WO1990005287A1 - Disposable probe cover assembly for medical thermometer - Google Patents
Disposable probe cover assembly for medical thermometer Download PDFInfo
- Publication number
- WO1990005287A1 WO1990005287A1 PCT/US1989/004876 US8904876W WO9005287A1 WO 1990005287 A1 WO1990005287 A1 WO 1990005287A1 US 8904876 W US8904876 W US 8904876W WO 9005287 A1 WO9005287 A1 WO 9005287A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- probe
- cover assembly
- plastic film
- film
- base
- Prior art date
Links
- 239000000523 sample Substances 0.000 title claims abstract description 156
- 239000002985 plastic film Substances 0.000 claims abstract description 35
- 229920006255 plastic film Polymers 0.000 claims abstract description 35
- 230000001681 protective effect Effects 0.000 claims abstract description 7
- 230000000712 assembly Effects 0.000 claims description 10
- 238000000429 assembly Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 9
- 230000005855 radiation Effects 0.000 claims description 7
- 229920001684 low density polyethylene Polymers 0.000 claims description 5
- 239000004702 low-density polyethylene Substances 0.000 claims description 5
- 229920001903 high density polyethylene Polymers 0.000 claims description 4
- 239000004700 high-density polyethylene Substances 0.000 claims description 4
- 239000010410 layer Substances 0.000 claims 26
- 239000011241 protective layer Substances 0.000 claims 15
- 239000000356 contaminant Substances 0.000 claims 2
- 239000004698 Polyethylene Substances 0.000 claims 1
- -1 polyethylene Polymers 0.000 claims 1
- 229920000573 polyethylene Polymers 0.000 claims 1
- 238000000034 method Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 230000036760 body temperature Effects 0.000 description 3
- 210000000613 ear canal Anatomy 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000012864 cross contamination Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 210000003454 tympanic membrane Anatomy 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/021—Probe covers for thermometers, e.g. tympanic thermometers; Containers for probe covers; Disposable probes
Definitions
- the probe cover assembly is removed from the probe and discarded by sliding the apertured base layer along the probe, with the perforated paper functioning to scrape the stretched film from the probe.
- the probe cover assembly is extremely compact and ' convenient to use, yet highly effective in reliably covering the probe and facilitating an accurate, repeatable measurement of a patient's temperature.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
A probe cover assembly (15) for use in covering and protecting the elongated probe of a medical thermometer (11). The assembly has three laminated layers, including a flat base layer (19) with an aperture (23) sized to slide over the probe (13), an intermediate stretchable film (17), and a protective paper layer (21) having radially-aligned perforations (25) aligned with the base layer aperture. In use, the probe cover assembly (15) is placed on the probe (13) by inserting the probe (13) through the base layer aperture (23), from the assembly's paper layer side, to stretch the plastic film (17) over the probe (13), with the perforated paper (21) functioning initially to separate the probe (13) from the film (17) and thereby prevent the film from initially sticking to the probe (13) and stretching unevenly. The probe cover assembly (15) is removed from the probe (13) and discarded by sliding the apertured base layer (19) along the probe (13), with the perforated paper (21) functioning to scrape the stretched film (17) from the probe (13).
Description
DISPOSABLE PROBE COVER ASSEMBLY FOR MEDICAL THERMOMETER
BACKGROUND OF THE INVENTION
This invention relates generally to disposable assemblies for covering the elongated probe of a medical thermometer, and, more particularly, to assemblies of this kind that include a stretchable plastic film.
Medical thermometers of this particular kind, which include elongated probes adapted for insertion into various body cavities (e.g., the mouth, rectum or ear canal) , are the most commonly used devices for measuring a patient's body temperature. Such thermometers commonly include in the probe tip a thermistor or infrared sensor to detect the temperature of the adjacent body tissue. The use of medical thermometers of this kind to measure the body's temperatures of different patients raises a significant risk of spreading "infection and disease. To reduce this risk, such thermometers are frequently used with hygienic probe covers that are disposed of after each use.
To be effective, such probe covers must have sufficient strength to withstand normal handling, including their placement on the probe, and also must be configured to interfere minimally with the sensor's (e.g./ the thermistor's or infrared sensor's) temperature detection. In the case of the infrared sensor, the thickness of the portion of the probe cover located immediately in front of the sensor must be highly uniform and must be controlled to a precise tolerance. It should, therefore, be appreciated that there is a continuing need for a probe cover assembly for the probe of a medical thermometer, which protects the probe and/or the patient from contamination during its use,
which provides a known minimum interference with the probe's temperature sensor, and which is durable, yet convenient to use and inexpensive to manufacture. The present invention fulfills this need.
SUMMARY OF THE INVENTION
The present invention is embodied in a multi-layer, disposable probe cover assembly for the elongated probe of a medical thermometer, which is compact and convenient to use, yet interferes minimally with the thermometer's temperature detection. The probe cover assembly is simple to manufacture and compact for efficient storage, yet highly durable, and ensures that cross-contamination does not occur between the thermometer probe and the patient. More particularly, the disposable cover assembly of the invention has three separate layers laminated together, including a th n, flat base layer, ' a stretchable plastic film, and a protective paper or plastic layer. The base layer has a generally circular aperture sized to slide over the elongated probe, and the base layer and paper layer are laminated to opposite sides of the plastic film, with the portion of the paper layer that is aligned with the base aperture being perforated. In use, the assembly is placed on the probe by inserting the probe through the base aperture, from the paper layer side of the assembly, to stretch the plastic film over the probe. During this stretching procedure, the perforated paper functions initially to separate the probe from the film and thereby prevent the film from initially sticking to the probe and stretching unevenly. After the patient's temperature has been measured, the cover assembly can be removed from the probe by sliding the apertured base layer along the
probe, with the perforated paper functioning to scrape the stretched film from the probe. This ensures that the cover assembly, including the stretched film, will remain intact, for convenient disposal. In a more detailed feature of the invention, the probe cover assembly is specifically adapted for use with thermometers that include an infrared sensor in or adjacent to its probe. The stretchable plastic film is therefore constructed of a material that is substantially : transparent to infrared radiation, such as a linear, low-density polyethylene. This material preferably has an unstretched thickness of less than about .001 inches. The base layer, plastic film, and paper layer are preferably laminated to each other sonically. To facilitate such a sonic welding, the base layer is preferably formed of a high-density polyethylene, and the paper layer preferably has sufficient porosity to allow the base layer and plastic film to flow into it, to secure the successive layers together. The perforations in the paper layer are preferably aligned generally radially, such that pie-shaped wedges are defined between them. Thus, upon insertion of the thermometer probe, the pie-shaped wedges initially separate the probe tip from the stretching plastic film, until the film has been stretched by more than the length of the wedges. This prevents the film from sticking to the probe at a point too early in its stretching, which could cause an uneven stretch and lead to an unreliable temperature measurement. In yet another feature of the invention, the probe cover assembly is substantially flat prior to its use and it has a substantially square periphery. In addition, the assembly can.be attached, via opposite sides of its square periphery, to a plurality of additional,
substantially identical cover assemblies. This facilitates the use of a dispenser for automatically dispensing individual probe cover assemblies during use of the thermometer with multiple patients. Other features and advantages of the present invention should become apparent from the following description of the preferred embodiment, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a side view of a medical thermometer having an elongated probe sized to fit within a patient's ear canal and having an infrared sensor for measuring a patient's body temperature, the thermometer being depicted with a probe cover assembly embodying the invention placed over -the elongated probe. -
FIG. 2 is a plan view of the probe cover assembly of FIG. 1, prior to its placement on the thermometer probe. FIG. 3 is a side view of the probe cover assembly of FIG. 2, with the assembly's stretched configuration while in use covering a thermometer probe being shown in phantom lines.
FIG. 4 is a side view of the probe portion of the thermometer of FIG. 1, showing the probe cover assembly being ejected from the probe.
DESCRIPTION OF THE PREFERRED EMBODIMENT
With reference now to the drawings, and particularly to FIG. 1, there is shown a medical thermometer 11 having an elongated, generally cylindrical probe 13 adapted for insertion into a patient's ear (not shown), with a disposable probe cover assembly 15 being used to cover
the probe and thereby keep the probe hygienic. The probe includes an infrared sensor within it, for detecting infrared radiation being transmitted along the patient's ear canal and thereby determining the patient's body temperature. The probe cover assembly includes a stretchable film 17 that covers substantially the entire probe, to protect contamination from being transferred between the probe and the patient, yet that provides a minimum, known effect on the transmission of infrared radiation to the infrared sensor.
The probe cover assembly 15 is depicted in greater detail in FIGS. 2 and 3. The assembly has three laminated layers, including a base layer 19, the stretchable plastic film 17, and a paper layer 21. The base layer and paper layer are laminated securely to opposite sides of the film. Prior to placement of the assembly over the probe 13, the assembly is substantially flat, with a generally -square periphery. At this time, the paper layer functions principally to protect the plastic film from damage during normal handling and to interconnect the assembly with similar, adjacent assemblies' (not shown) .
A circular aperture 23, which is formed in the middle of the base layer 19, is sized to slide easily over the generally cylindrical probe 13 of the thermometer 11. The portion of the paper layer 21 aligned with this aperture includes a plurality of perforations 25 oriented generally radially and spaced uniformly around the circle. Generally pie-shaped wedges 27 are thereby defined between the successive perforations.
The probe cover assembly 15 is placed over the probe 13 by pressing the probe's remote end through the aperture 23 of the base layer 19, from the assembly's
paper layer side. This stretches the film over the probe, as shown in FIG. 1. During the initial stage of stretching, the paper layer provides a skid surface for the probe tip and the radial perforations 25 in the paper layer 21 assist in centering the probe tip relative to the base aperture. In addition, the paper layer separates the film from the probe tip until a predetermined, minimum amount of stretching has occurred. Consequently, the probe tip's initial contact with the film occurs over the tip's generally circular periphery, which minimizes the possibility of an uneven film stretch and the possibility of localized tearing of the film.
With reference again to FIG. 1, it will be observed that the probe cover assembly 15 is secured in place on the probe 13 by a snap-fit of the aperture 23 of the base layer 19 over an enlargement 29 located at the probe's base end. To remove the probe cover assembly from the probe af er it has " been used to measure a patient's temperature, the base layer, which is relatively more rigid than are the film 17 and paper layer 21, is pushed forwardly by a reciprocable cylindrical sleeve 31, which is part of the thermometer 11. This sleeve can be moved forwardly to a point where it projects beyond the probe's remote tip, whereby the probe cover assembly can readily be disposed of.
The pie-shaped wedges 27 formed in the paper layer 21 serve an important function during the removal of the probe cover assembly 15 from the probe 13. In particular, and with reference to FIG. 4, it will be observed that these wedges are interposed between the probe 13 and the stretched film 17. As the reciprocating sleeve 31 pushes the base layer 19 and thus the paper layer 21 forwardly, the wedges scrape the stretched film away from the probe surface and thus prevent the film
from sticking to the probe and becoming inverted (like a stocking would become inverted during removal from a foot if only the stocking's open end were to be pulled) . This feature ensures that the film will not remain stuck to the probe even after the base layer and the paper layer have been pushed beyond the probe's remote end.
With reference again to FIG. 3, the base layer 19, stretchable film 17, and paper layer 21 are laminated to each other using a conventional sonic welding process. In this process, a high frequency vibration is established in the three layers, which causes the plastic base layer and film to fuse together and which causes portions of the base layer and film to melt and flow into minute cavities in the paper layer, thus securely holding the three layers together. The effectiveness of this lamination process is enhanced if a non-parchment-type paper with at least limited porosity is used. In addition, using a conventional knurl to locally concentrate or direct the sonic welding energy further enhances the strength of the lamination.
Alternatively, the three layers, 17, 19 and 21 could be laminated together using other conventional heat-sealing methods or using a suitable adhesive. An adhesive approach is not preferred, however, because of an expected higher manufacturing cost.
The base layer 19 and stretchable plastic film 17 will fuse together most effectively if they are formed. of similar plastic materials. Preferably, the base layer is formed of a high-density polyethylene material and the film is formed of a puncture-resistant, linear, low-density polyethylene material. The base layer preferably has a thickness of about .012 inches, which provides it with sufficient rigidity to allow convenient handling, but sufficient resilience to snap-fit over the
δ enlargement 29 at the base end of the probe 13 (FIG. 1) . The stretchable plastic film 17 preferably has an unstretched thickness in the range of about .0005 to .00125 inches. This unstretched thickness will allow the stretched film to have sufficient strength to avoid puncturing and tearing yet to be sufficiently thin to provide minimal absorption of infrared radiation being transmitted from the patient's eardrum to the probe sensor. The film is preferably stretchable substantially uniformly in all directions. The film also can be coextruded with ethylene vinyl acetate, for added strength.
The paper layer 21 can be a standard .005-inch lithographic paper. Such a paper has the requisite porosity to facilitate the sonic welding described above and also has the desired thickness and resilience to isolate the stretchable plastic film 17 from the probe 13. An excessive paper layer thickness should be avoided, to prevent the possibility that the wedges might accidentally puncture the plastic film. The paper also should have low linting characteristics, to reduce the number of loose fibers being created when the perforations 25 are being cut and when the assembly is being placed on the probe 13. With reference again to FIG. 2, it will be observed that the probe cover assembly 15 has a generally square periphery. This is a shape ideally suited to the manufacture of multiple side-by-side, substantially identical assemblies. Such assemblies can be connected to each other merely by the paper layer 21, which can be perforated along the edges separating the assemblies, as indicated by the reference numeral 33.
It should be appreciated from the foregoing description that the present invention provides an
effective probe cover assembly for use in covering and protecting the elongated probe of a medical thermometer. The assembly has three laminated layers, including a flat base layer with an aperture sized to slide over the probe, an intermediate stretchable film, and a protective paper layer having perforations aligned with the base layer aperture. In use, the probe cover assembly is placed on the probe by inserting the probe through the base aperture, from the assembly's paper layer side, to stretch the plastic film over the probe, with the perforated paper functioning initially to separate the probe from the film and thereby prevent the film from initially sticking to the probe and stretching unevenly. The probe cover assembly is removed from the probe and discarded by sliding the apertured base layer along the probe, with the perforated paper functioning to scrape the stretched film from the probe. The probe cover assembly is extremely compact and' convenient to use, yet highly effective in reliably covering the probe and facilitating an accurate, repeatable measurement of a patient's temperature.
Although the invention has been described in detail with reference only to the preferred embodiment, those of ordinary skill in the art will appreciate that various modifications can be made without departing from the invention. Accordingly, the invention is defined only by the following claims.
Claims
1. A disposable probe cover assembly for an elongated, generally cylindrical probe of a medical thermometer, comprising: a thin, flat base having a generally circular aperture sized to slide over an elongated, generally cylindrical probe of a medical thermometer; a stretchable plastic film; and a protective layer; wherein the base and protective layer are laminated to opposite sides of the plastic film, with the portion of the protective layer that is aligned with the base aperture being perforated; wherein the cover assembly can be placed on the elongated probe by inserting the probe through the base aperture, from the protective layer side of the assembly, .
.to stretch the plastic film over the probe, the perforated protective layer functioning initially to separate the film from the probe and thereby prevent the film from initially sticking to the probe and stretching unevenly; and wherein the cover assembly can be removed from the elongated probe by sliding the apertured base along the probe, the perforated protective layer functioning to scrape the stretched film from the probe.
2. A disposable cover assembly as defined in claim 1, wherein the stretchable plastic film and the thin, flat base are both formed of polyethylene.
3. A disposable cover assembly as defined in claim 1, wherein: the medical thermometer includes an infrared sensor;
and the stretchable plastic film is substantially transparent to infrared radiation.
4. A disposable cover assembly as defined in claim 3, wherein the stretchable plastic film is formed of a linear, low-density polyethylene, with a uniform unstretched thickness of less than about .001 inches.
5. A disposable cover assembly as defined in claim 1, wherein: the protective layer is formed of a paper having minute structural cavities; and the base, plastic film, and protective paper layer are laminated to each other sonically, with a portion of the base and plastic film flowing into the minute structural cavities of the paper layer, to secure the successive -layers together.
6. A disposable cover assembly as defined in claim 1, wherein the paper layer includes a plurality of radially-aligned perforations spaced uniformly around the portion of the protective layer aligned with the generally circular base aperture.
7. A disposable cover assembly as defined in claim 1, wherein the cover assembly is substantially flat prior to its use in covering the elongated probe of the medical thermometer.
8. A disposable cover assembly as defined in claim 7, wherein: the cover assembly has a substantially square periphery; and
the cover assembly is attached, via opposite sides of its substantially square periphery, to a plurality of additional, substantially identical cover assemblies.
9. A disposable probe cover assembly for an medical thermometer having an infrared sensor located in an elongated, generally cylindrical probe sized to fit within a patient's ear, the assembly comprising: a stretchable plastic film substantially transparent to infrared radiation; a thin, flat base layer laminated to one side of the plastic film, the base layer having a generally circular aperture sized to slide over an elongated, generally cylindrical probe of an infrared-sensitive medical thermometer; and a protective layer laminated to the side of the plastic film opposite the base layer, with the portion of the protective layer that is aligned with the base aperture including generally radially-aligned perforations; wherein the probe cover assembly can be placed on the elongated probe by inserting the probe through the aperture of the base layer, from the assembly's protective layer side, to stretch the plastic film over the probe and thereby prevent contaminants from moving between the probe and the patient's ear, the perforated protective layer functioning initially to separate the film from the probe and prevent the film from initially sticking to the probe and stretching unevenly; and wherein the assembly can be removed from the elongated probe by sliding the base layer outwardly along the probe, with the perforated protective layer functioning to scrape the stretched film from the probe surface.
10. A disposable probe cover assembly as defined in claim 9, wherein: the base layer is formed in a high-density polyethylene material, with a uniform thickness of at least about .010 inches; and the stretchable plastic film is formed of a linear, low-density polyethylene material, with a uniform thickness of less than about .001 inches.
11. A disposable probe cover assembly as defined in claim 9, wherein: the protective paper layer is formed of a paper having minute structural cavities; and the base layer, plastic film, and protective paper layer are laminated to each other sonically, with a portion of the base layer and plastic film flowing into the minute structural cavities of the protective paper layer, to secure the successive layers together.
12. A disposable probe cover assembly as defined in claim 9, wherein the protective layer includes a plurality of radially-aligned perforations spaced uniformly' around the portion of the protective layer aligned with the generally circular base aperture.
13. A disposable probe cover assembly as defined in claim 9, wherein the probe cover assembly is substantially flat prior to its use in covering the elongated probe of the medical thermometer.
14. A disposable probe cover assembly as defined in claim 13, wherein: the probe cover assembly has a substantially square
periphery; and the probe cover assembly is attached, via opposite sides of its substantially square periphery, to a plurality of additional, substantially identical cover assemblies.
15. A disposable probe cover assembly for an medical thermometer having an infrared sensor located in an elongated, generally cylindrical probe sized to fit within a patient's ear, the assembly comprising: a stretchable plastic film formed of a linear, low-density polyethylene material, with a uniform thickness of less than about .001 inches, the film being substantially transparent to infrared radiation; a thin, flat base layer sonically welded to one side of the plastic film, the base layer being formed in a high-density polyethylene material, with a uniform thickness of at least about .010 inches, and having a circular aperture sized to slide over an elongated, cylindrical probe of an infrared-sensitive medical thermometer; and a paper layer sonically welded to the side of the plastic film opposite the base layer, with the portion of the paper layer that is aligned with the base aperture including a plurality of uniformly-spaced, radially-aligned perforations; wherein the probe cover assembly is substantially flat and can be placed on the elongated probe by
.inserting the probe through the aperture of the base layer, from the assembly's paper layer side, to stretch the plastic film over the probe and thereby prevent contaminants from moving between the probe and the patient's .ear, the perforated paper layer functioning initially to separate the film from the probe and prevent
the film from initially sticking to the probe and stretching unevenly; and wherein the assembly can be removed from the elongated probe by sliding the base layer outwardly along the probe, with the perforated paper layer functioning to scrape the stretched film from the probe surface.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE68924280T DE68924280T2 (en) | 1988-11-01 | 1989-10-31 | DISPOSABLE PROBE LID UNITS FOR MEDICAL THERMOMETERS. |
EP89912723A EP0511953B1 (en) | 1988-11-01 | 1989-10-31 | Disposable probe cover assembly for medical thermometer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US265,525 | 1988-11-01 | ||
US07/265,525 US4911559A (en) | 1988-11-01 | 1988-11-01 | Disposable probe cover assembly for medical thermometer |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1990005287A1 true WO1990005287A1 (en) | 1990-05-17 |
Family
ID=23010811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1989/004876 WO1990005287A1 (en) | 1988-11-01 | 1989-10-31 | Disposable probe cover assembly for medical thermometer |
Country Status (8)
Country | Link |
---|---|
US (2) | US4911559A (en) |
EP (1) | EP0511953B1 (en) |
JP (1) | JPH04502206A (en) |
AT (1) | ATE127915T1 (en) |
AU (1) | AU638427B2 (en) |
CA (1) | CA2001195C (en) |
DE (1) | DE68924280T2 (en) |
WO (1) | WO1990005287A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020039020A1 (en) | 2018-08-24 | 2020-02-27 | Dsm Ip Assets B.V. | Blue light filter lens |
Families Citing this family (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5271407A (en) * | 1988-12-06 | 1993-12-21 | Exergen Corporation | Radiation detector suitable for tympanic temperature measurement |
US5163418A (en) * | 1989-09-19 | 1992-11-17 | Thermoscan Inc. | Speculum cover |
US4993424A (en) * | 1989-12-04 | 1991-02-19 | Diatek, Incorporated | Infrared medical thermometer |
US5066142A (en) * | 1990-03-08 | 1991-11-19 | Ivac Corporation | Protective apparatus for a biomedical probe |
DE69116903T2 (en) * | 1990-03-08 | 1996-10-02 | Ivac Corp | Thermally insulated probe |
US5088834A (en) * | 1990-08-24 | 1992-02-18 | Thermoscan Inc. | Unitary probe cover |
ES2031058T3 (en) * | 1990-08-24 | 1995-02-01 | Thermoscan Inc | UNIT PROBE COVER. |
US5100018A (en) * | 1990-10-11 | 1992-03-31 | Ivac Corporation | Probe cover dispenser |
US5425582A (en) * | 1992-01-31 | 1995-06-20 | Hochiki Kabushiki Kaisha | Thermal detector and method of producing the same |
US5609564A (en) * | 1992-04-01 | 1997-03-11 | Omron Corporation | Speculum cover, method of manufacturing same and cover accommodating case |
US5487607A (en) * | 1992-04-08 | 1996-01-30 | Omron Corporation | Radiation clinical thermometer |
JP2712024B2 (en) * | 1992-09-19 | 1998-02-10 | 株式会社堀場製作所 | Microscope cover for eardrum thermometer |
DE4422974C2 (en) * | 1993-06-30 | 2000-06-21 | Omron Tateisi Electronics Co | Sensor cover container |
EP0641543A1 (en) * | 1993-09-07 | 1995-03-08 | Ohmeda Inc. | Heat-sealed neo-natal medical monitoring probe |
US5893833A (en) | 1995-06-06 | 1999-04-13 | Exergen Corporation | Axillary infrared thermometer and cover therefor |
US6226541B1 (en) * | 1996-01-17 | 2001-05-01 | Spectrx, Inc. | Apparatus and method for calibrating measurement systems |
US6002482A (en) * | 1996-01-17 | 1999-12-14 | Spectrx, Inc. | Disposable calibration device |
US6882873B2 (en) | 1996-01-17 | 2005-04-19 | Respironics, Inc. | Method and system for determining bilirubin concentration |
US5924981A (en) | 1996-01-17 | 1999-07-20 | Spectrx, Inc. | Disposable calibration target |
DE19604200A1 (en) * | 1996-02-06 | 1997-08-07 | Braun Ag | Process for producing a protective cap for an infrared radiation thermometer which can be inserted into a body cavity |
US5645350A (en) * | 1996-04-12 | 1997-07-08 | Jang; Chen-Chang | Hygienic protecting device for an electronic thermometer |
US5795067A (en) * | 1996-05-07 | 1998-08-18 | Thermoscan, Inc. | Enhanced protective lens cover for an infrared thermometer |
TW410272B (en) * | 1996-05-07 | 2000-11-01 | Thermoscan Lnc | Enhanced protective lens cover |
US5874736A (en) * | 1996-10-25 | 1999-02-23 | Exergen Corporation | Axillary infrared thermometer and method of use |
US5833367A (en) | 1996-11-12 | 1998-11-10 | Trutek, Inc. | Tympanic thermometer probe cover |
US6030117A (en) | 1996-11-12 | 2000-02-29 | Trutek, Inc. | Tympanic thermometer probe cover |
WO1998055841A2 (en) | 1997-06-03 | 1998-12-10 | Trutek Inc. | Tympanic thermometer with modular sensing probe |
US6347243B1 (en) | 1998-03-05 | 2002-02-12 | Advanced Monitors Corp. | Probe cover for infrared thermometer |
US5944179A (en) * | 1998-05-26 | 1999-08-31 | Walker; Diana G. | Protective sheath for medical probe |
US5967992A (en) | 1998-06-03 | 1999-10-19 | Trutex, Inc. | Radiometric temperature measurement based on empirical measurements and linear functions |
US6224256B1 (en) | 1998-06-18 | 2001-05-01 | Harry Bala | Cover for medical probe |
US6152596A (en) * | 1998-07-02 | 2000-11-28 | Advanced Monitors Corporation | Protective cover for infrared thermometer |
US6123454A (en) | 1999-06-11 | 2000-09-26 | Trutek, Inc. | Tympanic thermometer disposable probe cover with further stretching prevention structure |
US6254271B1 (en) * | 1999-06-29 | 2001-07-03 | Oriental System Technology Inc. | Probe cover of tympanic thermometer |
US6319206B1 (en) | 1999-11-24 | 2001-11-20 | Exergen Corporation | Temporal thermometer disposable cap |
US6390671B1 (en) | 2000-04-28 | 2002-05-21 | K-Jump Health Co., Ltd. | Probe cover with film insert |
US6371639B1 (en) * | 2000-10-13 | 2002-04-16 | Radiant Innovation Inc. | Probe cover of a tympanic thermometer and method for manufacturing the same |
CN1531410A (en) * | 2000-11-16 | 2004-09-22 | ɳ÷����ҽѧ��������˾ | Diagnostic system for ear |
JP2002345761A (en) * | 2001-05-22 | 2002-12-03 | Omron Corp | Infrared thermometer probe |
US7434991B2 (en) * | 2002-12-12 | 2008-10-14 | Covidien Ag | Thermal tympanic thermometer |
US7108419B2 (en) * | 2002-12-12 | 2006-09-19 | Sherwood Services Ag | Thermal tympanic thermometer tip |
ATE468528T1 (en) * | 2003-01-06 | 2010-06-15 | Covidien Ag | PROBE COVER FOR EMBELLISH THERMOMETER |
US7354194B2 (en) | 2003-01-06 | 2008-04-08 | Covidien Ag | Tympanic thermometer probe cover with film support mechanism |
US7478946B2 (en) | 2003-01-06 | 2009-01-20 | Covidien Ag | Probe cover cassette with improved probe cover support |
US7686506B2 (en) | 2003-01-06 | 2010-03-30 | Covidien Ag | Stackable tympanic thermometer probe cover cassette |
WO2004074794A1 (en) * | 2003-02-20 | 2004-09-02 | Ysi Incorporated | Digitally modified resistive output for a temperature sensor |
US20050002437A1 (en) * | 2003-07-02 | 2005-01-06 | Jacob Fraden | Probe for a body cavity |
US20050226307A1 (en) * | 2004-04-07 | 2005-10-13 | Sherin Lussier | Infrared thermometer |
US7083330B1 (en) * | 2004-10-19 | 2006-08-01 | Huang Hua Co., Ltd. | Ear thermometer having breakable ear cap |
US20070248141A1 (en) | 2006-04-21 | 2007-10-25 | Sherwood Services Ag | Infrared thermometer and probe cover thereof |
US7556424B2 (en) * | 2006-05-19 | 2009-07-07 | Covidien Ag | Tympanic thermometer prove cover cassette and holder |
US7665893B2 (en) * | 2007-02-16 | 2010-02-23 | Parker Laboratories, Inc. | Protective cover set for a medical probe |
TWM326151U (en) * | 2007-06-22 | 2008-01-21 | Actherm Inc | Disposable thermometer probe sheath |
EP3738638A1 (en) | 2012-03-15 | 2020-11-18 | Fisher & Paykel Healthcare Limited | Respiratory gas humidification system |
BR112014026771B1 (en) | 2012-04-27 | 2022-03-15 | Fisher & Paykel Healthcare Limited | Humidifier for respiratory humidification system |
CN104871024A (en) | 2012-12-18 | 2015-08-26 | 皇家飞利浦有限公司 | Reusable MR safe temperature probe for surface and body temperature measurement |
CN115671460A (en) | 2013-09-13 | 2023-02-03 | 费雪派克医疗保健有限公司 | Connection for humidification system |
EP3043854B1 (en) | 2013-09-13 | 2019-11-06 | Fisher & Paykel Healthcare Limited | Humidification system |
HUE062413T2 (en) | 2013-12-20 | 2023-10-28 | Fisher & Paykel Healthcare Ltd | Humidification system connections |
WO2015119515A1 (en) | 2014-02-07 | 2015-08-13 | Fisher & Paykel Healthcare Limited | Respiratory humidification system |
WO2015167347A1 (en) | 2014-05-02 | 2015-11-05 | Fisher & Paykel Healthcare Limited | Gas humidification arrangement |
CN110124174A (en) | 2014-05-13 | 2019-08-16 | 费雪派克医疗保健有限公司 | Availability aspect for breathing humidification system |
WO2015187039A1 (en) | 2014-06-03 | 2015-12-10 | Fisher & Paykel Healthcare Limited | Flow mixers for respiratory therapy systems |
US11278689B2 (en) | 2014-11-17 | 2022-03-22 | Fisher & Paykel Healthcare Limited | Humidification of respiratory gases |
WO2018106126A1 (en) | 2016-12-07 | 2018-06-14 | Fisher And Paykel Healthcare Limited | Sensing arrangements for medical devices |
USD887871S1 (en) * | 2020-02-27 | 2020-06-23 | Huakun Wang | Ear thermometer cover |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3301394A (en) * | 1965-10-15 | 1967-01-31 | Medical Supply Company | Sheath package |
US3469685A (en) * | 1967-10-23 | 1969-09-30 | Medical Supply Co | Sheath package and method of application |
US3673868A (en) * | 1970-05-06 | 1972-07-04 | Becton Dickinson Co | Temperature probe |
US3703892A (en) * | 1970-12-09 | 1972-11-28 | Edward F Meyers | Disposable, retractable thermometer jacket |
US3822593A (en) * | 1972-01-12 | 1974-07-09 | Diatek Inc | Clinical thermometer probe and disposable cover therefor |
US3832669A (en) * | 1970-08-10 | 1974-08-27 | Royal Medical Corp | Temperature-sensing device |
US3833115A (en) * | 1972-02-24 | 1974-09-03 | R Schapker | Clinical probe and disposable sheath |
US3838600A (en) * | 1972-08-16 | 1974-10-01 | Med General Inc | Sleeve for fever thermometers and method of attaching same |
US3987899A (en) * | 1975-04-25 | 1976-10-26 | Edwin L. Spangler, Jr. | Disposable thermometer cap and method of making same |
US4054057A (en) * | 1976-03-01 | 1977-10-18 | Diatek, Inc. | Temperature sensing probe and disposable cover therefor |
US4061226A (en) * | 1976-06-24 | 1977-12-06 | Intec Industries Inc. | Thermometer case and holder |
US4091922A (en) * | 1975-05-16 | 1978-05-30 | The Kendall Company | Catheter package |
US4241828A (en) * | 1976-07-30 | 1980-12-30 | Johnson & Johnson | Compact sheath package for medical instruments |
US4275591A (en) * | 1977-07-25 | 1981-06-30 | Becton, Dickinson And Company | Protective shield for capillary pipette |
US4588306A (en) * | 1985-03-22 | 1986-05-13 | Chesebrough-Pond's Inc. | Electronic thermometer probe assembly |
US4652145A (en) * | 1982-04-15 | 1987-03-24 | Minitube Aktiebolag | Fever thermometer protector |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB190215647A (en) * | 1902-07-14 | 1902-09-11 | Harry Vaughan | Clinical Thermometer Shield. |
US738960A (en) * | 1903-07-13 | 1903-09-15 | Harry Vaughan | Clinical-thermometer shield. |
US1363259A (en) * | 1919-09-19 | 1920-12-28 | Mills David Hirst | Thermometer-cover |
US2661454A (en) * | 1948-03-12 | 1953-12-01 | Honeywell Regulator Co | Control apparatus |
US2696117A (en) * | 1950-06-24 | 1954-12-07 | Honeywell Regulator Co | Radiation pyrometer |
US3277715A (en) * | 1962-06-27 | 1966-10-11 | Lion Res Corp | Method of and apparatus for measuring the emittance of a radiation-emitting surface |
GB967790A (en) * | 1962-07-27 | 1964-08-26 | Diamant Marcus | Protective sheath with tab for thermometers |
US3282106A (en) * | 1963-01-28 | 1966-11-01 | Barnes Eng Co | Method of measuring body temperature |
US3368076A (en) * | 1965-08-18 | 1968-02-06 | Trw Inc | Conical receiver for thermal radiation |
US3581570A (en) * | 1967-09-05 | 1971-06-01 | Garrett Corp | Thermal radiation sensor |
US3491596A (en) * | 1967-10-02 | 1970-01-27 | Vito Charles P De | Temperature sensing device |
US3531992A (en) * | 1968-07-12 | 1970-10-06 | Leeds & Northrup Co | Expendable tympanic membrane thermometer |
US3878836A (en) * | 1973-08-23 | 1975-04-22 | Products Int Marketing | Disposable speculum for tympanic thermometer |
US4005605A (en) * | 1974-07-22 | 1977-02-01 | Mikron Instrument Company, Inc. | Remote reading infrared thermometer |
US3942891A (en) * | 1975-01-29 | 1976-03-09 | Barnes Engineering Company | Radiometer probe |
US4159766A (en) * | 1976-11-01 | 1979-07-03 | Diatek, Inc. | Cover for temperature sensing probe |
US4301682A (en) * | 1979-08-24 | 1981-11-24 | Everest Charles E | Infrared thermometer in making stress-degree measurements for irrigation purposes |
DE2953811A1 (en) * | 1979-09-12 | 1982-02-11 | M Jacobs | HAND HERO DIGITAL TEMPERATURE MEASURING INSTRUMENT |
FR2487512A1 (en) * | 1980-07-22 | 1982-01-29 | Thomson Csf | INFRARED RADIATION DETECTOR DEVICE |
US4380998A (en) * | 1981-01-05 | 1983-04-26 | Welch Allyn, Inc. | Soft tip speculum |
US4527896A (en) * | 1982-03-04 | 1985-07-09 | Mikron Instrument Company, Inc. | Infrared transducer-transmitter for non-contact temperature measurement |
US4662360A (en) * | 1984-10-23 | 1987-05-05 | Intelligent Medical Systems, Inc. | Disposable speculum |
US4790324A (en) * | 1984-10-23 | 1988-12-13 | Intelligent Medical Systems, Inc. | Method and apparatus for measuring internal body temperature utilizing infrared emissions |
US4602642A (en) * | 1984-10-23 | 1986-07-29 | Intelligent Medical Systems, Inc. | Method and apparatus for measuring internal body temperature utilizing infrared emissions |
DE3521761A1 (en) * | 1985-06-19 | 1987-01-02 | Bayer Ag | NEW 1,4-DIHYDROPYRIDINE, METHOD FOR THE PRODUCTION AND THEIR USE IN MEDICINAL PRODUCTS |
US4636091A (en) * | 1985-06-27 | 1987-01-13 | Exergen Corporation | Radiation detector having temperature readout |
JP2826337B2 (en) * | 1988-04-12 | 1998-11-18 | シチズン時計株式会社 | Radiation thermometer |
US4895164A (en) * | 1988-09-15 | 1990-01-23 | Telatemp Corp. | Infrared clinical thermometer |
US4863281A (en) * | 1988-11-01 | 1989-09-05 | Diatak, Inc. | Probe cover ejection apparatus for medical thermometer |
US5018872A (en) * | 1988-11-01 | 1991-05-28 | Diatek, Inc. | Probe assembly for infrared thermometer |
-
1988
- 1988-11-01 US US07/265,525 patent/US4911559A/en not_active Ceased
-
1989
- 1989-10-23 CA CA002001195A patent/CA2001195C/en not_active Expired - Lifetime
- 1989-10-31 DE DE68924280T patent/DE68924280T2/en not_active Expired - Fee Related
- 1989-10-31 EP EP89912723A patent/EP0511953B1/en not_active Expired - Lifetime
- 1989-10-31 WO PCT/US1989/004876 patent/WO1990005287A1/en active IP Right Grant
- 1989-10-31 AT AT89912723T patent/ATE127915T1/en not_active IP Right Cessation
- 1989-10-31 JP JP1511813A patent/JPH04502206A/en active Pending
- 1989-10-31 AU AU45240/89A patent/AU638427B2/en not_active Ceased
-
1992
- 1992-03-25 US US07/856,718 patent/USRE34599E/en not_active Expired - Lifetime
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3301394A (en) * | 1965-10-15 | 1967-01-31 | Medical Supply Company | Sheath package |
US3469685A (en) * | 1967-10-23 | 1969-09-30 | Medical Supply Co | Sheath package and method of application |
US3673868A (en) * | 1970-05-06 | 1972-07-04 | Becton Dickinson Co | Temperature probe |
US3832669A (en) * | 1970-08-10 | 1974-08-27 | Royal Medical Corp | Temperature-sensing device |
US3703892A (en) * | 1970-12-09 | 1972-11-28 | Edward F Meyers | Disposable, retractable thermometer jacket |
US3822593A (en) * | 1972-01-12 | 1974-07-09 | Diatek Inc | Clinical thermometer probe and disposable cover therefor |
US3833115A (en) * | 1972-02-24 | 1974-09-03 | R Schapker | Clinical probe and disposable sheath |
US3838600A (en) * | 1972-08-16 | 1974-10-01 | Med General Inc | Sleeve for fever thermometers and method of attaching same |
US3987899A (en) * | 1975-04-25 | 1976-10-26 | Edwin L. Spangler, Jr. | Disposable thermometer cap and method of making same |
US4091922A (en) * | 1975-05-16 | 1978-05-30 | The Kendall Company | Catheter package |
US4054057A (en) * | 1976-03-01 | 1977-10-18 | Diatek, Inc. | Temperature sensing probe and disposable cover therefor |
US4061226A (en) * | 1976-06-24 | 1977-12-06 | Intec Industries Inc. | Thermometer case and holder |
US4241828A (en) * | 1976-07-30 | 1980-12-30 | Johnson & Johnson | Compact sheath package for medical instruments |
US4275591A (en) * | 1977-07-25 | 1981-06-30 | Becton, Dickinson And Company | Protective shield for capillary pipette |
US4652145A (en) * | 1982-04-15 | 1987-03-24 | Minitube Aktiebolag | Fever thermometer protector |
US4588306A (en) * | 1985-03-22 | 1986-05-13 | Chesebrough-Pond's Inc. | Electronic thermometer probe assembly |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020039020A1 (en) | 2018-08-24 | 2020-02-27 | Dsm Ip Assets B.V. | Blue light filter lens |
Also Published As
Publication number | Publication date |
---|---|
EP0511953A4 (en) | 1992-06-02 |
CA2001195A1 (en) | 1990-05-01 |
EP0511953A1 (en) | 1992-11-11 |
CA2001195C (en) | 1994-10-25 |
AU638427B2 (en) | 1993-07-01 |
EP0511953B1 (en) | 1995-09-13 |
AU4524089A (en) | 1990-05-28 |
ATE127915T1 (en) | 1995-09-15 |
DE68924280T2 (en) | 1996-02-15 |
DE68924280D1 (en) | 1995-10-19 |
USRE34599E (en) | 1994-05-03 |
JPH04502206A (en) | 1992-04-16 |
US4911559A (en) | 1990-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4911559A (en) | Disposable probe cover assembly for medical thermometer | |
US5173266A (en) | Safety pipet | |
JP2537033B2 (en) | Speculum | |
US6123454A (en) | Tympanic thermometer disposable probe cover with further stretching prevention structure | |
US5088834A (en) | Unitary probe cover | |
US5516010A (en) | Sanitary speculum for tympanic thermometer probe | |
JPH05504275A (en) | Combination of sterilizing pad support with lancet handling object and lancet | |
US20110270130A1 (en) | Lancet protective cap | |
JPH0698861A (en) | Ophthalmoscope cover for eardrum thermometer | |
US4136776A (en) | Disposable thermometer sheath package | |
EP0472490A1 (en) | Unitary probe cover | |
US4164285A (en) | Thermometer sheath | |
US5830170A (en) | Multiple-use blood-blotting device | |
US20060120432A1 (en) | Tympanic thermometer with ejection mechanism | |
US4026751A (en) | Method and apparatus for temperature probe cover with provision for sanitary disposal | |
AU2003303687B2 (en) | Tympanic thermometer with ejection mechanism | |
JPH03133425A (en) | Cover for infrared thermometer for microscope protection | |
JP3197067B2 (en) | Collection box for cover body | |
JP3553674B2 (en) | Probe cover attachment for thermometer | |
US20090041821A1 (en) | Cleaner for medical probe | |
JP2527176Y2 (en) | Probe cover for radiation thermometer | |
JPS59633A (en) | Protective body for flat clinical thermometer | |
WO2003071244A1 (en) | Protective element for thermometers in contact with the skin | |
JPH01219667A (en) | Vessel for collecting blood |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU DK FI JP NO |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LU NL SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1989912723 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1989912723 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1989912723 Country of ref document: EP |