WO1989006366A1 - Process and device for verifying a capacitance - Google Patents

Process and device for verifying a capacitance Download PDF

Info

Publication number
WO1989006366A1
WO1989006366A1 PCT/DE1988/000643 DE8800643W WO8906366A1 WO 1989006366 A1 WO1989006366 A1 WO 1989006366A1 DE 8800643 W DE8800643 W DE 8800643W WO 8906366 A1 WO8906366 A1 WO 8906366A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
voltage
capacitance
capacity
capacitor
Prior art date
Application number
PCT/DE1988/000643
Other languages
German (de)
French (fr)
Inventor
Werner Nitschke
Wolfgang Drobny
Hugo Weller
Peter Taufer
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO1989006366A1 publication Critical patent/WO1989006366A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/64Testing of capacitors

Definitions

  • the circuit arrangement comprises an energy reserve, usually in the form of an electrolytic capacitor that can be charged by the vehicle battery. Since high-quality electrolytic capacitors are also subject to aging processes and / or their capacitance values change as a function of the ambient temperature, the electrolytic capacitors must be checked regularly in order to be able to guarantee a safe functioning of the circuit arrangement.
  • a test circuit for the triggering device of a safety device serving to protect the occupants of a vehicle during an accident in which a constant current source is provided for continuously checking the functionality of an ignition element provided in the triggering device, from which a constant current source is provided low current flows through the ignition element.
  • the one on the Zündele The voltage drop is compared with the voltage of a constant current source.
  • the solution according to the invention with the characterizing features of claim 1 has the advantage that the operational safety of a safety device can be significantly increased, since the capacity of the capacitors provided as an energy reserve can be checked continuously.
  • means for limiting the voltage at the energy reserve are specified.
  • FIG. 1 shows the voltage profile across the capacitor as a function of time
  • FIG. 2 shows a simplified circuit diagram of a device for carrying out the method according to the invention
  • FIG. 3 shows a block diagram of a device for carrying out the method
  • FIG. 4 shows a flow chart to explain the method according to the invention
  • FIG further design of a device with voltage limitation Description of the embodiment
  • a safety device 10 for vehicle occupants comprises an acceleration sensor 11, which converts an acceleration a into a voltage V. At the output of 11, therefore, either an acceleration-proportional signal is generated or a signal that only occurs when a definable acceleration threshold is exceeded.
  • This signal is fed to an evaluation circuit 12, in which the signal emitted by the sensor 11 is examined to determine whether an accident has occurred and the safety device must therefore be activated.
  • Restraining means 13 for the vehicle occupants such as, for example, airbag and / or belt tensioners, are connected to the evaluation circuit 12 and can be actuated thereby.
  • the device further comprises an energy reserve 14 which, in the event of an accident, ensures that the device 10 is still supplied with power even if, for example, the vehicle battery is torn off and is no longer connected to the vehicle electrical system.
  • Electrolyte capacitors are expediently used as the energy reserve 14 since, despite a relatively large capacitance value, they have a comparatively small construction volume and are also inexpensive to manufacture.
  • electrolytic capacitors are subject to aging processes, for example, which can adversely affect their capacitance value.
  • the capacity value can also be temperature-dependent. For the operational safety of the device 10, it is therefore extremely important to regularly check the capacity value of the energy reserve 14.
  • a suitable test circuit is represented in the block diagram according to FIG. 3 by the components 15, 16, 17 and 18, which will be explained in more detail below. First, however, the principle according to which the capacity of the energy reserve 14 is checked is explained using FIGS. 1 and 2.
  • Figure 1 shows a diagram of the course of the voltage U on
  • Energy reserve 14 (capacitor C40) as a function of time. It is assumed that at the beginning of the test process, that is to say at time t 1 , capacitor C40 is charged to voltage U s1 .
  • Voltage U on capacitor C40 is in accordance with the circuit arrangement in
  • Figure 2 determined by a voltage measuring device 21. The measured value is fed to a measuring circuit 15. Then the capacitor
  • C40 is discharged by a switching element S20 which can be actuated by the measuring circuit 15 via a discharge resistor R E with a constant current I K.
  • the discharge current can be monitored by a measuring device 22 and fed to the measuring circuit 15.
  • the duration of the unloading process is also recorded by a measuring device 23 and fed to the measuring circuit 15.
  • the discharge of the capacitor C40 with the constant current I continues until a predeterminable voltage level U s2 is reached, which varies by the voltage value ⁇ U E from
  • the current capacitance value of the capacitor C40 can thus be determined.
  • the unloading process ends at time t 2 . From this point in time, the capacitor C40 is recharged up to the voltage setpoint U s1 .
  • the measuring circuit 15 for measuring the voltage at the energy reserve 14 and the discharge time t E , an evaluation circuit 16 which evaluates the measured values detected by 15 and controls the test sequence, a control circuit 17 which, initiated by the evaluation circuit 16, via the discharge circuit 18 causes the energy reserve 14 to be discharged for the purposes of testing and the measured value acquisition via the measuring circuit 15.
  • step 100 the device is put into operation and in step 101 the energy reserve 14 or the capacitor C 40 are charged.
  • the test process begins in step 102, in which the control circuit 16 (FIG. 3) first initiates a measurement and storage (step 103) of the voltage value U s1 . Subsequently, a discharge of 14, C40 with constant current I K is initiated via the discharge circuit 18 (step 104). The discharge time t is measured (step 105). During the unloading process, the measuring circuit 15 continuously supplies the energy reserve 14
  • all of the test steps described above are controlled by a computer; the test process can be carried out once each time the device is started up, i.e. when the vehicle is started or cyclically with a predefinable time sequence. As soon as it is determined during the test process that the Kapa is below a critical limit value and the functionality of the device is no longer guaranteed in an emergency, this can be expediently indicated by a warning signal. Furthermore, when equipping a vehicle with a plurality of safety devices, a priority can be set in such a way that if the capacity value of the energy reserve 14 is too low, only the safety devices of particularly vulnerable vehicle occupants can be activated.
  • the circuit arrangement is to be designed as shown in FIG. 5.
  • a capacitor C40 to which a voltage divider R40, R41 is connected in parallel, serves as the energy reserve.
  • the tap of the voltage divider R40, R41 leads to the measuring circuit 15, which measures the voltage at C40.
  • the series circuit of the collector-emitter path of a first transistor T40 and a resistor R43 is connected in parallel with C40.
  • the base connection of transistor T40 is connected to the junction of a resistor R42 and a Zener diode Z40, which are part of a series circuit, which also includes the discharge resistor R E and the collector-emitter path of a second transistor T41.
  • the base terminal of the transistor T41 is connected to the discharge circuit 18 and is triggered by this discharge circuit 18 to initiate a discharge process for test purposes.
  • the connection point between the Zener diode Z40 and the discharge resistor R E is led via a diode D40 to the connection 2, to which a stabilized supply voltage for charging the capacitor C40 can be placed.
  • With uncontrolled unloading circuit 18 can the voltage U s at C40 to a maximum value of
  • U EB (T40) base-emitter voltage of the transistor T 40 ,
  • this circuit arrangement also ensures that the capacitor C40, which serves as an energy reserve, does not fall below a predeterminable minimum value if the discharge circuit is defective.
  • This minimum value U MIN is:
  • the discharge circuit described above is also suitable for limiting the maximum voltage across the capacitor C40 when the discharge circuit is not activated and for limiting it to a minimum voltage if the discharge circuit is defective. This means two additional weighty safety functions that can be achieved without significant additional circuitry.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Air Bags (AREA)

Abstract

In a process for verifying the capacitance of a capacitor (C40), the latter is discharged from a first potential (US1) to a predetermined second potential with a constant discharging current (IK). The discharging time (TE) is measured. The existing capacitance of the capacitor (C40) at a known charging resistance can be calculated from the measured values.

Description

Verfahren und Einrichtung zur Überprüfung einer Kapazität Method and device for checking a capacity
Stand der TechnikState of the art
Bei sicherheitskritischen Schaltungsanordnungen, wie z.B. bei aus der Literaturstelle "1141 Ingenieur de l'Automobile" (1982) No. 6, Seiten 69 bis 77 bekannten Rückhaltesystemen wird verlangt, daß diese nach Wegnahme der Versorgungsspannung - z.B. Abreißen der Fahrzeugbatterie bei einem Unfall - ihre Sicherheitsfunktion noch für eine vorgebbare Mindestzeit erfüllen können. Dazu umfaßt die Schaltungsanordnung eine Energiereserve, üblicherweise in Form eines von der Fahrzeugbatterie aufladbaren Elektrolytkondensators. Da auch hochwertige Elektrolytkondensatoren AIterungsvorgängen unterliegen und/oder ihre Kapazitätswerte in Abhängigkeit von der Umgebungstemperatur ändern, müssen die Elektrolytkondensatoren regelmäßig überprüft werden, um eine sichere Funktion der Schaltungsanordnung garantieren zu können. Aus DE-AS 22 22 038 ist bereits eine Prüfschaltung für die Auslösevorrichtung einer dem Schutz der Insassen eines Fahrzeugs während eines Unfalles dienenden Sicherheitseinrichtung bekannt, bei der zur kontinuierlichen Prüfung der Funktionstüchtikeit eines in der Auslösevorrichtung vorgesehenen Zündelements eine Konstantstromquelle vorgesehen ist, von der ständig ein geringer Strom über das Zündelement fließt. Die an dem Zündele ment dabei abfallende Spannung wird mit der Spannung einer Konstantstromquelle verglichen. Mit dieser Prüfschaltung ist jedoch eine Überprüfung der für die Sicherheitseinrichtung notwendigen Energiereserve nicht möglich.With safety-critical circuit arrangements, such as, for example, from "1141 Ingenieur de l'Automobile" (1982) No. 6, pages 69 to 77 known restraint systems is required that they can still perform their safety function for a predefinable minimum time after the supply voltage has been removed - for example, the vehicle battery has been torn off in the event of an accident. For this purpose, the circuit arrangement comprises an energy reserve, usually in the form of an electrolytic capacitor that can be charged by the vehicle battery. Since high-quality electrolytic capacitors are also subject to aging processes and / or their capacitance values change as a function of the ambient temperature, the electrolytic capacitors must be checked regularly in order to be able to guarantee a safe functioning of the circuit arrangement. From DE-AS 22 22 038 a test circuit for the triggering device of a safety device serving to protect the occupants of a vehicle during an accident is already known, in which a constant current source is provided for continuously checking the functionality of an ignition element provided in the triggering device, from which a constant current source is provided low current flows through the ignition element. The one on the Zündele The voltage drop is compared with the voltage of a constant current source. With this test circuit, however, it is not possible to check the energy reserve required for the safety device.
Vorteile der ErfindungAdvantages of the invention
Die erfindungsgemäße Lösung mit den kennzeichnenden Merkmalen des Anspruchs 1 hat den Vorteil, daß die Betriebssicherheit einer Sicherheitseinrichtung noch wesentlich gesteigert werden kann, da die Kapazität der als Energiereserve vorgesehenen Kondensatoren ständig überprüfbar ist.The solution according to the invention with the characterizing features of claim 1 has the advantage that the operational safety of a safety device can be significantly increased, since the capacity of the capacitors provided as an energy reserve can be checked continuously.
Weitere Ansprüche nennen zweckmäßige Einrichtungen zur Durchführung des Verfahrens nach Anspruch 1.Further claims provide useful facilities for carrying out the method according to claim 1.
In einer vorteilhaften Ausgestaltung der Erfindung werden Mittel zur Begrenzung der Spannung an der Energiereserve angegeben.In an advantageous embodiment of the invention, means for limiting the voltage at the energy reserve are specified.
Zeichnungdrawing
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 den Spannungsverlauf am Kondensator als Funktion der Zeit, Figur 2 einen vereinfachten Stromlaufplan einer Einrichtung zur Durchführung des erfindungsgemäßen Verfahrens, Figur 3 ein Blockschaltbild einer Einrichtung zur Durchführung des Verfahrens, Figur 4 ein Ablaufdiagramm zur Erläuterung des erfindungsgemäßen Verfahrens und Figur 5 eine weitere Ausgestaltung einer Einrichtung mit Spannungsbegrenzung. Beschreibung des AusführungsbeispielsEmbodiments of the invention are shown in the drawing and explained in more detail in the following description. 1 shows the voltage profile across the capacitor as a function of time, FIG. 2 shows a simplified circuit diagram of a device for carrying out the method according to the invention, FIG. 3 shows a block diagram of a device for carrying out the method, FIG. 4 shows a flow chart to explain the method according to the invention and FIG further design of a device with voltage limitation. Description of the embodiment
Eine Sicherheitseinrichtung 10 für Fahrzeuginsassen umfaßt gemäß der Blockdiagrammdarstellung nach Figur 3 einen Beschleunigungsaufnehmer 11, der eine Beschleunigung a in eine Spannung V umwandelt. Am Ausgang von 11 entsteht daher entweder ein beschleunigungsproportionales Signal oder aber ein Signal, das erst bei Überschreiten einer festlegbaren Beschleunigungsschwelle auftritt. Dieses Signal wird einer Auswerteschaltung 12 zugeführt, in der das vom Sensor 11 abgegebene Signal daraufhin untersucht wird, ob ein Unfall vorliegt und demzufolge die Sicherheitseinrichtung zu aktivieren ist. Mit der Auswerteschaltung 12 verbunden und von dieser betätigbar sind Rückhaltemittel 13 für die Fahrzeuginsassen, wie beispielsweise Airbag und/oder Gurtstraffer. Die Einrichtung umfaßt weiter eine Energiereserve 14, die im Falle eines Unfalls sicherstellt, daß die Einrichtung 10 auch dann noch mit Strom versorgt wird, wenn beispielsweise die Fahrzeugbatterie abgerissen und nicht mehr mit dem Bordnetz verbunden ist. Als Energiereserve 14 werden zweckmäßig Elektrolytkondensatoren verwendet, da diese trotz eines relativ großen Kapazitätswertes ein vergleichsweise geringes Bauvolumen aufweisen und zudem noch preisgünstig herstellbar sind. Elektrolytkondensatoren unterliegen allerdings beispielsweise Alterungsprozessen, die ihren Kapazitätswert nachteilig beeinflussen können. Zudem kann der Kapazitätswert auch temperaturabhängig sein. Für die Betriebssicherheit der Einrichtung 10 ist es daher außerordentlich wichtig, den Kapazitätswert der Energiereserve 14 regelmäßig zu überprüfen. Eine dafür geeignete Prüfschaltung wird im Blockdiagramm gemäß Figur 3 durch die Bestandteile 15, 16, 17 und 18 repräsentiert, die nachfolgend noch näher erläutert werden. Zunächst wird jedoch anhand von Figur 1 und Figur 2 das Prinzip erläutert, nach dem die Überprüfung der Kapazität der Energiereserve 14 durchgeführt wird. Figur 1 zeigt in einem Diagramm den Verlauf der Spannung U an derAccording to the block diagram representation according to FIG. 3, a safety device 10 for vehicle occupants comprises an acceleration sensor 11, which converts an acceleration a into a voltage V. At the output of 11, therefore, either an acceleration-proportional signal is generated or a signal that only occurs when a definable acceleration threshold is exceeded. This signal is fed to an evaluation circuit 12, in which the signal emitted by the sensor 11 is examined to determine whether an accident has occurred and the safety device must therefore be activated. Restraining means 13 for the vehicle occupants, such as, for example, airbag and / or belt tensioners, are connected to the evaluation circuit 12 and can be actuated thereby. The device further comprises an energy reserve 14 which, in the event of an accident, ensures that the device 10 is still supplied with power even if, for example, the vehicle battery is torn off and is no longer connected to the vehicle electrical system. Electrolyte capacitors are expediently used as the energy reserve 14 since, despite a relatively large capacitance value, they have a comparatively small construction volume and are also inexpensive to manufacture. However, electrolytic capacitors are subject to aging processes, for example, which can adversely affect their capacitance value. The capacity value can also be temperature-dependent. For the operational safety of the device 10, it is therefore extremely important to regularly check the capacity value of the energy reserve 14. A suitable test circuit is represented in the block diagram according to FIG. 3 by the components 15, 16, 17 and 18, which will be explained in more detail below. First, however, the principle according to which the capacity of the energy reserve 14 is checked is explained using FIGS. 1 and 2. Figure 1 shows a diagram of the course of the voltage U on
Energiereserve 14 (Kondensator C40) als Funktion der Zeit. Es werde angenommen, daß zu Beginn des Prüfvorgangs, also zum Zeitpunkt t1, der Kondensator C40 auf die Spannung Us1 aufgeladen sei. DieEnergy reserve 14 (capacitor C40) as a function of time. It is assumed that at the beginning of the test process, that is to say at time t 1 , capacitor C40 is charged to voltage U s1 . The
Spannung U am Kondensator C40 wird gemäß Schaltungsanordnung inVoltage U on capacitor C40 is in accordance with the circuit arrangement in
Figur 2 durch ein Spannungsmeßgerät 21 ermittelt. Der Meßwert wird einer Meßschaltung 15 zugeführt. Anschließend wird der KondensatorFigure 2 determined by a voltage measuring device 21. The measured value is fed to a measuring circuit 15. Then the capacitor
C40 durch ein von der Meßschaltung 15 betätigbares Schaltelement S20 über einen Entladewiderstand RE mit einem konstanten Strom IK entladen. Der Entladestrom kann durch ein Meßgerät 22 überwacht und der Meßschaltung 15 zugeführt werden. Die Dauer des Entladevorgangs wird ebenfalls durch ein Meßgerät 23 festgehalten und der Meßschaltung 15 zugeführt. Die Entladung des Kondensators C40 mit dem konstanten Strom I dauert solange an, bis ein vorgebbares Spannungsniveau Us2 erreicht ist, das sich um den Spannungswert Δ UE vomC40 is discharged by a switching element S20 which can be actuated by the measuring circuit 15 via a discharge resistor R E with a constant current I K. The discharge current can be monitored by a measuring device 22 and fed to the measuring circuit 15. The duration of the unloading process is also recorded by a measuring device 23 and fed to the measuring circuit 15. The discharge of the capacitor C40 with the constant current I continues until a predeterminable voltage level U s2 is reached, which varies by the voltage value Δ U E from
Spannungswert Us1 unterscheidet. Dieser zweite Spannungwert Us2 wird nach der Entladezeit tE erreicht.Voltage value U s1 differs. This second voltage value U s2 is reached after the discharge time t E.
Dabei gilt die BeziehungThe relationship applies
(
Figure imgf000006_0001
Nach Messung des Spannungswertes Us1 und der Entladezeit tE, die bis zum Abfall der Spannung auf den vorgebbaren Wert Us2 bei Entladung mit konstantem Entladestrom I vergeht, läßt sich somit der aktuell vorhandene Kapazitätswert des Kondensators C40 ermitteln. Im Diagramm nach Figur 1 ist der Entladevorgang zum Zeitpunkt t2 beendet. Von diesem Zeitpunkt an wird der Kondensator C40 wieder bis zu dem Spannungssollwert Us1 aufgeladen. Im Blockdiagramm nach Figur 3 sind die Elemente der Prüfschaltung in der Baugruppe 10' enthalten. Sie umfassen die Meßschaltung 15 zur Messung der Spannung an der Energiereserve 14 und der Entladezeit tE, eine Auswerteschaltung 16, die die von 15 erfaßten Meßwerte auswertet und den Prüfungsablauf steuert, eine Ansteuerschaltung 17, die, veranlaßt durch die Auswerteschaltung 16, über die Entladeschaltung 18 die Entladung der Energiereserve 14 für Zwecke der Prüfung und die Meßwerterfassung über die Meßschaltung 15 bewirkt.
(
Figure imgf000006_0001
After measuring the voltage value U s1 and the discharge time t E , which goes to the predeterminable value U s2 when the voltage drops until the voltage drops, the current capacitance value of the capacitor C40 can thus be determined. In the diagram according to FIG. 1, the unloading process ends at time t 2 . From this point in time, the capacitor C40 is recharged up to the voltage setpoint U s1 . The elements of the test circuit in the assembly 10 'are contained in the block diagram according to FIG. They include the measuring circuit 15 for measuring the voltage at the energy reserve 14 and the discharge time t E , an evaluation circuit 16 which evaluates the measured values detected by 15 and controls the test sequence, a control circuit 17 which, initiated by the evaluation circuit 16, via the discharge circuit 18 causes the energy reserve 14 to be discharged for the purposes of testing and the measured value acquisition via the measuring circuit 15.
Anhand des Ablaufdiagramms nach Figur 4 werden die einzelnen Schritte des PrüfVorgangs erläutert. Es werde angenommen, daß im Schritt 100 die Einrichtung in Betrieb genommen sei und im Schritt 101 die Energiereserve 14 bzw. der Kondensator C 40 aufgeladen werden. Im Schritt 102 beginnt der Prüfvorgang, indem die Ansteuerschaltung 16 (Figur 3) zunächst eine Messung und Speicherung (Schritt 103) des Spannungswertes Us1 veranlaßt. Im Anschluß daran wird über die Entladeschaltung 18 eine Entladung von 14, C40 mit konstantem Strom IK eingeleitet (Schritt 104). Die Entladezeit t wird gemessen (Schritt 105). Während des Entladevorgangs wird durch die Meßschaltung 15 ständig die an der Energiereserve 14 liegendeThe individual steps of the test procedure are explained on the basis of the flow chart according to FIG. It is assumed that in step 100 the device is put into operation and in step 101 the energy reserve 14 or the capacitor C 40 are charged. The test process begins in step 102, in which the control circuit 16 (FIG. 3) first initiates a measurement and storage (step 103) of the voltage value U s1 . Subsequently, a discharge of 14, C40 with constant current I K is initiated via the discharge circuit 18 (step 104). The discharge time t is measured (step 105). During the unloading process, the measuring circuit 15 continuously supplies the energy reserve 14
Spannung Us gemessen (Schritt 106) und geprüft, ob das vorgegebeneVoltage U s measured (step 106) and checked whether the predetermined
Spannungsniveau Us2 erreicht ist. Sobald dieses Spannungsniveau erreicht ist, wird die Entladedauer tE festgestellt und gespeichert, um nach der oben angegebenen Beziehung die Kapazität des Kondensators C40 zu berechnen.Voltage level U s2 is reached. As soon as this voltage level is reached, the discharge duration t E is determined and stored in order to calculate the capacitance of the capacitor C40 according to the relationship given above.
In einer besonders vorteilhaften Ausgestaltung der Erfindung werden alle zuvor beschriebenen Prüfungsschritte von einem Rechner gesteuert; dabei kann der Prüfvorgang einmalig bei jeder Inbetriebnahme der Einrichtung, also beim Startvorgang des Fahrzeugs oder aber zyklisch mit einer vorgebbaren Zeitfolge durchgeführt werden. Sobald im Verlauf des Prüfvorgangs festgestellt wird, daß der Kapa zitätswert unterhalb eines kritischen Grenzwertes liegt und dadurch die Funktionsfähigkeit der Einrichtung im Notfall nicht mehr garantiert ist, kann dies zweckmäßig durch ein Warnsignal angezeigt werden. Weiter kann bei Ausrüstung eines Fahrzeuges mit mehreren Sicherungsmittein eine Priorität festgelegt werden dergestalt, daß bei zu geringem Kapazitätswert der Energiereserve 14 nur noch die Sicherungseinrichtungen besonders gefährdeter Fahrzeugsinsassen aktiviert werden können.In a particularly advantageous embodiment of the invention, all of the test steps described above are controlled by a computer; the test process can be carried out once each time the device is started up, i.e. when the vehicle is started or cyclically with a predefinable time sequence. As soon as it is determined during the test process that the Kapa is below a critical limit value and the functionality of the device is no longer guaranteed in an emergency, this can be expediently indicated by a warning signal. Furthermore, when equipping a vehicle with a plurality of safety devices, a priority can be set in such a way that if the capacity value of the energy reserve 14 is too low, only the safety devices of particularly vulnerable vehicle occupants can be activated.
Im praktischen Fahrzeugbetrieb besteht die Gefahr, daß die Energiereserve 14 unter widrigen Umständen auf einen Spannungswert aufgeladen werden könnte, der oberhalb der zulässigen Spitzenspannung der Energiereserve 14 liegt. Durch eine vorteilhafte Weiterbildung der erfindungsgemäßen Einrichtung kann dieser Nachteil auf besonders einfache Weise vermieden werden. Dazu ist die Schaltungsanordnung wie in Figur 5 dargestellt auszubilden. Als Energiereserve dient ein Kondensator C40, dem ein Spannungsteiler R40, R41 parallelgeschaltet ist. Der Abgriff des Spannungsteilers R40, R41 führt zur Meßschaltung 15, die die Spannung an C40 mißt. Zu C40 weiter parallelgeschaltet ist die Serienschaltung der Kollektor-Emitter-Strecke eines ersten Transistors T40 und eines Widerstandes R43. Dabei ist der Basisanschluß des Transistors T40 an den Verknüpfungspunkt eines Widerstandes R42 und einer Zenerdiode Z40 geführt, die Bestandteil einer Reihenschaltung sind, zu der zusätzlich noch der Entladewiderstand RE und die Kollektor-Emitter-Strecke eines zweiten Transistors T41 gehören. Der Basisanschluß des Transistors T41 ist mit der Entladeschaltung 18 verbunden und wird zur Einleitung eines Entladevorgangs für Prüfzwecke von dieser Entladeschaltung 18 angesteuert. Der Verknüpfungspunkt zwischen der Zenerdiode Z40 und dem Entladewiderstand RE ist über eine Diode D40 an den Anschluß 2 geführt, an den eine stabilisierte Versorgungsspannung zur Aufladung des Kondensators C40 legbar ist. Bei nicht angesteuerter Entlade schaltung 18 kann die Spannung Us an C40 auf einen Maximalwert vonIn practical vehicle operation, there is a risk that the energy reserve 14 could be charged to a voltage value which is above the permissible peak voltage of the energy reserve 14 under adverse circumstances. This disadvantage can be avoided in a particularly simple manner by an advantageous development of the device according to the invention. For this purpose, the circuit arrangement is to be designed as shown in FIG. 5. A capacitor C40, to which a voltage divider R40, R41 is connected in parallel, serves as the energy reserve. The tap of the voltage divider R40, R41 leads to the measuring circuit 15, which measures the voltage at C40. The series circuit of the collector-emitter path of a first transistor T40 and a resistor R43 is connected in parallel with C40. The base connection of transistor T40 is connected to the junction of a resistor R42 and a Zener diode Z40, which are part of a series circuit, which also includes the discharge resistor R E and the collector-emitter path of a second transistor T41. The base terminal of the transistor T41 is connected to the discharge circuit 18 and is triggered by this discharge circuit 18 to initiate a discharge process for test purposes. The connection point between the Zener diode Z40 and the discharge resistor R E is led via a diode D40 to the connection 2, to which a stabilized supply voltage for charging the capacitor C40 can be placed. With uncontrolled unloading circuit 18 can the voltage U s at C40 to a maximum value of
(2) Us = UEB(T40) + UZ40 + UFD40 + USTAB (2) U s = U EB (T40) + U Z40 + U FD40 + U STAB
ansteigen.increase.
In dieser Formel bedeuten:In this formula:
UEB(T40): Basis-Emitter-Spannung des Transistors T40,U EB (T40) : base-emitter voltage of the transistor T 40 ,
UZ40: Zenerspannung der Zenerdiode Z40,U Z40 : Zener voltage of the Zener diode Z40,
UFD40: Flußspannung der Diode D40,U FD40 : forward voltage of diode D40,
USTAB: Wert der am Anschluß 2 anlieg'enden stabilisiertenU STAB : Value of the stabilized at connection 2
Versorgungsspannung.Supply voltage.
In vorteilhafter Weise sorgt diese Schaltungsanordnung auch dafür, daß bei defekter Ansteuerung der Entladeschaltung der als Energiereserve dienende Kondensator C40 nicht unter einen vorgebbaren Minimalwert absinkt. Dieser Minimalwert UMIN beträgt:Advantageously, this circuit arrangement also ensures that the capacitor C40, which serves as an energy reserve, does not fall below a predeterminable minimum value if the discharge circuit is defective. This minimum value U MIN is:
(3) UMIN = UEB(T40) + UZ40 + IZ40 RE + UCE SAT(T41) (3) U MIN = U EB (T40) + U Z40 + I Z40 R E + U CE SAT (T41)
Die vorstehend beschriebene Entladeschaltung eignet sich zusätzlich zur Begrenzung der maximalen Spannung am Kondensator C40 bei nicht angesteuerter Entladeschaltung und zur Begrenzung auf eine minimale Spannung bei defekter Entladeschaltung. Dies bedeutet zwei zusätzliche gewichtige Sicherheitsfunktionen, die ohne wesentlichen Schaltungsmehraufwand erzielbar sind. The discharge circuit described above is also suitable for limiting the maximum voltage across the capacitor C40 when the discharge circuit is not activated and for limiting it to a minimum voltage if the discharge circuit is defective. This means two additional weighty safety functions that can be achieved without significant additional circuitry.

Claims

Ansprüche Expectations
1. Verfahren und Einrichtung zur Überprüfung einer Kapazität, insbesondere bei einer Sicherheitseinrichtung für Fahrzeuginsassen, gekennzeichnet durch folgende Merkmale:1. Method and device for checking a capacity, in particular in the case of a safety device for vehicle occupants, characterized by the following features:
a) Die Spannung (Us1) an der zumindest teilweise geladenen Kapazität (14, C40) wird zu einem Zeitpunkt (t1) gemessen;a) The voltage (U s1 ) at the at least partially charged capacitance (14, C40) is measured at a time (t 1 );
b) die Kapazität (14, C40) wird mit einem konstanten Entladestromb) the capacity (14, C40) with a constant discharge current
((IK) entladen bis ein vorgebbarer Spannungswert (Us2) erreicht ist;((I K ) discharge until a predeterminable voltage value (U s2 ) is reached;
c) die Entladezeit (tE) wird ermittelt;c) the discharge time (t E ) is determined;
d) der Wert der Kapazität (14, C40) wird nach der Formeld) the value of the capacity (14, C40) is according to the formula
Figure imgf000010_0001
bestimmt. In dieser Formel bedeuten U1 der zu Beginn des Prüfvorgangs gemessene Spannungswert an der Kapazität (14, C40), Δ UE der Differenz der gemessenen Spannungswerte Us1 und Us2, tE die Dauer des Entladevorgangs, RE Wert des Entladewiderstands und C40 Kapazität des Kondensators C40.
Figure imgf000010_0001
certainly. In this formula, U 1 means the voltage value at the capacitance (14, C40) measured at the start of the test process, Δ U E the difference between the measured voltage values U s1 and U s2 , t E the duration of the discharge process, R E value of the discharge resistance and C40 Capacitance of the capacitor C40.
2. Einrichtung zur Durchführung des Verfahrens nach Anspruch 1, gekennzeichnet durch2. Device for performing the method according to claim 1, characterized by
- Mittel zur Aufladung der Kapazität (C40),- means for charging the capacity (C40),
- Mittel zur Messung der Spannung an der Kapazität (C40), Mittel zur Entladung der Kapazität (C40) mit einem konstanten Entladestrom (IK),Means for measuring the voltage across the capacitance (C40), means for discharging the capacitance (C40) with a constant discharge current (I K ),
- Mittel zur Messung der Entladedauer (tE) der Kapazität- Means for measuring the discharge time (t E ) of the capacity
(C40),(C40),
- Mittel zur Berechnung des Kapazitätswertes der Kapazität (C40).- Means for calculating the capacity value of the capacity (C40).
3. Einrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die Mittel zur Enladung der Kapazität (C40) einen Entladewiderstand3. Device according to claim 2, characterized in that the means for discharging the capacitance (C40) has a discharge resistor
(RE) umfassen, der mit einem Schaltelement (S20) in Reihe geschaltet ist, durch welches der Entladewiderstand (RE) parallel zum Kondensator (C40) schaltbar ist.(R E ), which is connected in series with a switching element (S20) through which the discharge resistor (R E ) can be connected in parallel with the capacitor (C40).
4. Einrichtung nach einem der Ansprüche 2 und 3, dadurch gekennzeichnet, daß das Schaltelement (S20) ein von einer Entladeschaltung (18) ansteuerbarer Transistor (T41) ist.4. Device according to one of claims 2 and 3, characterized in that the switching element (S20) by a discharge circuit (18) controllable transistor (T41).
5. Einrichtung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß zur Aufladung des Kondensators (C40) die Reihenschaltung eines Widerstandes (R42), einer Zenerdiode (Z40) und einer Diode (D40) vorgesehen ist, wobei zwischen dem Verbindungspunkt zwischen Zenerdiode (Z40) und Diode (D40) und Masse die Reihenschaltung des Entladewiderstandes (RE) und des Schaltelements (T41) geschaltet sind und wobei weiter parallel zum Kondensator (C40) die Reihenschaltung bestehend aus einem Widerstand (R43) und der Basisemitterstrecke eines weiteren Transistors (T40) geschaltet sind, wobei der Basisanschluß des Transistors (T40) an dem Verbindungspunkt zwischen Widerstand (R42) und Zenerdiode (C40) geführt ist. 5. Device according to one of claims 2 to 4, characterized in that for charging the capacitor (C40), the series connection of a resistor (R42), a Zener diode (Z40) and a diode (D40) is provided, with between the connection point between the Zener diode (Z40) and diode (D40) and ground, the series circuit of the discharge resistor (R E ) and the switching element (T41) are connected, and further parallel to the capacitor (C40) the series circuit consisting of a resistor (R43) and the base emitter path of a further transistor (T40) are connected, the base connection of the transistor (T40) being led at the connection point between the resistor (R42) and the Zener diode (C40).
PCT/DE1988/000643 1987-12-30 1988-10-19 Process and device for verifying a capacitance WO1989006366A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873744524 DE3744524A1 (en) 1987-12-30 1987-12-30 METHOD AND DEVICE FOR VERIFYING CAPACITY
DEP3744524.3 1987-12-30

Publications (1)

Publication Number Publication Date
WO1989006366A1 true WO1989006366A1 (en) 1989-07-13

Family

ID=6343846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1988/000643 WO1989006366A1 (en) 1987-12-30 1988-10-19 Process and device for verifying a capacitance

Country Status (2)

Country Link
DE (2) DE3744524A1 (en)
WO (1) WO1989006366A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762713A1 (en) * 1995-09-07 1997-03-12 Siemens Aktiengesellschaft Circuit arrangement for testing subscriber lines
FR2949864A1 (en) * 2009-09-09 2011-03-11 Peugeot Citroen Automobiles Sa METHOD FOR DETERMINING AN OPERATING STATE OF ELECTRIC ENERGY STORAGE MEANS CONSISTING OF AT LEAST ONE SUPERCONDENSER
EP2097287A4 (en) * 2006-12-22 2018-03-28 Volvo Truck Corporation Method and arrangement for discharging an energy storage system for electrical energy
WO2021129982A1 (en) * 2019-12-23 2021-07-01 Robert Bosch Gmbh Method, computer program, electronic storage medium and device for detecting the breakdown of an energy reserve unit

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01274628A (en) * 1988-04-25 1989-11-02 Nippon Denso Co Ltd Abnormality judging device for crew protection device
DE4116961A1 (en) * 1991-05-24 1992-11-26 Abb Patent Gmbh MEASURING CIRCUIT FOR MEASURING CAPACITY
DE19508850A1 (en) * 1995-03-11 1996-09-12 Telefunken Microelectron Circuit device, in particular for safety-critical systems in vehicles for the transportation of people
DE19517698C2 (en) * 1995-05-13 1999-04-22 Telefunken Microelectron Method for determining the self-sufficiency time of a safety-critical system in a vehicle for the transportation of people after switching off a supply voltage source
JP3301903B2 (en) * 1995-10-30 2002-07-15 ボッシュ エレクトロニクス株式会社 Energy reservoir protection device for vehicle occupant protection device
DE10030389C2 (en) * 2000-06-21 2002-07-18 Siemens Ag Circuit arrangement for measuring the capacitance of the ignition capacitor for an occupant protection agent
DE10255429A1 (en) * 2002-11-28 2004-06-09 Conti Temic Microelectronic Gmbh Method for operating an electronic module supplied from an operating voltage source
TW200624826A (en) 2004-10-29 2006-07-16 Koninkl Philips Electronics Nv System for diagnosing impedances having accurate current source and accurate voltage level-shift
DE102005058719A1 (en) * 2005-12-08 2007-06-14 Conti Temic Microelectronic Gmbh Autonomous capacitor testing circuit arrangement for motor vehicle, has measuring circuit measuring voltage characteristics at capacitor, and evaluation circuit testing capacitance of capacitor by evaluation of measured characteristics
DE102010031596B4 (en) 2010-07-21 2020-06-10 Robert Bosch Gmbh Control device and method for controlling personal protection devices for a vehicle
WO2012143750A1 (en) * 2011-04-22 2012-10-26 Freescale Semiconductor, Inc. Method and device for diagnosing a reservoir capacitor of a vehicle passenger protection system, and vehicle safety system incorporating such device
US9007087B2 (en) * 2012-10-11 2015-04-14 Hamilton Sundstrand Corporation System and method for automated failure detection of hold-up power storage devices
DE102017119734A1 (en) * 2017-08-29 2019-02-28 Elmos Semiconductor Aktiengesellschaft Method and device for detecting a loss of support capacity on an integrated voltage regulator for the internal supply of an integrated safety-relevant circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3581196A (en) * 1968-10-28 1971-05-25 William L Spaid Digital capacitance meter by measuring capacitor discharge time
DE1791234A1 (en) * 1967-07-25 1971-08-19 Dorsch Hans Heinz Dipl Ing Arrangement for digital measurement of capacities

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2426859A1 (en) * 1974-06-04 1976-01-02 Hans Klein Measuring circuit for determining capacitances and resistances - is operation by compensating measuring bridges balanced by hand
DE3213867A1 (en) * 1980-12-18 1983-10-27 Siemens AG, 1000 Berlin und 8000 München Method and circuit arrangement for determining the capacitance of an object to be measured

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1791234A1 (en) * 1967-07-25 1971-08-19 Dorsch Hans Heinz Dipl Ing Arrangement for digital measurement of capacities
US3581196A (en) * 1968-10-28 1971-05-25 William L Spaid Digital capacitance meter by measuring capacitor discharge time

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Elektronik, Band 29, Nr. 21, Oktober 1980, W. Haussel: "Kapazit{tsmessung f}r Digitalmultimeter", Seiten 67-70 *
Radio Mentor Electronic, Band 37, Nr. 2, Februar 1971, P. Petrick: "Gleichspannungskapazit{t bei Tantal-Kondensatoren", Seiten 80-83 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762713A1 (en) * 1995-09-07 1997-03-12 Siemens Aktiengesellschaft Circuit arrangement for testing subscriber lines
EP2097287A4 (en) * 2006-12-22 2018-03-28 Volvo Truck Corporation Method and arrangement for discharging an energy storage system for electrical energy
FR2949864A1 (en) * 2009-09-09 2011-03-11 Peugeot Citroen Automobiles Sa METHOD FOR DETERMINING AN OPERATING STATE OF ELECTRIC ENERGY STORAGE MEANS CONSISTING OF AT LEAST ONE SUPERCONDENSER
WO2011030024A1 (en) * 2009-09-09 2011-03-17 Peugeot Citroën Automobiles SA Method for determining an operating state of electrical power storage means consisting of at least one ultracapacitor
WO2021129982A1 (en) * 2019-12-23 2021-07-01 Robert Bosch Gmbh Method, computer program, electronic storage medium and device for detecting the breakdown of an energy reserve unit

Also Published As

Publication number Publication date
DE8717831U1 (en) 1990-06-28
DE3744524A1 (en) 1989-07-20

Similar Documents

Publication Publication Date Title
WO1989006366A1 (en) Process and device for verifying a capacitance
DE2454424C3 (en) Circuit for an electronic sensor to trigger a safety device
DE3913628C2 (en) Device for determining the presence of an irregularity in a vehicle user protection system
DE19644858C2 (en) Energy storage protection device for a vehicle occupant protection system
EP0380485B1 (en) Process for operating a safety device for car occupants
DE19614365C2 (en) Diagnostic circuit for testing the capacitance of a capacitor
DE2612215C2 (en) Device for triggering passive occupant protection systems for vehicles in the event of an impact
EP0691244A2 (en) Test method for a passive safety device in motor vehicles
EP0284728A1 (en) Circuit for actuating a protection device
DE3738862A1 (en) METHOD FOR OPERATING A SAFETY DEVICE FOR VEHICLE PASSENGERS
WO1996009191A1 (en) Electronic safety device for motor vehicle passengers
DE3920713A1 (en) PASSENGER SAFETY DEVICE FOR VEHICLES
EP0818369A2 (en) Method to trigger a passive passenger protection system for a motor vehicle
EP0577988A1 (en) Electronic device for controlling a safety system
DE4432301A1 (en) Electronic control unit for restraint systems
EP1901940A2 (en) Control unit for personal protection
EP2797776B1 (en) Method and device for monitoring an energy reserve, and safety device for a vehicle
EP3132271B1 (en) Method and device for ascertaining an inner resistance of a supply network for supplying energy to a personal protection device of a vehicle
EP0482015B1 (en) Safety system for vehicle occupants
DE4447174A1 (en) Electronic safety device for vehicle occupants
EP0732793B1 (en) Circuit device, particularly for safety critical systems in vehicles used for transporting people
DE3920693A1 (en) Release circuit monitoring circuitry for motor vehicle safety system - has test circuit connected to control terminal via limiting capacitor for duration of current flow
DE19749856B4 (en) Method and ignition circuit for triggering an occupant protection system
DE10030389C2 (en) Circuit arrangement for measuring the capacitance of the ignition capacitor for an occupant protection agent
DE102005058719A1 (en) Autonomous capacitor testing circuit arrangement for motor vehicle, has measuring circuit measuring voltage characteristics at capacitor, and evaluation circuit testing capacitance of capacitor by evaluation of measured characteristics

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE