WO1990004164A1 - Appareil d'analyse permettant d'identifier les agents anesthesiants et d'en detecter la contamination - Google Patents

Appareil d'analyse permettant d'identifier les agents anesthesiants et d'en detecter la contamination Download PDF

Info

Publication number
WO1990004164A1
WO1990004164A1 PCT/US1989/004389 US8904389W WO9004164A1 WO 1990004164 A1 WO1990004164 A1 WO 1990004164A1 US 8904389 W US8904389 W US 8904389W WO 9004164 A1 WO9004164 A1 WO 9004164A1
Authority
WO
WIPO (PCT)
Prior art keywords
filters
sample cell
predetermined
gases
gas
Prior art date
Application number
PCT/US1989/004389
Other languages
English (en)
Inventor
Kevin Graham Williams
Original Assignee
Andros Analyzers Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andros Analyzers Incorporated filed Critical Andros Analyzers Incorporated
Publication of WO1990004164A1 publication Critical patent/WO1990004164A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N2021/3129Determining multicomponents by multiwavelength light
    • G01N2021/3133Determining multicomponents by multiwavelength light with selection of wavelengths before the sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N2021/3129Determining multicomponents by multiwavelength light
    • G01N2021/3137Determining multicomponents by multiwavelength light with selection of wavelengths after the sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3166Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using separate detectors and filters

Definitions

  • gas analyzer uses the radiation absorption characteristics of gases in the infrared region of the electromagnetic spectrum.
  • infrared gas analyzers are known in the art. They typically utilize an infrared source and one or more filters to produce and direct infrared radiation through an unknown gas mixture contained in a sample cell. The absorption effect of the gases on the radiation is detected and electrical signals are produced and analyzed to determine the identities and/or concentrations of the gases in the gas mixture.
  • the absorption bands of the anesthetizing agents forane, ethrane, and halothane strongly overlap one another and have similarly shaped absorption curves.
  • Halothane also is very weakly absorbing and thus difficult to measure.
  • concentrations of these agents in typical anesthetizing dosages is very low (5% for forane and ethrane and .8% for halothane) , making them even more difficult to measure.
  • Figure 2 illustrates the transmission curves versus wavenumber of ethrane, forane, halothane and three filters utilized in an embodiment of the present invention.
  • a chopper for producing a square wave AC signal between source 11 and sample cell 21.
  • there are three detectors one for each gas of interest. Disposed between sample cell 21 and the three detectors is a holder for the three filters. Each of the three detectors has a filter in front of its receiving end.
  • Filters 210, 220, and 230 are chosen for discriminability sufficient to distinguish among the gases, for sensitivity to allow measurement of concentrations of the gases to a precision sufficient for identification, and because they are relatively inexpensive. Such filters are available from, among others, Barr Associates of Massachusetts.
  • the filters utilized in one embodiment of the present invention have the following specifications (in wavenumber units) at the operating temperatures of the filters in the analyzer:
  • the filters have these specifications (in wavenumber units) again at the operating temperatures of the filters in the analyzer:
  • inhaled and exhaled gases from a patient are supplied to sample cell 21 through tubes 23 and 18 respectively.
  • Source 11 emits infrared radiation in the wavelength region of interest, which radiation passes through the filters in filter wheel 17 which is rotated to successively interpose the desired filter in the radiation beam by means of control signals from signal processor 24.
  • the transmitted radiation is detected by detector 15 which converts the measured transmission into electrical signals for processing by signal processor 24.
  • Various operating conditions sensed by appropriate sensing devices are applied to signal processor 24. For example, ambient temperature and oxygen are sensed by ambient temperature sensor 47 and 0 2 sensor 49 respectively and fed into signal processor 24 for inclusion in the data stream if desired.
  • the appropriate one of the set of three filters is interposed by filter holder 17 and the concentration of that agent is determined by a microprocessor-based table look-up procedure of concentration versus transmission. This is done by outboard computer 57 which then continuously reports the concentration of that identified agent in approximately 14 msec intervals. This information is then transmitted along with the identity of the agent in the gas and the calculated concentration of that agent to host computer 59 which reports the data for display.
  • gas analyzer 10 is calibrated at the factory to determine the absorption coefficients for the particular gases of interest.
  • three binary gases each consisting of one of the agent gases (forane, ethrane, or halothane) and a carrier gas (usually nitrogen) are passed through sample cell 21.
  • Each filter in filter holder 17 is interposed successively and the absorption (transmission) of each of the agent gas/filter combinations is measured.
  • the following known procedure is utilized with the understanding that other numbers of agents and filters could be used without departing from the scope of this invention.
  • T-LJ exp(-k i jCj) (2)
  • ci is known because a known concentration of each agent gas is successively run through sample cell 21, ⁇ is measured by gas analyzer 10 in the manner described above, and equation (2) is used to calculate k ⁇ , the absorption coefficents for each combination of agent gas and filter. The absorption coefficients are stored in outboard computer 57 for use in the subsequent concentration calculations.
  • equation (5) The set of equations represented by equation (5) can be expressed using matrix algebra as
  • Ecjuation (6) can be solved using the inverse matrix K -l to yield the concentrations c, namely
  • the procedure described above is a first order approximation.
  • a better approximation is produced using a set of three filters and a reference filter which produces negligible interference.
  • the transmissivities of the four filters may be represented using Beer's Law and mathematical curve-fitting techniques for experimental concentration/transmission data, all of which techniques are well known.
  • a set of four non-linear equations may be produced. These may be solved using a suitable algorithm incorporated in outboard computer 57 of the present invention for the gas concentrations c f , c e , and c h , and the non-interfered reference transmission T re f.
  • the algorithm may incorporate Newton's method of numerical solution, as is known in the art.
  • XTJ dc_j the maximum error of the calculated concentration of gas j .
  • the errors represented by dc_-_ j form the detection thresholds for each gas.
  • the errors are different for each analyzer, depending on many different factors contributing to variations in analyzer performance.
  • the identification software of the present invention computes (c_-; - dc_A for each gas and then implements the following decision logic:
  • Decision (a) means that measured and then calculated concentrations which are less than the maximum errors represented by dc_ ⁇ are not sufficiently large for a determination.
  • Decision (b) indicates the presence of a single, significantly different from zero, concentration which serves to identify the agent.
  • the analyzer identifies the presence of an agent, its status is changed from "no agent identified” to "agent identified”. The analyzer then reports out the agent's concentration after calculations, as described above, are done automatically.
  • Contamination decision (c) operates as follows: If only one anesthetizing agent is being used and the derived concentrations of two or more agents are larger than the assigned measurement uncertainty, this indicates that there is contamination. If the agent is uncontaminated, then two of the three concentrations derived will be close to zero. Because of the relatively low concentrations of anesthetizing agents typically used (5% for forane and ethrane) 8% for halothane, any agent contaminant will likely be at very low levels.
  • Any other substances having absorption bands in the wavelength region covered by the present invention may be detected as a contaminant providing the concentration is above the detection threshold.
  • a contaminant in the wavelength region of the anesthetizing agent in use will also be detected in the form of greater than expected concentrations of that agent.

Abstract

Appareil d'analyse de gaz permettant de mesurer la transmission de radiation infrarouge à travers un mélange gazeux, de déterminer les concentrations en gaz du mélange, d'identifier l'un des gaz, de rendre compte de la concentration du gaz identifié et de détecter la contamination dudit gaz. L'appareil d'analyse de gaz comprend une cellule échantillon (21) contenant le mélange de gaz, une source de radiation infrarouge (11), une série de filtres choisis de manière spécifique, une unité de traitement des signaux (24) et un microprocesseur (59) qui calcule les concentrations en gaz et effectue les opérations logiques pour identifier un gaz et en détecter la contamination. Dans un mode de réalisation, une roue de filtre (17) tient les filtres entre la source et la celule échantillon, et un seul détecteur est placé en aval de la cellule échantillon. Dans un deuxième mode de réalisation, un interrupteur périodique produit un signal alternatif à partir de la source de radiation infrarouge et chacun des trois détecteurs a un filtre placé en face d'eux. Dans un autre mode de réalisation, l'appareil d'analyse mesure, calcule et rend compte des concentrations de trois agents anesthésiants.
PCT/US1989/004389 1988-10-07 1989-10-03 Appareil d'analyse permettant d'identifier les agents anesthesiants et d'en detecter la contamination WO1990004164A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US22506488A 1988-10-07 1988-10-07
US225,064 1988-10-07

Publications (1)

Publication Number Publication Date
WO1990004164A1 true WO1990004164A1 (fr) 1990-04-19

Family

ID=22843376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1989/004389 WO1990004164A1 (fr) 1988-10-07 1989-10-03 Appareil d'analyse permettant d'identifier les agents anesthesiants et d'en detecter la contamination

Country Status (4)

Country Link
AU (1) AU4511389A (fr)
CA (1) CA2000305A1 (fr)
IL (1) IL91946A0 (fr)
WO (1) WO1990004164A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991003727A1 (fr) * 1989-09-11 1991-03-21 Nellcor Incorporated Analyseur de gaz anesthesiants et mode d'emploi
EP0563974A1 (fr) * 1992-04-01 1993-10-06 Erich Jaeger GmbH Procédé et appareil pour mesurer la pression partielle des composants différents d'un mélange de gaz
US5272907A (en) * 1990-06-08 1993-12-28 Instrumentarium Corporation Method for the identification of gases
US5296706A (en) * 1992-12-02 1994-03-22 Critikon, Inc. Shutterless mainstream discriminating anesthetic agent analyzer
EP0651245A1 (fr) * 1993-10-29 1995-05-03 International Business Machines Corporation Procédé et dispositif de délivrance d'une fluide, utilisant un capteur infrarouge dans la conduite d'alimentation
EP0732580A2 (fr) * 1995-03-13 1996-09-18 Ohmeda Inc. Dispositif pour l'identification automatique des prélèvements de gaz
GB2324868A (en) * 1997-05-01 1998-11-04 Sun Electric Uk Ltd Identification of refrigerant fluids
DE10316514A1 (de) * 2002-07-24 2004-02-05 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Vorrichtung zur IR-spektrometrischen Analyse eines festen, flüssigen oder gasförmigen Mediums
US7582873B2 (en) 2005-06-10 2009-09-01 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Method and apparatus for detecting the type of anesthetic gas
WO2011026613A3 (fr) * 2009-09-01 2011-07-14 Abb Ag Procédé et dispositif d'enregistrement et d'évaluation des processus du métabolisme
DE102022116682A1 (de) 2022-07-05 2024-01-11 Dräger Safety AG & Co. KGaA Photo-Ionisations-Detektor (PID) mit mehreren Messzellen und Verfahren unter Verwendung eines solchen PIDs

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU682892B2 (en) * 1993-09-03 1997-10-23 Shell Internationale Research Maatschappij B.V. A method and apparatus for determining the concentration of a component present in a fluid stream in dispersed form
US5521703A (en) * 1994-10-17 1996-05-28 Albion Instruments, Inc. Diode laser pumped Raman gas analysis system with reflective hollow tube gas cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4510389A (en) * 1981-10-17 1985-04-09 Fuji Electric Company, Ltd. Infrared film thickness gage
US4692621A (en) * 1985-10-11 1987-09-08 Andros Anlayzers Incorporated Digital anesthetic agent analyzer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4510389A (en) * 1981-10-17 1985-04-09 Fuji Electric Company, Ltd. Infrared film thickness gage
US4692621A (en) * 1985-10-11 1987-09-08 Andros Anlayzers Incorporated Digital anesthetic agent analyzer

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991003727A1 (fr) * 1989-09-11 1991-03-21 Nellcor Incorporated Analyseur de gaz anesthesiants et mode d'emploi
US5046018A (en) * 1989-09-11 1991-09-03 Nellcor, Inc. Agent gas analyzer and method of use
US5272907A (en) * 1990-06-08 1993-12-28 Instrumentarium Corporation Method for the identification of gases
EP0563974A1 (fr) * 1992-04-01 1993-10-06 Erich Jaeger GmbH Procédé et appareil pour mesurer la pression partielle des composants différents d'un mélange de gaz
US5296706A (en) * 1992-12-02 1994-03-22 Critikon, Inc. Shutterless mainstream discriminating anesthetic agent analyzer
EP0651245A1 (fr) * 1993-10-29 1995-05-03 International Business Machines Corporation Procédé et dispositif de délivrance d'une fluide, utilisant un capteur infrarouge dans la conduite d'alimentation
US5492718A (en) * 1993-10-29 1996-02-20 International Business Machines Corporation Fluid delivery apparatus and method having an infrared feedline sensor
US5534066A (en) * 1993-10-29 1996-07-09 International Business Machines Corporation Fluid delivery apparatus having an infrared feedline sensor
EP0732580A2 (fr) * 1995-03-13 1996-09-18 Ohmeda Inc. Dispositif pour l'identification automatique des prélèvements de gaz
EP0732580A3 (fr) * 1995-03-13 1997-01-29 Ohmeda Inc Dispositif pour l'identification automatique des prélèvements de gaz
GB2324868A (en) * 1997-05-01 1998-11-04 Sun Electric Uk Ltd Identification of refrigerant fluids
GB2324868B (en) * 1997-05-01 2001-11-21 Sun Electric Uk Ltd Method and apparatus for matching refrigerants
DE10316514A1 (de) * 2002-07-24 2004-02-05 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Vorrichtung zur IR-spektrometrischen Analyse eines festen, flüssigen oder gasförmigen Mediums
US7582873B2 (en) 2005-06-10 2009-09-01 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Method and apparatus for detecting the type of anesthetic gas
CN1877304B (zh) * 2005-06-10 2010-04-28 深圳迈瑞生物医疗电子股份有限公司 单种麻醉气体类型编码识别的方法和装置
WO2011026613A3 (fr) * 2009-09-01 2011-07-14 Abb Ag Procédé et dispositif d'enregistrement et d'évaluation des processus du métabolisme
DE102022116682A1 (de) 2022-07-05 2024-01-11 Dräger Safety AG & Co. KGaA Photo-Ionisations-Detektor (PID) mit mehreren Messzellen und Verfahren unter Verwendung eines solchen PIDs

Also Published As

Publication number Publication date
AU4511389A (en) 1990-05-01
CA2000305A1 (fr) 1990-04-07
IL91946A0 (en) 1990-06-10

Similar Documents

Publication Publication Date Title
US4914719A (en) Multiple component gas analyzer
US5282473A (en) Sidestream infrared gas analyzer requiring small sample volumes
US7063667B1 (en) Isotopic gas analyzer
US5296706A (en) Shutterless mainstream discriminating anesthetic agent analyzer
US7192782B2 (en) Method and apparatus for determining marker gas concentration in exhaled breath using an internal calibrating gas
US5130544A (en) Optical gas analyzer
FI97643B (fi) Kahta aallonpituutta käyttävä hengityskaasun pitoisuuden mittauslaite
US5932877A (en) High performance side stream infrared gas analyzer
CA2019571C (fr) Methode et appareil pour l'analyse des gaz
US4083367A (en) Method and apparatus for pulmonary function analysis
EP2909329B1 (fr) Methodes de detection infections bacteriennes
WO1990004164A1 (fr) Appareil d'analyse permettant d'identifier les agents anesthesiants et d'en detecter la contamination
CA1333849C (fr) Analyseur de gaxz multicanal et methode d'utilisation de cet analyseur
US20040267151A1 (en) Measuring head for a gas analyser
Raemer et al. Accuracy of end-tidal carbon dioxide tension analyzers
US20070220951A1 (en) Method and Apparatus for Detecting the Type of Anesthetic Gas
US5559333A (en) Apparatus of non-dispersive infrared analyzer
EP0703444A1 (fr) Procédé et dispositif pour l'analyse infrarouge d'un gaz
Van Wagenen et al. Dedicated monitoring of anesthetic and respiratory gases by Raman scattering
US5739535A (en) Optical gas analyzer
US7582873B2 (en) Method and apparatus for detecting the type of anesthetic gas
US5272907A (en) Method for the identification of gases
EP2932262A1 (fr) Détermination de la localisation d'une charge bactérienne dans les poumons
US6072577A (en) Noble gas detection and determination
US5965887A (en) Method and apparatus for monitoring maintenance of calibration condition in respiratory gas spectrometer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR DK FI JP NO

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE