WO1990007612A1 - Prefabricated building foundation element and a method and means for the manufacture of the element - Google Patents

Prefabricated building foundation element and a method and means for the manufacture of the element Download PDF

Info

Publication number
WO1990007612A1
WO1990007612A1 PCT/SE1989/000668 SE8900668W WO9007612A1 WO 1990007612 A1 WO1990007612 A1 WO 1990007612A1 SE 8900668 W SE8900668 W SE 8900668W WO 9007612 A1 WO9007612 A1 WO 9007612A1
Authority
WO
WIPO (PCT)
Prior art keywords
foundation
concrete
accordance
insulation
bracings
Prior art date
Application number
PCT/SE1989/000668
Other languages
French (fr)
Inventor
Göran Karlsson
Erik Thelberg
Original Assignee
Karlsson Goeran
Erik Thelberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karlsson Goeran, Erik Thelberg filed Critical Karlsson Goeran
Priority to EP90901070A priority Critical patent/EP0454690B1/en
Priority to DE68921644T priority patent/DE68921644T2/en
Publication of WO1990007612A1 publication Critical patent/WO1990007612A1/en
Priority to DK110291A priority patent/DK166158C/en
Priority to FI912980A priority patent/FI91180C/en
Priority to NO912644A priority patent/NO302080B1/en
Priority to US08/020,180 priority patent/US5433049A/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/01Flat foundations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D31/00Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution
    • E02D31/02Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution against ground humidity or ground water
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/01Flat foundations
    • E02D27/016Flat foundations made mainly from prefabricated concrete elements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/01Flat foundations
    • E02D27/02Flat foundations without substantial excavation
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/0007Base structures; Cellars
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7679Means preventing cold bridging at the junction of an exterior wall with an interior wall or a floor

Definitions

  • the present invention relates to a prefabricated 5 building foundation element made of concrete, light clinker or light concrete, etc., being first and foremost a foundation construction or a foundation beam for so- called creep foundation structures or building foundations, incorporating thermal insulation supported
  • a customary method used within the building industry for the manufacture of foundation beams from concrete, light clinker or light concrete, etc. involves casting beams of rectangular cross-sectional form.
  • a further disadvantage of solid rectangular beams is the need to meet the requirement for a higher beam height, in order in that way to avoid frost action (heave) and the penetration of backfilling material beneath the beam.
  • a high solid beam is excessively
  • SE-B 442,654 Also disclosed in SE-B 442,654 is the execution of a foundation beam of C-shaped cross-section. The aforementioned construction assumes that any vertical load will be transferred down through the body of the
  • the principal object of the present invention is, in the first place, simply and effectively to solve said problems and to produce prefabricated building foundation elements at a lower price, partly due to a reduced consumption of materials and a simple manufacturing operation, and to obtain elements which function effectively, so that inter alia an eccentric load on the flanges in question of the element can be supported with further improved strength characteristics as a result.
  • the invention also relates to a method for the manufacture of elements in accordance with the foregoing in a simple fashion and with a small consumption of materials, which method is characterized essentially in that- said elements are manufactured by casting in between slabs of cellular plastic insulation accommodated in a mould at a certain distance from one another, so that concrete, etc. , is able to penetrate between the butt joints of the slabs and to form bracings on setting, or into a casting mould, one side of which mould has a pattern of fixed ribs to form cast bracings between them.
  • the invention also relates to means for the manufacture of such elements in a simple and efficient manner.
  • the means for said purpose are characterized essentially in that a casting mould permits the accommodation of slab ⁇ shaped bodies capable of being laid separately in the mould, for example thermal insulation slabs of cellular plastic or ribs of an appropriate kind, or in that the mould includes fixed ribs, for example made of sheet metal or plywood.
  • a casting mould permits the accommodation of slab ⁇ shaped bodies capable of being laid separately in the mould, for example thermal insulation slabs of cellular plastic or ribs of an appropriate kind, or in that the mould includes fixed ribs, for example made of sheet metal or plywood.
  • Figs. 1-13 show one example of a foundation beam for a creep foundation, of which
  • Fig. 1 shows a section through an element in accordance with the invention functioning as a foundation beam
  • Fig. 2 shows a plan section of an element
  • Fig. 3 also shows a section through an element installed as a foundation beam
  • Figs. 4-4A show a section through an element
  • Figs. 5-7 show plan sections of an element of different designs
  • Fig. 8 shows the element in its intended function as a creep foundation structure
  • Fig. 9 shows a section through an element, showing the insulation
  • Fig. 10 shows a plan section of said element
  • Fig. 11 shows a section through the connection of the elements at a corner
  • Fig. 12 shows a plan section of the elements at a corner
  • Fig. 13 shows a view from above of a foundation produced using elements in accordance with the present invention
  • Figs. 14-16 show an example of an element intended for a foundation, of which
  • Fig. 14 shows a section through a foundation with a cast base plate
  • Fig. 15 shows the construction of the element and the connection of same at a corner in a foundation viewed from above;
  • Fig. 16 shows one end of an element, similarly viewed from above;
  • Fig. 17 shows a section along a cellar wall element;
  • Fig. 18 shows a section across a cellar wall element;
  • Fig. 19 shows an example of a building element which exhibits cladding.
  • the element 2 is essentially in the form of a beam with a preferably similar U-shaped cross-sectional profile, with the flanges 4, 5 extending in a common direction from a preferably narrow, slab-shaped, upright body 7.
  • the invention which is intended essentially for use within the building industry, enables high, light foundation beams, especially for so-called creep foundation structures, to be produced simply and economically.
  • the vertical bracings 6, for example, strengthen the beam in such a way that an eccentric load acting on the flanges , 5, for example from a beam structure, can be withstood.
  • Considerable increases in torsional strength and shearing strength are also achieved, thanks to the function of the vertical bracing 6, for example, as yokes.
  • the body thickness of the beam can also be reduced to, for example, only 20-30 mm and 5 can also be executed without reinforcement, thanks to the favourable interaction with the, for example, vertical bracings 6.
  • bracings 6 it is possible to manufacture beams of low weight with low material
  • the bracings 6 can be produced by causing lightweight thermally insulating slabs 8, for example of cellular plastic material, to be laid in a casting mould. By leaving a space between the butt joints of the slabs, concrete is able to penetrate in between to form the
  • the bracings 6 can also be produced by causing one side of the mould to have fixed ribs, for example made of sheet metal or plywood. After removal of the mould, the resulting beam is a lightweight beam, which is economical
  • Insulation 3 consisting of, for example, cellular plastic slabs, will then be supported internally 9 in and/or on the inside of the element.
  • Insulation 3, 10 can, as an alternative to being held secure on the insulating slab 1 internally within same, also be secured to the inside 6A and 4A, 5A of the bracings 6 and/or the beam flanges 4, 5.
  • the foundation beam element 1 consists of an externally stiffened concrete slab 7 with cast-on, inward-facing cellular plastic insulation 3 in a cavity 9 formed between the flanges 4, 5 of said slab and bracings 6, and can preferably also support insulation 10,
  • the invention may, for instance, be applied in accordance with the following example:
  • Foundation beams 1 in accordance with the invention are laid on base plates 11, which may exhibit a superstructure 12.
  • the foundation beam 1 may exhibit rectangular cross-sectional form, although the supporting material 7, 4, 5 should preferably exhibit U-shaped cross-section lying on its side.
  • the supporting material which, for example, consists of concrete or light clinker, etc. , may also contain necessary reinforcement 13, 14.
  • Ribs or other bracings 6 of suitable form and extent are so arranged as to extend between the upper flange 4 and the lower flange 5 of the element 1, in order to achieve high torsional stiffness and a high capacity to absorb transverse forces.
  • the ribs, etc., 6 can be so arranged as to extend vertically and to be connected together laterally by means of a number of diagonally extending additional ribs or other bracing, in the form of a lattice.
  • the beam 1 can thus contain, as already mentioned, thermally insulating material 3 or a rib made of an inexpensive material, as illustrated in Fig. 1-2, for example.
  • Figs. 3-7 illustrate examples of an element l 1 , in which a rib made of an inexpensive material or insulation 3 is not integrated with the element 1, but in which the beam l was cast in a jnould which imparts the desired cross-sectional form to the beam, although additional insulation 10 is adhesive-bonded, etc. , internally to the insides 4A, 5A, 6A of the flanges 4, 5 and the bracings 6.
  • Figs. 8-13 illustrate further examples of the application of the invention in connection with the construction of the foundations 15 for a building.
  • the prefabricated creep foundation contains parts of a building system for the laying of the foundations for a heated building with a beam structure above an enclosed, unventilated creep space 16.
  • the creep foundations 15 are constructed from base plates 17 and, possibly, height extension plates 18 made of concrete, foundation beams 12 made of concrete with internal cellular plastic 19, 20 in a number of layers, and ventilation grids 21 for ventilation.
  • the foundation beams 13 consist of an externally reinforced high concrete slab 7 1 with thick, cast-on cellular plastic insulation 19, 20 on the inside.
  • the creep space 16 can be inspected more easily thanks to the considerable height of the foundation beams.
  • the thick cellular plastic insulation on the foundation beams 13 enables surplus heat to be utilized, so that the laying of the foundations can take place at a reduced foundation depth.
  • the foundations should preferably be laid using a crane, and the length of the foundation beams can be adapted to the requirements of the project.
  • the creep foundations 15 can be used for buildings with both light and heavy facing, for example of brick, and they are dimensioned in accordance with Svensk
  • the inside of the beams l 3 can also support thermal insulation 10 1 , which has been attached, for example by adhesive bonding, to the inward-facing surfaces of the flanges 4 1 , 5 1 and the bracing 6 1 .
  • a layer of macadam of at least 200 mm in thickness should be laid as the base for the base plates.
  • the invention can, of course, also be applied without the use of any special foundation structure of plinths in the form of, for example, the previously described base plates, possibly with a superstructure, but is equally well suited to erection directly on the ground or on insulation resting on the ground, along which the foundation beams in question can be laid for the whole of its longitudinal extent resting directly on the ground or the insulation.
  • Ventilation of the creep space is provided by means of, for example, vent holes 21 fitted with grids.
  • An external inspection opening 22 can be positioned at any suitable location depending on the prevailing ground conditions, and internal inspection holes 23 can also be present.
  • the surface of the ground inside the creep space 16 is covered with, for example, 0.20 mm thick, type- approved plastic sheeting 24, with a minimum overlap of 200 mm. A building 24 of the desired kind can thus be erected on the foundation, when the foundation will effectively permit the load to be transferred down to the ground in accordance with the foregoing.
  • the embodiment of the invention illustrated in Figs. 14-16 similarly comprises prefabricated building foundation elements 101 produced from a suitable material such as concrete, light clinker or.light concrete, etc., with thermal insulation 103 which is supported by the element 101 in question.
  • Said elements 101 exhibit a number of bracings 106 extending between the upper and lower beam flanges 104 and 105, which bracings are formed from the material of the element.
  • Said bracings 106 may also extend vertically and/or diagonally between the preferably horizontally arranged beam flanges 104, 105, 5 and may even be supplemented with interjacent horizontal partitions 150, which divide up the insulation space into upper and lower compartments to accommodate insulation slabs 103 in the course of producing the elements.
  • Extra insulation 151 can be attached to the inside of the
  • Said elements 101 may also contain reinforcement
  • a groove 155, 156 which can be used for connection
  • a concrete plate 158 is cast at the bottom of, and inside the foundation thus formed, to support an inner floor 159, whilst extra external installation, in the form of cellular plastic slabs 160, is applied to the outside of the elements extending vertically along them.
  • the building 161 itself can rest upon the upper flanges 104 of said elements, when the load is effectively transferred down to the ground via the elements 101 and their associated bodies 107 and bracings 106, without the risk of creating an oblique load.
  • Fig. 19 illustrates an example of a building element 201, in which an inner cladding, for example a sheet of plaster or similar, is integrated with the insulation 251, 203 of the element.
  • Said inner cladding 275 may, for example, be adhesive-bonded or secured in some other appropriate fashion to adjacent insulation
  • Said element 201 may be arranged and manufactured in accordance with what is referred to and illustrated above for the other exemplified building elements. It may be found appropriate to cause the inner cladding 275 to be integrated with the common layers 203, 251 of insulation composed preferably in the sense of the depth of the element in conjunction with the casting of the building element 201, which can be made from a concrete material, where concrete partitions 250 are formed in the concrete slab 207 between the positioned slabs 203 of insulating material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electromagnetism (AREA)
  • Foundations (AREA)
  • Building Environments (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
  • Glass Compositions (AREA)
  • Gripping On Spindles (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

The prefabricated creep foundation in accordance with the invention is a building system for the laying of the foundations for a heated building with a beam structure above an enclosed, unventilated creep space. The foundations are constructed from base plates made of concrete, foundation beams (12) made of concrete with internal cellular plastic (32), and ventilation grids (21) for ventilation. The foundation beams (12) consist of an externally reinforced high concrete slab with thick, cast-on cellular plastic insulation (32) on the inside. The creep space can be inspected more easily thanks to the considerable height of the foundation beams. The thick cellular plastic insulation (32) on the foundation beams (12) enables surplus heat to be utilized, so that the laying of the foundations can take place at a reduced foundation depth. The foundations can be laid using a crane, and can be adapted to the requirements of the project. The invention also relates to a method and means for the production of elements from which the foundations can be constructed.

Description

Prefabricated building foundation element and a method and means for the manufacture of the element
The present invention relates to a prefabricated 5 building foundation element made of concrete, light clinker or light concrete, etc., being first and foremost a foundation construction or a foundation beam for so- called creep foundation structures or building foundations, incorporating thermal insulation supported
10 by the element.
A customary method used within the building industry for the manufacture of foundation beams from concrete, light clinker or light concrete, etc. , involves casting beams of rectangular cross-sectional form. The
15 foundation beams, which inscribe the creep area, and the outside of which is at ground level, are provided on the inside with thermal insulation permanently attached with adhesive. As an alternative, insulation can be cast into the centre of the beam. The disadvantage associated with
20 previously disclosed methods is that the consumption of materials, such as concrete, is high, as a result of which the foundation construction is more expensive. There is also a disadvantage associated with the subsequent installation of thermal insulation on the
25 inside. A further disadvantage of solid rectangular beams is the need to meet the requirement for a higher beam height, in order in that way to avoid frost action (heave) and the penetration of backfilling material beneath the beam. A high solid beam is excessively
30 demanding of materials and is more expensive.
Also disclosed in SE-B 442,654 is the execution of a foundation beam of C-shaped cross-section. The aforementioned construction assumes that any vertical load will be transferred down through the body of the
35. beam. An eccentric lo^ on the legs gives rise to an axial torsional moment vector, which on the one hand causes instability and on the other hand causes overstressing of the thin, slab-shaped body.
The principal object of the present invention is, in the first place, simply and effectively to solve said problems and to produce prefabricated building foundation elements at a lower price, partly due to a reduced consumption of materials and a simple manufacturing operation, and to obtain elements which function effectively, so that inter alia an eccentric load on the flanges in question of the element can be supported with further improved strength characteristics as a result.
Said object is achieved by means of elements in accordance with the present invention, which is characterized essentially in that bracing extending between the upper and the lower beam flange is so arranged as to transfer the load down from the upper beam flange to the lower beam flange.
The invention also relates to a method for the manufacture of elements in accordance with the foregoing in a simple fashion and with a small consumption of materials, which method is characterized essentially in that- said elements are manufactured by casting in between slabs of cellular plastic insulation accommodated in a mould at a certain distance from one another, so that concrete, etc. , is able to penetrate between the butt joints of the slabs and to form bracings on setting, or into a casting mould, one side of which mould has a pattern of fixed ribs to form cast bracings between them. The invention also relates to means for the manufacture of such elements in a simple and efficient manner.
The means for said purpose are characterized essentially in that a casting mould permits the accommodation of slab^shaped bodies capable of being laid separately in the mould, for example thermal insulation slabs of cellular plastic or ribs of an appropriate kind, or in that the mould includes fixed ribs, for example made of sheet metal or plywood. The invention is described below with reference to a number of preferred illustrative embodiments, in conjunction with which reference is made to the drawings, where:
Figs. 1-13 show one example of a foundation beam for a creep foundation, of which
Fig. 1 shows a section through an element in accordance with the invention functioning as a foundation beam;
Fig. 2 shows a plan section of an element;
Fig. 3 also shows a section through an element installed as a foundation beam;
Figs. 4-4A show a section through an element;
Figs. 5-7 show plan sections of an element of different designs;
Fig. 8 shows the element in its intended function as a creep foundation structure;
Fig. 9 shows a section through an element, showing the insulation;
Fig. 10 shows a plan section of said element;
Fig. 11 shows a section through the connection of the elements at a corner;
Fig. 12 shows a plan section of the elements at a corner;
Fig. 13 shows a view from above of a foundation produced using elements in accordance with the present invention;
Figs. 14-16 show an example of an element intended for a foundation, of which
Fig. 14 shows a section through a foundation with a cast base plate; Fig. 15 shows the construction of the element and the connection of same at a corner in a foundation viewed from above;
Fig. 16 shows one end of an element, similarly viewed from above; Fig. 17 shows a section along a cellar wall element; Fig. 18 shows a section across a cellar wall element; Fig. 19 shows an example of a building element which exhibits cladding.
A prefabricated building foundation element 1 made of concrete, light clinker, light concrete or some other appropriate building material, which is suitable for use in the manufacture of an element intended first and foremost as a foundation construction or foundation beam for a so-called creep foundation structure 2, and which in a previously disclosed fashion incorporates thermal insulation 3 supported by the element 1 in question, exhibits a number of bracings 6 extending between the upper beam flange 4 and the lower beam flange 5. Said bracing/s 6, which can extend vertically and/or diagonally between the preferably horizontally arranged beam flanges 4, 5, is/are so dimensioned as to be capable of transferring the load F down from the upper beam flange 4 to the lower beam flange 5. The element 2 is essentially in the form of a beam with a preferably similar U-shaped cross-sectional profile, with the flanges 4, 5 extending in a common direction from a preferably narrow, slab-shaped, upright body 7.
The invention, which is intended essentially for use within the building industry, enables high, light foundation beams, especially for so-called creep foundation structures, to be produced simply and economically. The vertical bracings 6, for example, strengthen the beam in such a way that an eccentric load acting on the flanges , 5, for example from a beam structure, can be withstood. Considerable increases in torsional strength and shearing strength are also achieved, thanks to the function of the vertical bracing 6, for example, as yokes. The body thickness of the beam can also be reduced to, for example, only 20-30 mm and 5 can also be executed without reinforcement, thanks to the favourable interaction with the, for example, vertical bracings 6.
Thanks to the bracings 6 , it is possible to manufacture beams of low weight with low material
10 consumption. The bracings 6 can be produced by causing lightweight thermally insulating slabs 8, for example of cellular plastic material, to be laid in a casting mould. By leaving a space between the butt joints of the slabs, concrete is able to penetrate in between to form the
15 bracings 6.
The bracings 6 can also be produced by causing one side of the mould to have fixed ribs, for example made of sheet metal or plywood. After removal of the mould, the resulting beam is a lightweight beam, which is economical
20 of materials, with bracings on the inside and with a smooth external surface = footing or plinth. Insulation 3 consisting of, for example, cellular plastic slabs, will then be supported internally 9 in and/or on the inside of the element.
25 Insulation 3, 10 can, as an alternative to being held secure on the insulating slab 1 internally within same, also be secured to the inside 6A and 4A, 5A of the bracings 6 and/or the beam flanges 4, 5.
According to one preferred illustrative
30 embodiment, the foundation beam element 1 consists of an externally stiffened concrete slab 7 with cast-on, inward-facing cellular plastic insulation 3 in a cavity 9 formed between the flanges 4, 5 of said slab and bracings 6, and can preferably also support insulation 10,
35. attached for example by adhesive bonding, on the inward- facing surface 4A, 5A and 6A of said surrounding beam flanges 4, 5 and bracings 6. The latter insulation 10 on the flanges 4, 5 and the bracings 6 is intended first and foremost to prevent cold bridges. It should accordingly be noted that the surrounding beam flanges 4-, 5 can extend further inwards from the outer surface 1A of the element than the distance for which the interjacent bracings extend.
The invention may, for instance, be applied in accordance with the following example:
Foundation beams 1 in accordance with the invention are laid on base plates 11, which may exhibit a superstructure 12. The foundation beam 1 may exhibit rectangular cross-sectional form, although the supporting material 7, 4, 5 should preferably exhibit U-shaped cross-section lying on its side. The supporting material, which, for example, consists of concrete or light clinker, etc. , may also contain necessary reinforcement 13, 14. Ribs or other bracings 6 of suitable form and extent are so arranged as to extend between the upper flange 4 and the lower flange 5 of the element 1, in order to achieve high torsional stiffness and a high capacity to absorb transverse forces. The ribs, etc., 6 can be so arranged as to extend vertically and to be connected together laterally by means of a number of diagonally extending additional ribs or other bracing, in the form of a lattice.
The beam 1 can thus contain, as already mentioned, thermally insulating material 3 or a rib made of an inexpensive material, as illustrated in Fig. 1-2, for example.
Figs. 3-7 illustrate examples of an element l1, in which a rib made of an inexpensive material or insulation 3 is not integrated with the element 1, but in which the beam l was cast in a jnould which imparts the desired cross-sectional form to the beam, although additional insulation 10 is adhesive-bonded, etc. , internally to the insides 4A, 5A, 6A of the flanges 4, 5 and the bracings 6. Figs. 8-13 illustrate further examples of the application of the invention in connection with the construction of the foundations 15 for a building.
The prefabricated creep foundation contains parts of a building system for the laying of the foundations for a heated building with a beam structure above an enclosed, unventilated creep space 16. The creep foundations 15 are constructed from base plates 17 and, possibly, height extension plates 18 made of concrete, foundation beams 12 made of concrete with internal cellular plastic 19, 20 in a number of layers, and ventilation grids 21 for ventilation. The foundation beams 13 consist of an externally reinforced high concrete slab 71 with thick, cast-on cellular plastic insulation 19, 20 on the inside. The creep space 16 can be inspected more easily thanks to the considerable height of the foundation beams. The thick cellular plastic insulation on the foundation beams 13 enables surplus heat to be utilized, so that the laying of the foundations can take place at a reduced foundation depth. The foundations should preferably be laid using a crane, and the length of the foundation beams can be adapted to the requirements of the project.
The creep foundations 15 can be used for buildings with both light and heavy facing, for example of brick, and they are dimensioned in accordance with Svensk
Byggnorm SBN 80 (Swedish Building Standards). The inside of the beams l3 can also support thermal insulation 101, which has been attached, for example by adhesive bonding, to the inward-facing surfaces of the flanges 41, 51 and the bracing 61. A layer of macadam of at least 200 mm in thickness should be laid as the base for the base plates.
External drainage pipes and drainage are normally required. If the surface of the ground inside the creep space 16 is not self-draining, the ground should be drained in such a way that standing water is removed. The invention can, of course, also be applied without the use of any special foundation structure of plinths in the form of, for example, the previously described base plates, possibly with a superstructure, but is equally well suited to erection directly on the ground or on insulation resting on the ground, along which the foundation beams in question can be laid for the whole of its longitudinal extent resting directly on the ground or the insulation.
Ventilation of the creep space is provided by means of, for example, vent holes 21 fitted with grids. An external inspection opening 22 can be positioned at any suitable location depending on the prevailing ground conditions, and internal inspection holes 23 can also be present. The surface of the ground inside the creep space 16 is covered with, for example, 0.20 mm thick, type- approved plastic sheeting 24, with a minimum overlap of 200 mm. A building 24 of the desired kind can thus be erected on the foundation, when the foundation will effectively permit the load to be transferred down to the ground in accordance with the foregoing.
The embodiment of the invention illustrated in Figs. 14-16 similarly comprises prefabricated building foundation elements 101 produced from a suitable material such as concrete, light clinker or.light concrete, etc., with thermal insulation 103 which is supported by the element 101 in question. Said elements 101 exhibit a number of bracings 106 extending between the upper and lower beam flanges 104 and 105, which bracings are formed from the material of the element. Said bracings 106 may also extend vertically and/or diagonally between the preferably horizontally arranged beam flanges 104, 105, 5 and may even be supplemented with interjacent horizontal partitions 150, which divide up the insulation space into upper and lower compartments to accommodate insulation slabs 103 in the course of producing the elements. Extra insulation 151 can be attached to the inside of the
10 elements 101, for example by securing it with nails, together with battens 152 for the attachment of inner wall cladding 152, for example sheets of plaster of fibre material, when elements 101 are to form building cellar elements, as shown in Fig. 14, for example.
15 Said elements 101 may also contain reinforcement
154, and at the ends of the bodies 107 of the elements, which bodies should preferably have been produced with their full standing height, there may be arranged a groove 155, 156, which can be used for connection
20 purposes when the elements 10l have been erected and are in a position ready for being connected together, for example by pouring mortar into the tubular cavity 157 thus formed between the elements 101, holding them in position.
25 A concrete plate 158 is cast at the bottom of, and inside the foundation thus formed, to support an inner floor 159, whilst extra external installation, in the form of cellular plastic slabs 160, is applied to the outside of the elements extending vertically along them.
30 The building 161 itself can rest upon the upper flanges 104 of said elements, when the load is effectively transferred down to the ground via the elements 101 and their associated bodies 107 and bracings 106, without the risk of creating an oblique load.
35. Fig. 19 illustrates an example of a building element 201, in which an inner cladding, for example a sheet of plaster or similar, is integrated with the insulation 251, 203 of the element. Said inner cladding 275 may, for example, be adhesive-bonded or secured in some other appropriate fashion to adjacent insulation
251. Said element 201 may be arranged and manufactured in accordance with what is referred to and illustrated above for the other exemplified building elements. It may be found appropriate to cause the inner cladding 275 to be integrated with the common layers 203, 251 of insulation composed preferably in the sense of the depth of the element in conjunction with the casting of the building element 201, which can be made from a concrete material, where concrete partitions 250 are formed in the concrete slab 207 between the positioned slabs 203 of insulating material.
The invention is not, however, restricted to the illustrative embodiment described above or illustrated in the drawings, and may be modified within the. scope of the patent claims without departing from the idea of invention.

Claims

Patent Claims
1. Prefabricated building foundation element (1; l1; l2; 101) made of concrete, light clinker or light concrete, etc., being first and foremost a foundation construction or a foundation beam for so-called creep foundation structures (2) or building foundations, incorporating thermal insulation supported by the element, c h a r a c t e r i z e d in that bracing (6; 61; 106) extending between the upper and the lower beam flange (4-5; 41-51; 104-105) is so arranged as to transfer the load (F) down from the upper beam flange (4; 104) to the lower beam flange (5; 105).
2. Element in accordance with Patent Claim 1, c h a- r a c t e r i z e d in that vertical bracings (6; 61) extend between horizontal beam flanges (4, 5; 41, 51).
3. Element in accordance with any of the above Patent Claims, c h a r a c t e r i z e d in that diagonal bracings extend between horizontal beam flanges.
4. Element in accordance with any of the above Patent Claims, c h a r a c t e r i z e d in that the beam element exhibits a U-shaped cross-sectional profile.
5. Element in accordance with any of the above Patent Claims, c h a r a c t e r i z e d in that insulation (3; 32; 19, 20) consisting of, for example, slabs of cellular plastic material, is supported internally in (9) and/or on the inside of the element.
6. Element in accordance with Patent Claim 5, c h a¬ r a c t e r i z e d in that insulation (3; 19; 20) is accommodated internally within the element, and in that insulation (10; 101) is secured to the inside of the bracings (6; 61) and/or the beam flanges (4, 5; 41, 51) of the element.
7. Element in accordance with any of the above Patent Claims, c h a r a c t e r i z e d in that the rz
foundation beam element consists of an externally stiffened concrete slab (7; 71) with cast-on, inward- facing cellular plastic insulation (3; 19) and with insulation (10; 101) attached by adhesive bonding to the inward-facing surfaces of the surrounding beam flanges.
8. Element in accordance with any of the above Patent Claims, c h a r a c t e r i z e d in that surrounding beam flanges (4; 5) extend further inwards from the outer surface of the element than the distance for which the interjacent bracings (6) extend.
9. Method for the manufacture of prefabricated building foundation elements (1; l1; l2; 101) from concrete, light clinker or light concrete, etc. , being first and foremost a foundation construction or a foundation beam for so-called creep foundation structures (2) or building foundations, incorporating thermal insulation (3; 32; 19, 20; 103) supported by the element, in accordance with any of the above Patent Claims, c h a- r a c t e r i z e d in that said elements are manufactured by casting in between slabs of cellular plastic insulation accommodated in a mould at a certain distance from one another, so that concrete, etc. , is able to penetrate between the butt joints of the slabs and to form bracings (6; 61; 106) on setting, or into a casting mould, one side of which mould has a pattern of fixed ribs to form cast bracings (6; 106) between them.
10. Means for the manufacture of prefabricated building foundation elements (1; l1; l2) from concrete, light clinker or light concrete, etc. , being first and foremost a foundation construction or a foundation beam for so-called creep foundation structures (2) , incorporating thermal insulation (3; 32; 19, 20) supported by the element, in accordance with any of the above Patent Claims, c h a r a c t e r i z e d in that a casting mould permits.,the accommodation of slab-shaped bodies capable of being laid separately in the mould, for example thermal insulation slabs of cellular plastic or ribs of an appropriate kind, or in that the mould includes fixed ribs, for example made of sheet metal or plywood.
PCT/SE1989/000668 1989-01-05 1989-11-20 Prefabricated building foundation element and a method and means for the manufacture of the element WO1990007612A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP90901070A EP0454690B1 (en) 1989-01-05 1989-11-20 Prefabricated building foundation element
DE68921644T DE68921644T2 (en) 1989-01-05 1989-11-20 PRE-PREPARED BUILDING FOUNDATION ELEMENT.
DK110291A DK166158C (en) 1989-01-05 1991-06-11 Prefabricated building foundation element
FI912980A FI91180C (en) 1989-01-05 1991-06-19 Prefabricated building foundation element
NO912644A NO302080B1 (en) 1989-01-05 1991-07-05 Prefabricated foundation wall element
US08/020,180 US5433049A (en) 1989-01-05 1993-02-22 Prefabricated building foundation element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
SE8902760-1 1989-01-05
SE8900032 1989-01-05
SE8900032-7 1989-01-05
SE8902760A SE464477B (en) 1989-01-05 1989-08-17 PREFABRICATED BUILDING ELEMENT

Publications (1)

Publication Number Publication Date
WO1990007612A1 true WO1990007612A1 (en) 1990-07-12

Family

ID=26660396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE1989/000668 WO1990007612A1 (en) 1989-01-05 1989-11-20 Prefabricated building foundation element and a method and means for the manufacture of the element

Country Status (12)

Country Link
US (1) US5433049A (en)
EP (1) EP0454690B1 (en)
AT (1) ATE119603T1 (en)
AU (1) AU626971B2 (en)
DE (1) DE68921644T2 (en)
DK (1) DK166158C (en)
ES (1) ES2063727T3 (en)
FI (1) FI91180C (en)
NO (1) NO302080B1 (en)
RU (1) RU2040652C1 (en)
SE (1) SE464477B (en)
WO (1) WO1990007612A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2385071B (en) * 2002-02-06 2005-09-07 Insulslab Ltd Foundations
EP1666672A3 (en) * 2004-10-06 2008-05-07 Skanska Sverige AB Building, foundation construction for a building and method of producing the same
EP2816168A3 (en) * 2013-05-24 2015-03-11 Baustoffwerke Gebhart & Sohne Gmbh & Co. Kg Cladding stone for connection with a concrete ceiling
GB2574710A (en) * 2018-04-23 2019-12-18 Campion Liam Foundation
RU2808031C2 (en) * 2022-05-16 2023-11-22 Общество с ограниченной ответственностью "СибТрансСтрой" Foundation of multi-story building constructed on heaving soil foundations

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5634308A (en) * 1992-11-05 1997-06-03 Doolan; Terence F. Module combined girder and deck construction
US5581969A (en) * 1994-10-13 1996-12-10 Kelleher; Stephen L. Prefabricated building element
US5657597A (en) 1995-04-11 1997-08-19 Environmental Building Technology, Ltd. Building construction method
US6581352B1 (en) * 2000-08-17 2003-06-24 Kamran Amirsoleymani Concrete composite structural system
GB0127148D0 (en) * 2001-11-12 2002-01-02 Abbey Pynford Holdings Plc Improvements relating to foundation rafts
EP2280127A1 (en) 2003-09-24 2011-02-02 Infinity Systems AG A thermally conducting building element, a building, and a method of erecting the building
US7937901B2 (en) * 2005-03-29 2011-05-10 Sarkkinen Douglas L Tendon-identifying, post tensioned concrete flat plate slab and method and apparatus for constructing same
DE102006029804B4 (en) * 2006-06-27 2008-07-03 Mea Bausysteme Gmbh Façade stone for placement on an insulated masonry
US8011158B1 (en) 2007-04-27 2011-09-06 Sable Developing, Inc. Footing for support of structure such as building
FR2925541B1 (en) * 2007-12-21 2013-08-02 David Damichey PREFABRICATED ELEMENT FOR HOUSING UNIT.
JP2011006507A (en) * 2009-06-23 2011-01-13 Nitto Denko Corp Polyimide compound, manufacturing method therefor, and optical film and light waveguide path obtained from the polyimide compound
US8322092B2 (en) 2009-10-29 2012-12-04 GS Research LLC Geosolar temperature control construction and method thereof
US8595998B2 (en) 2009-10-29 2013-12-03 GE Research LLC Geosolar temperature control construction and method thereof
AT511220B1 (en) * 2011-04-08 2013-01-15 Cree Gmbh CEILING ELEMENT FOR THE EDUCATION OF BUILDING COVERS
DK2886723T3 (en) * 2012-06-06 2017-06-19 Gestamp Hybrid Towers S L Ribbed foundation for superstructures and method of making the foundation.
WO2015044533A1 (en) * 2013-09-27 2015-04-02 SARRAIL, Jean-Luc Device forming a wall construction element
JP6401535B2 (en) * 2014-07-29 2018-10-10 株式会社熊谷組 Precast concrete components used for foundation construction
US20170156305A1 (en) * 2015-12-08 2017-06-08 Tony Hicks Insulating Device for Building Foundation Slab
CN106759450A (en) * 2016-11-17 2017-05-31 中国能源建设集团浙江省电力设计院有限公司 A kind of full cable outlet integral type GIS foundation arrangement
US11384525B2 (en) * 2019-04-02 2022-07-12 Consulting Engineers, Corp. Construction and monitoring of barrier walls
WO2021010851A1 (en) * 2019-07-12 2021-01-21 Mladen Milinkovic Durable construction object made of three layered prefabricated ferocement constructive elements

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE442654B (en) * 1984-06-06 1986-01-20 Johnny Johansson Prefabricated foundation beam

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2114048A (en) * 1933-05-10 1938-04-12 American Cyanamid & Chem Corp Precast slab with insulating insert
US2184464A (en) * 1938-09-19 1939-12-26 Myers Med Wall slab
US2786004A (en) * 1953-08-07 1957-03-19 Leobarb Corp Thermal insulation
US3759002A (en) * 1971-06-16 1973-09-18 E Cornella Building construction of spaced panels with weather seals
US3845593A (en) * 1972-09-12 1974-11-05 G Zen Lightweight concrete panel
US4164831A (en) * 1977-09-21 1979-08-21 Messick William E Heat insulating and sound absorbing concrete wall panel
US4223502A (en) * 1978-03-08 1980-09-23 Olympian Stone Company, Inc. Building panel with stone facing and glass fiber reinforced concrete
US4330969A (en) * 1978-07-24 1982-05-25 Quaney Patrick E Construction panel
US4602467A (en) * 1984-07-02 1986-07-29 Schilger Herbert K Thin shell concrete wall panel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE442654B (en) * 1984-06-06 1986-01-20 Johnny Johansson Prefabricated foundation beam

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2385071B (en) * 2002-02-06 2005-09-07 Insulslab Ltd Foundations
EP1666672A3 (en) * 2004-10-06 2008-05-07 Skanska Sverige AB Building, foundation construction for a building and method of producing the same
EP2816168A3 (en) * 2013-05-24 2015-03-11 Baustoffwerke Gebhart & Sohne Gmbh & Co. Kg Cladding stone for connection with a concrete ceiling
GB2574710A (en) * 2018-04-23 2019-12-18 Campion Liam Foundation
RU2808031C2 (en) * 2022-05-16 2023-11-22 Общество с ограниченной ответственностью "СибТрансСтрой" Foundation of multi-story building constructed on heaving soil foundations

Also Published As

Publication number Publication date
ES2063727T1 (en) 1995-01-16
DE68921644D1 (en) 1995-04-13
FI912980A0 (en) 1991-06-19
DK110291A (en) 1991-07-03
DK166158B (en) 1993-03-15
EP0454690B1 (en) 1995-03-08
AU4813690A (en) 1990-08-01
AU626971B2 (en) 1992-08-13
RU2040652C1 (en) 1995-07-25
DK166158C (en) 1995-12-27
US5433049A (en) 1995-07-18
DK110291D0 (en) 1991-06-11
FI91180B (en) 1994-02-15
SE8902760L (en) 1990-07-06
NO302080B1 (en) 1998-01-19
FI91180C (en) 1994-05-25
NO912644D0 (en) 1991-07-05
EP0454690A1 (en) 1991-11-06
ATE119603T1 (en) 1995-03-15
SE8902760D0 (en) 1989-08-17
NO912644L (en) 1991-07-05
ES2063727T3 (en) 1995-06-01
DE68921644T2 (en) 1995-07-06
SE464477B (en) 1991-04-29

Similar Documents

Publication Publication Date Title
AU626971B2 (en) Prefabricated building foundation element and a method and means for the manufacture of the element
US6009677A (en) Building panels for use in the construction of buildings
WO1989002959A1 (en) Building structure and method and element for making same
US3956859A (en) Foundation of a heated building without a cellar
CN111411724A (en) Steel beam-concrete composite floor slab combined assembly system
US20050115185A1 (en) Masonry block constructions with polymeric coating
CN107989247B (en) Assembled superposed hollow floor system and construction method thereof
EP2241690B1 (en) Insulated foundation element for mounting on precast base foundation
FI83120C (en) KONSTRUKTIONSENHET.
RU2394966C2 (en) Construction module, in particular lower floor or basement for amenity or domestic building
KR200380424Y1 (en) Drain board structure for under ground basement
CN114658141A (en) Connecting structure and method for T-shaped constructional column and independent foundation of assembled composite wallboard
CN113846789B (en) Assembled concrete bidirectional ribbed floor structure and construction method thereof
CN221721922U (en) Connection node of assembled full prefabricated floor slab and superimposed beam free of support
CN217175198U (en) Connecting structure of steel bar truss floor bearing plate and reinforced concrete wall
CN221895991U (en) Novel external disassembly-free heat preservation wallboard of shear wall
US20090064615A1 (en) Building Element and a Building Structure Comprising the Building Element
CN211447271U (en) Novel connection structure of constructional column and structural floor
CN221193836U (en) Beam column heat preservation prefabricated wallboard
CN215104588U (en) Flat-open type foundation pit trestle structure
CN117090356A (en) Prefabricated parapet and steel bar truss floor carrier plate connecting node and construction method thereof
KR20220086294A (en) An interfloor structure that reduces encroachment in the height of the building
KR20240000170U (en) Embedded waffle slab system with light weight body and a insulator
CN114991340A (en) Split prefabricated building component and prefabricated house
WO1992001133A1 (en) Multi-storey car park with floors comprising prefabricated slabs

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR CH DE DE DK ES FI GB HU JP KP KR LK LU MC MG MW NL NO RO SD SE SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BF BJ CF CG CH CM DE ES FR GA GB IT LU ML MR NL SE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 912980

Country of ref document: FI

WWE Wipo information: entry into national phase

Ref document number: 1990901070

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1990901070

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 912980

Country of ref document: FI

WWG Wipo information: grant in national office

Ref document number: 1990901070

Country of ref document: EP