WO1989006748A1 - Solar generator for converting sunlight to mechanical energy - Google Patents

Solar generator for converting sunlight to mechanical energy Download PDF

Info

Publication number
WO1989006748A1
WO1989006748A1 PCT/AT1989/000005 AT8900005W WO8906748A1 WO 1989006748 A1 WO1989006748 A1 WO 1989006748A1 AT 8900005 W AT8900005 W AT 8900005W WO 8906748 A1 WO8906748 A1 WO 8906748A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
solar generator
sunlight
reactor
working medium
Prior art date
Application number
PCT/AT1989/000005
Other languages
German (de)
French (fr)
Inventor
Peter Panning
Original Assignee
Peter Panning
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peter Panning filed Critical Peter Panning
Publication of WO1989006748A1 publication Critical patent/WO1989006748A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the invention is concerned with a more effective conversion of thermal energy and in particular solar energy into mechanical or electrical energy.
  • Solar collectors are currently used on the one hand as low-temperature collectors, for example pipes or plates coated with absorption materials or combinations of both, which are protected against cooling by transparent glass or plastic pipes or plates. Vacuum collectors are also in use, which are largely protected against losses due to heat exchange with the environment by a high vacuum in a glass tube and can thus achieve relatively high operating temperatures.
  • high-temperature collectors that concentrate the sun's rays in a focal point or a focal line using differently designed mirrors. This contains an arrangement of, for example, pipes or other hollow bodies, in which gases or liquids are circulated as heat carriers in such a way that they are brought to high temperatures by the concentrated radiation or undergo an energetic conversion. The higher temperature offers the advantage of higher energy density.
  • the smaller storage volume means broader application possibilities for industry and household, and better efficiencies for driving thermodynamic machines than in the low-temperature range, even if this area of application also means expensive heat exchangers and large energy losses with this system , when converting to mechanical or electrical energy
  • the inventive method is concerned with the direct absorption of light energy with the working medium and chemical conversion thereof.
  • the working medium consists of an equilibrium of N «0 and N0_. In the tLa _en temperature range of the CD system, eg 20 ° C, the connection is liquid and almost exclusively as N_0. in front.
  • N_0 breaks down into two molecules of NO «, at 150 ° C it is almost exclusively in this form and in gaseous form, with the doubled molar volume increasing the gas pressure to twice the value of the N Legal CL with the would have a simple molar volume. Even under these circumstances, a thermodynamic machine operated with this system would have a better efficiency than with conventional systems.
  • this working medium is exposed in the transparent absorption part (2) to direct or better to the concentrated (6) sun light, which causes the N0 to be broken down according to the following equation: 2 N0 ? + hy - »2 NO + 0 ? , As a result, the molar volume and thus the gas pressure in the closed system are increased again.
  • This gas pressure is then processed in appropriate machines, for example in a gas turbine or piston machine or others. The gas is cooled (4) on the expansion side of the machine, the gases being returned according to the following reaction equations:
  • the cooled and liquefied N 0 is pumped again into the absorption part with a feed pump (5).
  • the condensation heat can be used as low-temperature heat.
  • the direct absorption of heat and light energy by the working medium offers various advantages over previously used methods:
  • the low boiling point of the working medium (20 ° C.) results in a favorable working range with regard to the temperature range and the condensation conditions.
  • the light radiation causes . Decomposition of the NO «to NO and 0.
  • the radiation is trapped in the absorber according to the principle of the" black body until its energy is converted in the working medium.
  • the solar cell can also be operated thermally without sunshine, which means that it can also supply energy at night when stored solar heat or other heat sources are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A solar generator comprises a light-absorption part (2), a light -conversion arrangement (7), a photoreactor (2), an energy transducer (1, 6), a cooled reactor (3, 4) and a pump (5). The absorbed sunlight is converted in the fluorescent coloured part into chemically active light and consumed in the photoreactor, thereby increasing the molar volume of the working gas contained in the latter. Said gas is converted to mechanical energy as well as electrical energy in a gas turbine. The working medium is back-reacted to its original form in the cooled reactor and recycled by the pump to the photoreactor.

