WO1990005123A1 - Refractory for cast molding - Google Patents

Refractory for cast molding Download PDF

Info

Publication number
WO1990005123A1
WO1990005123A1 PCT/JP1989/001137 JP8901137W WO9005123A1 WO 1990005123 A1 WO1990005123 A1 WO 1990005123A1 JP 8901137 W JP8901137 W JP 8901137W WO 9005123 A1 WO9005123 A1 WO 9005123A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractory
weight
parts
cast molding
explosion
Prior art date
Application number
PCT/JP1989/001137
Other languages
French (fr)
Japanese (ja)
Inventor
Teruyuki Nishitani
Naoki Tsutsui
Tateo Hanai
Kazuhiko Takahashi
Fumiyuki Inoue
Hideaki Ohashi
Shinji Motoike
Original Assignee
Nippon Steel Corporation
Nippon Crucible Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation, Nippon Crucible Co., Ltd. filed Critical Nippon Steel Corporation
Priority to BR898907150A priority Critical patent/BR8907150A/en
Priority to DE19893991306 priority patent/DE3991306T1/en
Priority to DE3991306A priority patent/DE3991306C2/en
Publication of WO1990005123A1 publication Critical patent/WO1990005123A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0087Uses not provided for elsewhere in C04B2111/00 for metallurgical applications

Definitions

  • the present invention is applicable to lining of various metal melting furnaces, heating furnaces, firing furnaces, etc., and molten metal containers including blast furnaces such as floor gutters, ladle, tundish, etc.
  • the purpose of the present invention is to improve the explosion resistance of cast refractories used for stirring propeller pipes, nozzles, and the like used during heating and drying during heating and drying.
  • molten metal containers such as floor gutters, ladle, tundish, etc. of blast furnaces, as well as stirring propellers and induction mixers for molten metal processing
  • Casting refractories used for pipes, nozzles, etc. are mainly aluminum or high-alumina materials mixed with silicon carbide, graphite, etc., depending on the application.
  • clay and Z or powdered pitch or resin may be mixed if necessary.
  • a fluidity-imparting agent may be added in some cases. In use, a mixture obtained by mixing and kneading these compositions with water is poured into a space of a predetermined framework to form a predetermined structure.
  • the molded body is naturally cured, or when short-time deframing is required, it is cured by heating and cured, then deframed, and heated and dried for use.
  • Water is added in an amount of about 4 to 20 external weight% based on the powder composition. Most of the water is used to provide fluidity during the casting, and Remains in free water in the tissue.
  • Aruminaseme down bets components in casting material composition (CaO ⁇ A £ 2 0 3 ) are reacted, is consumed to produce a hydrate.
  • This hydration product fills the voids of the compact and becomes a colloidal amorphous or crystalline compound exhibiting a binding force between the products or between the product and the aggregate particles.
  • This hydrate changes into a metastable hydrate by ripening. Therefore, the main purpose of heating and drying before entering the use state is to remove free water, which accounts for most of the added water, rather than to change the state of the hydrate.
  • pitches and cashiers // may become softened and melted in the structure of the molded body, usually in the range of slightly less than 100'C to more than one hundred and several'c, due to the heat received during heating and drying.
  • the open pores and the open pores formed after free water is scattered are sealed. Therefore, preventing the subsequent free scattering, the molded body significantly increases the internal vapor pressure, and is more likely to explode than the case of a single aluminum nascent binder. Situation. This explosion is dangerous, not only impairs the planned operation of various furnaces, etc., but also can cause personal injury.
  • a method of adding metallic aluminum powder to the casting material is generally used, and a method of adding sodium perborate powder is experimentally performed.
  • a method of adding metallic aluminum powder is generally used, and a method of adding sodium perborate powder is experimentally performed.
  • the aluminum reacts with the kneading liquid, and as a result, generates heat and hydrogen gas. Due to the decrease in water content due to the heat generation and the increase in the air permeability due to the generation of gas, the molded body becomes a structure that easily dehydrates during heating and drying, thereby preventing explosion.
  • the problem was that the hydrogen gas generated at that time had a risk of causing a hydrogen gas explosion by fire.
  • the present invention has been made to eliminate the explosion phenomenon at the time of heating and drying the above-described refractory for cast molding.
  • the first invention is to use an appropriate amount of an organic foaming agent that generates nonflammable gas by decomposition.
  • the refractory for cast molding characterized by being blended, and the second invention are characterized in that the refractory for cast molding of the first invention further comprises a foaming aid as described above.
  • the present invention relates to a refractory for cast molding, wherein the refractory is blended in an amount of about 1 to about 1 with respect to the amount of the foaming agent.
  • an appropriate amount of an organic foaming agent powder that is harmless, odorless, and inert, that is, emits harmless gas by decomposition is blended with a refractory for casting including a refractory material and a binder such as alumina cement. By doing so, it was in line with the purpose.
  • Refractory materials are mainly made of aluminum such as fused aluminum and sintered aluminum, high alumina such as sillimanite, muralite and bauxite, and shamotte silica. Use one or more of a basic material such as magnesia-vinel, silicon carbide, graphite and the like. As the binding material, clay and / or powdered pitch or resin, etc. may be blended as necessary in addition to aluminum nascent. Further, a fluidity-imparting agent such as a deflocculant may be added.
  • the organic blowing agents meeting this purpose include 4,4'-oxybisbenzenesulfonyl hydrazide, P—toluenesulfonyl hydrazide, acetate-P—toluenesulfonyl hydrazide, P— Tonolenesulfonylsemicarbazide, hydrazine diisopropyl zolebonate, diphenylsulfon-1--3-3'-disulfonylhydrazide, trihydrazinotriazine and 5-phenylnitrazol, etc. One or more of them were effective.
  • These organic foaming agents are received from low temperatures at the beginning of heating and drying. Since it is thermally decomposed by heat and mainly generates nitrogen gas, there is no danger and there
  • the refractory for cast molding to which an appropriate amount of the organic foaming agent is added is cast and cured as a mixture of water, cured, cured, deframed, and then heated and dried.
  • drying takes a long time at an ambient temperature of about 100 ⁇ and starts at a very low temperature. Therefore, before the reduction of free water scattering inside the molded body becomes active, that is, before the water vapor pressure inside the molded body increases, the decomposition and generation gas of the organic foaming agent proceeds to fill up in the initial stage of heating and drying.
  • air holes are formed in the structure of the molded body by gas generation from the foaming agent. The presence of these vents, or in other words, deaerated holes, can significantly reduce the risk of explosion.
  • the organic foaming agent gives off a decomposed gas during curing before de-framing, and deaerated pores are formed in the structure of the molded body. Therefore, before the start of heating and drying, the formed body has a good drying property and a structure with excellent explosion resistance, which is advantageous.
  • the effect of adding the organic foaming agent hardly occurs when it is less than 0.05% by weight, though it varies depending on the type of the organic foaming agent.
  • the content is 2.0% or more, the amount of generated gas becomes excessive as compared with the formation of gas deaeration holes, the inside of the molded body becomes porous, and lamination (lamellar cracks) is formed. Homogeneity tends to be lost.
  • the present invention has the advantage of no pollution when casting a casting material, and has an excellent effect as a countermeasure against explosion.However, in the construction site, there are actually various circumstances, The heating temperature may be out of the adjustment range, the temperature may not be adjusted depending on the construction site, or the heating and drying may be completed rapidly depending on the operating conditions, and the product may be used immediately. There are times when you have to come to a situation where it is inevitable. Therefore, the present inventors have further studied and as a result, by adding a blowing agent to the constitutions of the first and third inventions, a lower temperature and faster timing than in the case of the above inventions are obtained.
  • Foaming aids include those which render the refractory composition kneaded with water alkaline, such as sodium or potassium silicates, carbonates, or combinations thereof. is there. In this case, in the amount 1/5 less the effect of the is insufficient, the effect levels off is equivalent amount or more and not rather preferable for the refractory burner Application Benefits um, such as the force re um component increases There are evils.
  • Inorganic salts composed of a weak acid and a strong base in the form of fine powder are preferred, and for example, sodium and calcium silicates and carbonates can be easily applied.
  • the above-mentioned organic foaming agent group originally has a property that its decomposition temperature drops to near room temperature in an aqueous alkaline solution, and foaming aid added so that the water-kneaded cast refractory becomes alkaline. As agents, these substances are easy to handle and effective for the purpose of adding.
  • FIG. 1 is a chart showing the effect of a foaming aid on an organic foaming agent.
  • aluminum cement cement bond refractory composition consisting of 50 parts by weight of calcined pork sight, 35 parts by weight of synthetic mist, and 15 parts by weight of aluminum cermet. From the group of organic foaming agents, select 4 44 'oxybisbenzenesulfonyl hydrazide, add 0.5 parts by weight of it, mix with water, and add 100 ⁇ ⁇ X 100 H Specimens were made. After curing the sample in a sealed state at room temperature for 24 hours, an explosion test of the cured specimen was performed.
  • Example 1 In the explosion test, a specimen was inserted instantaneously from the ceiling outside of the furnace heated and maintained at 60 (TC) to almost the center of the furnace, and the state change due to rapid heating of the specimen was observed. In the case of a change in the state due to, for example, chipping at the tip or rupture of the trunk, the weights of these spalled off were quantitatively compared.
  • Comparative Example 1 Test The results show that when an aluminum nascent bond pouring material (comparative example 1) without the addition of an organic blowing agent, that is, a conventional, general composition, is exposed to severe rapid heating conditions, Example 1 showed good results without falling off due to the explosion, as compared with the case of exfoliation due to the explosion by weight%. In addition, the physical properties obtained by adding the organic foaming agent are not much different from those of Comparative Example 1.
  • Example 2 75 parts by weight of sintered alumina, 20 parts by weight of silicon carbide, 5 parts by weight of alumina cement, and kneading additive water. Then, 0.7 part by weight of P-toluesulfonyl hydrazide was added to 0.05 parts by weight of the low-aluminum cermet bond refractory composition for cast molding, and this was designated as Example 2.
  • An explosion test was performed in the same manner as in Example 1, and a comparative study was conducted. The results show that even without the addition of an organic blowing agent, that is, even in Comparative Example 2 which is a common low-aluminum cemented bond casting refractory, a 20% by weight explosion occurred due to rapid heating. In contrast to the drop, Example 2 showed sound and good results. Also, the physical properties of Example 2 are almost the same as or comparable to those of Comparative Example 2.
  • Example 3 A composition in which 0.3 parts by weight of nilhydrazide and 0.3 part by weight of P-toluenesulfoninolehydrazide were added was designated as Example 3, and a comparative study was conducted in the same manner as in Example 1.
  • Refractory for cast molding containing 72 parts by weight of fused aluminum, 20 parts by weight of silicon carbide, 5 parts by weight of powdered pitch, 1.5 parts by weight of Kibushi clay, and 1.5 parts by weight of aluminum cermet
  • 0.05 parts by weight of sodium pyrophosphate was kneaded and added for the purpose of improving the compactness of the construction by reducing the amount of water added.
  • Example 4 was prepared by selecting and adding 0.5 and 5 parts by weight of xylbisbenzenesulfonyl hydrazide, and mixed with water to prepare a columnar sample of 100 sq. X 100 H thigh. After curing the sample in a sealed state at 60'CX for 3 hours, an explosion test of the cured specimen was performed.
  • Comparative Example 4 without additives and no additive was taken as Comparative Example 4, and Comparative Example 5 with metallic aluminum powder added by the conventional method (0.2%).
  • Comparative Example 4 without any additive showed a burst in a state in which the specimen did not remain in the original shape. That is, while the amount of peeling was 100%, No. 4 showed no drop due to explosion and showed the same good results as Comparative Example 5 with the addition of metal aluminum powder.
  • Comparative Example 5 is a typical example of a composition used as a cast refractory for a blast furnace floor gutter, but is intended to improve properties such as corrosion resistance and thermal shock resistance.
  • powder pitch is blended. As described in the section of the background art, this powder pitch is likely to cause the molded body to easily become more easily explosive during heating and drying.For example, a comparative example in which no explosion countermeasures are taken In the case of 4, the test piece was in a state where it could not remain in its original form after the test (100% drop).
  • Example 4 To the composition used in Example 4, 0.2 part by weight of lithium carbonate was further added as a foaming aid, and a specimen was prepared in the same manner as in Example 4. The cells were sealed at room temperature (25'C) for 24 hours. A burst test was performed in the same manner as in Example 4. As a result of performing with Comparative Example 4 and Comparative Example 5, Comparative Example 4 without the additive exhibited a burst in a state where the specimen did not remain in the original shape and was disjointed. That is, while the drop amount was 100%, Example 5 did not show any drop due to the explosion and showed good results as in Comparative Example 5 in which the metal aluminum powder was added.
  • Cast refractories are excellent in workability, but have the disadvantage of exploding depending on the conditions of use.
  • measures such as slow heating and heating are taken, but forming a myriad of deaerated holes in the compact is also an effective preventive measure.
  • the use of metal aluminum powder for forming the degassing pores is performed, but has a drawback that the generated gas has a risk of causing a hydrogen gas explosion as described above.
  • the present invention is a cast molding refractory in which degassed pores are formed by non-hazardous nitrogen gas.
  • the refractory for cast molding of the present invention has excellent drying properties, the period for heating and drying is shortened, and the construction period for drying is shortened.
  • the present invention has extremely high industrial utility value from the viewpoint of safety, construction period, energy saving, furnace operation plan and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

The invention relates to a refractory for cast molding to be used as, for example, lining of a molten metal container, which contains a proper amount of an organic foaming agent generating an incombustible gas upon decomposition, such as 4,4-oxybis(benzenesulfonohydrazide). This refractory can solve the conventional problem of explosive cracking to be caused upon drying the refractory by heat.

Description

明 細 書  Specification
流し込み成形用耐火物  Refractory for casting
技術分野  Technical field
本発明は、 各種金属溶解炉、 加熱炉、 焼成炉等、 および高炉 の錶床樋や取鍋、 タ ンディ ッ シュ等を含む溶融金属容器等の内 張り用に、 また脱硫など溶融金属処理の際に用いられる攪拌用 プロペラゃィ ンジヱク ショ ンパイ プ、 ノ ズル等に使用される流 し込み成形用耐火物の加熱乾燥時における耐爆裂性の改良に関 するものである。  The present invention is applicable to lining of various metal melting furnaces, heating furnaces, firing furnaces, etc., and molten metal containers including blast furnaces such as floor gutters, ladle, tundish, etc. The purpose of the present invention is to improve the explosion resistance of cast refractories used for stirring propeller pipes, nozzles, and the like used during heating and drying during heating and drying.
背景技術  Background art
各種金属溶解炉、 加熱炉、 焼成炉等、 および高炉の铸床樋や 取鍋、 タ ンディ ッ シュ等を舍む溶融金属容器等の内張り用に、 また溶融金属処理用攪拌プロペラ、 ィ ンジヱク ショ ンパイ プ、 ノ ズル等に使用される流し込み成形用耐火物は、 主としてアル ミナまたは高アルミ ナ質原料に、 用途に応じ炭化珪素、 黒鉛等 を配合したものに、 結合剤としてアルミ ナセメ ン トの他に、 必 要に応じて粘土および Zまたは粉末状のピッチやレジン等を配 合することもある。 さ らに流動性付与剤を添加する場合もある。 使用にあたっては、 これらの組成物に加水混練した混合物を、 所定の枠組みの空間部に流し込んで、 所定の構造体を充塡成形 する。 次に、 この成形体を自然養生、 または短期脱枠を要する 場合には加熱養生して硬化させたのち脱枠を行い、 加熱乾燥し て使用される。 加水分は粉体組成物に対して、 約 4 〜20外掛重 量%添加している。 加水分は、 大部分は前記流し込み成形のさ いの流動性をもたせるために使われるもので、 硬化後の成形体 の組織内で自由水の状態で残留する。 そして一部は、 流し込み 材組成中のアルミナセメ ン トの成分(CaO · A£ 20 3 )が反応して、 水和物を生成するために消費される。 この水和生成物は成形体 の空隙を埋め、 生成物同士あるいは生成物と骨材粒子との間に 結合力を示すコロイ ド状非晶質または結晶質の化合物となる。 この水和物は加熟によって準安定水和物に変化していく。 した がって、 使用状態に入る前の加熱乾燥では水和物の状態変化を させることより も、 添加水の大部分を占める自由水の除去を主 目的としている。 Various metal melting furnaces, heating furnaces, firing furnaces, etc., and lining of molten metal containers such as floor gutters, ladle, tundish, etc. of blast furnaces, as well as stirring propellers and induction mixers for molten metal processing Casting refractories used for pipes, nozzles, etc. are mainly aluminum or high-alumina materials mixed with silicon carbide, graphite, etc., depending on the application. In addition, clay and Z or powdered pitch or resin may be mixed if necessary. Further, a fluidity-imparting agent may be added in some cases. In use, a mixture obtained by mixing and kneading these compositions with water is poured into a space of a predetermined framework to form a predetermined structure. Next, when the molded body is naturally cured, or when short-time deframing is required, it is cured by heating and cured, then deframed, and heated and dried for use. Water is added in an amount of about 4 to 20 external weight% based on the powder composition. Most of the water is used to provide fluidity during the casting, and Remains in free water in the tissue. And in part, Aruminaseme down bets components in casting material composition (CaO · A £ 2 0 3 ) are reacted, is consumed to produce a hydrate. This hydration product fills the voids of the compact and becomes a colloidal amorphous or crystalline compound exhibiting a binding force between the products or between the product and the aggregate particles. This hydrate changes into a metastable hydrate by ripening. Therefore, the main purpose of heating and drying before entering the use state is to remove free water, which accounts for most of the added water, rather than to change the state of the hydrate.
一般に流し込み材は成形体を加熱乾燥した場合、 成形体表層 部分が爆発音を発して飛散剝離すること (爆裂) がある。 とき には成形体の内部から破壌して大きな塊のまま飛散する爆裂が 起こることがある。 この爆裂は、 加熱を受けて成形体中に発生 する自由水による蒸気圧が、 成形体母材強度より大き く なった ときに発生するものであるが、 発生要因のメ 力ニズムは複雑で あるので、 適切な予防措置がとれない場合が多い。 一方、 高炉 寿床用樋材などの場合、 流し込み材の耐食性や耐熱衝撃性を向 上させるため、 組成中に粉末ピッチまたは粉末レジンなどの有 機結合材を配合することがある。 これらピッチやレジ:/は、 成 形体組織中において、 加熱乾燥中の受熱によって、 通常 100 'C 弱から百数十' cにかけて軟化溶融状態となるときがあり、 この ため一時的に成形体内の開放気孔や自由水が飛散した後にでき る開放気孔を密閉化してしまう。 したがって、 その後の自由永 の飛散を妨げて、 成形体は内部の蒸気圧を著し く高め、 アルミ ナセメ ン ト単一結合材の場合より も一層爆裂を発生しやすい状 況となる。 この爆裂は危険であり、 各種炉等の計画的操業に支 障を及ぼすこととなる上に、 ときには人身事故をも引き起こす ことがある。 In general, when the cast material is heated and dried, the surface layer of the formed body emits an explosion and may be scattered and separated (explosion). Occasionally, explosions that burst from the inside of the compact and fly in large chunks may occur. This explosion occurs when the vapor pressure of free water generated in the molded body due to heating becomes greater than the strength of the base material of the molded body, but the mechanism that causes the explosion is complicated. Therefore, appropriate precautionary measures are often not taken. On the other hand, in the case of gutters for blast furnace slabs, organic binders such as powdered pitch or resin may be added to the composition in order to improve the corrosion resistance and thermal shock resistance of the cast material. These pitches and cashiers // may become softened and melted in the structure of the molded body, usually in the range of slightly less than 100'C to more than one hundred and several'c, due to the heat received during heating and drying. The open pores and the open pores formed after free water is scattered are sealed. Therefore, preventing the subsequent free scattering, the molded body significantly increases the internal vapor pressure, and is more likely to explode than the case of a single aluminum nascent binder. Situation. This explosion is dangerous, not only impairs the planned operation of various furnaces, etc., but also can cause personal injury.
上記の問題を解決するために、 爆裂防止策として、 流し込み 材に金属アルミ ニウム粉末を添加する方法が一般的に利用され、 また過硼酸ナ ト リ ゥム粉末を添加する方法が試験的に行われた。 しかしながら水を混練液とした流し込み材に金属アルミ ニウム 粉末が添加されていると、 アルミニゥムが混練液と反応した結 果、 発熱と共に水素ガスを発生する。 この発熱による舍有水分 の減少およびガス発生による通気率の上昇等によって、 成形体 が加熱乾燥時に脱水し易い組織となつて爆裂防止が図られるも のである。 しかしながら問題点として、 その際発生する水素ガ スは、 火気により水素ガス爆発を生じる危険性を伴っている欠 点があった。  In order to solve the above problems, as a measure to prevent explosion, a method of adding metallic aluminum powder to the casting material is generally used, and a method of adding sodium perborate powder is experimentally performed. Was done. However, when metal aluminum powder is added to a casting material using water as a kneading liquid, the aluminum reacts with the kneading liquid, and as a result, generates heat and hydrogen gas. Due to the decrease in water content due to the heat generation and the increase in the air permeability due to the generation of gas, the molded body becomes a structure that easily dehydrates during heating and drying, thereby preventing explosion. However, the problem was that the hydrogen gas generated at that time had a risk of causing a hydrogen gas explosion by fire.
