WO1990007250A1 - Microphone a detection interferometrique de pression acoustique - Google Patents

Microphone a detection interferometrique de pression acoustique Download PDF

Info

Publication number
WO1990007250A1
WO1990007250A1 PCT/FR1989/000650 FR8900650W WO9007250A1 WO 1990007250 A1 WO1990007250 A1 WO 1990007250A1 FR 8900650 W FR8900650 W FR 8900650W WO 9007250 A1 WO9007250 A1 WO 9007250A1
Authority
WO
WIPO (PCT)
Prior art keywords
interferometer
acoustic signal
arm
microphone
microphone according
Prior art date
Application number
PCT/FR1989/000650
Other languages
English (en)
Inventor
Alain Brillet
Denis Joyeux
Original Assignee
Science & Tec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Science & Tec filed Critical Science & Tec
Publication of WO1990007250A1 publication Critical patent/WO1990007250A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00
    • H04R23/008Transducers other than those covered by groups H04R9/00 - H04R21/00 using optical signals for detecting or generating sound

Definitions

  • the invention relates to microphones, that is to say the apparatus for supplying an electrical signal 5 representative of the output pressure of an acoustic signal they receive. It relates more particularly to microphones intended for detecting acoustic signals whose frequency band is placed] o above the band generally qualified as very low frequency, that is to say above 20 Hz. For these signals to be detected, the main problems which one encounters when seeking to increase the sensitivity and the dynamic range of measurement are linked to the
  • the present invention aims to provide a microphone having a high linearity, having reproducible characteristics and, in an advantageous embodiment, a very wide dynamic range. 0 It also aims to provide a microphone whose characteristics are not very sensitive to variations in the gaseous medium of sound transmission, such as variations in humidity.
  • the invention proposes in particular a microphone comprising a reference space free from the acoustic signal to be measured, characterized in that it comprises an optical interferometer having a reference arm passing through the reference space and an active arm whose length is modified by the acoustic signal around a value substantially equal to that of the reference arm and means for measuring path variations optics of the active arm relative to the reference arm, caused by the acoustic signal, enslave the path difference between the two arms to a constant value, in the frequency band going from zero to the maximum frequency of the signal to be studied.
  • This control can be achieved by delimiting one of the two arms by a mirror carried by a transducer, such as a piezoelectric ceramic, having an elongation-electrical voltage response which is appreciably linear at low amplitudes, apart from very low frequencies: the piezoelectric ceramic control signal then contains the useful signal, which can be isolated by filtering. Since the output signal will always be at a very low level, the variations in optical path will always be at a very low level.
  • a transducer such as a piezoelectric ceramic
  • a microphone When essentially a very large measurement dynamic is sought, a microphone will advantageously be used in which the acoustic signal to be analyzed causes a modification of the index of the gas in a space crossed by the active arm.
  • the absence of any mechanical conversion element in this case makes it possible to arrive at an almost perfect linearity, and to operate in a pass band going from 20 Hz to 30 kHz at least, and on a dynamic range greater than that of best current microphones.
  • the active arm can be delimited by an oscillating mirror in response to the active signal: in this case, one can for example fix the mirror to a microphonic membrane.
  • a membrane this time as transparent as possible from an acoustic point of view is also of interest when it is necessary to isolate the atmosphere traversed by the measuring arm and / or the interferometric elements of the atmosphere.
  • This solution also makes it possible to adopt, as the gaseous medium traversed by the measuring arm, an organic gas having an index n such that n-1 is high, in particular when on the contrary a sensitivity as high as possible is desirable,
  • FIG. 1 is a block diagram of a microphone using a two-wave interferometer
  • FIG. 2 is a curve representative of the variations in the luminous flux collected at the output of the interferometer as a function of the optical path, showing nominal points of possible measurement;
  • FIG. 3 similar to Figure 1, is a diagram of a microphone using a Fabry-Pérot interferometer.
  • a microphone with detection by two-wave interferometer will be described, which has the advantage of a simpler construction than that of a Fabry-Perot interferometer device, as a result above all of a greater tolerance on the geometry and on the spectral purity of the light source, which authorizes the use of a laser diode as a source.
  • the output beam, of amplitude A, supplied by a single-mode source such as a laser diode is divided into two equal fractions along two paths comprising , one, an active arm, of length at rest Ll, the other one reference arm of length at rest L2 substantially equal to L1.
  • n the index of the gaseous medium crossed by the two arms in the absence of an acoustic signal, by the variation in the index caused by the acoustic signal, and by ⁇ the wavelength of the light beam
  • the interference signal obtained by recombining the beams having passed through the two arms is of the form:
  • the microphone comprises a monochromatic light source 10 constituted by a laser diode, possibly stabilized in temperature, for example using a Peltier cooling assembly.
  • the source is provided with an amplitude regulation circuit which can have a conventional constitution, for example constituted by a loop for measuring the luminous flux and current control, having an amplifier 14 and a current generator 12.
  • diodes laser whose frequency density of noise varies from 10 "10 / / " Hz approximately to 10 Hz to less than 10 " " *** - ** - / / " Hz beyond a few kHz. compatible with the precision to be achieved, even for short arms, of the order of 2x1 cm in length.
  • an optical isolator 16 is interposed on the output beam of the diode to prevent the return beams from reaching the source.
  • a commercial optical isolator such as a Faraday effect device or cascade devices.
  • the beam leaving the insulator 16 is received by a collimating optic 18 which provides a parallel beam split by blades with parallel faces to constitute an active arm of length at rest Ll, defined by a mirror 19 ⁇ , which crosses a subject space to the action of the acoustic wave and a reference arm, of length at rest L2 very little different from L1, defined by a mirror 192 "
  • optical beams of the two arms are received by respective intensity detectors 20! and 20 2 with linear response which drive the two inputs of a differential amplifier 22 whose output signal is of the form (1) above.
  • the detectors 20 ⁇ and 20 2 can in particular be constituted by silicon diodes, having a maximum sensitivity at about 0.8 ⁇ m, when the source is constituted by a commercial laser diode.
  • the silicon diodes are advantageously polarized and associated with semi-dielectric separating plates which allow better use of the light flux.
  • a first plate 24 for example can be provided to completely transmit the flux it receives from the collimator optics 18 towards the arms and totally reflect the beam back to the detector 20 ⁇ , while the plate 26 which delimits the optical paths with the mirrors 19 ⁇ and 19 2 remains semi-transparent.
  • the one shown in Figure 1 is particularly simple when the acoustic signal is at low level and when the flows leaving the interferometer are approximately balanced. It consists in slaving the path difference between the two arms to a constant value, by electrical control of the location of one of the mirrors 19 ⁇ and 1 2 / the component of the electrical control signal located in the measurement strip then constituting the useful signal.
  • it is the mirror 19 2 whose position is controlled.
  • This transducer 24 can in particular be a piezoelectric ceramic block, which has good short-term linearity, in the range above 20 Hz for amplitudes of the order of a micron.
  • the constant path difference to be maintained is chosen so as to largely eliminate the noise caused by amplitude variations.
  • Detection on the inflection point C is simple in the case of an interferometer whose outputs are roughly balanced. It leads to the assembly of FIG. 1, with simple subtraction of the output signals from the two channels by the differential amplifier 22, one of the inputs possibly comprising adjustment means in order to balance the assembly.
  • the signal differential is then zero, including for the amplitude noise which is found, with the same value, in the two arms of the interferometer.
  • the elimination of the noise due to the amplitude variations depends however on the linearity of the detectors 20-L and 20 2 and on the common mode rejection of the electronics and, in particular, of the amplifier 22 which supplies the applied voltage to the transducer 24 and to a bandpass filter 26 whose output constitutes the measurement signal.
  • the calculation shows that a rejection of 100 dB is sufficient to eliminate an amplitude noise having an effective value of 10 ⁇ 3 in the measurement bandwidth.
  • Detection on an extremum involves introducing an optical path modu ⁇ lation in the interferometer, using the servo transducer 24 or using another organ.
  • the frequency of this modulation is advantageously chosen so that the noise power of the source 10 at this frequency is negligible.
  • This solution generally requires the adoption, as source 10, of a solid-state or gas laser having negligible noise power above a few MHz.
  • the microphone uses a Fabry-Pérot type resonant circuit.
  • a Fabry-Pérot interferometer does not have two separate arms, one of which, preserved from the acoustic signal, can serve as a reference. Consequently, the microphone comprises two Fabry-Perot interferometers having roughly identical parameters, one of which can be considered to include the measurement arm and the other, the reference arm.
  • the advantage of using a resonant interferometer, and in particular a Fabry-Pérot interferometer is that the interference fringes are thinner, which makes it possible to have an even better sensitivity.
  • the source 10 must in this case be constituted by a laser of high spectral purity, for example by a single mode YAG laser, pumped using a laser diode.
  • the output beam is further divided by a mirror 26 into two equal fractions, one of which is directed towards the interferometer comprising the measuring arm and the other towards the interferometer comprising the reference arm, the two interferometers having substantially identical parameters.
  • a mirror 26 is further divided by a mirror 26 into two equal fractions, one of which is directed towards the interferometer comprising the measuring arm and the other towards the interferometer comprising the reference arm, the two interferometers having substantially identical parameters.
  • the microphone in FIG. 1 that of FIG. 3, uses a measurement by slaving of the length of the optical path, with simply a different implementation. It is also the length of the optical path of the reference arm which is controlled by a servo loop using, as a transducer, a piezoelectric ceramic pad 24.
  • the reference arm is delimited by a mirror 19 carried by the transducer 24 and the active measurement arm is delimited by a mirror 19 ⁇ .
  • the detectors 20 ⁇ and 20 may also be silicon diodes.
  • the measurement arm then comprising no adjustment member must however remain tuned to the optical frequency fO. Since the interferometer works in reflection, it is necessary to seek a minimum of reflection for this optical frequency fO. The latter must therefore be stabilized from the interference signal from the interferometer comprising the measuring arm. For this, use is made, in the illustrated case, of a modulation with an optical frequency difference ⁇ f chosen so that it can still be resolved by the interferometers. When tuning, frequencies fO- ⁇ f and fO + ⁇ f are reflected and any shift in tuning results in an imbalance in the energy returned to these two frequencies.
  • the servo control of the interferometer comprising the measurement arm is carried out, in the case of FIG. 3, by modulating the output frequency of the laser, for example at 15 MHz, and by using a feedback loop in frequency.
  • the laser beam passes through, at the output of the insulator 16, a modulator 28, for example electro-optical or acousto-optical.
  • the modulation signal is supplied to this modulator by an oscillator 30 of sufficient stability. In practice, the stability of a quartz generator is sufficient because the final detection can use a frequency reference from the same generator.
  • the signal supplied by the detector 20- ⁇ associated with the active measurement arm is subjected to a quadratic detection which provides a signal containing the mixture of the different optical frequencies.
  • This signal is subjected and to an isolation filtering of the excitation frequency of 15 MHz in a measuring block 32 which receives a frequency reference from the oscillator 30.
  • the output signal from block 32 is applied to an amplifier.
  • differential 34 of zero servo control a laser modulation member 10, constituted for example by a piezoelectric ceramic 36 carrying a mirror defining the resonant cavity of the laser.
  • the optical frequency of the beam supplied by the laser therefore contains all the fluctuations in length of the optical path of the Fabry-Pérot measurement interferometer and in particular the acoustic signal, but is free of its own frequency fluctuations.
  • the optical spectrum of the beam includes the natural frequency of the laser, framed by two bands whose deviation from this frequency corresponds to the modulation frequency which is chosen to fulfill two conditions: it is not contained in the band to be detected; the laser must have a negligible amplitude noise at this frequency.
  • the reference Fabry-Perot is used as an analyzer of the optical spectrum of the laser, which contains the acoustic signal, as we have seen. This leads to controlling the transducer 24 by a loop similar to that which controls the f f equency, having a detection block 36 which attacks a servo amplifier 38 with a zero detected signal controlling the transducer 24.
  • the measurement signal is obtained, from the control signal from the transducer 24, by a filter 40 whose bandwidth corresponds to the desired measurement range, for example from 20 Hz to 30 kHz.
  • the control signal does not contain any parasitic optical frequency fluctuation, because it has been eliminated in the laser control loop.
  • the amplitude noise of the laser is negligible above 10 MHz, that is to say in the modulation range.
  • the invention is susceptible of numerous other alternative embodiments.
  • a two-wave interferometer with several successive passes can be used to lengthen the arms, which increases the sensitivity proportionally.
  • this solution has the drawback of making it difficult to maintain the approximate equality of the lengths L1 and L2, which makes it possible to use a laser diode.
  • the microphone uses, not the variation of index in the medium gas crossed by the measuring arm, but the displacements of a mirror carried by a defo ⁇ nable wall, such as a membrane, subjected to acoustic pressure and constituting acoustic transducer.
  • This solution can increase sensitivity; but it reduces the dynamics and the fidelity, due to the mechanical inertia of the wall.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

Le microphone, permettant de mesurer les signaux acoustiques dont le spectre est au-dessus de 20 Hz, comprend un espace de référence exempt de ce signal. Il comprend de plus une source de lumière monomode (10) et un interféromètre optique ayant un bras de référence traversant l'espace de référence et un bras actif dont la longueur (L1) est modifiée par le signal acoustique autour d'une valeur sensiblement égale à celle (L2) du bras de référence et des moyens pour mesurer les variations de chemin optique du bras actif provoquées par le signal acoustique.

Description

Microphone à détection interférométrique de pression acoustique
L'invention concerne les microphones, c'est-à- dire les appareils fournissant un signal électrique de 5 sortie représentatif de la pression d'un signal acoustique qu'ils reçoivent. Elle concerne plus parti¬ culièrement les microphones destinés à détecter des signaux acoustiques dont la bande de fréquence se place ]o au-dessus de la bande généralement qualifiée de très basse fréquence, c'est-à-dire au-dessus de 20 Hz. Pour ces signaux à détecter, les problèmes principaux aux¬ quels on se heurte lorsqu'on cherche à augmenter la sensibilité et la dynamique de mesure sont liés à la
15 densité spectrale de bruits de toute origine, plutôt qu'aux problèmes de dérive.
Il existe de très nombreux types de microphones. Ils utilisent en quasi-totalité un élément de conversion mécanique des oscillations de pression acoustique en 0 déplacement. Ce principe de fonctionnement limite la dynamique en fréquence et surtout en amplitude. Il limite également la fidélité du fait de l'inertie de l'élément de conversion mécanique, qui introduit des défauts de linéarité et une réponse en fréquence 5 variable, même à l'intérieur de la bande utile.
La présente invention vise à fournir un microphone ayant une grande linéarité, ayant des caractéristiques reproductibles et, dans un mode avantageux de réalisation, une dynamique très étendue. 0 Elle vise également à fournir un microphone dont les caractéristiques sont peu sensibles aux variations du milieu gazeux de transmission du son, telles que les variations de degré hygrométrique.
Dans ce but, l'invention propose notamment un 5 microphone comprenant un espace de référence exempt du signal acoustique à mesurer, caractérisé en ce qu'il comprend un interferomètre optique ayant un bras de référence traversant l'espace de référence et un bras actif dont la longueur est modifiée par le signal acoustique autour d'une valeur sensiblement égale à celle du bras de référence et des moyens pour mesurer les variations de chemin optique du bras actif par rapport au bras de référence, provoquées par le signal acoustique en asservissent la différence de marche entre les deux bras à une valeur constante, dans la bande de fréquence allant de zéro jusqu'à la fréquence maximale du signal à étudier.
Cet asservissement peut être réalisé en délimi¬ tant un des deux bras par un miroir porté par un transducteur, tel qu'une céramique piézo-électrique, ayant une réponse élongation-tension électrique sensi¬ blement linéaire aux faibles amplitudes, en dehors des très basses fréquences : le signal de commande de la céramique piézo-électrique contient alors le signal utile, qu'il est possible d'isoler par filtrage. Du fait que le signal de sortie sera toujours à très bas niveau, les variations de chemin optique seront toujours à très bas niveau.
Lorsque l'on recherche essentiellement une très grande dynamique de mesure, on utilisera avantageusement un microphone dans lequel le signal acoustique à ana¬ lyser provoque une modification de l'indice du gaz dans un espace traversé par le bras actif. L'absence de tout élément de conversion mécanique dans ce cas, permet d'arriver à une linéarité quasi parfaite, et de fonctionner dans une bande passante allant de 20 Hz jusqu'à 30 kHz au moins, et sur une dynamique supérieure à celle des meilleurs microphones actuels.
Dans une variante, le bras actif peut être délimité par un miroir oscillant en réponse au signal actif : dans ce cas, on peut par exemple fixer le miroir à une membrane microphonique. L'utilisation d'une membrane, cette fois aussi transparente que possible du point de vue acoustique présente également un intérêt lorsqu'il est nécessaire d'isoler l'atmosphère traversée par le bras de mesure et/ou les éléments interféro- métriques de l'ambiance. Cette solution permet également d'adopter, comme milieu gazeux traversé par le bras de mesure, un gaz organique ayant un indice n tel que n-1 soit élevé, notamment lorsqu'au contraire une sensi¬ bilité aussi élevée que possible est souhaitable,
L'invention sera mieux comprise à la lecture de la description qui suit de modes particuliers de réalisation donnés à titre d'exemples non limitatifs. La description se réfère aux dessins qui l'accompagnent, dans lesquels :
- la Figure 1 est un schéma de principe d'un microphone utilisant un interferomètre à deux ondes ;
- la Figure 2 est une courbe représentative des variations du flux lumineux recueilli à la sortie de 1'interferomètre en fonction du chemin optique, faisant apparaître des points nominaux de mesure possible ;
- la Figure 3, similaire à la Figure 1, est un schéma d'un microphone utilisant un interferomètre Fabry-Pérot.
On décrira tout d'abord, en faisant référence à la Figure 1, un microphone à détection par interfero¬ mètre à deux ondes, qui présente l'intérêt d'une construction plus simple que celle d'un dispositif à interferomètre Fabry-Pérot, par suite surtout d'une plus grande tolérance sur la géométrie et sur la pureté spectrale de la source lumineuse, ce qui autorise 1'emploi d'une diode laser comme source.
Avant de décrire les composants du microphone, il est utile de définir son principe de fonctionnement : on divise le faisceau de sortie, d'amplitude A, fourni par une source monomode telle qu'une diode laser, en deux fractions égales suivant deux trajets comportant, l'un, un bras actif, de longueur au repos Ll, l'autre un bras de référence de longueur au repos L2 sensiblement égale à Ll. Si on désigne par n l'indice du milieu gazeux traversé par les deux bras en l'absence de signal acoustique, par en la variation de l'indice provoquée par le signal acoustique, et par λ la longueur d'onde du faisceau lumineux, le signal d'interférence obtenu en recombinant les faisceaux ayant traversé les deux bras est de la forme :
A [ 1 + cos 2 n (L1-L2) + en Ll ] (1) λ Le terme utile dans la formule (1) ci-dessus est sn.Ll. Les variations des termes A, n, Ll, L2, autres que commandées, ne constituent des bruits que lorsqu'ils se placent dans la bande du spectre acoustique où s'effectue la mesure, ce qui fait que les dérives lentes peuvent être négligées.
Il est possible de maintenir A à une valeur sensiblement constante, par régulation de la source. Le calcul montre que les variations de la longueur d'onde λ d'émission d'une diode laser régulée en température sont compatibles avec les précisions à atteindre, lorsqu'on utilise un interferomètre équilibré, c'est-à-dire dans lequel Ll s L2.
Dans le mode de réalisation montré en Figure 1, le microphone comporte une source lumineuse monochro- matique 10 constituée par une diode laser, éventuel¬ lement stabilisée en température, par exemple à l'aide d'un montage à refroidissement par effet Peltier. Pour maintenir constant, à court terme, le terme A de la formule (1) ci-dessus, la source est munie d'un circuit de régulation d'amplitude qui peut avoir une constitution classique, par exemple constituée par une boucle de mesure du flux lumineux et de commande du courant, ayant un amplificateur 14 et un générateur de courant 12. Il existe à l'heure actuelle des diodes laser dont la densité spectrale de bruit en fréquence varie de 10"10/ /"Hz environ à 10 Hz à moins de 10""***--**-/ /"Hz au-delà de quelques kHz. Ce bruit est compatible avec la précision à atteindre, même pour des bras courts, de l'ordre de 2x1 cm de longueur.
Les diodes laser étant très sensibles à l'énergie ré-entrante, un isolateur optique 16 est interposé sur le faisceau de sortie de la diode pour éviter que les faisceaux de retour n'atteignent la source. On peut notamment utiliser un isolateur optique commercial, tel qu'un dispositif à effet Faraday ou des dispositifs en cascade.
Le faisceau sortant de l'isolateur 16 est reçu par une optique collimatrice 18 qui fournit un faisceau parallèle fractionné par des lames à faces parallèles pour constituer un bras actif de longueur au repos Ll, défini par un miroir 19^, qui traverse un espace soumis à l'action de l'onde acoustique et un bras de référence, de longueur au repos L2 très peu différente de Ll, défi- ni par un miroir 192»
Les faisceaux optiques des deux bras sont reçus par des détecteurs d'intensité respectifs 20! et 202 à réponse linéaire qui attaquent les deux entrées d'un amplificateur différentiel 22 dont le signal de sortie est de la forme (1) ci-dessus.
Les détecteurs 20^ et 202 peuvent notamment être constitués par des diodes au silicium, ayant une sensi¬ bilité maximale à 0,8 μm environ, lorsque la source est constituée par une diode laser du commerce. Les diodes au silicium sont avantageusement polarisées et associées à des lames séparatrices semi-diélectriques qui permettent de mieux utiliser le flux lumineux. Une première lame 24 par exemple peut être prévue pour transmettre totalement le flux qu'elle reçoit de l'optique collimatrice 18 vers les bras et réfléchir totalement le faisceau en retour vers le détecteur 20^, alors que la lame 26 qui délimite les chemins optiques avec les miroirs 19^ et 192 reste semi-transparente.
Plusieurs méthodes de mesure sont utilisables. Celle montrée en Figure 1 est particulièrement simple lorsque le signal acoustique est à bas niveau et lorsque les flux sortant de l'interferomètre sont approximati¬ vement équilibrés. Elle consiste à asservir la différence de marche entre les deux bras à une valeur constante, par commande électrique de l'emplacement d'un des miroirs 19^ et 1 2/ la composante du signal électrique de commande située dans la bande de mesure constituant alors le signal utile. Dans le cas montré en Figure 1, c'est le miroir 192 dont la position est asservie. Pour cela, il est porté par un transducteur ayant une caractéristique sensiblement linéaire déplacement-tension de commande. Ce transducteur 24 peut notamment être un pavé de céramique piézo-électrique, qui présente une bonne linéarité à court terme, dans la plage au-dessus de 20 Hz pour des amplitudes de l'ordre du micron.
La différence de marche constante à maintenir est choisie de façon à éliminer dans une large mesure le bruit provoqué par les variations d'amplitude. Sur la courbe de variation du signal interférométrique f en fonction de la différence de marche s, cette condition est remplie pour des points de fonctionnement qui correspondent au maximum, au minimum et au point d'inflexion de la sinusoïde représentant f. La détection sur le point d'inflexion C est simple dans le cas d'un interferomètre dont les sorties sont à peu près équilibrées. Elle conduit au montage de la Figure 1, avec simple soustraction des signaux de sortie des deux voies par l'amplificateur différentiel 22, l'une des entrées pouvant comporter des moyens d'ajustage afin d'équilibrer le montage. Le signal différentiel est alors nul, y compris pour le bruit d'amplitude qui se retrouve, avec la même valeur, dans les deux bras de 1'interferomètre.
L'élimination du bruit dû aux variations de l'amplitude dépend cependant de la linéarité des détecteurs 20-L et 202 et de la rejection de mode commun de l'électronique et, notamment, de l'amplificateur 22 qui fournit la tension appliquée au transducteur 24 et à un filtre passe-bande 26 dont la sortie constitue le signal de mesure. Le calcul montre qu'une rejection de 100 dB suffit à éliminer un bruit d'amplitude ayant une valeur efficace de 10~3 dans la bande passante de mesure.
La détection sur un extremum, par exemple sur le minimum B (Figure 2), implique d'introduire une modu¬ lation de chemin optique dans l'interferomètre, à l'aide du transducteur d*asservissement 24 ou à 1'aide d'un autre organe. On choisit avantageusement la fréquence de cette modulation de façon que la puissance de bruit de la source 10 à cette fréquence soit négligeable. Cette solution oblige en général à adopter, comme source 10, un laser à état solide ou à gaz ayant une puissance de bruit négligeable au-dessus de quelques MHz.
Il est évidemment possible d'utiliser un interferomètre à deux ondes autre que du type MICHELSON, par exemple de type MACH-ZENDER.
Le microphone dont le schéma de principe est donné en Figure 3 utilise, contrairement au précédent, un montage résonant de type Fabry-Pérot. Dans sa constitution de base, un interferomètre Fabry-Pérot ne comporte pas deux bras séparés dont l'un, préservé du signal acoustique, peut servir de référence. En consé¬ quence, le microphone comporte deux interféromètres Fabry-Pérot ayant des paramètres à peu près identiques, dont 1'un peut être considéré comme comportant le bras de mesure et, l'autre, le bras de référence. L'intérêt de l'utilisation d'un interferomètre résonant, et notamment d'un interferomètre Fabry-Pérot, est que les franges d'interférence sont plus fines, ce qui permet d'avoir une sensibilité encore meilleure. La source 10 doit dans ce cas être constituée par un laser de grande pureté spectrale, par exemple par un laser YAG monomode, pompé à l'aide d'une diode laser. Le faisceau de sortie est encore partagé par un miroir 26 en deux fractions égales, dont l'une est dirigée vers 1'interferomètre comportant le bras de mesure et l'autre vers 1'interferomètre comportant le bras de référence, les deux interféromètres ayant des paramètres sensible¬ ment identiques. Comme le microphone de la Figure 1, celui de la Figure 3, utilise une mesure par asservis- sèment de longueur du chemin optique, avec simplement une mise en oeuvre différente. C'est encore la longueur du chemin optique du bras de référence qui est commandée par une boucle d'asservissement utilisant, comme transducteur, un pavé de céramique piézo-électrique 24. Comme dans le cas précédent, le bras de référence est délimité par un miroir 19 porté par le transducteur 24 et le bras actif de mesure est délimité par un miroir 19^. Les détecteurs 20^ et 20 peuvent être encore des diodes au silicium. Le bras de mesure ne comportant alors aucun organe de réglage doit cependant rester accordé sur la fréquence optique fO. Etant donné que l'interferomètre fonctionne en réflexion, il faut rechercher un minimum de réflexion pour cette fréquence optique fO. Cette dernière doit donc être stabilisée à partir du signal d'interférence de l'interferomètre comportant le bras de mesure. Pour cela on utilise, dans le cas illustré, une modulation avec un écart de fréquence optique Λf choisi de façon à pouvoir encore être résolu par les interféro- mètres. A l'accord, les fréquences fO-Δf et fO+Δf sont réfléchies et tout décalage de l'accord se traduit par un déséquilibre de l'énergie renvoyée à ces deux fréquences.
L'asservissement de 1'interferomètre comportant le bras de mesure s'effectue, dans le cas de la Figure 3, en modulant la fréquence de sortie du laser, par exemple à 15 MHz, et en utilisant une boucle d'asser¬ vissement en fréquence. Le faisceau laser traverse, à la sortie de l'isolateur 16 un modulateur 28, par exemple électro-optique ou acousto-optique. Le signal de modu- lation est fourni à ce modulateur par un oscillateur 30 de stabilité suffisante. Dans la pratique, la stabilité d'un générateur à quartz est suffisante car la détection finale peut utiliser une référence de fréquence issue du même générateur. Le signal fourni par le détecteur 20-^ associé au bras actif de mesure est soumis à une détection quadra¬ tique qui fournit un signal contenant le mélange des différentes fréquences optiques. Ce signal est soumis et à un filtrage d'isolement de la fréquence d'excitation de 15 MHz dans un bloc de mesure 32 qui reçoit une référence de fréquence de l'oscillateur 30. Le signal de sortie du bloc 32 est appliqué à un amplificateur différentiel 34 d'asservissement à zéro commandant un organe de modulation du laser 10, constitué par exemple par une céramique piézo-électrique 36 portant un miroir de délimitation de la cavité résonante du laser. L'utilisation ainsi faite de la sélectivité propre de 1'interferomètre utilisé en analyseur de fréquence conduit à une grande sensibilité. La fréquence optique du faisceau fourni par le laser contient donc toutes les fluctuations de longueur du chemin optique de 1'interferomètre Fabry-Pérot de mesure et notamment le signal acoustique, mais est déba¬ rrassé de ses fluctuations propres en fréquence. En d'autres termes, le spectre optique du faisceau comporte la fréquence propre du laser, encadrée par deux bandes dont 1'écarteraent par rapport à cette fréquence correspond à la fréquence de modulation qui est choisie pour remplir deux conditions : elle n'est pas contenue dans la bande à détecter ; le laser doit avoir un bruit d'amplitude négligeable à cette fréquence.
Du fait que le laser 10 est piloté et que sa fréquence varie, l'accord de l'interferomètre Fabry- Pérot comportant le bras de référence tend à être détruit dès qu'un signal acoustique est appliqué au bras actif, du fait que ce signal acoustique provoque une modification de fO. En d'autres termes, on utilise le Fabry-Pérot de référence en analyseur du spectre optique du laser, lequel contient le signal acoustique, comme on l'a vu. Cela conduit à commander le transducteur 24 par une boucle similaire à celle qui commande la f équence fO, ayant un bloc 36 de détection qui attaque un ampli¬ ficateur 38 d'asservissement à signal détecté nul commandant le transducteur 24. Le signal de mesure est obtenu, à partir du signal de commande du transducteur 24, par un filtre 40 dont la bande passante correspond à la plage de mesure souhaitée, par exemple de 20 Hz à 30 kHz. Le signal de commande ne contient pas de fluctua¬ tion de fréquence optique parasite, du fait qu'elle a été éliminée dans la boucle de commande du laser. Le bruit d'amplitude du laser est négligeable au-dessus de 10 MHz, c'est-à-dire dans la plage de modulation.
L'invention est susceptible de nombreuses autres variantes de réalisation. On peut en particulier utili¬ ser un interferomètre à deux ondes à plusieurs passes successives pour allonger les bras, ce qui augmente proportionnellement la sensibilité. Cette solution a cependant l'inconvénient de rendre difficile de maintenir l'égalité approximative des longueurs Ll et L2, qui permet d'utiliser une diode laser. Dans un autre mode de réalisation, le microphone utilise, non pas la variation d'indice dans le milieu gazeux traversé par le bras de mesure, mais les déplacements d'un miroir porté par une paroi défoπnable, telle qu'une membrane, soumise à la pression acoustique et constituant transducteur acoustique. Cette solution peut permettre d'accroître la sensibilité ; mais elle réduit la dynamique et la fidélité, du fait de l'inertie mécanique de la paroi.
Il peut également être utile ou nécessaire d'isoler l'atmosphère à l'intérieur du microphone sans en perturber l'acoustique. Cet isolement peut notamment être utile lorsque le microphone doit fonctionner en atmosphère polluée par de l'eau, de la poussière, des fumées, etc. L'emploi d'une membrane aussi transparente que possible à l'excitation, pour que les variations de pression à 1'intérieur reflètent exactement le signal appliqué à la membrane, permet d'envisager l'emploi d'un espace de mesure et d'un espace de référence occupés par un gaz ayant un indice n nettement supérieur à 1, ce qui augmente le signal interférométrique dû aux variations d'indice du gaz. Il est possible de réaliser des membranes répondant à cette condition de transparence, sauf pour les fréquences les plus basses, de nature différente de celle des membranes microphoniques habituelles.

Claims

REVENDICATIONS 1. Microphone de mesure de signal acoustique dont le spectre est au-dessus de 20 Hz, comprenant un espace de référence exempt du signal acoustique à mesu- rer, caractérisé en ce qu'il comprend une source de lumière monomode et un interferomètre optique ayant : un bras de référence traversant l'espace de référence; un bras actif dont la longueur est modifiée par le signal acoustique, autour d'une valeur (Ll) sensiblement égale à celle (L2) du bras de référence; et des moyens pour mesurer les variations de chemin optique du bras actif provoquées par le signal acoustique en asservissant la différence de marche entre les deux bras à une valeur constante.
2. Microphone selon la revendication 1, caractérisé en ce que le bras actif traverse un espace occupé par un milieu gazeux soumis au signal acoustique.
3. Microphone selon la revendication 1 ou 2, caractérisé en ce que ledit espace est occupé par un milieu gazeux séparé de l'espace extérieur par une membrane défoπnable.
4. Microphone selon la revendication 1 ou 2, caractérisé en ce que lesdits moyens de mesure compor¬ tent un miroir de réflexion (192) placé sur l'un des bras et un transducteur (24) à caractéristique sensi¬ blement linéaire dans la bande spectrale de mesure, commandant la position audit miroir.
5. Microphone selon la revendication 1, caractérisé en ce que la longueur du bras actif est déterminée par la position d'un organe matériel déformable en réponse au signal acoustique.
6. Microphone selon l'une quelconque des reven¬ dications 1 à 5, caractérisé en ce que 1*interferomètre est à deux ondes et utilise, comme source lumineuse, une diode laser (10) dont le faisceau de sortie est stabi¬ lisé en amplitude dans la bande spectrale du signal acoustique à mesurer.
7. Microphone selon 1'une quelconque des reven¬ dications 1 à 5, caractérisé en ce que 1'interferomètre est du type Fabry-Pérot.
8. Microphone selon la revendication 7, caractérisé en ce que le bras actif appartient à un premier interferomètre Fabry-Pérot, tandis que le bras de référence appartient à un second interferomètre, la source commune étant constituée par un laser dont la fréquence de sortie est modulée.
PCT/FR1989/000650 1988-12-13 1989-12-13 Microphone a detection interferometrique de pression acoustique WO1990007250A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR88/16385 1988-12-13
FR8816385A FR2640456A1 (fr) 1988-12-13 1988-12-13 Microphone a detection interferometrique de pression acoustique

Publications (1)

Publication Number Publication Date
WO1990007250A1 true WO1990007250A1 (fr) 1990-06-28

Family

ID=9372877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1989/000650 WO1990007250A1 (fr) 1988-12-13 1989-12-13 Microphone a detection interferometrique de pression acoustique

Country Status (2)

Country Link
FR (1) FR2640456A1 (fr)
WO (1) WO1990007250A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1555697A (fr) * 1967-11-10 1969-01-31
US4162397A (en) * 1978-06-28 1979-07-24 The United States Of America As Represented By The Secretary Of The Navy Fiber optic acoustic sensor
US4422167A (en) * 1981-06-25 1983-12-20 The United States Of America As Represented By The Secretary Of The Navy Wide-area acousto-optic hydrophone
JPH0618100A (ja) * 1992-07-06 1994-01-25 Matsushita Electric Ind Co Ltd 制御方法、制御装置、空気調和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018100A (ja) * 1983-07-11 1985-01-30 Yasushi Miki マイクロホン

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1555697A (fr) * 1967-11-10 1969-01-31
US4162397A (en) * 1978-06-28 1979-07-24 The United States Of America As Represented By The Secretary Of The Navy Fiber optic acoustic sensor
US4422167A (en) * 1981-06-25 1983-12-20 The United States Of America As Represented By The Secretary Of The Navy Wide-area acousto-optic hydrophone
JPH0618100A (ja) * 1992-07-06 1994-01-25 Matsushita Electric Ind Co Ltd 制御方法、制御装置、空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Vol. 9, No. 136 (E-320) (1859), 12 Juin 1985; & JP-A-6018100 (Yasushi Miki) 30 Janvier 1985 *

Also Published As

Publication number Publication date
FR2640456A1 (fr) 1990-06-15
FR2640456B1 (fr) 1994-07-13

Similar Documents

Publication Publication Date Title
EP0455530B1 (fr) Dispositif de mesure à fibre optique, gyromètre, centrale de navigation et de stabilisation, capteur de courant
US8369367B1 (en) Tunable laser system
FR2658367A1 (fr) Laser fournissant deux ondes a des frequences differentes.
EP3244169B1 (fr) Systeme de mesure resonant a resolution amelioree
EP0291366A1 (fr) Interféromètre de Michelson à fibres optiques et son application notamment à la mesure des températures
EP3527967A1 (fr) Capteur photo-acoustique avec couplage opto-mécanique
FR3056837A1 (fr) Systeme laser avec retroaction optique
EP1382124B1 (fr) Modulateur sigma-delta passe-bande et utilisations du modulateur sigma-delta pour la conversion, la detection et la production de signaux
EP0027763A1 (fr) Procédé et appareil de mesure de distance par interférométrie laser à deux longueurs d'ondes
WO2017051119A1 (fr) Systeme de mesure et capteur de temperature et/ou de deformation par analyse de retroreflexion brillouin.
EP0732781A1 (fr) Module comprenant une diode laser, asservie et dispositif électro-optique muni d'un tel module
JP2022038678A (ja) レーザー干渉計
EP3650836B1 (fr) Dispositif de mesure basé sur une mesure optique dans une cavité opto-mécanique
WO2015071392A1 (fr) Capteur à fibre optique grande sensibilité
WO2016005691A1 (fr) Système interférométrique à fibre optique
US4600307A (en) Coherent radiation detecting apparatus
WO1990007250A1 (fr) Microphone a detection interferometrique de pression acoustique
FR2953945A1 (fr) Dispositif pour la compensation de la dispersion temporelle appliquee a la generation d'impulsions lumineuses ultra breves.
WO2020104689A1 (fr) Détecteur à cellules modulaires de mesure opto-acoustique exaltée par résonateur à quartz
FR2876447A1 (fr) Gyrolaser a etat solide stabilise a quatre modes sans zone aveugle
FR2950489A1 (fr) Procede de stabilisation de la longueur d'une cavite optique
FR2788128A1 (fr) Capteur polarimetrique a fibre optique
EP0331581B1 (fr) Miroir piézoélectrique pour gyromètre à laser
EP0702804B1 (fr) Dispositif d'amplification de taux de modulation d'amplitude d'un faisceau optique
FR2704651A1 (fr) Détecteur de gaz à diode laser.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LU NL SE