン グし, 走查電 S駆動波形を 8 1 0 7 に印加する。 また 1 1 7 は信号電極デー タで、 これを信号電極シフ ト ク ロ ッ ク 1 1 8によつて信号髦栩側シフ ト レジ スタ 1 1 4 に耘送し、 一走査電極分のデータを転送したらラ ッチ信号 1 1 9 によリ ラ ッチ回路 1 1 6 にラ ッチする。 このラ ッチ回路 1 1 6の出力にょリ5 ト ラ ンス ミ ツ シ a ンゲー ト 1 1 1 をス イ ッチングし, オン波形 6 3 6及びォ フ波形 6 3 7を切り換えて信号電槿駆動波形を 8 1 0 6に印加する, 第 6 5 図に、 第 8 1図に示す走査罨接 8 1 09及び信号電槿 8 1 1 0に印加される 動波形と画素 8 1 1 1に印加される合成波形及び光透過特性を示す。 In FIG. 81, reference numeral 121 denotes scan electrode data, which is transferred to the scan compress side shift register 115 by scan electrode shift clock 120, and one scan electrode successively the door lance Mi Tsushi a Nge sheet 1 1 1 scan I production kitchen grayed outputs a selection signal, and applies the run查電S drive waveform 8 1 0 7 by. Reference numeral 117 denotes signal electrode data, which is fed to the signal filter side shift register 114 by the signal electrode shift clock 118, and data for one scanning electrode is sent. After the transfer, it is latched to the latch circuit 1 16 by the latch signal 1 19. The output of this latch circuit 116 is switched to the 5-transistor a-gate 11 1, and the on-waveform 6 3 6 Switch the waveform 637 to apply the signal generator drive waveform to 8106. Apply to the scanning connector 8109 and signal generator 8110 shown in Fig. 65 and Fig. 81 in Fig. 65. The dynamic waveform, the composite waveform applied to the pixels 811 and the light transmission characteristics are shown.
t |3 . t 23、 t 33及び t 43はそれぞれ 1 フ レーム周期、 t "、 t 21、 t 31 及び t 41はそれぞれ選択期間、 t l2 l t 22 , t 32及び t «はそれぞれ非選択 期間を示す。 また t 14、 t 24. t 34及び t 44はそれぞれ選択期間の前半に印 加されるバルスのパルス輻 t 15, t 25 t 35及び t 4Sはそれぞれ遘択期間 の後半に印加されるパルスのパルス幅を示し、 *実施例の場合は、 いずれも 等しいバルス幅となっている, さらに t 0 は前記 t ( t 25. t 35 , t 45 ;) の 1 Z2のバルス辐を示す。 t |. 3 t 23, t 33 and t 43 are respectively one frame period, t ", t 21, t 31 and t 41 are respectively selected period, t l2 l t 22, t 32 and t« unselected respectively shows a period of time. also applied to the second half of t 14, t 24. t 34 and t 44 Bals pulse congestion t 15 is to be marked pressure in the first half of each selection period, t 25 t 35 and t 4S respectively遘択period * In the case of the embodiment, the pulse width is equal to each other, and t 0 is the pulse width of 1 Z2 of the above t (t 2 5.t 35, t 45;). Is shown.
実旌例 2 1 と異なるのは、 走査電槿に印加される電圧を低くするために、 走查電槿に印加される電圧レペルを共通化したことと、 そのためにオン波形 及ぴオフ波形を、 選択波形に応じて変えた点にある *  The difference from the actual example 21 is that in order to lower the voltage applied to the scanning generator, the voltage level applied to the scanning generator is shared, and the ON and OFF waveforms are changed accordingly. At the point changed according to the selected waveform *
波高値 V , 〜Ve 及び Vmi 以下の条件を港足するように設定する。 Peak value V, set to Minatoashi the following conditions ~V e and Vmi.
V r = 0  V r = 0
(V , + VG ) > V s a t , (V, + V G )> V sat,
(V8 — V3 ) > I V s a t a I (V 8 — V 3 )> IV sata I
( V 7 — V 6 ) = ( V 4 + V s ) < V t h ,  (V 7 — V 6) = (V 4 + V s) <V th,
(V6 — V5 ) = (V3 — V2 ) < | V t h 2 I (V 6 — V 5 ) = (V 3 — V 2 ) <| V th 2 I
V t h 2i > ( V 7 —V 2 ) > V s a t n  V t h 2i> (V 7 —V 2)> V s a t n
| V t h 22 l > (V7 — V2 ) > | V s a t I2 | | V th 22 l> (V 7 — V 2 )> | V sat I2 |
( V m— V a ) = (V7 — V m) (V m- V a) = ( V 7 - V m)
走査電植 8 1 0 9には、 第 6 5図 6 5 1 に示すように、 選択期間は第丄の 選択波形として前半は一 Ve 、 後半は一 V 2 が、 第 2の選択波形と して前半 は V , 、 後半は一 V 7 が印加され、 非選択期間は一 V G 及び一 V3 が一 V6 — V 3 の顋も し くは一 V 3 、 — V 6 の順に印加される。 The scanning electron planting 8 1 0 9, as shown in 6 5 6 5 1, selection period half an V e as a selection waveform of the丄second half is one V 2, and the second selecting waveform In the first half, V, is applied in the second half, and one V 7 is applied. In the non-selection period, one V G and one V 3 are applied to one V 6 — V 3 or V 3 , — V 6 are applied in that order.
信号電極 8 1 1 0には, 第 6 5図 6 52に示すように, 第 1の選択波形が 印加されたフ レームでは、 オン波形と してまず一V 3 が、 その後パルス幅 t 0 の一 V 5 及び一 V 7 がー V 5 、 一 V 7 の順に印加され, オフ波形と して同 I; <— V 3 の後に、 一V? 、 — V 5 の順に印加される。 また第 2の選択波形 が印加されたフ レームでは、 オン波形と してまず一 ve が、 後半はパルス幅 t 0 の一 V4 及び一 V2 がー V2 、 — V 4 の順に印加され、 オフ波形と して 同じ く一 V 6 の後に、 一 V4 、 ― V 2 の順に印加される。 As shown in Fig. 652, in the signal electrode 811 10, as shown in Fig. 652, in the frame to which the first selected waveform is applied, one V3 is first set as the ON waveform, and then the pulse width t0 One V 5 and one V 7 are applied in the order of −V 5 , one V 7 , and as an off waveform, after I; <— V 3, one V? And — V 5. In the frame to which the second selected waveform is applied, 1 v e is applied as the ON waveform, and 1 V 4 and 1 V 2 with pulse width t 0 are applied in the order of −V 2 and — V 4 in the latter half. is, after the same Ku one V 6 as an off waveform, one V 4, - is applied in the order of V 2.
この時画素 8 1 1 1 に印加される合成波形は、 第 6 5図 6 5 3に示すよう に、 走查電接に第 1 の選択波形が印加されたフ レームでは, オンの場合まず (- V 8 + V 3 ) が印加された後、 前半の t o の波高値が (一 V2 + V 5 ) で後半の t。 の波髙値が (一 V2 + V 7 ) であるパルスが印加され、 オフの 場合は、 同じ く まず (一 V8 + V 3 ) が印加された後、 前半の t o の波高値 が (一 V 2 + V 7 ) で、 後半の t 0 の波高値が (一 V2 + V 5 ) であるパル スが印加される。 また第 2の選択波形が印加されたフ レームでは オンの場 合まず (V , + V 6 ) が印加された後、 前半の t 0 の波高値が (一 V 7 + VAt this time, as shown in Fig. 65, the composite waveform applied to the pixel 8111 is the first waveform when the first selected waveform is applied to the scanning electrode. -V 8 + V 3) is applied, the peak value of to in the first half is (1 V 2 + V 5 ) and t in the second half. When a pulse with a peak value of (1 V 2 + V 7) is applied and the pulse is off, first (1 V 8 + V 3) is applied, and then the peak value of to in the first half is ( One V 2 + V 7), and a pulse with a peak value of t 0 in the latter half of (1 V 2 + V 5) is applied. In the frame to which the second selected waveform is applied, when (V, + V 6) is applied first when it is on, the peak value of t 0 in the first half is (one V 7 + V
2 ) で後半の t 0 の波高値が (一 V 7 + V 4 ) であるパルスが印加され、 ォ フの場合同じ く (V ! + V 6 ) が印加された後、 前半の t 0 の波高値が (一 V 7 + V 4 ) で後半の t o の波高値が (一 V7 + V 2 ) であるパルスが印加 される。 非選択期間には 0 V、 (一 V e + V 7 ) 及び (一Ve + V 5 ) が印 加される。 2) In the second half, a pulse with a peak value of t 0 of (1 V 7 + V 4) is applied. In the case of off, a pulse of (V! + V 6 ) is applied as well, peak value pulse is the peak value of the second half of to in (one V 7 + V 4) is (one V 7 + V 2) is applied. 0 V, (1 V e + V 7) and (1 V e + V 5) are applied during the non-selection period.
本実施例による合成波形は、 実施例 2 1 と実質的に同じでぁリ, 同じよ う にオン, オフの選択ができると共に、 2フ レームごとに画素に印加される電 圧パルスの平均値が零となる。 なお、 画素 8 1 1 1の光透過特性を第 6 5図 6 54に示す。 実 施 例 2 3 The synthesized waveform according to the present embodiment is substantially the same as that of the embodiment 21 and can be selectively turned on and off in the same manner. In addition, the average value of the voltage pulse applied to the pixel every two frames is obtained. Becomes zero. FIG. 65 shows the light transmission characteristics of the pixel 8111. Example 2 3
*実施例も、 第 8 2図 (a ) 及び ( b ) に示すような強誘電性液晶のしき い値特性を利用した K動方法である。  * The embodiment is also a K-movement method using the threshold characteristics of ferroelectric liquid crystal as shown in FIGS. 82 (a) and (b).
第 6 6図は、 *実埯例における駆動波形を実現する具体的回路を示すプロ ック図でぁリ、 6 6 1はフ レーム信号で, 6 6 2は極性切り換え信号である。 また 6 6 4はフレーム信号 6 6 1の遅廷信号 6 6 5は接性切リ换ぇ信号 6 6 2の反転信号である。 これらの信号にょリ、 ト ラ ンス ミ ッ ショ ンゲート 1 1 1 をスイ ッチングして、 V t 、 V 2 、 — V 3 、 - V 4 の電圧を切リ換えて 6 6 6の奇数走査電槿選択波形と、 6 6 7の偶数走查電柽選択波形を作ってい る。 また、 ク ロ ッ クバルス 1 I 1 により ト ラ ンス ミ ツ シ s ンゲー ト 1 1 1 を スイ ッチングして、 V s 、 - V 5 の電圧を切り換えて信号電植のオン波形 6 6 8と信号電極オフ波形 6 6 9を作っている。 これらの波形のタイ ミ ングチ ヤートを第 6 7図に示す。 第 6 6図 6 6 6 、 6 6 7、 6 6 8 、 6 6 9の信号 を第 8 1図の駆動回路に入力し、 6 6 6は 8 1 0 1 と、 6 6 7は 8 1 0 2と 6 6 8は 8 1 0 5 と、 6 6 9は 8 1 ひ 4と、 8 1 0 3は 0 Vと、 それぞれ接 統する。 第 8 1図 1 2 1 は走查電桎データでこれを 1 2 0 のシフ トクロック によって 1 1 5 の走査電植側シフ ト レジスタに転送して一走査線ずつ順次選 択信号を出す。 この選択信号によって 1 1 1の ト ラ ンスミ ツシ s ンゲートを スイ ッチングして 8 0 1 7の奇数走査電 S波形や、 8 1 0 8の偶数走査電極 波形を作っている。 第 8 1図 1 1 7は、 售号罨 ¾データで、 これを 1 1 8の シフ ト クロックによって 1 1 4の信号 ¾接側シフ ト レシスタに転送し、 一走 查鎳分のデータを転送したときに 1 1 9のラッチ信号によつて 1 1 6のラッ チ回路にラッチする。 このラッチ回路の tfi力によって 1 1 1のト ラ ンスミ ツ シ s ンゲー ト をスイ ッチングして 8 1 0 4 と 8 1 0 5 の信号を切リ換えて 8 1 0 6の信号電接波形を作っている。 8 1 0 7 、 8 1 0 8 . 8 1 0 6の波形 及び、 この合成波形を第 6 8図の 6 8 1 、 6 8 2、 6 8 3、 6 8 4のタ イ ングチャー ト に示す。 この駆動波形の駆動条件を示すとつぎのようになるFIG. 66 is a block diagram showing a specific circuit for realizing the driving waveform in the actual example. Reference numeral 661 denotes a frame signal, and 662 denotes a polarity switching signal. Further, reference numeral 666 denotes a delayed signal 666 of the frame signal 661, and reference numeral 665 denotes an inverted signal of the contact release signal 662. These signals Nyori, the door lance mission-cane Ngeto 1 1 1 to Sui etching, V t, V 2, - V 3, - instead Setsuri the voltage V 4 and 6 6 6 odd-number scan Den槿The selection waveform and the 670 even-numbered running voltage selection waveform are created. In addition, the transmission gate 11 1 is switched by the clock pulse 1 I 1, and the voltage of V s , -V 5 is switched to switch the ON waveform 66 8 of the signal plant and the signal. The electrode off waveform 6 6 9 is being made. Fig. 67 shows the timing chart of these waveforms. Fig. 66 Input the signal of 66, 66, 66, 66, 69 to the drive circuit of Fig. 81, 6610 is 8101, and 667 is 81. 2 and 6688 are connected to 8105, 669 to 811, and 8103 to 0V. Fig. 8 1 12 1 shows the scanning fence data, which is transferred to the scanning implanting side shift register 115 by the 120 shift clock, and the selection signal is sequentially output one scanning line at a time. With this selection signal, the 1111 transmission gate is switched to produce an 817 odd scan electrode S waveform and an 8108 even scan electrode waveform. Fig. 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 7 で 罨 罨 罨 に よ っ て に よ っ て に よ っ て に よ っ て に よ っ て に よ っ て に よ っ て に よ っ て に よ っ て に よ っ て に よ っ て に よ っ て に よ っ て に よ っ てLatched in the latch circuit of 116 by the latch signal of 119. The transmission circuit of 111 is switched by the tfi force of this latch circuit, and the signal of 8104 and 8105 is switched to change the signal contact waveform of 8106. Making 8 1 0 7, 8 1 0 8 .8 1 6 6 Waveform The synthesized waveforms are shown in the timing charts of 681, 682, 683, and 684 in FIG. The driving conditions of this driving waveform are as follows.
( V , + V 5 ) > V s a 21 ( V 2 + V 5 ) V s a t 1 I(V, + V 5)> V sa 21 (V 2 + V 5) V sa t 1 I
( V 2 + V 5 ) < V t h 21 V V > I V s a 12(V 2 + V 5) <V th 21 V V> I V s a 12
— V a — V V t h 22 V V V s a 22— V a — V V t h 22 V V V s a 22
V 5 < V h 一 V < I V t h V 5 <V h one V <I V t h
V = I — V V = I — V  V = I — V V = I — V
1 I t , e = t 1 7  1 I t, e = t 1 7
! o 第 8 1 図 8 1 1 1 の画素について液晶素子の動作を説明すると、 第 6 8図 t 04の間が奇数フ レームの直前に印加される消去パルスで、 I 一 V 4 - V 5! O About 8 1 pixel 8 1 1 1 illustrating the operation of the liquid crystal element, an erase pulse between the first 6 8 Fig t 04 is applied immediately before the odd frame, I one V 4 - V 5
I > I V s a t 22 I の罨圧パルスを印加して液晶素子の前のメ モ リー状態を 消してオフ状態と し、 t Hの間が奇数フ レームの選択期問で、 信号電極に印 加される波形がオン波形であるかオフ波形であるかによって、 走査電極波形 & との合成波形が、 第 8 2図の 8 2 1 で示す波形か、 8 2 2で示す波形かを選 択し、 8 2 1 で示す波形であれば液晶素子はオン状態となリ、 8 2 2 で示す 波形であればオフ状態のままとなる。 そ して、 非選択期間 t | 2の間は しきい 電圧よ り絶対値の小さな V 5 、 - V 5 の罨圧しか液晶素子に印加されないの で、 t πの間に書き込まれた状態を保持する。 また、 選択期間 t n中に液晶0 素子にデータを書き込んでいるときに, それと同時に, 次に選択される液晶 素子には、 6 8 2 で示すように消去バルスが印加されて前のメモリ一状態を 消去している。 次に、 偶数フ レームについて見ると、 t "が偶数フ レーム直 前に印加される消去パルスで、 奇数フ レーム直前の t 04のとき とは逆極性の パルスで ( V , + V 5 ) > V s a t 21の電圧パルスを印加して液晶素子の前5 のメ モ リー状態を消してオン状態と し、 t 21の間が選択期間で、 信号電椽に 印加される波形がオン波形であるか、 オフ波形であるかによつて走査電極波 形との合成波形が、 第 8 2図の 8 2 1 で示す波形か、 8 2 2で示す波形かを 選択し、 8 2 1 で示す波形であれば液晶素子はオフ状態となリ、 8 2 2 で示 す波形であればオン状態のままとなる。 そして、 非選択期間 t 22の間ほ、 奇 数フ レームのときと同様で t の藺に書き込まれた状態を保持する。 また、 選択期間 t 21中に液晶素子にデータを書き込んでいるときに、 それと同時に 次に選択される液晶素子には、 6 8 2 で示すよラに消去パルスが印加されて 前のメモ リー状態を消去している。 このよラに、 液晶素子にデータを書き込 むのと同睁に、 次に選択される液晶素子には消去パルスを印加することによ つて選択期間を従来の半分とすることができる。 また、 この実施例では、 液 晶素子を選択する直前に消去パルスを印加しているが、 この消去パルスは、 選択期 Wの直前に出す必要はなく、 選択期間よリある時間前に消去パルスを 印加しても良い。 Apply a compress pulse of I> IV sat 22 I to erase the memory state in front of the liquid crystal element and turn it off, and apply an odd-numbered frame during t H to the signal electrode. Select whether the combined waveform with the scan electrode waveform & is the waveform shown in Figure 21 or the waveform shown in Figure 22 depending on whether the waveform to be applied is the ON waveform or the OFF waveform. The liquid crystal element is turned on when the waveform is indicated by 821, and remains off when the waveform is indicated by 8221. Their to, non-selection period t | between 2 Do V 5 small absolute value Ri by the threshold voltage, -罨圧of V 5 only than not applied to the liquid crystal element, a state written during t [pi Hold. Also, while data is being written to the liquid crystal 0 element during the selection period tn, at the same time, an erase pulse is applied to the next selected liquid crystal element as indicated by 682, and the previous memory Is being erased. Next, looking at the even-numbered frame, the erase pulse t "is applied to the even frame immediately before, a reverse polarity pulse as in the odd frame immediately preceding t 04 (V, + V 5 )> is turned on and off TIP Lee state before 5 of the liquid crystal element by applying a voltage pulse V sat 21, in the selection period between t 21, the signal electric椽 Depending on whether the applied waveform is an ON waveform or an OFF waveform, whether the composite waveform with the scanning electrode waveform is the waveform indicated by 8 21 or 8 22 in FIG. The liquid crystal element is turned off if the waveform is indicated by 8221, and remains on if the waveform is indicated by 8221. Then, during the non-selection period t 22 ho, to hold the state of being written to have the same a t 2I and when the odd frames. Further, when writing data to the liquid crystal element during the selection period t 21, at the same time the next liquid crystal element to be selected, the pre-erase pulse is applied to by La indicated by 6 8 2 memory state Has been erased. As described above, the selection period can be halved by applying an erasing pulse to the next selected liquid crystal element as well as writing data to the liquid crystal element. In this embodiment, the erasing pulse is applied immediately before the selection of the liquid crystal element. However, it is not necessary to issue the erasing pulse immediately before the selection period W. May be applied.
実 施 例 2 4  Example 2 4
*実施例も、 第 8 2図 ( a ) 及び ( b ) に示すような強誘電性液晶のしき い値特性を利用した駆動方法である  * The embodiment is also a driving method using the threshold characteristics of ferroelectric liquid crystal as shown in Fig. 82 (a) and (b).
第 6 9図は、 术実施例における ¾動波形を実現する具体的回路を示すブロ ッ ク図でぁリ、 6 9 1 はフ レーム信号で 6 9 2は極性切リ换ぇ信号である。 この 6 9 1 , 6 9 2の信号によって ト ラ ンス ミ ツ シ 3 ンゲー ト 1 1 1 をスィ ツ チングして t V , 、 — V 2 、 — V 7 、 — V 8 、 — V 3 、 — V β の電圧を切 リ換えて奇数走査電槿選択波形 6 9 4 と偶数走查電極波形6 9 5 と走查電棰 非選択波形 6 9 6 を作っている。 また、 6 9 1 , 6 9 2及びク ロ ッ クバルス 6 9 3 の信号によって ト ラ ンス ミ ツ シ ;! ンゲー ト 1 1 1 をスイ ッチングして — V 2 、 — V 4 、 - V 5 、 — V 7 の電圧を切り換えて信号電極オン波形 6 9 7 と信号電棰オフ波形 6 9 8を作っている。 これらの波形のタ イ ミ ングチャー ト を第 7 0図に示す。 第 7 0図 6 9 4, 6 9 5 , 6 9 6 , 6 9 7 , 6 9 8の各波形を第 8 1図の駆動回路に入力し、 6 9 4は 8 1 0 1 と、 6 9 5は 8 1 0 2 と、 6 9 6は 8 1 0 3 と、 6 9 7は 8 1 0 5 と、 6 9 8は 8 1 0 5 と、 それぞれ接統する。 そ して > 第 8 1図 1 1 7、 1 1 8、 1 1 9、 1 2 0、 1 2 1 の各信号によって、 実施例 2 3 と同 様の動作で、 第 7 1図 7 1 1の奇数走査電極波形と 7 1 2の偶数走查電接 波形と、 7 1 3の信号電極波形を作り、 液晶素子に印加する。 その合成波形 を 7 1 4に示す。 この駆動波形の蹈動条件を示すと次のようになる。 FIG. 69 is a block diagram showing a specific circuit for realizing the driving waveform in the embodiment, where 691 is a frame signal and 692 is a polarity switching signal. The 6 9 1, 6 9 2 preparative lance Mi Tsu Shi 3 by a signal Nge sheet 1 1 1 and sweep rate Tsu quenching t V,, - V 2, - V 7, - V 8, - V 3, - instead switching Li a voltage of V beta are making odd scan Den槿selecting waveform 6 9 4 and the even Hashi查electrode waveform 6 9 5 and run查電棰oFF signal 6 9 6. In addition, the signals of 691 and 692 and the clock valve 693 are used to control the transmis- sion. Gate 1 1 1 is switched to switch the voltage of —V 2, —V 4, —V 5, —V 7 to create the signal electrode ON waveform 697 and the signal electrode OFF waveform 698 . The timing chart of these waveforms is shown in FIG. Fig. 70 Input each waveform of 694, 695, 696, 697, 698 to the drive circuit of Fig. 81, and 694 is 8101 and 6 9 5 is 8 102, 6 96 is 8 103, 6 97 is 8 105, and 6 98 is 8 105. FIG. 8 1 FIG. 11 1, 11 8, 11 9, 12 0, 12 1 By the respective signals, the same operation as in the embodiment 23 is performed. The odd-numbered scan electrode waveform, the 712 even scan electrode contact waveform, and the 713 signal electrode waveform are created and applied to the liquid crystal element. The composite waveform is shown in 714. The driving condition of this drive waveform is as follows.
V , = 0  V, = 0
— V s + V 2 I > I V s a t 22 — V s + V 2 I> IV sat 22
(― V 2 + V 7 ) > V s a t υ  (− V 2 + V 7)> Vsat t
(― V 2 + V 7 ) < V t h 2!  (− V 2 + V 7) <V th 2!
( V , + V 7 ) > V s a t 2,  (V, + V 7)> V s at 2,
— V 7 + V V s a t 12  — V 7 + V V s a t 12
I— V 7 + V 2 I < I V t h 22 I  I— V 7 + V 2 I <I V t h 22 I
(- V 2 + V 3 ) < V t h ,  (-V 2 + V 3) <V t h,
I— V 4 + V 3 I < I V t h 2 I  I— V 4 + V 3 I <I V th 2 I
(― V 2 + V 3 ) = (― V 5 + V β )  (-V 2 + V 3) = (-V 5 + V β)
(- V 4 + V 3 ) = (- V 7 + V G )  (-V 4 + V 3) = (-V 7 + V G)
(― V 2 + V m ) = (― V m + V 7 )  (-V 2 + V m) = (-V m + V 7)
14 = t  14 = t
t 16 = t 17  t 16 = t 17
( V 8 -V 3 ) = ( V 6 -V , )  (V 8 -V 3) = (V 6 -V,)
(V 6 -V 2 ) = (V 7 -V 3 ) (V 6 -V 2 ) = (V 7 -V 3 )
第 8 1図 8 1 1 の画素について液晶素子の動作を説明すると、 第 7 図 (B4) t 04の間が奇数フ レームの直前に印加される消去バルスで、 7 1 1 の走查罨 植波形と 7 1 3の信号電槿波形の合成罨圧で常に I一 V 8 + V 2 I > I V s a t 22 I の罨圧パルスを印加して液晶素子の前のメモリー状態を消去してォ フ状態と し、 t uの簡が奇数フ レームの選択期間で、 倭号電極に印加される 波形がオン波形であるか、 オフ波形であるかによって 走查電 S波形との合 成電圧が、 第 8 2図の 8 2 1 で示す波形か、 8 2 2 で示す波形かを選択し、 8 2 1 で示す被形であれば、 液晶素子はオン状態となリ、 8 2 2で示す波形 であればオフ状態のままとなる。 そして、 非選択期間は走查電 S波形 7 1 1 は、 一 V 3 と一 V 6 の電圧が交互に印加されて、 7 1 3の信号電檁波形との 合成波形でほ、 7 1 4で示すように常にしきい電圧より絶対値の小さな電圧 しか液晶素子に印加ざれないため t nの間に書き込まれた状態を保持する。 また、 選択期間 t H中に液晶素子にデータを書き込んでいる時に、 それと 同時に次に選択される液晶素子には、 7 1 2 で示す走査電植波形が印加され ているため、 t 04、 t 14の間とは逆槿性の消去パルスが印加されて前のメモ リー状態を消去してオン状態と している。 次に、 偁数フ L ^一ムについて見る と、 直前の t 14の間が消去パルスで、 奇数フ レーム直前の t 04の時とは逆極 性のパルスで、 ( V , + V 7 ) > V s a t 2|の電圧パルスを印加して液晶素 子の前のメモリー状態を消去してオン妆態と し、 t 21の間が選択期間で、 信 号電接に印加される波形がォン波形であるか、 オフ波形であるかによって、 走査電極波形との合成電圧がでい 8 2図の 8 2 1 で示す波形か 8 2 2で示す 波形かを選択し、 8 2 1 で示す波形であれば液晶素子はオフ状態となリ、 8 2 2で示す波形であればオン状態のままとなる。 そして、 非選択期間は、 奇 数フ レームと同様で t 21の間に書き込まれた状態を保持する。 また > 選択期 間 t 21中に液晶素子にデータを書き込んでいる時に、 それと同時に、 次に選 択される液晶素子ほ、 7 1 2 で示す走查電槿波形が印加されているため、 t l4の間とは逆極性の消去パルスが印加されて前のメモリ一状態を消去してォ フ状態と している。 このように、 液晶素子にデータを書き込むのと同時に、 次に選択される液晶素子には消去パルスを印加し, しかも > 奇数番目に選択 される液晶素子と、 偶数番目に選択される液晶素子では、 印加する消去バル スと選択パルスとの極性が逆であるこ とによつて選択期間を従来の半分とす るこ とができる。 また、 走査竜桎に印加する電圧を低くすることができる駆 勳方法である。 この実施例では、 液晶素子を選択する直前に消去パルスを印 加しているがこの消去パルスは、 選択期間の直前に出す必要はな く 、 選択期 間よ リ ある時間前に消去バルスを印加しても良い。 FIG. 8 1 The operation of the liquid crystal element for the pixel of FIG. (B4) t erase Bals that between 04 is applied immediately before the odd frame, 7 1 1 run查罨planting waveform and 7 1 3 always I one signal conductive槿波shaped synthetic罨圧of V 8 + V 2 I> IV sat 22 I compress pulse applied to erase the memory state in front of the liquid crystal element to turn it off, and tu is applied to the Yamago electrode during the odd frame selection period Selects whether the combined voltage with the scanning and S waveforms is the waveform indicated by 821 or 8222 in Fig. 82, depending on whether the output waveform is the ON waveform or the OFF waveform. However, if the shape is represented by 8221, the liquid crystal element is turned on, and if the waveform is represented by 8221, the liquid crystal element remains off. During the non-selection period, the scanning waveform S 711 is a composite waveform of the signal voltage waveform of 7 13 and the voltage of 1 V 3 and 1 V 6 alternately applied, and As shown by, only the voltage whose absolute value is smaller than the threshold voltage is always applied to the liquid crystal element, so that the written state is maintained during t n . Also, while data is being written to the liquid crystal element during the selection period t H, the scanning electric plant waveform indicated by 7 12 is applied to the next selected liquid crystal element at the same time, so that t 04 and t 04 During the period between 14, a reverse-geometry erasing pulse is applied to erase the previous memory state and turn it on. Next, looking at the number frame L ^ 1, the erase pulse during the immediately preceding t 14 is a pulse of the opposite polarity to that at t 04 immediately before the odd frame, and (V, + V 7) > V sat 2 | applying a voltage pulse is turned on妆態erase the previous memory state of the liquid crystal element, in the selection period between t 21, the waveform applied to the signal conductive contact O Select the waveform indicated by 821 or 822 in Fig. 8 2 depending on whether the waveform is the scan waveform or the off waveform, and indicated by 821 If the waveform is a waveform, the liquid crystal element is turned off, and if the waveform is indicated by 822, the liquid crystal element is kept on. Then, the non-selection period, holds the written state between t 21 similar to the odd frames. Further> When the selected Period t 21 is writing data to the liquid crystal element, at the same time, then ho liquid crystal element is selected, 7 1 for 2 run indicated by查電槿波form is applied, t An erase pulse having a polarity opposite to that during l4 is applied, and the previous memory state is erased and the memory is turned off. As described above, at the same time as writing data to the liquid crystal element, an erasing pulse is applied to the liquid crystal element selected next, and the odd-numbered liquid crystal element and the even-numbered liquid crystal element Since the polarity of the applied erase pulse and that of the selection pulse are opposite to each other, the selection period can be reduced to half the conventional period. It is also a driving method that can reduce the voltage applied to the scanning flute. In this embodiment, the erasing pulse is applied immediately before selecting the liquid crystal element. However, the erasing pulse does not need to be issued immediately before the selection period, and the erasing pulse is applied some time before the selection period. You may.
実 施 例 2 5  Example 2 5
第 7 2図は、 本実施例における駆動波形を実現する駆動的回路を示すブ CI ッ ク図である。 7 2 1はフ レーム信号で、 822はク ロ ッ ク信号である。 こ の 72 1 , 7 2 2の信号によって ト ラ ンス ミ ツ 、ン 3 ンゲー ト 1 1 1 を ス イ ツ チ ングして、 V , 、 V2 、 - V 3 , - V 4 の電圧を切り換えて走査電極選択 波形 7 2 5を作っている。 また、 V 5 、 - V 5 の電圧を切り換えて信号電毪 オン波形 7 2 6 と信号電 Sオフ波形 7 2 7を作っている。 これらの波形のタ イ ミ ングチャー ト を第 7 3図に示す。 第 7 3図 7 2 5、 7 2 6、 7 2 7の信 号を第 8 1 図の駆動回路に入力して、 7 2 5は 8 1 0 1、 8 1 0 2 と、 8 2 6は 8 1 0 5 と、 7 2 7は 8 1 04 と、 8 1 0 3は 0 Vと、 それぞれ接続す る。 第 8 1図 1 2 1は走査電極データで、 これをシフ ト ク ロ ッ ク 1 2 0によ つて走查電 Sシフ ト レジスタ 1 1 5に転送して > 一走査線ずつ順次信号を出 す。 この選択信号によって ト ラ ンス ミ ツ ショ ンゲー ト 1 1 1 をス ィ ッ チング して 8 1 0 7の走查電槿波形を作っている。 第 8 1 図 1 1 7は信号電極側デ ータで, これをシフ ト ク ロ ッ ク 1 1 8によって信号電植側シフ ト レジスタ 1FIG. 72 is a block diagram showing a driving circuit for realizing a driving waveform in the present embodiment. 721 is a frame signal, and 822 is a clock signal. This 72 1, 7 2 2 signals by preparative lance Mi Tsu, down 3 Nge sheet 1 1 1 and S w Tsu switch ing a, V,, V 2, - switching of V 4 voltage - V 3, Scan electrode selection waveform 7 25 Also, V 5, - by switching the voltage of V 5 are making signal Den毪on waveform 7 2 6 and the signal electric S-off waveform 7 2 7. Fig. 73 shows the timing chart of these waveforms. Figure 7 3 Input the signals of 7 2 5, 7 2 6 and 7 2 7 to the drive circuit of Figure 8 1, and 7 2 5 is 8 10 1 and 8 10 2 and 8 2 6 is Connect 8105, 7277 to 8104, and 8103 to 0V. Fig. 8 1 Fig. 12 1 is the scan electrode data, which is transferred to the scan line S shift register 115 by shift clock 120 and> sequentially outputs signals one scan line at a time. You. With this selection signal, the transmission mission gate 111 is switched to generate an 8107 scanning waveform. Fig. 81 Figure 17 shows data on the signal electrode side, which is shifted by the shift clock 118 to the signal plant side shift register 1.
4に転送し、 一走査線分のデータを転送した時に 1 1 9のラ ッチ信号によ つて 1 1 6のラ ッチ回路にラ ッチする。 このラ ッチ 力によって 1 1 1 の ト ラ ンス ミ ッ シ ョ ンゲー ト をスイ ッチングして、 8 1 0 , 8 1 ひ 5の信号を 切リ换えて 8 1 0 6の信号電極波形を作っている。 8 1 0 7, 8 1 0 6の波 形及びこの合成波形を第 7 4囟 7 4 1 , 7 4 2 , 7 4 3のタ イ ミ ングチヤ一 ト に示す。 この駆動波形の駆動条件を示すと次のようになる。 4 and when one scan line of data is transferred, the Latch circuit 1 16 With this latch force, the 1111 transmission gate is switched and the 8110 and 811 signals are switched to form the 8106 signal electrode waveform. ing. The waveforms of 807 and 816 and their combined waveforms are shown in the timing charts of 74 囟 741, 742, and 743. The driving conditions of this driving waveform are as follows.
V I > V s a t 1  V I> V s a t 1
(V2 + V5 ) > V s a t , (V 2 + V 5 )> V sat,
C V 2 -V 5 ) < V t , CV 2 -V 5) <V t,
V 3 — V 5 I > I V s a t  V 3 — V 5 I> I V s a t
V 3 + V > I V t h  V 3 + V> I V t h
— V V s a t  — V V s a t
V = I— v  V = I— v
V = I— V  V = I— V
V 5 < V t h i  V 5 <V t h i
I— 5 | < | V t 2 I I— 5 | <| V t 2 I
t = |5 = t 16 t = | 5 = t 16
第 8 1 図 8 1 1 1 の画素について液晶素子の動作を説明すると、 第 7 4図 t nの間が奇数フ レームの選択期間であり。 t 14の間が消去バルスで、 負の 飽和電圧より絶対値の大きな電圧パルスが印加されて液晶素子は前のメモ リ 一状態が消去されてオフ状態となる。 そ して、 t 15の間が書き込みパルスで, 信号電極波形がオン波形であれば、 液晶素子に印加される電圧は正の飽和電 圧以上となリ 液晶素子はオン状態となり、 信号電極波形がオフ波形であれ ば、 液晶素子に印加される電圧は正のしきい電圧以下となり、 液晶素子はォ フ状態のままとなる。 ¾して、 t 16の間に走査電極に印加する電圧は 0 V と する。 また非選択期間 t は しきい電圧より絶対値の小さな V 5 、 一 V 5 (6? の電圧しか液晶素子に印加されないので、 t ISの蘭に書き込まれた状態を保 持する。 About 8 1 pixel 8 1 1 1 illustrating the operation of the liquid crystal element, between the first 7 4 FIG t n is a selectable period of odd frames. between t 14 is erased BALS, the liquid crystal element is turned off is erased before the memory one-state high voltage pulse of the absolute value is applied from the negative saturation voltage. Their to, during t 15 in the write pulse, if the signal electrode waveform is on waveform, the voltage applied to the liquid crystal element is re liquid crystal element, such as a positive saturation current on pressure or is turned on, the signal electrode waveform If is an off waveform, the voltage applied to the liquid crystal element becomes equal to or lower than the positive threshold voltage, and the liquid crystal element remains off. Then, the voltage applied to the scan electrode during t16 is 0 V. The non-selection period t is Do V 5 small absolute value than the threshold voltage, single V 5 (Since only the voltage of 6? Is applied to the liquid crystal element, the state written in t IS is maintained.
次に、 偶数フ レームの選択期簡について見ると、 t 2,の闍が選択期閱で、 t 24の間が消去パルスであリ、 奇数フ レームの時とは逆接性の電圧の正の飽 和電圧以上の電圧パルスが印加されて液晶素子はオン状態となる。 そ して、 t 25の間が書き込みバルスで、 信号電極波形がオン波形であれば、 液晶素子 に印加される電圧は、 負のしきい電圧より絶対値が小さ く なリ、 液晶素子は 消去されたままのオン状態となリ、 信号電接波形がオフ波形であれば、 液晶 素子に印加される電圧は、 負の飽和電圧よ リ絶対値の大きな電圧パルスが印 加されて、 液晶素子は、 オフ状態となる。 そ して、 t 2Sの間に走查霄棰に印 加する電圧は 0 V とする。 Next, looking at the selection period of the even frame, the case of t 2 , the selection period, the erasing pulse during t 24 , and the positive voltage of the reverse connection voltage at the time of the odd frame When a voltage pulse higher than the saturation voltage is applied, the liquid crystal element is turned on. Their to, during t 25 is not write BALS, if the signal electrode waveform is on waveform, the voltage applied to the liquid crystal element, the Li, liquid crystal elements, such absolute value is rather smaller than the negative threshold voltage erase If the signal contact waveform remains off and the signal contact waveform is the off waveform, the voltage applied to the liquid crystal element is applied with a voltage pulse whose absolute value is larger than the negative saturation voltage. Is turned off. Their, the voltage of indicia pressurized run查霄棰to between t 2S is a 0 V.
また, 非選択期間 t 22の ¾は、 奇数フ レームの時と同様で t 2Sの闐に書き 込まれた状態を保持する。 このような艇動にすることによって非選択期間に 印加される電圧パルスのパルス幅が常に t "の幅で一定でぁリ 、 コ ン ト ラ ス ト むらがな 〈 なる。 Further, ¾ of the non-selection period t 22 holds the state of being written to闐similar a t 2S in the case of an odd frame. With such a boat motion, the pulse width of the voltage pulse applied during the non-selection period is always constant at the width of t ", and the contrast becomes uniform.
実 施 例 2 6  Example 2 6
第 7 5図は, *実施例における駆動波形を実現する具体的回路を示すプロ ッ ク図である。 7 5 1 はフ レーム信号で、 7 5 2 はク ロッ ク信号である。 こ の 7 5 1 、 7 5 2の信号によって ト ラ ンス ミ ツ シ s ンゲー ト 1 1 1 をス イ ツ チ ング して ' V , 、 — V 2 、 — V 3 、 ― V e 、 — V 7 、 — V 8 の電圧を切リ 換えて走査電極選択波形 7 5 5 を作リ、 - V a 、 - V 6 の電圧を切り換えて 走査電極非選択波形 7 5 6 を作っている。 また、 一 V 2 、 - V 3 、 - V 4 、 一 V ft . — V G 、 - V 7 の電圧を切り換えて信号竜極オン波形 7 5 7 と信号 電極オフ波形 7 5 8を作っている。 これらの波形のタ イ ミ ングチヤ一 ト を第 7 6図に示す。 第 7 6図 7 5 5 、 7 5 6 . 7 5 7、 7 5 8の信号を第 8 1 図 の堪動回路に入力し、 7 5 5は 8 1 0 1 , 8 1 0 2 と、 7 5 6は 8 1 0 3 と、 7 5 7は 8 1 0 5 と、 7 5 8は 8 1 0 4と、 それぞれ接統する。 そ して、 第 8 1 図 1 1 7 > 1 1 8、 1 1 9、 1 2 0、 1 2 1 の各信号によって、 実施例 2 5 と同様の動作で、 第 7 7図 7 7 1の走査電極波形と、 7 7 2の信号電極 波形を作 液晶素子に印加し、 その合成波形を 7 7 3 に示す。 この駆動波形 の鹿動条件を示すと次のようになる。 Fig. 75 is a block diagram showing a specific circuit for realizing the drive waveform in the * embodiment. 751 is a frame signal, and 752 is a clock signal. This 7 5 1, 7 5 by 2 signals the door lance Mi Tsu sheet s Nge sheet 1 1 1 S w Tsu switch ring to 'V,, - V 2, - V 3, - V e, - V The scan electrode selection waveform 7 55 is created by switching the voltage of 7 and — V 8, and the scan electrode non-selection waveform 7 56 is created by switching the voltages of -V a and -V 6. In addition, the voltage of one V 2 , -V 3 , -V 4 , one V ft .-V G , -V 7 is switched to create a signal dragon pole on waveform 757 and a signal electrode off waveform 758. . Fig. 76 shows the timing chart of these waveforms. Fig. 76 Fig. 75 5, 7 56. 7 5 5 is 8 1 0 1, 8 1 0 2, 7 5 6 is 8 10 3, 7 5 7 is 8 10 5 and 7 5 8 is 8 10 4 and each other. Then, the same operation as that of the embodiment 25 is performed by the signals of FIG. 8 1 1 1 7> 1 1 8, 1 1 1 9, 1 2 0, 1 2 1, and FIG. A scan electrode waveform and a 7772 signal electrode waveform were applied to the liquid crystal element, and the composite waveform is shown in 773. The following shows the fluctuating conditions of this drive waveform.
V , = 0  V, = 0
\— V 8 + V 3 | > | V s a t 2 I \ — V 8 + V 3 |> | V sat 2 I
(― V 2 + V 5 ) < V t h ,  (− V 2 + V 5) <V th,
C— V 2 + V 7 ) > V s a t , C— V 2 + V 7 )> V sat,
C V , + V 6 ) > V s a t ,  C V, + V 6)> V s at,
I—V 7 + V a Γ > I V s a t 2 I  I—V 7 + V a Γ> I V s a t 2 I
J— V 7 + V 3 l < | V t h 2 I J— V 7 + V 3 l <| V th 2 I
(— V 2 + V 3 ) < V t h , (— V 2 + V 3 ) <V th,
I一 V 4 + V 3 | ぐ | V t h 2 | I one V 4 + V 3 | ingredients | V th 2 |
C— V 2 + V 3 ) = C— V 5 + V 6 )  C— V 2 + V 3) = C— V 5 + V 6)
(- V 4 + V 3 ) = (- V 7 + V 6 )  (-V 4 + V 3) = (-V 7 + V 6)
(― V 2 + V m ) = (― V m + V 7 )  (-V 2 + V m) = (-V m + V 7)
14 = t 15 = L |6  14 = t 15 = L | 6
( V 8 — V3 ) = (Ve ― V , ) (V 8 — V 3 ) = (Ve — V,)
(V G -V 2 ) = (V 7 -V 3 ) (V G -V 2 ) = (V 7 -V 3 )
第 8 1 図 8 1 1 1 の画素について液晶素子の動作を説明すると、 第 7 7図 t uの間が奇数フ レームの選択期間であリ、 t 14の間が消去パルスで、 負の 飽和電圧よリ絶対値の大きな電圧パルスが印加されて液晶素子は前のメモリ 一状態が消去されてオフ状態となる。 そ して, t の間が書き込みパルスで ( 6 g ) 信号電棰波形がォン波形であれば、 液晶素子に印加される電圧は正の飽和電 圧以上となり、 液晶素子はオン状態となリ 、 信号電極波形がオフ波形であれ ぱ、 液晶素子に印加される電圧は正のしきい電圧以下となリ、 液晶素子はォ フ状態のままとなる。 そ して、 t 16の間に走査電極に印加する電圧は一 V 3 とする。 また、 非選択期間 t 12は、 走査 波形 7 7 1 は一 V 3 、 - V 6 の 電圧が交互に印加されて、 7 7 2 との合成波形では、 7 7 3 で示すよラに常 に しきい電圧よ リ絶対値の小さな電圧しか液晶素子に印加されないため t ,5 の間の状態を保持する。 次に、 偶数フ レームについて見ると、 t 21の間が遺 択期間で、 t 24の間が消去バルスでぁ リ、 奇数フ レームのときとは逆極性の 正の飽和電圧以上の電圧パルスが印加されて液晶素子はオン状態となる。 そ して、 t 25の間が書き込みバルカで、 信号 ¾ ¾波形がオン波形であれば、 液 晶素子に印加される電圧は、 負のしきい電圧よ リ絶対値が小さ く なリ、 液晶 素子は消去されたままのオン状態となリ, 信号罨極波形がオフ.波形であれば 液晶素子に印加される電圧は、 負の飽和電圧よ リ絶対値の大きな電圧パルス が印加されて、 液晶素子はオフ状態となる。 そ して、 t 26の間に走査電極に 印加する電圧は一 v 6 とする。 また、 非選択期間 t 22の間は、 奇数フ レーム と同様に 1 2Sの間の状態を保持する。 About 8 1 pixel 8 1 1 1 illustrating the operation of the liquid crystal element, there, in the erase pulses between t 14 in the selection period of the odd frame between 7 7 FIG tu, negative saturation voltage When a voltage pulse with a larger absolute value is applied, the liquid crystal element is erased from the previous state of the memory and is turned off. And, during t, the write pulse is (6 g) If the signal voltage waveform is an ON waveform, the voltage applied to the liquid crystal element is equal to or higher than the positive saturation voltage, and the liquid crystal element is turned on and the signal electrode waveform is turned off. However, the voltage applied to the liquid crystal element becomes lower than the positive threshold voltage, and the liquid crystal element remains off. Their, the voltage applied to scan electrodes during the t 16 is as one V 3. Also, the non-selection period t 12, the scan waveform 7 7 1 one V 3, - voltage V 6 is applied alternately in the synthesized waveform of the 7 7 2, always the I la indicated by 7 7 3 Since only a voltage whose absolute value is smaller than the threshold voltage is applied to the liquid crystal element, the state between t and 5 is maintained. Then, the even looking at the frame, between択期between t 21 is heritage, § Li in erase Bals between t 24, a voltage pulse of opposite polarity positive or saturation voltage than when the odd frame The liquid crystal element is turned on by being applied. Their to, among t 25 write Barca, if the signal ¾ ¾ waveform on the waveform, the voltage, negative threshold voltage by Li absolute value smaller rather re applied to the liquid crystal element, the liquid crystal The device remains in the on state as it is erased, and the signal compressing waveform is turned off. If the waveform is a waveform, the voltage applied to the liquid crystal device is a voltage pulse whose absolute value is larger than the negative saturation voltage. The liquid crystal element is turned off. Their, the voltage applied to scan electrodes during the t 26 is as one v 6. Further, during the non-selection period t 22 holds the state of between 1 2S Like the odd frames.
このよラな駆動の場合、 液晶素子に印加される合成波形と しては、 実施例 In the case of such a driving, the synthesized waveform applied to the liquid crystal element is described in the embodiment.
2 5 と同じであるが、 走査電極に印加する電圧を低くすることができる駆動 方法である。 Same as 25, but a driving method that can lower the voltage applied to the scanning electrodes.
実 施 例 2 7  Example 2 7
第 8 3図に交流バイアスによるメモ リ一状態保持の効果図を示す。 Vは、 液晶素子に印加する電圧で、 I は、 液晶素子の透過状態を示している。 液晶 素子に V , の電圧を印加して、 I , の状態に してその後印加電圧を 0 V とす る と液晶素子は、 I I の状態から次第にメ モ リーが悪く なつて点線で示すよ うに I 5 までメモリ一が落ちていく。 しかし、 交流バイアスを印加すること によってメモ リ一性の悪さを改善して I 3 に保持することが 来る。 第 7 8 図はこの交流バイァスの効果を利用した *実施例の駆動波形を実現する具体 的回路を示すブロ ッ ク図である。 7 8 1はフ レーム信号で、 7 8 2は植性切 リ换ぇ信号である。 この 7 8 1 、 7 8 2の信号によって、 ト ラ ンス ミ ツ シ s ンゲ一 ト 1 1 1 をスイ ッチングして、 V 2 k V 3 - V 4 、 - V 5 の電圧を 切リ換えて走査雹接選択波形 7 8 4を作り、 7 8 3の信号によって、 V! 、 一 V6 の電圧を切リ換えて走查電桎非選択波形 7 8 5 を作っている。 また、 V 7 、 - V 8 の電圧を切り換えて信号電¾オン波形 7 8 6 と信号電柽オフ波 形 7 8 7を作っている。 これらの波形のタ イ ミ ングチャート を第 7 9図に示 す。 第 7 9図 7 8 4、 7 8 5 , 7 & 6、 7 8 7の信号を第 8 1 図の ¾動回路 に入力し、 7 8 4は 8 1 0 1 、 8 1 0 2 と、 7 8 5は 8 1 0 3 と、 7 8 6 は 8 1 0 5 と、 7 8 7は 8 1 0 4 と それぞれ接続する。 第 8 I 図 1 2 1は走 査電痊データで、 これをシフ ト クロック 1 2 0 によつて走查電槿シフ ト レジ スタ 1 1 5 に耘送して一走査電槿ずつ順次選択信号を出力し、 この選択信号 によって ト ラ ンス ミ ッ シ ョ ンゲー ト 1 1 1 をス イ ッ チングして 8 1 0 7の走 查電梃波形を作つている。 第 8 1 図 1 1 7は信号電 Sデータでこれをシフ ト ク ロ ッ ク 1 1 8によつて信号電搔シフ ト レジステ 1 1 4に転送し、 一走査線 分のデータを転送した時にラ ッチ信号 1 1 9 によってラ ッチ回路 1 1 6にラ ツチ し、 このラ ッチの出力によって ト ラ ンスミ ツ シ s ンゲー ト 1 1 1 をス ィ ツチングして、 8 1 0 4 と 8 1 0 5の信号を切リ換えて 8 1 0 6の信号電極 波形を作つている。 この 8 1 0 7 と 8 1 0 6 の波形及びこの波形の合成波形 のタ イ ミ ングチャー ト を第 8 1 囡 8 0 1 、 8 0 2、 8 0 3 に示す。 この波形 の ¾動条件を示すと次 ようになる。 Figure 83 shows the effect of maintaining the memory state by the AC bias. V is the voltage applied to the liquid crystal element, and I indicates the transmission state of the liquid crystal element. When the voltage of V, is applied to the liquid crystal element, the state of I, is applied, and then the applied voltage is set to 0 V, the memory of the liquid crystal element gradually deteriorates from the state of II, and is indicated by a dotted line. Memory one can go down to sea urchin I 5. However, they come to be held in the I 3 to improve the memory one of the poor by applying an AC bias. FIG. 78 is a block diagram showing a specific circuit for realizing the driving waveform of the * embodiment using the effect of the AC bias. Reference numeral 781 denotes a frame signal, and reference numeral 782 denotes a vegetative cutting stream signal. This 7 8 1, 7 8 2 signal, the door lance Mi Tsu Shi s Nge one sheet 1 1 1 to Sui etching, V 2 k V 3 - V 4, - instead Setsuri the voltage V 5 The scanning hail selection waveform 7 8 4 is made, and the signal of 7 8 3 produces V! , Are making查電桎非selection waveform 7 8 5 run instead Setsuri the voltage of one V 6. In addition, the signal voltage on waveform 786 and the signal power off waveform 787 are created by switching the voltages of V7 and -V8. The timing chart for these waveforms is shown in Figure 79. Fig. 79 Input the signals of 7 8 4, 7 8 5, 7 & 6 and 7 8 7 to the driving circuit of Fig. 8 1, and 7 8 4 is 8 10 1, 8 10 2 and 7 8 5 is connected to 8 10 3, 7 8 6 is connected to 8 10 5 and 7 8 7 is connected to 8 10 4. Fig. 8I Fig. 12 1 shows the scanning data, which is sent to the scanning register 1 15 by the shift clock 120 and the selection signal is sequentially sent one scanning signal at a time. The transmission signal 1111 is switched by this selection signal to create an 8107 driving waveform. Fig. 8 1 Fig. 117 shows signal S data, which is transferred to the signal electrode shift register 114 by shift clock 118, and when data for one scanning line is transferred. Latch signal 1 19 latches into latch circuit 1 16, and the output of this latch switches transmission gate 1 1 1 1, and 8 1 4 4 The 810 signal is switched to create the 810 signal electrode waveform. The timing charts of the waveforms of 8107 and 8106 and the composite waveform of this waveform are shown in Nos. 81 囡 801, 802, and 803. The driving conditions of this waveform are as follows.
I , I = I - V 6 1 I V 7 I = I—V 8 I I, I = I-V 6 1 IV 7 I = I—V 8 I
I— V 5 + V 7 I > I V s a t 2 I  I— V 5 + V 7 I> I Vsat 2 I
(V3 + V8 ) = V s a t , (V 3 + V 8 ) = V sat,
(V 3 -V7 ) < V t h i (V 3 -V 7 ) <V thi
5 (V2 -V 7 ) > V s a t , 5 (V 2 -V 7 )> V sat,
I— V 4 + V 8 I < I V t h 2 I  I— V 4 + V 8 I <I V t h 2 I
(— V4 — V7 ) > l V s a t 2 I (— V 4 — V 7 )> l V sat 2 I
V 7 < V t h ,  V 7 <V t h,
I— V 8 | < | V t h 2 I I— V 8 | <| V th 2 I
>0 I V 2 I = I - V 5 I > 0 IV 2 I = I-V 5 I
I V3 I = I -V 4 I IV 3 I = I -V 4 I
t !4 = t 15 t! 4 = t 15
第 8 1図 8 1 1 1 の画素について液晶素子の動作を説明すると、 第 8 0図 t の間が奇数フ レームの選択期間で、 この期間中の t 14の間が消去パルス5 で負の飽和電圧よ リ絶対値の大きな電圧パルスが印加されて、 前のメ モ リ一 状態が消去されてオフ状態となる。 そ して、 t 15の間が書き込みパルスで信 号電極波形がオン波形であれば、 液晶素子に正の飽和電圧以上の電圧パルス で印加されて液晶素子はオン状態となリ, 信号電桎波形がオフ波形であれば 液晶素子に正のしきい電圧以下の電圧パルスが印加されて液晶素子はオフ状0 態のままとなる。 そ して、 t 12の間が非選択期間で、 高周波交流バイ ア スを 印加する。 この高周波交流バイ アスの周波数と電圧は、 液晶分子が応答でき る限度ぎリ ぎリの周波数と電圧であリ、 周波数は、 数 KH z〜数 Ι Ο ΚΗ ζ 電圧は数 1 0 Vである。 この非選択期間の交流バィァスによって液晶素子の メモリー性を良く してデータを保持している。 次に偶数フ レームについて見B ると、 t 21の間が選択期間で、 この期間中の t 24の間が消去パルスで、 奇数 (? z) フ レームの時とは逆極性の正の餡和電圧以下の罨圧パルスが印加されて液晶 素子はオン状態となる。 そ して、 t 25の藺が書き込みパルスで、 信号電桎波 形がオン波形であれば、 液晶素子に負のしきい電圧よリ絶対値の小さな電圧 パルスが印加されて液晶素子はオン状態のままとなり、 信号電槿波形がオフ 波形であれば、 液晶素子は負の飽和電圧よリ絶対値の大きな電圧パルスが印 加されて液晶素子はオフ状態となる。 そして、 非選択期間は、 奇数フ レーム の時と同様で高周波交流バィァスによってメモ リ一状態を保持する。 なお t 上記各実施例では、 2値表示における駆動方法について説明したが、 階調表 示についても同じように駆動することができ、 走查罨植に印加する波形につ いては、 上記実施例と同じで良く 信号電 Sに印加する電圧を階調でータに よって変化させて、 書き込みパルス t 1S l t 25の間に液晶素子に印加する電 圧をしきい電圧から飽和電圧の間で変化させれば良い。 また、 階調データに よって, 信号電接波形のパルス幅を変化させるこ と によつて階調表示をする こともできる。 About 8 1 pixel 8 1 1 1 illustrating the operation of the liquid crystal element during the first 8 0 Figure t is the selection period of the odd frame, the negative and the erase pulse 5 during t 14 in this period A voltage pulse whose absolute value is larger than the saturation voltage is applied, and the previous memory state is erased and turned off. Their to, if signal electrode waveform is on waveform between t 15 write pulses are applied in positive saturation voltage or voltage pulse to the liquid crystal element in the liquid crystal element turned on and a Li, signal Den桎If the waveform is an off waveform, a voltage pulse lower than the positive threshold voltage is applied to the liquid crystal element, and the liquid crystal element remains in the off state 0. Their to, during t 12 being in the non-selection period, applying a high frequency alternating By A scan. The frequency and voltage of this high-frequency AC bias are the frequency and voltage at the very limit that liquid crystal molecules can respond, and the frequency is several KHz to several Ι Ο ΚΗ ζ The voltage is several 10 V . The AC bias in the non-selection period improves the memory properties of the liquid crystal element and retains data. Next, looking at the even-numbered frames, B shows that during t 21 is the selection period, and during t 24 during this period is the erase pulse, and the odd period (? z) A compressing pulse having a polarity opposite to the polarity of the frame and less than the positive voltage is applied, and the liquid crystal element is turned on. If the signal pulse at t 25 is a write pulse and the signal waveform is an ON waveform, a voltage pulse having an absolute value smaller than the negative threshold voltage is applied to the liquid crystal element, and the liquid crystal element is turned on. If the signal waveform is off, the liquid crystal element is applied with a voltage pulse having a larger absolute value than the negative saturation voltage, and the liquid crystal element is turned off. During the non-selection period, the memory state is maintained by the high-frequency AC bias as in the case of the odd frame. In yet t above embodiment described the driving method in the binary display, it can also be driven in the same way for the tone Display, waveform information about to be applied to the run查罨planting, the above examples The voltage to be applied to the signal voltage S is changed by the data in gradation, and the voltage to be applied to the liquid crystal element during the write pulse t 1Slt 25 is changed from the threshold voltage to the saturation voltage. Just change it. Also, gradation display can be performed by changing the pulse width of the signal contact waveform according to the gradation data.

Claims

請 求 の 範 囲 . 走査電槿群を有する基板と信号電極群を有する基板との間に強誘電性液 晶を狭持してなる液晶素子を線順次走査によ リマルチプレ ッ ク ス駆動する 液晶素子の駆勳方法において、 前記走査電極群には選択信号と非選択信号 を印加し、 前記信号 ¾ ¾群には平均電位が前記信号雹桎群に印加される電 圧パルスの中簡電位と等し く なる電圧パルスを印加するこ とによリ、 前記 強誘電性液晶には選択期間の前半も し くは非選択期間に前記強誘罨性液晶 の分子をオンも し くはオフのどちらかの状態にするための所定の S列方向 に揃える少な く とも 1個の飽和値以上の電圧バルスを印加し、 前記選択期 間の後半も し くは前記非選択期間後の選択期間にオンも し くはオフ状態を 選択する電圧バルスを印加するこ とを特徴とする液晶素子の鹿勤方法。Scope of the request Liquid crystal for remultiplex driving a liquid crystal element holding a ferroelectric liquid crystal between a substrate having a scanning electrode group and a substrate having a signal electrode group by line-sequential scanning. In the method of driving a device, a selection signal and a non-selection signal are applied to the scan electrode group, and the signal ¾ group has an average potential equal to the middle potential of a voltage pulse applied to the signal hail group. By applying equal voltage pulses, the ferroelectric liquid crystal is turned on or off during the first half of the selection period or during the non-selection period. Apply at least one voltage pulse equal to or more than the saturation value to align in the predetermined S column direction for either state, and in the second half of the selection period or the selection period after the non-selection period It is characterized by applying a voltage pulse to select ON or OFF state. ShikaTsutomu method of the liquid crystal element that.
. 前記強誘電性液晶には、 選択期間内に飽和値以上の波高値.及びバルス幅 を有 し、 互いに波高値の絶対値及びパルス幅が等しい正及び負の極性の電 圧パルスを少な く と も 1個ずつ印加して前記正及び負の電圧パルスの印加 順序によ リ オンも し くはオフ状態を選択し、 非選択期間内に しきい値よリ 小さい波高値及びパルス幅を有し、 平均値が零となる電圧パルスを印加す るこ とを特徵とする請求の範囲第 1 項記載の液晶素子の蹈動方法。The ferroelectric liquid crystal has a peak value greater than the saturation value and a pulse width within the selection period, and reduces the number of positive and negative voltage pulses having the same peak value and pulse width mutually. Are applied one by one to select the on or off state according to the application order of the positive and negative voltage pulses, and have a peak value and a pulse width smaller than the threshold value during the non-selection period. 2. The method of claim 1, wherein a voltage pulse having an average value of zero is applied.
. 非選択期間内に しきい値より小さい波髙値及びバルス輻を有し > かつ選 択期間内に印加される電圧パルスよ り も小さいパルス幅を有する高周波交 流パルスを印加することを特徵とする請求の範囲第 2項記載の液晶素子の 鹿動方法。 It is characterized by applying a high-frequency AC pulse having a pulse value and a pulse radiation smaller than the threshold value during the non-selection period and having a pulse width smaller than the voltage pulse applied during the selection period. 3. The method of claim 2, wherein:
. 前記強誘電性液晶には、 選択期間内に波高値及びパルス幅が飽和値以上 でかつ互いに波高値の絶対値及びパルス幅が等しい正及び負の接性の電圧 パルスも し くは波高値及びパルス幅がしきい値よ リ小さ くかつ互いに波髙 WO 90/07725 (74) PCT/JP86觸 396 値の絶対値及びパルス幅が等しい正及び負の ¾性の電圧パルスを少なく と も 1個ずつ印加し、 非選択期 H内の前記選択期藺の直前に波高値及びパル ス幅が飽和値 ^上でかつ互いに波高値の絶対値及びパルス幅が等しい正及 ぴ負の接性の電圧パルスを印加するこ とを特徴とする請求の範囲第 1項記The ferroelectric liquid crystal has a positive or negative contact voltage pulse or a peak value in which the peak value and the pulse width are equal to or greater than the saturation value within the selection period and the absolute value and the pulse width of the peak value are equal to each other. And the pulse width is smaller than the threshold and WO 90/07725 (74) PCT / JP86 Touch 396 Apply at least one positive and negative positive voltage pulse with the same absolute value and pulse width as the value of the selected period in the non-selected period H. A voltage pulse having a positive and negative contact with a peak value and a pulse width equal to the saturation value ^ and equal to each other in absolute value and pulse width immediately before 1 paragraph
5 載の液晶素子の魁動方法。 Method of perpetuating the liquid crystal element described in 5.
5, 前記強誘電性液晶には 選択期間内に少な く とも波高値及びパルス幅が 飽和値以上である第 1 の電圧パルス印加後、 前記第 1 の電圧バルスとパル ス幅が等し く 、 波高値の絶対値が所定の値だけ異なる前記第 1 の電圧パル スとは逆槿性の第 2の電圧パルスを印加し、 非選択期間内にほ波高値及び to パルス幅がしきい値よリ小さ <かつ平均値が前記第 1の電圧パルスと第 2 の電圧パルスの波高値の差と等しい電圧パルスを印加することを特徴とす る請求の範囲第 1項記載の液晶素子の駆動方法。  5. After the application of the first voltage pulse whose peak value and pulse width are at least the saturation value within the selection period to the ferroelectric liquid crystal, the first voltage pulse and the pulse width are equal. A second voltage pulse having a reverse peak voltage to the first voltage pulse in which the absolute value of the peak value differs by a predetermined value is applied, and the peak value and the pulse width within the non-selection period are lower than the threshold. 2. The method according to claim 1, wherein a voltage pulse having a smaller value and an average value equal to the difference between the peak values of the first voltage pulse and the second voltage pulse is applied. .
6 . 非選択期間内にバルス輻が前記選択期間内に印加される電圧バルスよリ も小さ くかつ平均値が前記第 1 の電圧パルスと第 2 の電圧パルスの波高値 6. The pulse voltage during which the pulse radiation is applied during the non-selection period is smaller than the voltage pulse applied during the selection period and the average value is the peak value of the first voltage pulse and the second voltage pulse.
! 5 の差と等しい高周波交流パルスを印加することを特徵とする請求の範囲第 Claim 5 characterized in that a high-frequency AC pulse equal to the difference of 5 is applied.
5項記載の液晶素子の駆動方法。  Item 6. The method for driving a liquid crystal element according to item 5.
7 . 前記強誘電性液晶には、 選択期間内に少な く とも波高値及びパルス幅が 飽和値以上である正及ぴ負の棰性の第 1 の電圧バルスを 1 フ レーム周期ご とに交互に印加し、 前記第 1 の電圧パルス印加後に、 前記第 1 の電圧パル 20 スと逆桎性でパルス幡が等し くかつ波高値の絶対値が所定の値だけ小さい 第 2 の電圧パルスを 1 フ レーム周期ごとに交互に印加し、 非選択期間内に 波高値及びバルス輻がしきい値よリ小さく平均値が零となる電圧バルスを 印加することを特截とする請求の範囲第 1項記載の液晶素子の 方法。  7. In the ferroelectric liquid crystal, a first voltage pulse having positive and negative polarities with a peak value and a pulse width that are at least equal to a saturation value within a selection period is alternately arranged every one frame period. After the application of the first voltage pulse, a second voltage pulse having the same flute height as that of the first voltage pulse and having an absolute value of the peak value smaller by a predetermined value is applied to the second voltage pulse. The first aspect of the present invention is characterized in that a voltage pulse is applied alternately every one frame period, and a voltage pulse in which the peak value and the pulse radiation are smaller than the threshold value and the average value is zero during the non-selection period is applied. The method of the liquid crystal element according to the item.
8 . 非選択期間内に波高値及びパルス輻がしきい値よリ小さ くパルス幅が前 8. The peak value and pulse emission are smaller than the threshold value and the pulse width is earlier than the threshold value during the non-selection period.
25 記選択期間内に印加される電圧パルスよ リ小さい高周波交流パルスを印加 するこ とを特徵とする請求の範囲た第 7項記載の液晶素子の ¾動方法。 25 High-frequency AC pulse smaller than the voltage pulse applied during the selection period is applied 8. The method for driving a liquid crystal element according to claim 7, wherein the method is characterized in that:
9 . 前記強誘電性液晶には、 非選択期間内の選択期間の直前に波高値及びバ ルス幅が飽和値以上である正及び負の極性の第 1 の電圧バルスを 1 フ レー ム周期ごとに交互に印加し、 選択期間内に直前に印加された前記第 1 の電 圧パルスと逆接性でばるす幅が等し くかつ波高値の絶対値が所定の値だけ 小さい第 2の電圧バルスを 1 フ レーム周期: とに交互に印加するこ とを特 徴とする請求の範囲第 1 項記載の液晶素子の駆動方法。  9. In the ferroelectric liquid crystal, a first voltage pulse of positive and negative polarities whose crest value and pulse width are equal to or greater than the saturation value immediately before the selection period in the non-selection period is applied every frame period. A second voltage pulse having an equal contact width and a smaller absolute value of the peak value by a predetermined value due to the reverse contact with the first voltage pulse applied immediately before during the selection period. 2. The method for driving a liquid crystal element according to claim 1, wherein the voltage is alternately applied to one frame cycle: and.
10. 前記第 2 の電圧バルスの波高値も し くは波形によつて前記第 1 の電圧パ ルスによって選択されたオンも し く はォフ状態をそのまま保持するか反転 させるかを選択することを特徴とする請求の範囲第 7項ないし第 9項のい ずれかに記載の液晶素子の K動方法。  10. Selecting whether to keep or invert the ON or OFF state selected by the first voltage pulse according to the peak value or waveform of the second voltage pulse 10. The K-movement method for a liquid crystal element according to any one of claims 7 to 9, wherein:
PCT/JP1986/000396 1985-07-31 1986-07-28 Method of driving liquid crystal element WO1990007725A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/034,176 US4850676A (en) 1985-07-31 1986-07-28 Method for driving a liquid crystal element

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP60/169445 1985-07-31
JP16944585 1985-07-31
JP60/178120 1985-08-13
JP17812085 1985-08-13
JP21936485 1985-10-02
JP60/219364 1985-10-02
JP60/258181 1985-11-18
JP25818185 1985-11-18
JP4586886 1986-03-03
JP61/45868 1986-03-03

Publications (1)

Publication Number Publication Date
WO1990007725A1 true WO1990007725A1 (en) 1990-07-12

Family

ID=27522506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1986/000396 WO1990007725A1 (en) 1985-07-31 1986-07-28 Method of driving liquid crystal element

Country Status (2)

Country Link
JP (1) JP2900919B2 (en)
WO (1) WO1990007725A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100356440C (en) * 2001-07-16 2007-12-19 株式会社日立制作所 Liquid crystal display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187324A (en) * 1983-04-08 1984-10-24 Hitachi Ltd Optical device
JPS59193427A (en) * 1983-04-19 1984-11-02 Canon Inc Driving method of optical modulating element
JPS60156047A (en) * 1984-01-23 1985-08-16 Canon Inc Driving method of optical modulating element
JPS60156046A (en) * 1984-01-23 1985-08-16 Canon Inc Driving method of optical modulating element
JPS60172029A (en) * 1984-02-17 1985-09-05 Canon Inc Driving method of optical modulation element
JPS6194026A (en) * 1984-10-15 1986-05-12 Seiko Instr & Electronics Ltd Smectic liquid crystal display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187324A (en) * 1983-04-08 1984-10-24 Hitachi Ltd Optical device
JPS59193427A (en) * 1983-04-19 1984-11-02 Canon Inc Driving method of optical modulating element
JPS60156047A (en) * 1984-01-23 1985-08-16 Canon Inc Driving method of optical modulating element
JPS60156046A (en) * 1984-01-23 1985-08-16 Canon Inc Driving method of optical modulating element
JPS60172029A (en) * 1984-02-17 1985-09-05 Canon Inc Driving method of optical modulation element
JPS6194026A (en) * 1984-10-15 1986-05-12 Seiko Instr & Electronics Ltd Smectic liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100356440C (en) * 2001-07-16 2007-12-19 株式会社日立制作所 Liquid crystal display device

Also Published As

Publication number Publication date
JP2900919B2 (en) 1999-06-02
JPH1068930A (en) 1998-03-10

Similar Documents

Publication Publication Date Title
US5631752A (en) Antiferroelectric liquid crystal display element exhibiting a precursor tilt phenomenon
US4830467A (en) A driving signal generating unit having first and second voltage generators for selectively outputting a first voltage signal and a second voltage signal
JPH04362990A (en) Method for driving liquid crystal electrooptic element
KR19990037132A (en) Display device and addressing method of display device
JPS6327818A (en) Driving method for optical modulating element
JP2542157B2 (en) Display device driving method
CN1287626A (en) Ferroelectric liquid crystal display, and its driving method
US4850676A (en) Method for driving a liquid crystal element
WO1990007725A1 (en) Method of driving liquid crystal element
JPS62215242A (en) Ferroelectric liquid crystal electrooptic device
JP3530767B2 (en) Driving method of liquid crystal element
JP3029896B2 (en) Matrix type liquid crystal display device and method of driving the liquid crystal display device
JPS6194026A (en) Smectic liquid crystal display device
JPH0758371B2 (en) Liquid crystal element driving method
JP3029892B2 (en) Matrix type liquid crystal display device and method of driving the liquid crystal display device
JP2754292B2 (en) Electro-optical device image display method
JP3119899B2 (en) Electro-optical device
JPH07129134A (en) Driving method for liquid crystal display
JPH06194625A (en) Driving method for ferroelectric liquid crystal display element
JP3175845B2 (en) Electro-optical device
JPH0648333B2 (en) Driving method of liquid crystal matrix display panel
JP2722284B2 (en) Electro-optical device image display method
JP2730543B2 (en) Driving method of liquid crystal device
JPH07175042A (en) Driving method for liquid crystal element
JP3865251B2 (en) Electro-optic device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US