また過硼酸アルミ ニウム粉末の場合、 流し込み材の水との反 応として酸素ガスを発生する。 しかし、 金属アルミニウムの粉 末を添加した場合の水素爆発のごとき危険な現象を起こす可能 性がないまでも、 酸素ガスは燃焼を助長するものであるから、 安全性の面で充分でない欠点がある。  In the case of aluminum perborate powder, oxygen gas is generated as a reaction with water in the pouring material. However, even if there is no possibility of causing a dangerous phenomenon such as a hydrogen explosion when adding powder of metallic aluminum, oxygen gas promotes combustion, so there is a drawback that safety is not sufficient. .
発明の開示 Disclosure of the invention
この発明は、 以上説明した流し込み成形用耐火物の加熱乾燥 時の爆裂現象をなく すべく なされたもので、 第 1 の発明は、 分 解により不燃性のガスを発生する有機質発泡剤を適当量配合し たことを特徴とする流し込み成形用耐火物、 および第 2 の発明 は、 第 1 の発明の流し込み成形用耐火物に、 発泡助剤を上記有 機質発泡剤の配合量に対しほぼ1 Λ量乃至ほぼ同等量配合した ことを特徴とする流し込み成形用耐火物に関するものである。 すなわち、 耐火性材料とアルミナセメ ン ト等の結合材からな る流し込み成形用耐火物に、 分解によって無害、 無臭で不活性 な、 すなわち無公害のガスを発生する有機質発泡剤粉末を適当 量配合することによって目的に沿う ものとした。 The present invention has been made to eliminate the explosion phenomenon at the time of heating and drying the above-described refractory for cast molding. The first invention is to use an appropriate amount of an organic foaming agent that generates nonflammable gas by decomposition. The refractory for cast molding characterized by being blended, and the second invention are characterized in that the refractory for cast molding of the first invention further comprises a foaming aid as described above. The present invention relates to a refractory for cast molding, wherein the refractory is blended in an amount of about 1 to about 1 with respect to the amount of the foaming agent. That is, an appropriate amount of an organic foaming agent powder that is harmless, odorless, and inert, that is, emits harmless gas by decomposition, is blended with a refractory for casting including a refractory material and a binder such as alumina cement. By doing so, it was in line with the purpose.
(作 用)  (Operation)
耐火性材料は主として、 電融アルミ ナ、 焼結アルミ ナ等のァ ルミ ナ質ゃシリ マナイ ト、 ムラ イ ト、 ボ一キサイ ト等の高アル ミ ナ質、 またシャモ ッ ト人 シ リ カ等、 マグネ シアゃス ビネル等 の塩基性材料、 および炭化珪素、 黒鉛等を一種も し く は二種以 上選択して使用する。 結合材としては、 アルミ ナセメ ン ト の他 に必要に応じて、 粘土および または粉末状のピツチやレジ ン 等を配合する。 さらに解膠剤等の流動性付与剤を添加する場合 もある。  Refractory materials are mainly made of aluminum such as fused aluminum and sintered aluminum, high alumina such as sillimanite, muralite and bauxite, and shamotte silica. Use one or more of a basic material such as magnesia-vinel, silicon carbide, graphite and the like. As the binding material, clay and / or powdered pitch or resin, etc. may be blended as necessary in addition to aluminum nascent. Further, a fluidity-imparting agent such as a deflocculant may be added.
加熱乾燥時の脱気孔を形成する発生ガスの成分として無毒、 無臭、 かつ不燃性、 いわゆる無公害であることを選定条件とし た。 その結果、 本目的を満たす有機質発泡剤としては、 4 · 4' ォキ シビスベンゼンスルホニルヒ ドラ ジ ド、 P — トルエ ンスル ホニルヒ ドラ ジ ド、 アセ ト ン一 P — トルエ ンスルホニルヒ ドラ ジ ド、 P — トノレエ ンスルホニルセ ミ カルバジ ド、 ヒ ドラ ジ力ゾレ ボン酸イ ソプロ ピル、 ジフ エニルスルボン一 3 - 3 ' - ジスルホ ニルヒ ドラジ ド、 ト リ ヒ ドラ ジノ ト リ ア ジ ンおよび 5 —フ ユ 二 ルテ トラゾール等のう ち一種もし く は二種以上の使用が有効で あった。 これら有機質発泡剤は、 加熱乾燥初期の低温時から受 熱により熱分解すると共に、 主に窒素ガスを発生するので、 危 険性は全く無く、 無公害である。 The selection conditions were that the components of the generated gas that forms degassing pores during heating and drying were non-toxic, odorless, and non-flammable, so-called non-polluting. As a result, the organic blowing agents meeting this purpose include 4,4'-oxybisbenzenesulfonyl hydrazide, P—toluenesulfonyl hydrazide, acetate-P—toluenesulfonyl hydrazide, P— Tonolenesulfonylsemicarbazide, hydrazine diisopropyl zolebonate, diphenylsulfon-1--3-3'-disulfonylhydrazide, trihydrazinotriazine and 5-phenylnitrazol, etc. One or more of them were effective. These organic foaming agents are received from low temperatures at the beginning of heating and drying. Since it is thermally decomposed by heat and mainly generates nitrogen gas, there is no danger and there is no pollution.
これら有機質発泡剤を適当量添加した流し込み成形用耐火物 は、 加水混合物として流し込み成形し、 養生し、 硬化し、 脱枠 した後、 加熱乾燥される。 常温流し込み成形された場合は、 乾 燥は雰囲気温度 100 Ϊ程度で長時間をかけ、 ごく低温から開始 される。 したがって、 成形体内部の自由水の飛散減少が活発化 する以前、 すなわち成形体内部の水蒸気圧が高まる以前には、 加熱乾燥の初期段階において、 有機質発泡剤は分解発ガスが充 分に進んでおり、 成形体組織内に、 発泡剤からの発ガスにより 通気孔が形成される。 この通気孔、 言い換えれば脱気孔の存在 により、 爆裂が起こる危険性を著し く軽減することができる。 一方、 補修の場合など、 流し込み成形時点でバッ ク ライ ニング レンガゃ残された旧材が残熱を有していて、 温間ないし熱間雰 囲気での流し込み成形となる場面がある。 この場合は有機質発 泡剤が脱枠以前の養生中に分解発ガスを呈して、 成形体組織中 に脱気孔が形成される。 したがって、 加熱乾燥開始以前に、 成 形体は乾燥性の良い、 耐爆裂性に優れた組織となっているので 好都合である。  The refractory for cast molding to which an appropriate amount of the organic foaming agent is added is cast and cured as a mixture of water, cured, cured, deframed, and then heated and dried. When cast at room temperature, drying takes a long time at an ambient temperature of about 100Ϊ and starts at a very low temperature. Therefore, before the reduction of free water scattering inside the molded body becomes active, that is, before the water vapor pressure inside the molded body increases, the decomposition and generation gas of the organic foaming agent proceeds to fill up in the initial stage of heating and drying. As a result, air holes are formed in the structure of the molded body by gas generation from the foaming agent. The presence of these vents, or in other words, deaerated holes, can significantly reduce the risk of explosion. On the other hand, in the case of repairs, there are cases where back lining bricks and remaining old materials have residual heat at the time of cast molding, and casting is performed in a warm or hot atmosphere. In this case, the organic foaming agent gives off a decomposed gas during curing before de-framing, and deaerated pores are formed in the structure of the molded body. Therefore, before the start of heating and drying, the formed body has a good drying property and a structure with excellent explosion resistance, which is advantageous.
次に、 有機質発泡剤の使用割合について説明する と、 配合有 機質発泡剤の種類によっても異なるがほぼ重量で 0 . 05 %以下で あると添加した効果が余り生じない。 また 2 . 0 %以上であると ガス脱気孔の形成より も発生ガス量が過度となり、 成形体内部 が多孔質となり、 またラ ミ ネーシヨ ン (層状亀裂) が形成され てしまい、 成形体組織の均質性が失われる傾向にある。 本発明の上述のごと く、 流し込み材を施工する場合に無公害 の長所を有して、 爆裂対策として優れた効果を示すが、 施工現 場においては現実は種々事情があって、 加熱乾燥時に調整範囲 を越えて加熱温度バラツキが生じる場合があつたり、 施工現場 によっては計画的な温度調節ができなかったり、 時折、 操業事 情によって急速に加熱乾燥を完了させて、 早期に使用に供せざ るを得ない場面に遭遇することもある。 そこで本発明者等は、 さらに研究を進めた結果、 前記第 1、 第 3 の発明の構成にさら に発泡剤を添加することによって、 上記発明の場合より も低い 温度で、 および早いタイ ミ ングで発ガス発泡を促し、 かかる乾 燥の際の流し込み材にとつて爆裂発生のうえで加熱、 温度条件 が厳しい方向に変動があっても高いフレキシビリティで、 より 安全に対応できることを見出した。 この発泡助剤により、 発ガ ス開始温度を低温域から、 また発ガス開始時を早い時期に移行 できる。 この効果例を.第 1図に示す。 すなわち第 2 も し く は第Next, the use ratio of the organic foaming agent will be described. The effect of adding the organic foaming agent hardly occurs when it is less than 0.05% by weight, though it varies depending on the type of the organic foaming agent. On the other hand, if the content is 2.0% or more, the amount of generated gas becomes excessive as compared with the formation of gas deaeration holes, the inside of the molded body becomes porous, and lamination (lamellar cracks) is formed. Homogeneity tends to be lost. As described above, the present invention has the advantage of no pollution when casting a casting material, and has an excellent effect as a countermeasure against explosion.However, in the construction site, there are actually various circumstances, The heating temperature may be out of the adjustment range, the temperature may not be adjusted depending on the construction site, or the heating and drying may be completed rapidly depending on the operating conditions, and the product may be used immediately. There are times when you have to come to a situation where it is inevitable. Therefore, the present inventors have further studied and as a result, by adding a blowing agent to the constitutions of the first and third inventions, a lower temperature and faster timing than in the case of the above inventions are obtained. In this way, it was found that foaming was promoted, and that the casting material used for drying in such a way exploded and then heated, and even if the temperature conditions fluctuated in severe directions, it was possible to respond more safely with high flexibility. With this foaming aid, the gas generation start temperature can be shifted from a low temperature range and the gas generation start time can be shifted earlier. Fig. 1 shows an example of this effect. That is, the second or
4の発明は上記第 1、 第 3の発明で得た有機質発泡剤を舍む流 し込み成形用耐火物にさらに有機質発泡剤の1 / 5以上同等量以 下の発泡助剤を配合することにある。 発泡助剤としては加水混 練された耐火物組成物をアル力 リ性とする例えばナ ト リ ウムも し く ば力 リ ウムのけい酸塩類、 炭酸塩類、 もし く はそれらの組 合わせなどがある。 この場合、 配合量1 / 5以下では上記の効果 が充分でなく、 同等量以上では効果が頭打ちとなることと耐火 物にとって好ま し く ないナ ト リ ウム、 力 リ ウム成分が増大する 等の弊害がある。 発泡助剤は、 流し込み成形用耐火物が混合粉 末状製品であるこ と、 および在庫時の保存性を考慮した場合、 微粉末状の弱酸と強塩基からなる無機塩類が好ま し く、 例えば、 ナ ト リ ウムおよびカ リ ウムのけい酸塩類、 炭酸塩類などが容易 に適用できる。 前記した有機質発泡剤群はアル力 リ性水溶液中 においては、 分解温度が常温近く まで下がる性質をもともと有 しており、 加水混練された流し込み耐火物がアルカ リ性となる ように添加する発泡助剤として、 これらの物質は扱い易く、 添 加する目的の上で有効である。 4 of invention the first, blending a third organic blowing agent equivalent amount or more of a blowing aid 1/5 or more further organic blowing agent in Complex free flow Shi Inclusive molding refractories obtained by the invention It is in. Foaming aids include those which render the refractory composition kneaded with water alkaline, such as sodium or potassium silicates, carbonates, or combinations thereof. is there. In this case, in the amount 1/5 less the effect of the is insufficient, the effect levels off is equivalent amount or more and not rather preferable for the refractory burner Application Benefits um, such as the force re um component increases There are evils. When considering that the refractory for casting is a powdered mixed product and the storage stability in stock, Inorganic salts composed of a weak acid and a strong base in the form of fine powder are preferred, and for example, sodium and calcium silicates and carbonates can be easily applied. The above-mentioned organic foaming agent group originally has a property that its decomposition temperature drops to near room temperature in an aqueous alkaline solution, and foaming aid added so that the water-kneaded cast refractory becomes alkaline. As agents, these substances are easy to handle and effective for the purpose of adding.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
第 1 図は有機質発泡剤に対する発泡助剤の効果を示す図表で ある。  FIG. 1 is a chart showing the effect of a foaming aid on an organic foaming agent.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
〔実施例 1 〕 (第 1表)  [Example 1] (Table 1)
仮焼ポーキサイ ト 50重量部、 合成ムラィ ト 35重量部、 アルミ ナセメ ン ト 15重量部からなる、 代表的な高アルミ ナ骨材質アル ミナセメ ン トボン ド^し込み成形用耐火物組成物に対して、 有 機質発泡剤群の中から 4 · 4'ォキ シビスベンゼンスルホニルヒ ドラジ ドを選択し、 これを 0. 5重量部添加し、 加水混合し、 100 Φ 讓 X 100 H腿の円柱状の供試体を作つた。 試料を密閉状態で 室温で 24時間にて養生後、 硬化した供試体の爆裂性実験を行つ た。 爆裂性試験は 60(TCに加熱保持した炉の天井方向外部から 供試体を炉内のほぼ中央部まで瞬時に挿入して、 供試体の急加 熱による状態変化を観察した。 この際に爆裂によつて状態変化、 例えば先端欠けとか、 胴切れ破裂する とかが生じた場合には、 これらの剥落重量を定量比較した。 比較例として、 何ら爆裂対 策を施していない添加剤無添加のものを比較例 1 と した。 試験 結果は、 有機質発泡剤の添加無しの、 すなわち従来からの、 ご く一般的な組成内容のアルミ ナセメ ン ト ボン ド流し込み材 (比 較例 1 ) が過酷な急加熱条件にさらされると、 30重量%の爆裂 による剥落を呈したのに比べて、 実施例 1 は爆裂による剝落が 無く良好な結果を示した。 また有機質発泡剤添加による物理的 性質も比較例 1 と余り変りがない。 For a typical high-alumina bone material, aluminum cement cement bond refractory composition consisting of 50 parts by weight of calcined pork sight, 35 parts by weight of synthetic mist, and 15 parts by weight of aluminum cermet. From the group of organic foaming agents, select 4 44 'oxybisbenzenesulfonyl hydrazide, add 0.5 parts by weight of it, mix with water, and add 100 Φ 讓 X 100 H Specimens were made. After curing the sample in a sealed state at room temperature for 24 hours, an explosion test of the cured specimen was performed. In the explosion test, a specimen was inserted instantaneously from the ceiling outside of the furnace heated and maintained at 60 (TC) to almost the center of the furnace, and the state change due to rapid heating of the specimen was observed. In the case of a change in the state due to, for example, chipping at the tip or rupture of the trunk, the weights of these spalled off were quantitatively compared. Was used as Comparative Example 1. Test The results show that when an aluminum nascent bond pouring material (comparative example 1) without the addition of an organic blowing agent, that is, a conventional, general composition, is exposed to severe rapid heating conditions, Example 1 showed good results without falling off due to the explosion, as compared with the case of exfoliation due to the explosion by weight%. In addition, the physical properties obtained by adding the organic foaming agent are not much different from those of Comparative Example 1.
〔実施例 2〕 (第 1表)  [Example 2] (Table 1)
焼結アルミ ナ 75重量部、 炭化珪素 20重量部、 アルミナセメ ン ト 5重量部および混練添加水量を減少し、 施工体の緻密度を向 上させる解膠剤として、 ピロ リ ン酸ソ一ダ 0 . 05重量部からなる 低アルミ ナセメ ン ト ボンド流し込み成形用耐火物組成物に対し て、 次に P — トルェ シスルホニルヒ ドラ ジ ドを 0 . 7重量部添加 し、 これを実施例 2 とした。 実施例 1 と同様の方法で爆裂性試 験を行い、 比較調査した。 結果は有機質発泡剤の添加無しの、 すなわち一般的な低アルミ ナセメ ン ト ボン ド流し込み成形用耐 火物である比較例 2であっても、 急加熱にさ らされて 20重量% の爆裂による剝落があつたのに対して、 実施例 2 は健全で良好 な結果を示した。 また実施例 2の物理的性質も比較例 2 とほぼ 同等もし く は以上の値を示している。  75 parts by weight of sintered alumina, 20 parts by weight of silicon carbide, 5 parts by weight of alumina cement, and kneading additive water. Then, 0.7 part by weight of P-toluesulfonyl hydrazide was added to 0.05 parts by weight of the low-aluminum cermet bond refractory composition for cast molding, and this was designated as Example 2. An explosion test was performed in the same manner as in Example 1, and a comparative study was conducted. The results show that even without the addition of an organic blowing agent, that is, even in Comparative Example 2 which is a common low-aluminum cemented bond casting refractory, a 20% by weight explosion occurred due to rapid heating. In contrast to the drop, Example 2 showed sound and good results. Also, the physical properties of Example 2 are almost the same as or comparable to those of Comparative Example 2.
〔実施例 3 〕 (第 1表)  [Example 3] (Table 1)
焼結アルミ ナ 92重量部、 マグネ シア 5重量部、 アルミ ナセメ ン ト 3重量部、 および混練添加水量を減少し、 施工体の緻密度 を向上させる解膠剤として、 ピロ リ ン酸ソ一ダ 0 . 05重量部から なる低アルミナセメ ン トボン ド流し込み成形用耐火物組成物に 対して、 有機質発泡剤と して 4 · 4'ォキ シビスベンゼンスルホ ニルヒ ドラジ ドを 0. 3重量部、 P — ト ルエ ンスルホニノレヒ ドラ ジ ドを 0. 3重量部添加した組成物を実施例 3 とし、 実施例 1 と 同様の方法で比較調査した。 この場合、 有機質発泡剤無添加の 比較例 3が 50重量%の剥落があつ たのに対し、 実施例 3 は、 爆 裂による剥落が無く、 良好な結果を示した。 これは乾燥性を良 好にするためには.、 有機質発泡剤二種類の併用が有効であるこ とを示している。 而して実施例 3 の物理的性質も比較例 3 と余 り変らない。 92 parts by weight of sintered aluminum, 5 parts by weight of magnesia, 3 parts by weight of aluminum cement, and sodium pyrophosphate as a deflocculant to reduce the amount of water added for kneading and improve the compactness of the construction. For the low-alumina cement bond cast refractory composition consisting of 0.05 parts by weight, 4.4'-oxybisbenzenesulfone was used as an organic foaming agent. Example 3 A composition in which 0.3 parts by weight of nilhydrazide and 0.3 part by weight of P-toluenesulfoninolehydrazide were added was designated as Example 3, and a comparative study was conducted in the same manner as in Example 1. In this case, Comparative Example 3 in which no organic foaming agent was added suffered spalling of 50% by weight, while Example 3 showed good results without spalling due to explosion. This indicates that a combination of two organic blowing agents is effective for improving the drying property. Thus, the physical properties of Example 3 are not much different from those of Comparative Example 3.
〔実施例 4 〕 (第 2表)  [Example 4] (Table 2)
電融アル ミ ナ 72重量部、 炭化珪素 20重量部、 粉末ピ ッ チ 5重 量部、 木節粘土 1 . 5重量部、 アルミ ナセメ ン ト 1 . 5重量部の流し 込み成形用耐火物配合に、 ピロ リ ン酸ソ一ダ 0. 05重量部を混練 添加水量を減少して、 施工体の緻密度を向上させる目的で加え たものに、 有機質発泡剤群の中から 4 · 4'ォキ シビスベ ンゼ ン スルホニルヒ ドラジ ドを選択し、 これを 0 , 5重量部添加したも のを実施例 4 として、 加水混合し、 100 讓 X 100 H腿の円柱状 の供試体を作った。 試料を密閉状態で 60 'C X 3時間にて養生後、 硬化した供試体の爆裂性実験を行った。 爆裂性実験は 600 'Cに 加熱保持した炉の天井方向外部から、 供試体を炉内のほ.ぼ中央 部まで瞬時に挿入して、 供試体の急加熱による状態変化を観察 した。 比較例として、 何ら爆裂対策を施していない添加剤無添 加のものを比較例 4、 また従来法による金属アルミ ニウ ム粉末 添加(0. 2 % ) のものを比較例 5 とした。 試験結果は、 添加剤無 しの比較例 4が供試体の原形をとどめないバラバラの状態に爆 裂を呈した。 すなわち剥落量 100 %であったのに対し、 実施例 4は爆裂による剝落が全く無く、 金属アルミニゥム粉末添加の 比較例 5 と同様な良好な結果を示した。 比較例 5 は、 たとえば 高炉寿床樋用流し込み成形用耐火物として、 使用される配合例 として代表的なものであるが耐食性、 耐熱衝撃性等の特性向上 を目的として、 カーボン系粉末有機バイ ンダー、 こ こでは粉末 ピッチが配合されている。 この粉末ピッチは前記の背景技術の 項でも述べたように、 加熱乾燥途中で成形体が一時的に、 一層 爆裂を発生し易い状態となり易いために、 たとえば、 何ら爆裂 対策を施していない比較例 4 のような場合は、 試験後に供試体 の原形をとどめないバラバラの状態 (剝落量 100 % ) となつ てしまったものである。 Refractory for cast molding containing 72 parts by weight of fused aluminum, 20 parts by weight of silicon carbide, 5 parts by weight of powdered pitch, 1.5 parts by weight of Kibushi clay, and 1.5 parts by weight of aluminum cermet In addition, 0.05 parts by weight of sodium pyrophosphate was kneaded and added for the purpose of improving the compactness of the construction by reducing the amount of water added. Example 4 was prepared by selecting and adding 0.5 and 5 parts by weight of xylbisbenzenesulfonyl hydrazide, and mixed with water to prepare a columnar sample of 100 sq. X 100 H thigh. After curing the sample in a sealed state at 60'CX for 3 hours, an explosion test of the cured specimen was performed. In the explosion test, the specimen was inserted from the outside of the furnace heated to 600 ° C in the ceiling direction to the center of the furnace almost instantaneously, and the state change due to rapid heating of the specimen was observed. As Comparative Examples, Comparative Example 4 without additives and no additive was taken as Comparative Example 4, and Comparative Example 5 with metallic aluminum powder added by the conventional method (0.2%). As a result of the test, Comparative Example 4 without any additive showed a burst in a state in which the specimen did not remain in the original shape. That is, while the amount of peeling was 100%, No. 4 showed no drop due to explosion and showed the same good results as Comparative Example 5 with the addition of metal aluminum powder. Comparative Example 5 is a typical example of a composition used as a cast refractory for a blast furnace floor gutter, but is intended to improve properties such as corrosion resistance and thermal shock resistance. Here, powder pitch is blended. As described in the section of the background art, this powder pitch is likely to cause the molded body to easily become more easily explosive during heating and drying.For example, a comparative example in which no explosion countermeasures are taken In the case of 4, the test piece was in a state where it could not remain in its original form after the test (100% drop).
次に、 本実施例に示すものを高炉出銑樋に実炉供試した。 3000m 3級大型高炉出銑孔前大樋に、 旧残材表面温度 80 'Cの状態 において、 25ト ン流し込み施工し、 実用に供した。 従来の耐爆 裂性を水素ガス発生機構で対処した金属アルミ ニゥ ム粉末添加 の樋用流し込み材と同様の一晩養生後、 脱枠し、 2 日間工程の 加熱乾燥を施した後、 通銑開始した。 本実炉テス トにおいて、 乾燥から通銑終了に至るまで、 爆裂とか亀裂、 剥離など一切の ト ラブルの発生は無く、 樋の耐用性も従来品と同等以上の結果 を得た。 Next, what was shown in the present example was subjected to an actual furnace test for a blast furnace tapping gutter. 25 tons were poured into the large gutter in front of the tapping hole of the 3000m 3 class large blast furnace at the old residual material surface temperature of 80'C, and put into practical use. After curing overnight, as in the case of the cast material for gutter to which metal aluminum powder was added to deal with the conventional explosion resistance using a hydrogen gas generation mechanism, deframed, heat-dried for 2 days, and then passed Started. In the actual furnace test, there were no problems such as explosions, cracks, or delaminations from drying to completion of hot-rolling, and the gutter durability was equal to or better than that of conventional products.
〔実施例 5 〕 (第 2表)  [Example 5] (Table 2)
実施例 4 に使用した組成物に、 さらに発泡助剤として炭酸力 リ ウム 0 . 2 重量部添加し、 実施例 4 と同様供試体を作成し、 実 施例 4より厳しい条件下である低温の室温 (25 'C ) X 24時間密 封養生した。 爆裂性試験を実施例 4 の場合と同様な方法にて、 比較例 4および比較例 5 と共に行った結果、 添加剤無しの比較 例 4が供試体の原形をとどめなぃバラバラの状態に爆裂を呈し た。 すなわち剝落量 100 %であったのに対して、 実施例 5 は爆 裂による剝落が全く無く、 金属アルミ ニウム粉末添加の比較例 5 と同様に良好な結果を示した。 To the composition used in Example 4, 0.2 part by weight of lithium carbonate was further added as a foaming aid, and a specimen was prepared in the same manner as in Example 4. The cells were sealed at room temperature (25'C) for 24 hours. A burst test was performed in the same manner as in Example 4. As a result of performing with Comparative Example 4 and Comparative Example 5, Comparative Example 4 without the additive exhibited a burst in a state where the specimen did not remain in the original shape and was disjointed. That is, while the drop amount was 100%, Example 5 did not show any drop due to the explosion and showed good results as in Comparative Example 5 in which the metal aluminum powder was added.
本実施例に示すものを高炉出銑樋に実炉供試した。 4000m 3級 大型高炉出銑孔前大樋に、 旧残材表面温度 30 'Cの状態において、 30 ト ン流し込み施工し、 実用に供した。 いずれも、 従来の耐爆 裂性を水素ガス発生機構で対処した金属アルミ ニウム粉末添加 の樋用流し込み材と同様の一晩養生後、 脱枠し、 2 日間工程の 加熱乾燥を施した後、 通銑開始した。 本実炉テス トにおいて、 乾燥から通銑終了に至るまで、 爆裂とか亀裂、 剥離など一切の ト ラブルの発生は無く、 樋の耐用性も従来品と同等以上の結果 を得た。 The thing shown in the present example was subjected to an actual furnace test for a blast furnace tapping gutter. A 30-ton pouring process was applied to the old gutter before the tap hole of the 4000m 3 class large-scale blast furnace at a tapping temperature of 30'C, and put into practical use. In each case, after curing overnight, as in the case of the flow-in material for gutters to which metal aluminum powder was added to deal with the conventional explosion resistance by the hydrogen gas generation mechanism, the frame was removed, and after heating and drying in the process for 2 days, Iron pouring has started. In the actual furnace test, there were no problems such as explosions, cracks, or delaminations from drying to completion of hot-rolling, and the gutter durability was equal to or better than that of conventional products.
ァノレミ ナセメ ン 卜ボン ド流し込み成形用耐火物 (配合 :重量部) 実施 比較 比較 Refractory for cast molding of anoremi nasemene bond (compounding: parts by weight) Implementation Comparison Comparison
例 1 例 1 例 2  Example 1 Example 1 Example 2
焼結アルミナ 75 75 92 92 耐  Sintered alumina 75 75 92 92
仮焼ボーキサイ 卜 50 50  Calcined bauxite 50 50
Fire
合成ム ライ ト 35 35  Synthetic mullite 35 35
Sex
炭化珪素 20 20  Silicon carbide 20 20
Lumber
マグネ シァ 5 5 料  Magnesia 55 fee
アルミ ナセメ ン ト 15 15 5 5 3 3 膠 ピロ リ ン酸ソ一ダ - 0.05 0.05 0.05 0.05 剤  Aluminum cemet 15 15 5 5 3 3 Sodium pyrophosphate-0.05 0.05 0.05 0.05
有 4 · 4'ォキシビス 0.5 _ 0.3 Yes 4 4 'oxybis 0.5 _ 0.3
ベンゼンス レホ ―  Benzens Reho ―
ニルヒ ドラジ ド  Nilhi Drazid
発 1rn Departure 1rn
泡 P— トルエ ンスル 0.7 0.3 ― 剤 ホニ レヒ ドラジ ド Foam P— Toluenesul 0.7 0.3 — Agent Honi Lehi Drazide
混練添加水量 12 12 5 5 6 6Water added for kneading 12 12 5 5 6 6
(外掛重量%) (Outer weight%)
110 'C乾燥後物理特性  Physical properties after drying at 110'C
残存線変化率 ) - 0.1 - 0.1 -0.1 -0.1 -0.1 -0.1 曲げ強さ(kg/cm2) 60 70 75 60 50 55 圧縮強さ (kg/cm2) 150 160 180 140 130 145 爆裂性試験結果 異常 亀 ψ 異常 異常 Remaining line rate of change) - 0.1 - 0.1 -0.1 -0.1 -0.1 -0.1 bending strength (kg / cm 2) 60 70 75 60 50 55 Compressive strength (kg / cm 2) 150 160 180 140 130 145 Burst Test Result Abnormal Tortoise 異常 Abnormal Abnormal
at600°C なし 多数 なし 多数 なし 多数  at600 ° C None Many None Many None Many
0 30 0 20 0 50 2 0 30 0 20 0 50 Two
高炉寿床樋用流し込み成形用耐火物 (配合 : 重量部)  Refractory for cast molding for blast furnace Kotobuki (mixing: parts by weight)
¾施例 ¾施例 比較例 比較例 4 5 4 5 耐 電融アルミ ナ 72 72 72 72 火 炭化珪素 20 20 20 20 性 粉末ピッチ 5 5 5 5 材 木節粘土 1.5 1.5 1.5 1.5 料 アルミナセメ ン ト 1 5 1 5 1 5 1 5 ピロ リ ン酸ソーダ 0.05 0.05 0.05 0.05 金属アルミ ニゥ ム粉末 0.2 有  ¾Example ¾Example Comparative example Comparative example 4 5 4 5 Electro-fused aluminum 72 72 72 72 Fire Silicon carbide 20 20 20 20 Properties Powder pitch 5 5 5 5 Material Kibushi clay 1.5 1.5 1.5 1.5 Material Alumina cement 1 5 1 5 1 5 1 5 Sodium pyrophosphate 0.05 0.05 0.05 0.05 Aluminum metal powder 0.2 Yes
機 4 ♦ 4'ォキシビス 0.5 0.5 ― 一 Machine 4 ♦ 4 'oxybis 0.5 0.5 ― One
ベンゼンスノレホ  Benzenes Norejo
ニ ノレ ヒ ドラ ジ ド  Ni Nore Hydra Zid
Bubbles
剤 泡 炭酸力 リ ウ ム 0 2 Agent foam Carbonated lime 0 2
Assistance
Agent
混練添加水量 5.5 5.5 5.5 5.55.5 5.5 5.5 5.5
(外掛け重量 V) (Outer weight V)
110て乾燥後物理特性  Physical properties after drying
残存線変化率(%) -0.1 一 0.1 -0.1 一 0.1 曲げ強さ (kg/cm2) 60 55 65 50 圧縮強さ (kg/cm2) 180 160 175 145 爆裂性試験結果 異常 異常 原形とど 異常 at600 °C なし なし め ヾラ な し バラ Remaining line rate of change (%) -0.1 one 0.1 -0.1 one 0.1 Flexural strength (kg / cm 2) 60 55 65 50 Compressive strength (kg / cm 2) 180 160 175 145 Burst Test Results Failure Failure original sea lions Abnormal at 600 ° C None None None None
剝落重量(%) 0 0 100 0 産業上の利用可能性 剝 Drop weight (%) 0 0 100 0 Industrial applicability
① 安全性の改善  ① Improvement of safety
流し込み成形用耐火物は施工性にすぐれるが、 使用条件によ つて爆裂を起こす欠点がある。 爆裂防止には、 加熱昇温を緩や かにする等の対策が講じられるが、 成形体に無数の脱気孔を形 成させることも有力な防止策となつている。 この脱気孔形成に 金属アルミニゥム粉末を使用することが行われているが、 前述 の如く発生ガスが水素ガス爆発を起こす危険性を有する欠点が ある。  Cast refractories are excellent in workability, but have the disadvantage of exploding depending on the conditions of use. In order to prevent explosion, measures such as slow heating and heating are taken, but forming a myriad of deaerated holes in the compact is also an effective preventive measure. The use of metal aluminum powder for forming the degassing pores is performed, but has a drawback that the generated gas has a risk of causing a hydrogen gas explosion as described above.
本発明は、 危険性のない窒素ガスによって、 脱気孔を形成さ せる流し込み成形用耐火物であるから、 安全に使用できる効果 が大である。  INDUSTRIAL APPLICABILITY The present invention is a cast molding refractory in which degassed pores are formed by non-hazardous nitrogen gas.
② 施工ェ期の短縮  ② Shortening of construction period
本発明の流し込み成形用耐火物は乾燥性にすぐれているので、 加熱乾燥期間が短縮され、 乾燥を舍む施工ェ期が短く なる。  Since the refractory for cast molding of the present invention has excellent drying properties, the period for heating and drying is shortened, and the construction period for drying is shortened.
③ 省エネルギーの効果  ③ Effect of energy saving
乾燥時間が短縮できるので燃料費の節約が図られ、 省エネル ギ一の効果が大きい。  Since the drying time can be shortened, fuel cost can be saved, and the energy saving energy is very effective.
④ 炉繰り変更に対する対応性  性 Responsiveness to change in furnace rolling
炉の操業計画等のいわゆる炉操りが変更となり使用が早まつ ても、 かなりのフ レキシピリティで加熱乾燥の対応ができる。 本発明ば以上述べたように安全性、 施工ェ期、 省エネルギー、 炉の操業計画等の見地からみて、 産業上利用価値が極めて高い ものである。  Even if the so-called furnace operation, such as the furnace operation plan, is changed and its use is accelerated, heating and drying can be handled with considerable flexibility. As described above, the present invention has extremely high industrial utility value from the viewpoint of safety, construction period, energy saving, furnace operation plan and the like.

Claims

請 求 の 範 囲 The scope of the claims
(1) 分解により不燃性のガスを発生する有機質発泡剤を適当量 配合したことを特徴とする流し込み成形用耐火物。  (1) A refractory for cast molding, comprising an appropriate amount of an organic foaming agent that generates a nonflammable gas upon decomposition.
(2) 上記有機質発泡剤の発泡を促進する発泡助剤を上記有機質 発泡剤の配合量に対しほぼ1 / 5乃至ほぼ同等量の割合で配合 したことを特徴とする請求の範囲第 1項に記載の流し込み成 形用耐火物。 (2) a blowing aid that promotes foaming of the organic foaming agent to claim 1, characterized in that in proportions of approximately 1/5 to approximately equivalent amount relative to the amount of the organic blowing agent Refractory for cast molding as described.
(3) 4 · 4'ォキ シビスベンゼンスルホニルヒ ド ラ ジ ド、 P — ト ルエ ンスルホニルヒ ドラ ジ ド、 ァセ ト ン一 P — ト ルエ ンスル ホ二クレヒ ド ラ ジ ド、 P — トノレエ ンスノレホニノレセ ミ カノレノ ジ ド, ヒ ドラ ジ力 ノレボン酸ィ ソ プ口 ピル、 ジフエニルスルボン一 3 (3) 4 and 4'-Oxybisbenzenesulfonyl hydrazide, P — Toluenesulfonyl hydrazide, Acetone P — Toluenesulfonyl hydrazide, P — Tonorenen Honinoresemi canolenozide, hydrazide force, olevonic acid sap mouth pill, diphenylsulfone-1
. 3 'ジスルホニルヒ ド ラ ジ ド、 ト リ ヒ ド ラ ジノ ト リ ア ジ ンお よび 5 —フヱニルテ ト ラゾールの如き分解により不燃性のガ スを発生する有機質発泡剤の一種もし く は二種以上を耐火性 材料 1 00重量部に対しほぼ 0. 05〜2 . 0重量部配合したことを特 徴とする流し込み成形用耐火物。 . One or more organic blowing agents that generate nonflammable gases upon decomposition, such as 3'disulfonylhydrazide, trihydrazinotriazine, and 5-phenyltetrazole And 0.05 to 2.0 parts by weight per 100 parts by weight of the refractory material.
(4) さらにナ ト リ ウム とカ リ ウ ムのけい酸塩類、 炭酸塩類のう ち一種もし く は二種以上をほぼ 0 . 01〜2 . 00重量部配合したこ とを特徴とする請求の範囲第 3項に記載の流し込み成形用耐 火物。  (4) Claims characterized in that one or more of sodium and potassium silicates or carbonates are blended in an amount of about 0.01 to 2.00 parts by weight. 4. The refractory for cast molding according to item 3 of the above item.
PCT/JP1989/001137 1988-11-04 1989-11-02 Refractory for cast molding WO1990005123A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR898907150A BR8907150A (en) 1988-11-04 1989-11-02 MOLDING TRAINING REFRACTORY
DE19893991306 DE3991306T1 (en) 1988-11-04 1989-11-02 FIRE-RESISTANT MOLDING MATERIAL
DE3991306A DE3991306C2 (en) 1988-11-04 1989-11-02 Refractory molded material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63/277359 1988-11-04
JP63277359A JPH0631177B2 (en) 1988-11-04 1988-11-04 Construction method of cast molding refractory and blast furnace cast floor gutter.

Publications (1)

Publication Number Publication Date
WO1990005123A1 true WO1990005123A1 (en) 1990-05-17

Family

ID=17582425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1989/001137 WO1990005123A1 (en) 1988-11-04 1989-11-02 Refractory for cast molding

Country Status (4)

Country Link
JP (1) JPH0631177B2 (en)
BR (1) BR8907150A (en)
DE (1) DE3991306C2 (en)
WO (1) WO1990005123A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2805116B2 (en) * 1992-08-24 1998-09-30 新日本製鐵株式会社 Refractory for casting

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931016B1 (en) * 1968-10-25 1974-08-17
JPS5927738B2 (en) * 1981-08-03 1984-07-07 財団法人生産開発科学研究所 foamable composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931016A (en) * 1972-07-24 1974-03-20
JPS598660A (en) * 1982-07-05 1984-01-17 小島 博助 Manufacture of lightweight inorganic foamed body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931016B1 (en) * 1968-10-25 1974-08-17
JPS5927738B2 (en) * 1981-08-03 1984-07-07 財団法人生産開発科学研究所 foamable composition

Also Published As

Publication number Publication date
JPH02124782A (en) 1990-05-14
BR8907150A (en) 1991-02-26
DE3991306C2 (en) 1999-08-05
JPH0631177B2 (en) 1994-04-27

Similar Documents

Publication Publication Date Title
CN101808763B (en) The refractory material of calcium is rich in by adding calcium carbonate
US6117373A (en) Process for forming a furnace wall
JP2015044734A (en) Cement-free refractory
JP6855076B2 (en) Amorphous refractory and its manufacturing method
JP4714640B2 (en) Manufacturing method of heat insulating gradient material
JP4234330B2 (en) Amorphous refractory composition
US5506181A (en) Refractory for use in casting operations
WO1990005123A1 (en) Refractory for cast molding
JPH0672776A (en) Refractory for casting mold
EP1502905A1 (en) Monothilic refractory composition
RU2773977C1 (en) Exothermic mixture for heat insulation of the head part of the ingot during casting of steels and alloys
JPH02221164A (en) Castable refractory containing silicon carbide
JPH10101441A (en) Composition for castable refractory and formation of furnace wall using the same composition
JPS6225633B2 (en)
JPS589789B2 (en) Fireproof lining material for emergency repairs
JPH10139556A (en) Monolithic refractory
JP2000016874A (en) Accelerating agent for refractory and spraying method using the same
JPS6024072B2 (en) Blast furnace gutter material
JP2001039749A (en) Expansion inhibitor and cement composition
JP2002097509A (en) Method and additive of graphite spheroidization for cast iron
JPH0971478A (en) Composition for castable refractory and drying of furnace wall using the same
JP2000263014A (en) Method for using aluminum dross residual ash and alumina magnesia castable refractory material
JPS5858310B2 (en) Fireproof insulation board
JPS61219774A (en) Lightweight refractory structural material
JPH01203276A (en) Castable refractories

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR DE US

RET De translation (de og part 6b)

Ref document number: 3991306

Country of ref document: DE

Date of ref document: 19910718

WWE Wipo information: entry into national phase

Ref document number: 3991306

Country of ref document: DE