Description

Solargenerator zur Umwandlung von Sonnenlicht in mechanische oder elektrische EnergieSolar generator for converting sunlight into mechanical or electrical energy
Die Erfindung beschäftigt sich mit einer effektiveren Umwand¬ lung von Wärmeenergie und insbesondere Sonnenenergie in mechani¬ sche oder elektrische Energie.The invention is concerned with a more effective conversion of thermal energy and in particular solar energy into mechanical or electrical energy.
Sonnenkollektoren werden derzeit einerseits als Niedertempera turkollektoren angewendet, z.B. mit Absorptions arben beschichte te Rohre oder Platten oder Kombinationen von beiden, die gegen Abkühlung durch transparente Glas- oder Plastikrohre oder Platte geschützt werden. Auch Vakuumkollektoren sind im Einsatz, welche durch ein Hochvakuum in einem Glasrohr gegen Verluste durch Wär¬ meaustausch mit der Umgebung weitestgehend geschützt sind und auf diese Weise relativ hohe Betriebstemperaturen erreichen kön¬ nen. Andererseits gibt es auch Hochtemperaturkollektoren, welche die Sonnenstrahlen mittels verschieden ausgeführter Spiegel in einem Brennpunkt oder einer Brennlinie konzentrieren. Darin be¬ findet sich eine Anordnung von z.B. Rohren oder anderen Hohl¬ körpern, in welchem als Wärmeträger Gase oder Flüssigkeiten so im Kreislauf geführt werden, daß sie durch die konzentrier e Strahlung auf hohe Temperaturen gebracht werden oder eine ener¬ getische Umwandlung erfahren. Die höhere Temperatur bietet den Vorteil höherer Energiedichte. Für die Energiespeicherung be¬ deutet das kleinere Speichervolumina, für Industrie und Haus¬ halt breitere Anwendungsmöglichkeiten, für den Antrieb ther o- dynamischer Maschinen bessere Wirkungsgrade als beim Niedertem¬ peraturbereich, wenn auch dieser Anwendungsbereich aufwendige Wärmetauscher und große Energieverluste mit diesem System be¬ deuten, bei der Umwandlung in mechanische oder elektrische Ener Das erfindungsmäßige Verfahren befaßt sich mit der direkten Absorption der Lichtenergie mit dem Arbeitsmedium undchemischer Umwandlung derselben. Das Arbeitsmedium besteht aus einer Gleich gewichts ischung von N«0 und N0_ . Im tLa _en Temperaturbereich de Anlage CD, z.B. 20°C, liegt die Verbindung flüssig und fast aus schließlich als N_0. vor. Bei Zufuhr von Wärme zerfällt N_0 in zwei Moleküle NO«, bei 150°C liegt es fast ausschließlich in die ser Form und gasförmig vor, wobei durch das verdoppelte Molvo- lumen-der Gasdruck auf den doppelten Wert ansteigt, den N„CL mit dem einfachen Molvolumen hätte. Schon unter diesen Umständen hätte eine mit diesem System betriebene thermodynamische Maschin einen besseren Wirkungsgrad als mit herkömmlichen Systemen. Da- rüberhinaus wird dieses Arbeitsmedium im transparenten Absorp¬ tionsteil (2) dem direkten oder besser dem gebündelten (6) Son¬ nenlicht ausgesetzt, welches eine Zerlegung des N0„ nach folgen¬ der Gleichung bewirkt: 2 N0? + hy -» 2 NO + 0? . Dadurch wird er¬ neut das Molvolumen und dadurch der Gasdruck im geschlossenen System gesteigert. Dieser Gasdruck wird nun in entsprechenden Maschinen, z.B. in einer Gasturbine oder Kolbenmaschine oder andere , abgearbeitet . Auf der Expansionsseite der Maschine wird das Gas gekühlt (4), wobei die Gase nach folgenden Reaktions¬ gleichungen zurückgeführt werden:Solar collectors are currently used on the one hand as low-temperature collectors, for example pipes or plates coated with absorption materials or combinations of both, which are protected against cooling by transparent glass or plastic pipes or plates. Vacuum collectors are also in use, which are largely protected against losses due to heat exchange with the environment by a high vacuum in a glass tube and can thus achieve relatively high operating temperatures. On the other hand, there are also high-temperature collectors that concentrate the sun's rays in a focal point or a focal line using differently designed mirrors. This contains an arrangement of, for example, pipes or other hollow bodies, in which gases or liquids are circulated as heat carriers in such a way that they are brought to high temperatures by the concentrated radiation or undergo an energetic conversion. The higher temperature offers the advantage of higher energy density. For energy storage, the smaller storage volume means broader application possibilities for industry and household, and better efficiencies for driving thermodynamic machines than in the low-temperature range, even if this area of application also means expensive heat exchangers and large energy losses with this system , when converting to mechanical or electrical energy The inventive method is concerned with the direct absorption of light energy with the working medium and chemical conversion thereof. The working medium consists of an equilibrium of N «0 and N0_. In the tLa _en temperature range of the CD system, eg 20 ° C, the connection is liquid and almost exclusively as N_0. in front. When heat is supplied, N_0 breaks down into two molecules of NO «, at 150 ° C it is almost exclusively in this form and in gaseous form, with the doubled molar volume increasing the gas pressure to twice the value of the N„ CL with the would have a simple molar volume. Even under these circumstances, a thermodynamic machine operated with this system would have a better efficiency than with conventional systems. In addition, this working medium is exposed in the transparent absorption part (2) to direct or better to the concentrated (6) sun light, which causes the N0 to be broken down according to the following equation: 2 N0 ? + hy - »2 NO + 0 ? , As a result, the molar volume and thus the gas pressure in the closed system are increased again. This gas pressure is then processed in appropriate machines, for example in a gas turbine or piston machine or others. The gas is cooled (4) on the expansion side of the machine, the gases being returned according to the following reaction equations:
I: 2 NO + 02 * 2 N02 im Kühler dannI: 2 NO + 0 2 * 2 N0 2 in the cooler then
II: 2N02 -» N204 II: 2N0 2 - »N 2 0 4
Das abgekühlte und verflüssigte N«0 wird mit einer Speise¬ pumpe (5) erneut in den Absorptionsteil gepumpt. Die Konden- sationswärme kann als Niedertemperaturwärme genützt werden. Durch die direkte Absorption der Wärme- und Lichtenergie dur das Arbeitsmedium ergeben sich gegenüber bisher eingesetzten Methoden verschiedene Vorteile:The cooled and liquefied N 0 is pumped again into the absorption part with a feed pump (5). The condensation heat can be used as low-temperature heat. The direct absorption of heat and light energy by the working medium offers various advantages over previously used methods:
Durch den niederen Siedepunkt des Arbeitsmediums (20°C) er¬ gibt sich ein günstiger Arbeitsbereich bezüglich des Temperatur bereiches und der Kondensationsbedingungen.The low boiling point of the working medium (20 ° C.) results in a favorable working range with regard to the temperature range and the condensation conditions.
Durch den Betrieb der Maschine mit dem Gemisch NO und 0« ver meidet man die Gefahr von Sattdampfbedingungen, da die angeführ Reaktion (I) mit einiger Verzögerung einsetzt und dadurch erst im Kühlteil (4) das Arbeitsmedium verflüssigt wird.Operating the machine with the NO and 0 «mixture avoids the risk of saturated steam conditions, since the reaction (I) mentioned starts with a certain delay and the working medium is only liquefied in the cooling section (4).
Durch den Einsatz eines bis auf den Lichteintritt verspie¬ gelten und mittels Vakuum oder Isoliermaterial vor Wärmeverlust geschützten Absorbers kann man hohe Energiedichten bei geringen Verlusten erreichen.By using an absorber that is protected from light and by means of a vacuum or an insulating material that is protected against heat loss, high energy densities can be achieved with low losses.
Durch den Einsatz von NO« wird das gesamte Sonnenlicht optim genützt, die Wärmestrahlung bewirkt die Reaktion: N«04 → 2N02 By using NO «, all sunlight is used optimally, the heat radiation causes the reaction: N« 0 4 → 2N0 2
Die Lichtstrahlung bewirkt die .Zersetzung des NO« zu NO und 0. Dabei wird die Strahlung nach dem Prinzip des "Schwarzen Körper im Absorber gefangen bis ihre Energie im Arbeitsmedium umgesetz ist .The light radiation causes . Decomposition of the NO «to NO and 0. The radiation is trapped in the absorber according to the principle of the" black body until its energy is converted in the working medium.
Durch die Verdampfung und anschließende Vergrößerung des Mol¬ volumens gelingt die Umsetzung in mechanische oder elektrische Energie in einem weit höheren Ausmaß als mit derzeit eingesetzte thermischen oder photovoltaischen Solarzellen.The evaporation and subsequent enlargement of the molar volume result in the conversion into mechanical or electrical energy to a far greater extent than with currently used thermal or photovoltaic solar cells.
Die Solarzelle kann auch ohne Sonnenschein thermisch betriebe werden, das heißt sie kann auch in den Nachtstunden Energie liefern, wenn gespeicherte Sonnenwärme oder andere Wärmequellen eingesetzt werden. The solar cell can also be operated thermally without sunshine, which means that it can also supply energy at night when stored solar heat or other heat sources are used.

Claims

P a t e n t a n s p r ü c h e P a t e n t a n s r u c h e
1) Solargenerator zum Umwandeln von Energie, iπsbesonders Sonn- nenenergie in mechanische oder elektrische Energie, dadurch ge¬ kennzeichnet, daß als Arbeitsmedium N«0,/N0 im Gleichgewicht ein-1) Solar generator for converting energy, iπsbesonders Sundays nenenergie into mechanical or electrical energy, characterized ge denotes that as working medium N "0 / N0 in equilibrium mono-
' ' 2 4 2 gesetzt wird, welches durch die Energie des Sonnenlichtes oder des gebündelten Sonnenlichtes chemisch umgewandelt wird und mittels der aufgenommenen Energie direkt eine Maschine, z.B. eine Turbine, einen Kolbenmotor u.a. antreibt.'' 2 4 2 is set, which is chemically converted by the energy of the sunlight or the concentrated sunlight and by means of the absorbed energy directly a machine, e.g. a turbine, a piston engine, etc. drives.
2) Solargenerator nach Anspruch 1), dadurch gekennzeichnet, daß mit Hilfe von Fluoreszenzfarbkörpern ein großer Teil des Sonnenlic hv tes in die für die Spaltungsreaktion von: 2 NO —» 2 NO + 0« wich tigen Wellenlängen umgewandelt wird, sodaß der drucksteigernde pho tochemische Prozeß entscheidend verstärkt wird, durch geeignet ein gestellten Gasdurchsatz und Verbrauch der thermischen und chemisch Energie des Sonnenlichtes durch das Arbeitsmedium wird der Reaktor stets auf 150°C oder weniger gehalten und dadurch ein Zerstören de Farbstoffes verhindert wird.2) Solar generator according to claim 1), characterized in that with the aid of fluorescent color bodies, a large part of the Sonnenlic hv tes is converted into the wavelengths important for the cleavage reaction of: 2 NO - »2 NO + 0«, so that the pressure-increasing photochemical Process is decisively strengthened, by suitably a set gas throughput and consumption of the thermal and chemical energy of sunlight by the working medium, the reactor is always kept at 150 ° C. or less, thereby preventing the dye from being destroyed.
3) Solargenerator nach Anspruch 1) und 2) dadurch gekennzeichnet, daß als Absorber ein nach dem Prinzip des "Schwarzen Körpers" aus geführter Reaktor eingesetzt wird, welcher wie bekannt als bis au den Bereich des Lichteintrittes verspiegelter Glaskolben oder Gla rohr ausgeführt und thermisch mit Hilfe von Isoliermaterial oder Vakuum isoliert ist, sodaß die eintretende Strahlung nahezu voll¬ ständig absorbiert wird.3) Solar generator according to claim 1) and 2), characterized in that a absorber is used according to the principle of the "black body" from a reactor which, as is known, is designed as a glass bulb or glass tube mirrored up to the area of light entry and thermally with Is isolated with the help of insulating material or vacuum, so that the incoming radiation is almost completely absorbed.
4) Solargenerator nach Anspruch 1), 2) und 3) dadurch gekennzeich daß zum Konzentrieren der Sonnenstrahlung wie bekannt Parabol-,4) Solar generator according to claim 1), 2) and 3) characterized in that for concentrating the solar radiation as known parabolic,
Zylinder-, Fresnelspiegel , Sammellinsen oder Fresnellinsen derart eingesetzt werden, daß der Brennpunkt oder die Brennlinie in eine Freilassung der Verspiegelung des Reaktors liegen, sodaß die Stra lung durch den transparenten Absorber eintreten kann. Cylinder, Fresnel mirrors, converging lenses or Fresnel lenses are used in such a way that the focal point or the focal line lie in a release of the mirroring of the reactor, so that the radiation can enter through the transparent absorber.
PCT/AT1989/000005 1988-01-15 1989-01-16 Solar generator for converting sunlight to mechanical energy WO1989006748A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA78/88 1988-01-15
AT7888A AT389922B (en) 1988-01-15 1988-01-15 PHOTOCHEMICAL SOLAR GENERATOR

Publications (1)

Publication Number Publication Date
WO1989006748A1 true WO1989006748A1 (en) 1989-07-27

Family

ID=3480944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT1989/000005 WO1989006748A1 (en) 1988-01-15 1989-01-16 Solar generator for converting sunlight to mechanical energy

Country Status (3)

Country Link
AT (1) AT389922B (en)
AU (1) AU2920889A (en)
WO (1) WO1989006748A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101806249A (en) * 2010-03-30 2010-08-18 东南大学 Air medium combustion turbine combined solar energy heat utilization integral device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE596457C (en) * 1932-03-11 1934-05-08 Hydro Nitro S A Device for generating gases for use in expansion heat engines
US4038557A (en) * 1975-02-12 1977-07-26 Gildersleeve Jr Oliver Dep Particulate energy absorber
US4175381A (en) * 1975-04-01 1979-11-27 Solar Reactor Corporation Electromagnetic reactor engine system-apparatus and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3203167A (en) * 1962-07-06 1965-08-31 Jr Leon Green Means and method of utilizing solar energy
US4098956A (en) * 1976-08-11 1978-07-04 The United States Of America As Represented By The Secretary Of The Interior Spectrally selective solar absorbers
DE2842236A1 (en) * 1978-09-28 1980-04-17 Uwe Hansen Solar power electrical generator installation - has flat solar collector as evaporator for liquid medium in closed circuit contg. turbogenerator and condenser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE596457C (en) * 1932-03-11 1934-05-08 Hydro Nitro S A Device for generating gases for use in expansion heat engines
US4038557A (en) * 1975-02-12 1977-07-26 Gildersleeve Jr Oliver Dep Particulate energy absorber
US4175381A (en) * 1975-04-01 1979-11-27 Solar Reactor Corporation Electromagnetic reactor engine system-apparatus and method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ASME Intersociety Energy Conversion Engineering, 9. - 14. August 1981, Atlanta, Band 1, M. Tanaka et al.: "Protochemical reaction engine", Seiten 12-17 *
Geliotekhnika, Band 20, Nr. 2, 1984, Allerton Press, Inc., (USSR), G. Ya. Umarov et al.: "Prospects for the use of chemically reactive working media in solar power", Seiten 8-12 *
P. Pascal: "Nouveau Traite de Chimie Minerale", Band X, 1956, Masson & Cie (Paris, FR), "Peroxyde d'azote", Seiten 364-391 *
Patent Abstracts of Japan, Band 4, Nr. 128 (M-31)(610), 9. September 1980; & JP-A-5584873 (KOGYO GIJUTSUIN) 26. Juni 1980 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101806249A (en) * 2010-03-30 2010-08-18 东南大学 Air medium combustion turbine combined solar energy heat utilization integral device
CN101806249B (en) * 2010-03-30 2013-06-05 东南大学 Air medium combustion turbine combined solar energy heat utilization integral device

Also Published As

Publication number Publication date
AU2920889A (en) 1989-08-11
AT389922B (en) 1990-02-26
ATA7888A (en) 1989-07-15

Similar Documents

Publication Publication Date Title
US4452047A (en) Reciprocating solar engine
Wang et al. Status and challenges for molecular solar thermal energy storage system based devices
Fang et al. Thermodynamic evaluation of a concentrated photochemical–photovoltaic–thermochemical (CP-PV-T) system in the full-spectrum solar energy utilization
OA11343A (en) Apparatus and method for transferring entropy withthe aid of a thermodynamic cycle.
US3987781A (en) Greenhouse window for solar heat absorbing systems derived from Cd2 SnO4
SE8600080D0 (en) PROCESS FOR MECHANICAL POWER GENERATION
US5241824A (en) Fluid absorption receiver for solar radiation
US5182912A (en) Fluid absorption receiver for solar radiation
GB1590841A (en) Apparatus for converting concentrated solar energy into heat energy
WO1989006748A1 (en) Solar generator for converting sunlight to mechanical energy
DE19510006A1 (en) Hybrid powerstation steam-raiser unit
US4545207A (en) Solar energy system
DE19519978A1 (en) Thermoelectric solar collector for heating purposes or electricity generation
US4062348A (en) Photochemical thermal-energy process and generator
Rajvikram et al. Enhancement of Solar Panel Efficiency with the Adoption of Antireflective Coating Techniques
US6550248B1 (en) Electrical generating system using solar energy
Hamdy et al. Effect of spectrally selective liquid absorption-filters on silicon solar-cells
DE4017684C2 (en)
Han et al. Spectral characterisation and evaluation of liquid based beam splitters for CPV/T solar systems
Mattick et al. High-temperature solar photon engines
CN115523113B (en) Solar power generation and energy storage system
GB2054128A (en) Power generating system
JPS54124350A (en) Solar heat collector
DE3135487A1 (en) Power engine based on ammonia and water as operating materials
KR100396296B1 (en) Power generating device employing hydrogen absorbing alloy and low heat

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BB BG BR CH DE DK FI GB HU JP KP KR LK LU MC MG MW NL NO RO SD SE SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BJ CF CG CH CM DE FR GA GB IT LU ML MR NL SE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1989901243

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1989901243

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase