WO1989003178A1 - Biodegradable herbicidal composition - Google Patents
Biodegradable herbicidal composition Download PDFInfo
- Publication number
- WO1989003178A1 WO1989003178A1 PCT/US1988/003582 US8803582W WO8903178A1 WO 1989003178 A1 WO1989003178 A1 WO 1989003178A1 US 8803582 W US8803582 W US 8803582W WO 8903178 A1 WO8903178 A1 WO 8903178A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- ammonium
- acid
- plants
- plant
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 81
- 230000002363 herbicidal effect Effects 0.000 title claims abstract description 23
- 150000003868 ammonium compounds Chemical class 0.000 claims abstract description 20
- 150000003839 salts Chemical class 0.000 claims abstract description 17
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 12
- 230000012010 growth Effects 0.000 claims abstract description 9
- FBUKVWPVBMHYJY-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N 0.000 claims abstract 4
- GYSCBCSGKXNZRH-UHFFFAOYSA-N 1-benzothiophene-2-carboxamide Chemical compound C1=CC=C2SC(C(=O)N)=CC2=C1 GYSCBCSGKXNZRH-UHFFFAOYSA-N 0.000 claims abstract 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N Decanoic acid Natural products CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 claims abstract 2
- GEHMBYLTCISYNY-UHFFFAOYSA-N Ammonium sulfamate Chemical compound [NH4+].NS([O-])(=O)=O GEHMBYLTCISYNY-UHFFFAOYSA-N 0.000 claims description 23
- 239000002253 acid Substances 0.000 claims description 14
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 claims description 10
- 229910052921 ammonium sulfate Inorganic materials 0.000 claims description 10
- 235000011130 ammonium sulphate Nutrition 0.000 claims description 10
- 125000004432 carbon atom Chemical group C* 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 150000002763 monocarboxylic acids Chemical class 0.000 claims description 2
- 150000002430 hydrocarbons Chemical group 0.000 claims 1
- 150000002842 nonanoic acids Chemical class 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 8
- 239000000654 additive Substances 0.000 abstract description 3
- 230000000996 additive effect Effects 0.000 abstract description 3
- 230000000979 retarding effect Effects 0.000 abstract description 3
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 abstract 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 abstract 2
- ZDPHROOEEOARMN-UHFFFAOYSA-N undecanoic acid Chemical compound CCCCCCCCCCC(O)=O ZDPHROOEEOARMN-UHFFFAOYSA-N 0.000 abstract 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 abstract 1
- 125000001931 aliphatic group Chemical group 0.000 abstract 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 abstract 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-M sulfamate Chemical compound NS([O-])(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-M 0.000 abstract 1
- 238000011282 treatment Methods 0.000 description 55
- 241000196324 Embryophyta Species 0.000 description 43
- 230000000694 effects Effects 0.000 description 17
- 239000004009 herbicide Substances 0.000 description 17
- 235000014113 dietary fatty acids Nutrition 0.000 description 16
- 239000000194 fatty acid Substances 0.000 description 16
- 229930195729 fatty acid Natural products 0.000 description 16
- 150000001875 compounds Chemical class 0.000 description 14
- 150000004665 fatty acids Chemical class 0.000 description 14
- 238000012360 testing method Methods 0.000 description 13
- 239000004480 active ingredient Substances 0.000 description 9
- 238000000540 analysis of variance Methods 0.000 description 9
- 230000006378 damage Effects 0.000 description 8
- 239000002689 soil Substances 0.000 description 8
- 235000004424 Tropaeolum majus Nutrition 0.000 description 7
- 150000007513 acids Chemical class 0.000 description 7
- 239000001166 ammonium sulphate Substances 0.000 description 7
- 238000007619 statistical method Methods 0.000 description 7
- 241000208236 Tropaeolaceae Species 0.000 description 6
- 240000008042 Zea mays Species 0.000 description 6
- 241000219833 Phaseolus Species 0.000 description 5
- 241000595422 Hypochaeris radicata Species 0.000 description 4
- 150000003863 ammonium salts Chemical class 0.000 description 4
- CJIAXHWXANNZPB-UHFFFAOYSA-N azanium;decanoate Chemical compound [NH4+].CCCCCCCCCC([O-])=O CJIAXHWXANNZPB-UHFFFAOYSA-N 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- -1 Alkali metal salts Chemical class 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 3
- 240000008067 Cucumis sativus Species 0.000 description 3
- 244000046052 Phaseolus vulgaris Species 0.000 description 3
- 235000007244 Zea mays Nutrition 0.000 description 3
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 3
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 3
- KLIDOSBTXDALBI-UHFFFAOYSA-N ammonium nonanoate Chemical compound [NH4+].CCCCCCCCC([O-])=O KLIDOSBTXDALBI-UHFFFAOYSA-N 0.000 description 3
- 235000005822 corn Nutrition 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000012085 test solution Substances 0.000 description 3
- 230000000699 topical effect Effects 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 235000010799 Cucumis sativus var sativus Nutrition 0.000 description 2
- 235000001602 Digitaria X umfolozi Nutrition 0.000 description 2
- 235000017898 Digitaria ciliaris Nutrition 0.000 description 2
- 235000005476 Digitaria cruciata Nutrition 0.000 description 2
- 235000006830 Digitaria didactyla Nutrition 0.000 description 2
- 235000005804 Digitaria eriantha ssp. eriantha Nutrition 0.000 description 2
- 235000010823 Digitaria sanguinalis Nutrition 0.000 description 2
- 244000025670 Eleusine indica Species 0.000 description 2
- 235000014716 Eleusine indica Nutrition 0.000 description 2
- 241001300479 Macroptilium Species 0.000 description 2
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 2
- 235000005775 Setaria Nutrition 0.000 description 2
- 241000232088 Setaria <nematode> Species 0.000 description 2
- 235000008515 Setaria glauca Nutrition 0.000 description 2
- 235000001155 Setaria leucopila Nutrition 0.000 description 2
- 244000010062 Setaria pumila Species 0.000 description 2
- 241000208241 Tropaeolum Species 0.000 description 2
- 240000001260 Tropaeolum majus Species 0.000 description 2
- 241000607479 Yersinia pestis Species 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000002147 killing effect Effects 0.000 description 2
- 150000004667 medium chain fatty acids Chemical class 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 240000001592 Amaranthus caudatus Species 0.000 description 1
- 235000009328 Amaranthus caudatus Nutrition 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 241000219112 Cucumis Species 0.000 description 1
- 235000010071 Cucumis prophetarum Nutrition 0.000 description 1
- 235000009849 Cucumis sativus Nutrition 0.000 description 1
- 241001057636 Dracaena deremensis Species 0.000 description 1
- 241000595489 Hypochaeris Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 240000001949 Taraxacum officinale Species 0.000 description 1
- 235000005187 Taraxacum officinale ssp. officinale Nutrition 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Chemical class 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 125000005313 fatty acid group Chemical group 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000000266 injurious effect Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N37/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
- A01N37/02—Saturated carboxylic acids or thio analogues thereof; Derivatives thereof
Definitions
- This invention relates to compounds and methods for non-selectively retarding and controlling the growth rate of unwanted vegetation using a family of environmentally safe herbicidal compositions. More particularly, it relates to the use of certain fatty acids or their salts in admixture with an ammonium compound to induce an immediate topical burn followed by a tap root kill preventing regrowth of unwanted vegetation. As used herein, the words "retarding and controlling" refer to partial or complete killing of vegetation.
- Herbicides control the growth rate and/or cause mortality to flora through physiochemical interactions with plant systems. Many chemical classes of herbicides are presently available with varying modes of action, toxicities, chemical structures, and use patterns. Billions of dollars are spent annually to control vegetation pests which, due to importation or other causes, lack the natural enemies to keep their population in check, or which simply grow from seed in areas where they interfere with land use. Previously, inorganic compounds were used to control vegetation, but these have been superceded by effective petro-chemical products. Mass production of petro-chemical herbicides reduced the overall cost of vegetation control and facilitated widespread use.
- Ammonium compounds have been used as fertilizers. Generally, they are used in a form, such as the salt form, which releases the ammonium ion upon decomposition. When used in sufficiently high concentrations, these ammonimum compounds are injurious to plants.
- Ammonium sulfamate has been used as a translocatable herbicide, and is registered in the United States as a herbicide by E.I. Du Pont de Nemours under the tradename Ammate. Ammonium sulfamate has little immediate effect on foliage, but eventually is absorbed into the plant causing cell damage and finally death. However, it must be used in very high concentrations to be effective.
- compositions which are environmentally safe, biogradable, effective, and cost efficient
- the invention comprises a family of compositions which may be applied to retard and control the growth of unwanted vegetation, and a method of using such compositions.
- the compositions comprise one or more substances taken from the family of organic fatty acids, preferably straight-chained alpha monocarboxylic acids comprising 6 to 18 carbon atoms inclusive, and/or salts of the aforementioned acids, in combination with one or more ammonium compounds, preferably ammonium nitrate, ammonium sulfate or ammonium sulfamate. It has been discovered that mixtures of these two groups of compounds can cause a synergistically. enhanced plant mortality. That is, the components when mixed cooperate to give a significantly higher kill rate than the sum of the kill rates of the individual components in a broad range of ratios and on a broad range of plant species.
- the fatty acids and inorganic ammonium compounds employed in these compositions are essentially non-toxic to vertebrates and are biodegradable. Of the hundreds of fatty acids found in nature, only a few possess herbicidal properties. These are found on human skin, in seeds, and as part of the total lipid composition of many organisms. Mammals metabolize and/or excrete these fatty acids, and many micro-organisms can utilize them as a source of carbon.
- One important embodiment of the present invention comprises a herbicidally active composition consisting essentially of a 50:50 mixture of ammonium nonanoate and ammonium decanoate at a concentration of between 0.01% and 0.50%, admixed with a water soluble inorganic ammonium compound, preferably ammonium sulfamate, at a concentration between 0.50% and 5.00%.
- a water soluble inorganic ammonium compound preferably ammonium sulfamate
- Species of this combination results in a synergistically enhanced kill against vegetation including relatively hardy species such as Phaseolus vul ⁇ aris (green bush plant) , Hvpocheris radicata (false dandelion), Tropaelum maius (nasturtiums) and Zea mays (corn) .
- the herbicidal mixtures are applied to the leaves or soil to retard plant growth, preferably in amounts sufficient to kill the plant.
- Other objects are to provide a method for nonselectively controlling unwanted vegetation by applying compounds composed of medium chain fatty acids and/or their salts and inorganic ammoniated compounds to provide a class of herbicides which are environmentally safe, and to provide a class of non-selective herbicides utilizing commercially available, relatively inexpensive constituents.
- Fatty acids and their salts containing eight to twelve carbon atoms cause easily observed topical burn to plants when applied at concentrations of about 0.5% by weight or higher. However, these compounds do not translocate within the plant and can fail to kill the root, particularly when applied to tap root plants such as dandelions. Ammonium compounds, on the other hand, can translocate and kill tap roots, but have little immediate effect on foliage. It has been discovered that mixtures of the active fatty acids or salts with the ammoniated compounds provide a unique coaction, yielding higher kill rates and a surer kill, on a wide variety of plant types, particularly annuals and small perennials. The combination in ingredients provides a rapid topical kill as well as a delayed tap root kill, providing a far superior herbicide as compared with either compound alone. Mixtures of these two types of compounds when applied to roots or foliage can provide greater mortality effects than the sum of the effects of the individual components.
- acids posessing nine or ten carbon atoms have been observed to perform best. They are particularly advantageous because they are relatively inexpensive and readily available. Acids having eight, eleven, and twelve carbon atoms are almost as effective as the acids having nine or ten carbon atoms. Fatty acids having a carbon number smaller than eight, e.g., six or seven, and larger than 12, e.g., 13 to 18, are usable although less effective. Mixtures of the acids in this group also perform well as components in the composition of the invention. These fatty acids may be in the pre-acid form or in herbicidally acceptable salt forms. These salts can include, for example, ammonium, alkali metal, or alkali earth metal salts. Alkali metal salts such as the sodium or potassium salt and ammonium salts are preferred. The acids are available commercially.- They may be neutralized with bases of various types. The acids used in the experiments below were obtained from Emery Company.
- the preferred ammonium compounds are inorganic ammonium compound which, when applied at appropriate concentrations, causes damage to plants.
- Preferred among ammonium compounds are herbicidally active inorganic, water-soluble ammonium salts.
- Ammonium sulfamate is currently most preferred because it is the strongest herbicide among the ammonium compounds.
- Ammonium sulfate and ammonium nitrate are also preferred.
- Other ammonium compounds which may be used include ammonium chloride, ammonium carbonate and ammonium acetate. Others will be readily apparent to those skilled in the art.
- the ratio of the fatty acid or its salt to the ammonium compound may vary widely, depending upon a variety of factors, such as the identity of the fatty acid or its salt, the identity of the ammonium compound, the composition formed, the target weed, and whether the composition is intended as a concentrate or is to be applied as is.
- the ratio of acid compound to ammonium compound is between 0.001 and 10, preferably between 0.01 and 1.0, more preferably between 0.02 and 1.0.
- the amount of the essential components in the composition may also vary. Normally the total amount is at least 0.1% by weight.
- the total amount of the ammonium compound and the fatty acid or its salt is at least 0.5% by weight, more preferably at least about 1% by weight.
- the essential active ingredients have very strong herbicidal activity, and accordingly, the total amount of active ingredients used is relatively high compared with petrochemical herbicides. However, both components are environmentally safe and inexpensive.
- the upper limit of the amount of activity in the composition may be determined by taking various factors into account, including whether the composition is intended as a concentrate or a ready-to-use product, what carrier or diluent is to be used, solubility considerations, and the composition's intended mode of application.
- compositions embodying the invention may be applied in various ways, including topically as a spray to foliage as a post-emergence herbicide, and also as a pre-ernergence herbicide if formulated appropriately, for example, sorbed in powder or granules.
- a post-emergence herbicide When applied as a post-emergence herbicide, an aqueous solution or emulsion form is best for a ready-to-use formulation. Seedling weeds are the easiest to control, as is typical of most herbicidal compositions. Many annuals may be controlled with a single application. Established weeds with large tap roots may require additional treatments.
- Compositions of the invention typically are water based, and may include ingredients in addition to the two or more active components noted above such as stabilizers and solubility enhancing materials.
- False dandelion (Hypochoeris radicate) , crab grass (Aqropyron repens) and yellow foxtail (Setaria ⁇ lauca) were tested in the following experiments as model target weeds.
- EXAMPLE 1 80 green bush plants, Phaseolus vul ⁇ aris. were randomly selected and labelled into 16 treatments with 5 replicates per treatment. The beans were grown in 5.5 cm pots with standard greenhouse soil mix. Plants were healthy and averaged 20.0 cm in height.
- Treatment solutions were prepared from original chemicals.
- the compositions consisted of ammonium nitrate (AN) at 1.0, 2.0, and 3.0% alone and in combination with a 50:50 mixture of ammonium nonanoate and ammonium decanoate (HS) applied at 1.0, 2.0, and 3.0%.
- AN ammonium nitrate
- HS ammonium decanoate
- the procedure for the preparation of 100 grams of the test herbicides is: a. Weigh appropriate quantity of fatty acid or mixture into beaker. b. Into another beaker weigh 90.00 gram deionized H_0. c. Add appropriate amount of ammonium salt to water. d. Stir water and ammonium salt and slowly add fatty acid or acid mixture. e. While stirring, add ammonium hydroxide (or other base) dropwise until solution clears. f. Add deionized H-0 until weight equals 100 grams.
- the pH of the resulting solution typically is slightly alkaline.
- the pH of the C9/C10-ammonium nitrate mixtures used in this example was about 8.0.
- Treatment involved application of a thin coating of the test solutions by paintbrush to the large true leaves of the beans. Assessment was performed 8 days later by visually rating damage of foliar area using a pretransformed angular scale (0-10) where integers represent 0, 2.5, 10, 21, 35, 50, 65, 79, 90, 97.5, and 100% foliar damage.
- the Table below summarizes the compositions of the test solutions. Table 1:
- Ammonium nitrate (AN) at 1.0% in combination with the fatty acid salts (HS) at 1.0% (44.0% damage) produced an observed treatment effect of 100.0% damage, significantly greater than the expected additive treatment effect of 46.0%.
- ammonium nitrate at 2.0% (37.0% damage) in combination with HS at 1.0% (44.0% damage) produced the observed treatment effect of 100.0%, significantly greater than the expected additive treatment effect of 81.0%.
- the compounds act synergistically in efficacy in their kill of bush beans (Phaseolus vul ⁇ aris) .
- plants 160 false dandelion, Hypocheris radicata. plants were watered, selected and arranged into 20 treatments (8 replicates per treatment). Plants were of the same age and as uniform in growth development as possible (8-14 true leaves). Seedlings were grown in 3.5 centimeter diameter plastic vials with standard greenhouse soil mix. Plants were healthy, actively growing, and randomly placed into treatments.
- Treatment solutions were prepared from original components in this and all subsequent examples disclosed herein using the procedure disclosed in Example 1, and 500 ml of each were bottled and labelled.
- the compositions consisted of ammonium sulfamate (AMS) applied at 0.5, 1.0 and 2.0%, alone, and in combination with a 50:50 mixture of ammonium nonanoate and ammonium decanoate (HS) at 0.01, 0.05, 0.1, and 0.25%.
- AMS ammonium sulfamate
- HS ammonium nonanoate
- HS ammonium decanoate
- Assessment was performed three days from treatment.
- the pretransformed angular scale (0-10) as disclosed in Example 1 was used for visual damage assessment. The various mixtures used are set forth below.
- Example 3 120 Tropaeolum maius plants (nasturtiums) were watered, selected, and arranged into 20 treatments (6 replicates per treatment), and tested as set forth in Example 2. The compositions of the test mixtures are set forth in Table 5.
- plants were watered, selected and arranged into 20 treatments (8 replicates per treatment) . Plants were of the same age and as uniform in growth development as possible. Seedlings were grown in 3.5 centimeter diameter vials with standard greenhouse soil mix. Plants were healthy, actively growing, averaging 18.0 centimeters in height, and were randomly placed into treatments.
- compositions consisted of ammonium sulfamate (AMS) applied at 0.5, 1.0 and 2.0%, alone and in combination with HS at 0.01, 0.05, 0.1, and 0.25%.
- AMS ammonium sulfamate
- the compositions were applied by hand-held trigger sprayer to run off, and the treated plants remained under artificial light fox assessment. Assessment was performed fi-ve days after treatment using the pretransformed angular -scale. The test mixtures are set forth -below.
- Phaseolus vul ⁇ aris bean plants were watered, selected and arranged into 12 treatments (8 replicates per treatment) . Plants were of the same age and as uniform in growth development as possible. Seedlings were grown in 5.5 centimeter square pots with standard greenhouse soil mix. Plants were healthy, actively growing, averaging 24.0 centimeters in height, and randomly placed into treatment.
- compositions consisted of AMS applied at 0.5, 1.0 and 2.0%, alone and in combination with HS at 0.25%.
- the compositions were applied by hand-held trigger sprayer to run off, and the plants remained under artificial light for assessment. Assessment was performed four days from treatment using the pretransformed angular scale.
- 112 crab grass, Di ⁇ itaria san ⁇ uinalis plants were watered, selected and arranged into 16 treatments (7 replicates per treatment) . Plants were of the same age and as uniform in growth development as possible. Seedlings were grown in 3.5 centimeter diameter vials with standard greenhouse soil mix. Plants were healthy, actively growing averaging 15.0 centimeters in height, and were randomly placed into treatment.
- compositions consisted of AMS applied at 0.5, 1.0 and 2.0%, alone and in combination with HS at 0.01, 0.05, 0.1 and 0.25%.
- the compositions were applied by hand-held trigger sprayer to run off, and the plants were left under artificial lights for assessment. Assessment was performed five days from treatment using the pretransformed angular scale. Test compositions are noted below.
- compositions consisted of ammonium sulphate (AS) at 1.0, 3.0 and 5.0%, alone and in combination with HS applied at 0.10 and 0.20% active ingredient.
- AS ammonium sulphate
- compositions consisted of AS at 1.0, 3.0 and 5.0%, alone and in combination with HS applied at 0.10 and 0.20% active ingredient.
- the compositions were applied by hand-held trigger sprayer to run off. Assessment was performed two days later using the pretransformed angular scale.
- Example 9 120 yellow foxtail Setaria ⁇ lauca. plants were randomly selected and labelled into twelve treatments with 10 replicates per treatment. Foxtails were grown in 3.5 cm diameter vials with standard greenhouse soil mix. Plants were healthy, actively growing and averaged 14.0 cm in height. The compositions consisted of AS at 1.0, 3.0, and 5.0% alone and in combination with HS applied at 0.10% and 0.20%, active ingredient The compositions were applied by hand-held trigger sprayer to run off. Assessment was performed seven days later using the pretransformed angular scale.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Agronomy & Crop Science (AREA)
- Pest Control & Pesticides (AREA)
- Plant Pathology (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Dentistry (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
Disclosed is a herbicidal composition and method for non-selectively controlling and retarding the growth rate, and if desired, causing extensive mortality of, unwanted vegetation. The compositions consist essentially of one or more substances selected from the group consisting of aliphatic acids or their herbicidally active salts, preferably octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, or dodecanoic acid, and an ammonium compound, preferably ammonium nitrate, sulfate, or sulfamate. The composition causes a plant mortality significantly in excess of the expected additive mortalities of the individual components.
Description
BIODEGRADABLE HERBICIDAL COMPOSITION
Background of the Invention
This invention relates to compounds and methods for non-selectively retarding and controlling the growth rate of unwanted vegetation using a family of environmentally safe herbicidal compositions. More particularly, it relates to the use of certain fatty acids or their salts in admixture with an ammonium compound to induce an immediate topical burn followed by a tap root kill preventing regrowth of unwanted vegetation. As used herein, the words "retarding and controlling" refer to partial or complete killing of vegetation.
Herbicides control the growth rate and/or cause mortality to flora through physiochemical interactions with plant systems. Many chemical classes of herbicides are presently available with varying modes of action, toxicities, chemical structures, and use patterns. Billions of dollars are spent annually to control vegetation pests which, due to importation or other causes, lack the natural enemies to keep their population in check, or which simply grow from seed in areas where they interfere with land use. Previously, inorganic compounds were used to control vegetation, but these have been superceded by effective petro-chemical products. Mass production of petro-chemical herbicides reduced the overall cost of vegetation control and facilitated widespread use.
Environmental safety has become a paramount concern due to increasing public awareness, shifting
attitudes towards better alternatives to pest control, and the accumulation of data on longer term environmental effects. Many of the petro-chemical herbicides are toxic to other forms of life and are environmentally persistent. Therefore, there remains a need for an environmentally safe, cost effective method for controlling unwanted vegetation.
Ammonium compounds have been used as fertilizers. Generally, they are used in a form, such as the salt form, which releases the ammonium ion upon decomposition. When used in sufficiently high concentrations, these ammonimum compounds are injurious to plants. Ammonium sulfamate has been used as a translocatable herbicide, and is registered in the United States as a herbicide by E.I. Du Pont de Nemours under the tradename Ammate. Ammonium sulfamate has little immediate effect on foliage, but eventually is absorbed into the plant causing cell damage and finally death. However, it must be used in very high concentrations to be effective.
Summary of the Invention
This invention provides novel herbicidal compositions which are environmentally safe, biogradable, effective, and cost efficient Broadly, the invention comprises a family of compositions which may be applied to retard and control the growth of unwanted vegetation, and a method of using such compositions. The compositions comprise one or more substances taken from the family of organic fatty acids, preferably straight-chained alpha monocarboxylic acids comprising 6 to 18 carbon atoms inclusive, and/or salts of the aforementioned acids, in combination with one or more ammonium compounds, preferably ammonium nitrate, ammonium sulfate or ammonium sulfamate. It has been discovered that mixtures of these two groups of compounds can cause a synergistically. enhanced plant mortality. That is, the components when mixed cooperate to give a significantly higher kill rate than the sum of the kill rates of the individual components in a broad range of ratios and on a broad range of plant species.
The fatty acids and inorganic ammonium compounds employed in these compositions are essentially non-toxic to vertebrates and are biodegradable. Of the hundreds of fatty acids found in nature, only a few possess herbicidal properties. These are found on human skin, in seeds, and as part of the total lipid composition of many organisms. Mammals metabolize and/or excrete these fatty acids, and many micro-organisms can utilize them as a source of carbon.
One important embodiment of the present invention comprises a herbicidally active composition consisting essentially of a 50:50 mixture of ammonium nonanoate and ammonium decanoate at a concentration of between 0.01% and 0.50%, admixed with a water soluble inorganic ammonium compound, preferably ammonium sulfamate, at a concentration between 0.50% and 5.00%. Species of this combination results in a synergistically enhanced kill against vegetation including relatively hardy species such as Phaseolus vulσaris (green bush plant) , Hvpocheris radicata (false dandelion), Tropaelum maius (nasturtiums) and Zea mays (corn) .
In accordance with the process of the invention, the herbicidal mixtures are applied to the leaves or soil to retard plant growth, preferably in amounts sufficient to kill the plant.
Accordingly, it is an object of the invention to provide a class of herbicidal compounds composed of medium chain fatty acids and/or their salts and inorganic ammoniated compounds. Other objects are to provide a method for nonselectively controlling unwanted vegetation by applying compounds composed of medium chain fatty acids and/or their salts and inorganic ammoniated compounds to provide a class of herbicides which are environmentally safe, and to provide a class of non-selective herbicides utilizing commercially available, relatively inexpensive constituents.
Description
Fatty acids and their salts containing eight to twelve carbon atoms cause easily observed topical burn to plants when applied at concentrations of about 0.5% by weight or higher. However, these compounds do not translocate within the plant and can fail to kill the root, particularly when applied to tap root plants such as dandelions. Ammonium compounds, on the other hand, can translocate and kill tap roots, but have little immediate effect on foliage. It has been discovered that mixtures of the active fatty acids or salts with the ammoniated compounds provide a unique coaction, yielding higher kill rates and a surer kill, on a wide variety of plant types, particularly annuals and small perennials. The combination in ingredients provides a rapid topical kill as well as a delayed tap root kill, providing a far superior herbicide as compared with either compound alone. Mixtures of these two types of compounds when applied to roots or foliage can provide greater mortality effects than the sum of the effects of the individual components.
Within the fatty acid group, acids posessing nine or ten carbon atoms have been observed to perform best. They are particularly advantageous because they are relatively inexpensive and readily available. Acids having eight, eleven, and twelve carbon atoms are almost as effective as the acids having nine or ten carbon atoms. Fatty acids having a carbon number smaller than eight, e.g., six or seven, and larger than 12, e.g., 13 to 18, are usable although less effective. Mixtures of the acids in
this group also perform well as components in the composition of the invention. These fatty acids may be in the pre-acid form or in herbicidally acceptable salt forms. These salts can include, for example, ammonium, alkali metal, or alkali earth metal salts. Alkali metal salts such as the sodium or potassium salt and ammonium salts are preferred. The acids are available commercially.- They may be neutralized with bases of various types. The acids used in the experiments below were obtained from Emery Company.
The preferred ammonium compounds are inorganic ammonium compound which, when applied at appropriate concentrations, causes damage to plants. Preferred among ammonium compounds are herbicidally active inorganic, water-soluble ammonium salts. Ammonium sulfamate is currently most preferred because it is the strongest herbicide among the ammonium compounds. Ammonium sulfate and ammonium nitrate are also preferred. Other ammonium compounds which may be used include ammonium chloride, ammonium carbonate and ammonium acetate. Others will be readily apparent to those skilled in the art.
The ratio of the fatty acid or its salt to the ammonium compound may vary widely, depending upon a variety of factors, such as the identity of the fatty acid or its salt, the identity of the ammonium compound, the composition formed, the target weed, and whether the composition is intended as a concentrate or is to be applied as is. Generally, the ratio of acid compound to ammonium compound is between 0.001 and 10, preferably between 0.01 and 1.0, more preferably between 0.02 and 1.0.
The amount of the essential components in the composition may also vary. Normally the total amount is at least 0.1% by weight. Preferably, the total amount of the ammonium compound and the fatty acid or its salt is at least 0.5% by weight, more preferably at least about 1% by weight. Neither of the essential active ingredients have very strong herbicidal activity, and accordingly, the total amount of active ingredients used is relatively high compared with petrochemical herbicides. However, both components are environmentally safe and inexpensive. The upper limit of the amount of activity in the composition may be determined by taking various factors into account, including whether the composition is intended as a concentrate or a ready-to-use product, what carrier or diluent is to be used, solubility considerations, and the composition's intended mode of application.
The herbicidal compositions embodying the invention may be applied in various ways, including topically as a spray to foliage as a post-emergence herbicide, and also as a pre-ernergence herbicide if formulated appropriately, for example, sorbed in powder or granules. When applied as a post-emergence herbicide, an aqueous solution or emulsion form is best for a ready-to-use formulation. Seedling weeds are the easiest to control, as is typical of most herbicidal compositions. Many annuals may be controlled with a single application. Established weeds with large tap roots may require additional treatments.
Compositions of the invention typically are water based, and may include ingredients in addition to the two or more active components noted above such as stabilizers and solubility enhancing materials.
Experiments have been conducted in nursery and field conditions on growing seedlings and established vegetation. Results indicate that vegetation is non-selectively and effectively killed by^ the methods and compositions of the invention. The. following, non-limiting examples demonstrate the unexpected properties of compositions embodying the invention, and illustrate the generality of those unexpected properties.
False dandelion (Hypochoeris radicate) , crab grass (Aqropyron repens) and yellow foxtail (Setaria σlauca) were tested in the following experiments as model target weeds. The other plants tested, nasturtiums (Tropaeolum maius) , bush beans (Phaseolus vulσaris) , corn (Zea mays) , and cucumber (Cucumis satirus) represent flora of varying cuticle thickness and morphology. In this specification, all percentages are by weight.
EXAMPLE 1 80 green bush plants, Phaseolus vulαaris. were randomly selected and labelled into 16 treatments with 5 replicates per treatment. The beans were grown in 5.5 cm pots with standard greenhouse soil mix. Plants were healthy and averaged 20.0 cm in height.
Treatment solutions were prepared from original chemicals. The compositions consisted of
ammonium nitrate (AN) at 1.0, 2.0, and 3.0% alone and in combination with a 50:50 mixture of ammonium nonanoate and ammonium decanoate (HS) applied at 1.0, 2.0, and 3.0%.
The procedure for the preparation of 100 grams of the test herbicides is: a. Weigh appropriate quantity of fatty acid or mixture into beaker. b. Into another beaker weigh 90.00 gram deionized H_0. c. Add appropriate amount of ammonium salt to water. d. Stir water and ammonium salt and slowly add fatty acid or acid mixture. e. While stirring, add ammonium hydroxide (or other base) dropwise until solution clears. f. Add deionized H-0 until weight equals 100 grams.
The pH of the resulting solution typically is slightly alkaline. The pH of the C9/C10-ammonium nitrate mixtures used in this example was about 8.0.
Treatment involved application of a thin coating of the test solutions by paintbrush to the large true leaves of the beans. Assessment was performed 8 days later by visually rating damage of foliar area using a pretransformed angular scale (0-10) where integers represent 0, 2.5, 10, 21, 35, 50, 65, 79, 90, 97.5, and 100% foliar damage. The Table below summarizes the compositions of the test solutions.
Table 1:
Treatment Comp. Treatment Comp.
Number &S AN Number %HS %AN
AN ~ ammonium nitrate HS = fatty acid salts
Analysis of variance showed a significant effect from treatment (F = 77.36 where Fc = 2.06 at 15, 64 degrees of freedom). Separation of treatment means was performed with Duncan's multiple range test. The results are set forth in Table 2.
Ammonium nitrate (AN) at 1.0% in combination with the fatty acid salts (HS) at 1.0% (44.0% damage) produced an observed treatment effect of 100.0% damage, significantly greater than the expected
additive treatment effect of 46.0%. Similarly, ammonium nitrate at 2.0% (37.0% damage) in combination with HS at 1.0% (44.0% damage) produced the observed treatment effect of 100.0%, significantly greater than the expected additive treatment effect of 81.0%. At these ratios of active ingredients, the compounds act synergistically in efficacy in their kill of bush beans (Phaseolus vulαaris) .
Example 2
160 false dandelion, Hypocheris radicata. plants were watered, selected and arranged into 20 treatments (8 replicates per treatment). Plants were of the same age and as uniform in growth development as possible (8-14 true leaves). Seedlings were grown in 3.5 centimeter diameter plastic vials with standard greenhouse soil mix. Plants were healthy, actively growing, and randomly placed into treatments.
Treatment solutions were prepared from original components in this and all subsequent examples disclosed herein using the procedure disclosed in Example 1, and 500 ml of each were bottled and labelled. The compositions consisted of ammonium sulfamate (AMS) applied at 0.5, 1.0 and 2.0%, alone, and in combination with a 50:50 mixture of ammonium nonanoate and ammonium decanoate (HS) at 0.01, 0.05, 0.1, and 0.25%. The test solutions were applied by hand-held trigger sprayer to run off, and the treated plants remained under artificial lights for assessment. Assessment was performed three days from treatment. In this and all subsequent examples
disclosed herein, the pretransformed angular scale (0-10) as disclosed in Example 1 was used for visual damage assessment. The various mixtures used are set forth below.
Table 3:
Treatment Comp. Treatment Comp.
Number %HS %AMS Number %HS %AMS
The data were analyzed statistically using ANOVA and Duncan's multiple range test to separate treatment means. The results were as follows.
Table 4: Concentration of AMS Concentration of HS
_QBL 0.01% 0.05% 0.10% 0.25'-
0% 0.0% 0.0% 5.0% 24.0% 98.0% 0.5% 15.0% 8.0% 50.0% 79.0% 99.0% 1.0% 29.0% 22.0% 67.0% 94.0% 100.0% 2.0% 85.0% 66.0% 96.0% 99.0% 100.0%
Statistical analysis showed a significant effect due to treatment, F = 68.90 where Fc = 1.83 at 19, 140 degrees of freedom (P = 0.05). HS at 0.05% and 0.10% active ingredient combined with ammonium sulfamate at 0.5% and 1.0% active ingredient interacted synergistically to produce statistically greater mortality to Hypochoeris radicata plants than either herbicide applied individually. The synergy at higher concentrations results in 100% kill.
Example 3 120 Tropaeolum maius plants (nasturtiums) were watered, selected, and arranged into 20 treatments (6 replicates per treatment), and tested as set forth in Example 2. The compositions of the test mixtures are set forth in Table 5.
The data were analyzed statistically using
ANOVA and Duncan's Multiple Range Test to separate treatment means. The results were as follows:
Table 6:
Concentration of AMS Concentration of HS 0% 0.01% 0.05% 0.10% 0.25%
0% 0.0% 0.0% 0.0% 32.0% 47.0%
0.5% 0.0% 1.0% 23.0% 70.0% 85.0%
1.0% 7.0%. 1.0% 25.0% 75.0% 93.0%
2.0% 2.0% 4.0% 53.0% 79.0% 95.0%
Statistical analysis showed a significant effect due to treatment, F = 55.60 or Fc = 1.87 at 19, 100 degrees of freedom (P = 0.05). HS at 0.05%, 0.10% and 0.25% combined with AMS at 0.5%, 1.0% and 2.0% active ingredient, interacted synergistically to produce statistically greater efficacy to nasturtiums than either compound applied individually.
Example 4
160 Zea mays. corn, plants were watered, selected and arranged into 20 treatments (8 replicates per treatment) . Plants were of the same age and as uniform in growth development as possible. Seedlings were grown in 3.5 centimeter diameter vials with standard greenhouse soil mix. Plants were healthy, actively growing, averaging 18.0 centimeters in height, and were randomly placed into treatments.
The compositions consisted of ammonium sulfamate (AMS) applied at 0.5, 1.0 and 2.0%, alone and in combination with HS at 0.01, 0.05, 0.1, and 0.25%. The compositions were applied by hand-held
trigger sprayer to run off, and the treated plants remained under artificial light fox assessment. Assessment was performed fi-ve days after treatment using the pretransformed angular -scale. The test mixtures are set forth -below.
The data were analyzed statistically using ANOVA and Duncan's Multiple Range Test to separate treatment means. The results -were as follows:
Table- 8: Concentration of AM≤L Concentration of HS
0% 0 . 01% 0 .05% 0 . 10% 0 . 25%
0% 16.0% 22.0%
Statistical analysis showed a significant effect due to treatment, F = 25.66 where c •= 1.83 at 19, 140
degrees of freedom (P = 0.05). Combinations of HS and ammonium sulfamate were shown to act synergistically in killing corn plants.
Example 5
96 Phaseolus vulσaris bean plants were watered, selected and arranged into 12 treatments (8 replicates per treatment) . Plants were of the same age and as uniform in growth development as possible. Seedlings were grown in 5.5 centimeter square pots with standard greenhouse soil mix. Plants were healthy, actively growing, averaging 24.0 centimeters in height, and randomly placed into treatment.
The compositions consisted of AMS applied at 0.5, 1.0 and 2.0%, alone and in combination with HS at 0.25%. The compositions were applied by hand-held trigger sprayer to run off, and the plants remained under artificial light for assessment. Assessment was performed four days from treatment using the pretransformed angular scale.
The data were analyzed statistically using ANOVA and Duncan's multiple range test to separate treatment means. The results were as follows:
Table 10: Concentration of AMS Concentration of HS
Jii. 0.25%
0% 0.0%
Example 6
112 crab grass, Diσitaria sanσuinalis. plants were watered, selected and arranged into 16 treatments (7 replicates per treatment) . Plants were of the same age and as uniform in growth development as possible. Seedlings were grown in 3.5 centimeter diameter vials with standard greenhouse soil mix. Plants were healthy, actively growing averaging 15.0 centimeters in height, and were randomly placed into treatment.
The compositions consisted of AMS applied at 0.5, 1.0 and 2.0%, alone and in combination with HS at 0.01, 0.05, 0.1 and 0.25%. The compositions were applied by hand-held trigger sprayer to run off, and the plants were left under artificial lights for assessment. Assessment was performed five days from treatment using the pretransformed angular scale. Test compositions are noted below.
The data were analyzed statistically using ANOVA and Duncan's multiple range test to separate treatment means. The results are set forth below:
Statistical analysis showed a significant effect due to treatment, F = 58.64 where Fc = 1.98 at 15, 90 degrees of freedom (p = 0.05). HS combined with ammonium sulfamate produced greater herbicidal efficacy to Diσitarias sanσuinelis plants than either herbicide applied individually.
Example 7
120 nasturtium Tropaeolum aius. plants, were randomly selected and labelled into twelve treatments with 10 replicates per treatment. Nasturtium were grown in 3.5 cm diameter vials with standard greenhouse soil mix. Plants were healthy, actively growing and averaged 11.0 cm in height.
The compositions consisted of ammonium sulphate (AS) at 1.0, 3.0 and 5.0%, alone and in combination with HS applied at 0.10 and 0.20% active ingredient. The compositions were applied by hand-held trigger sprayer to run off. Assessment was performed three days later using the pretransformed angular scale.
Table 13:
The data were analyzed statistically using ANOVA and Duncan's multiple range test to separate treatment means. The results are set forth below:
Statistical analysis showed a significant effect due to treatment F = 61.78 (p = 0.05). Combinations of HS and ammonium sulphate thus act synergistically in rate if mortality when applied to nasturtiums.
Example 8
120 cucumber, Cucumis sativus. plants, were randomly selected and labelled into twelve treatments with 10 replicates per treatment. The plants were healthy, actively growing, and averaged 10.0 cm in height.
The compositions consisted of AS at 1.0, 3.0 and 5.0%, alone and in combination with HS applied at 0.10 and 0.20% active ingredient. The compositions were applied by hand-held trigger sprayer to run off. Assessment was performed two days later using the pretransformed angular scale.
Table 15 :
The data were analyzed statistically using ANOVA and Duncan's multiple range test to separate treatment means. The results are set forth below:
Statistical analysis showed a significant effect due to treatment, F = 27.36 (P = 0.05). Combinations of HS and ammonium sulphate were shown to act synergistically in herbicidal activity when applied to Cucumus sativus plants.
Example 9 120 yellow foxtail Setaria σlauca. plants were randomly selected and labelled into twelve treatments with 10 replicates per treatment.
Foxtails were grown in 3.5 cm diameter vials with standard greenhouse soil mix. Plants were healthy, actively growing and averaged 14.0 cm in height. The compositions consisted of AS at 1.0, 3.0, and 5.0% alone and in combination with HS applied at 0.10% and 0.20%, active ingredient The compositions were applied by hand-held trigger sprayer to run off. Assessment was performed seven days later using the pretransformed angular scale.
Table 17:
The data were analyzed statistically using ANOVA and Duncan's multiple range test to separate treatment means. The results are set forth below:
Statistical analysis showed a significant effect due to treatment, F = 23.75 (P = 0.05). Combinations of HS and AS were shown to act synergistically in efficacy to nasturtiums.
The invention may be embodied in other specific forms without departing from the spirit and essential characteristics thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
What is claimed is:
Claims
1. A herbicidal composition for controlling unwanted vegetation, the composition comprising a herbicidally effective amount of a mixture of at least one herbicidally active alpha monocarboxylic acid having a hydrocarbon chain between 8 and 12 carbon atoms, salts thereof, and mixtures thereof, and at least one inorganic water soluble ammonium compound.
2. The composition of claim 1 wherein the ammonium compound is ammonium nitrate, ammonium sulfate, or ammonium sulfamate.
3. The composition of claim 1 wherein the acid component is nonanoic acid, decanoic acid, a salt thereof, or a mixture thereof.
4. The composition of claim 1 comprising an aqueous solution containing at least about one percent by weight of said mixture.
5. The composition of claim 1 wherein the ratio of said acid component to ammonium compound is withing the range of 0.001 to 10.
6. The composition of claim 1 wherein the ratio of said acid component to ammonium compound is with the range of 0.01 to 1.0.
7. The composition of claim 1 wherein said acid component comprises a mixture of the salts of decanoic and nonanoic acids.
8. The composition of claim 7 comprising ammonium sulfamate.
9. A method of controlling unwanted vegetation comprising applying to a plant having leaves and a root an amount of the composition of claim 1 effective to retard the growth rate of the plant. '
10. The method of claim 9 wherein said composition is applied to the leaves of said plant.
11. The method of claim 9 comprising applying an amount of said composition effective to kill the root of said plant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR888807258A BR8807258A (en) | 1987-10-16 | 1988-10-14 | BIODEGRATED HERBICIDE COMPOSITION |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10947387A | 1987-10-16 | 1987-10-16 | |
US109,473 | 1987-10-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1989003178A1 true WO1989003178A1 (en) | 1989-04-20 |
Family
ID=22327833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1988/003582 WO1989003178A1 (en) | 1987-10-16 | 1988-10-14 | Biodegradable herbicidal composition |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP0335961A1 (en) |
JP (1) | JPH03505722A (en) |
AR (1) | AR244499A1 (en) |
AU (1) | AU605651B2 (en) |
BR (1) | BR8807258A (en) |
NZ (1) | NZ226600A (en) |
WO (1) | WO1989003178A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992007467A1 (en) * | 1990-11-02 | 1992-05-14 | Safer, Inc. | Improved fatty acid-based herbicidal composition |
EP0494386A1 (en) * | 1991-01-08 | 1992-07-15 | Mycogen Corporation | Novel process and composition for controlling weeds |
WO1992011764A1 (en) * | 1991-01-08 | 1992-07-23 | Monsanto Company | Improved herbicidal formulation |
EP0495876A4 (en) * | 1989-10-13 | 1992-10-14 | Safer, Inc. | Fatty acid based emulsifiable concentrate having herbicidal activity |
EP0495792A4 (en) * | 1989-10-13 | 1992-10-28 | Safer, Inc. | Fatty acid based herbicidal compositions |
WO1993009669A1 (en) * | 1991-11-22 | 1993-05-27 | Mycogen Corporation | Novel herbicidally-active fatty acid salts |
EP0577914A1 (en) * | 1992-07-08 | 1994-01-12 | Monsanto Europe S.A./N.V. | Improved glyphosate compositions and their use |
US5395851A (en) * | 1992-01-10 | 1995-03-07 | W. Neudorff Gmbh Kg | Tree wound coating composition |
US5681792A (en) * | 1991-01-08 | 1997-10-28 | Mycogen Corporation | Process and composition for controlling weeds |
US5700759A (en) * | 1995-06-07 | 1997-12-23 | Mycogen Corporation | Process and composition for controlling weeds comprising a C7 -C20 |
EP0868849A1 (en) * | 1997-04-04 | 1998-10-07 | W. NEUDORFF GmbH KG | Non-staining herbicidal soap |
US6383985B1 (en) * | 2000-01-10 | 2002-05-07 | Eco-Care Technologies, Inc. | Herbicidal fatty acid and maleic hydrazide salt compositions |
WO2003015514A1 (en) * | 2001-08-20 | 2003-02-27 | Falcon Lab Llc | Post-emergent herbicidal compositions containing ammonium pelargonate |
US6930075B1 (en) * | 1990-11-02 | 2005-08-16 | Monsanto Technology, Llc | Fatty acid-based herbicidal composition |
WO2006033988A1 (en) * | 2004-09-17 | 2006-03-30 | Monsanto Technology Llc | Glyphosate formulations with early burndown symptoms |
EP2710892A3 (en) * | 2009-07-21 | 2014-05-21 | Marrone Bio Innovations, Inc. | Use of sarmentine and its analogs for controlling plant pests |
CN111406748A (en) * | 2020-04-29 | 2020-07-14 | 上海万力华生物科技有限公司 | Herbicide containing plant source pelargonic acid and preparation method and application thereof |
EP3704942A1 (en) * | 2019-03-05 | 2020-09-09 | Filab | Use as a plant growth regulator and/or herbicide |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NZ242249A (en) * | 1992-04-06 | 1995-02-24 | Robert Vincent Thompson | Herbicidal method and composition; fat or wax dispersed in oil blocks transport of liquid in plant stem when applied thereto |
MX371508B (en) * | 2013-07-12 | 2020-01-31 | Bayer Cropscience Ag | HERBICIDE COMBINATION INCLUDING FATTY ACIDS WITH HERBICIDAL ACTIVITY AND AN ALS INHIBITOR. |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2277744A (en) * | 1940-08-15 | 1942-03-31 | Du Pont | Pest control |
GB1243987A (en) * | 1967-12-01 | 1971-08-25 | Exxon Research Engineering Co | Carboxylic acids and derivatives thereof as broad base, post emergence herbicides |
DE1792119A1 (en) * | 1967-07-24 | 1972-01-13 | Unilever Emery | Herbidices Means and method for destroying undesired plants |
DE2848184A1 (en) * | 1977-11-09 | 1979-05-10 | Ralston Purina Co | ADDITION TO A SUPPLEMENTARY FEED FOR Cattle |
-
1988
- 1988-10-14 JP JP63508948A patent/JPH03505722A/en active Pending
- 1988-10-14 WO PCT/US1988/003582 patent/WO1989003178A1/en not_active Application Discontinuation
- 1988-10-14 AU AU26252/88A patent/AU605651B2/en not_active Ceased
- 1988-10-14 BR BR888807258A patent/BR8807258A/en unknown
- 1988-10-14 EP EP19880909664 patent/EP0335961A1/en not_active Withdrawn
- 1988-10-17 NZ NZ22660088A patent/NZ226600A/en unknown
- 1988-10-17 AR AR31221988A patent/AR244499A1/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2277744A (en) * | 1940-08-15 | 1942-03-31 | Du Pont | Pest control |
DE1792119A1 (en) * | 1967-07-24 | 1972-01-13 | Unilever Emery | Herbidices Means and method for destroying undesired plants |
GB1243987A (en) * | 1967-12-01 | 1971-08-25 | Exxon Research Engineering Co | Carboxylic acids and derivatives thereof as broad base, post emergence herbicides |
DE2848184A1 (en) * | 1977-11-09 | 1979-05-10 | Ralston Purina Co | ADDITION TO A SUPPLEMENTARY FEED FOR Cattle |
Non-Patent Citations (2)
Title |
---|
CHEMICAL ABSTRACTS, Volume 73, No. 2, 13 July 1970, (Columbus, Ohio, US), NAL'KINA Z.A. et al., "Extraction of Ammonium in the Water-ammonium Nitrate-ammonium Caprylate-caprylic Acid System", page 305, Abstract 7872b; & INV. SIB. OLD. AKAD. NAUK SSSR, SER. KHIM. NAUK, 1970, 1, 51-7. * |
CHEMIE DER PFLANZENSCHUTZ- UND SCHAEDLINGSBEKAEMPFUNGSMITTEL, Vol. 5, 1977, (New York), R. WEGLER, "Herbizide", page 48. * |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05502216A (en) * | 1989-10-13 | 1993-04-22 | セイファー・インコーポレーテッド | Herbicidal compositions based on fatty acids |
EP0495876A4 (en) * | 1989-10-13 | 1992-10-14 | Safer, Inc. | Fatty acid based emulsifiable concentrate having herbicidal activity |
EP0495792A4 (en) * | 1989-10-13 | 1992-10-28 | Safer, Inc. | Fatty acid based herbicidal compositions |
US6930075B1 (en) * | 1990-11-02 | 2005-08-16 | Monsanto Technology, Llc | Fatty acid-based herbicidal composition |
WO1992007467A1 (en) * | 1990-11-02 | 1992-05-14 | Safer, Inc. | Improved fatty acid-based herbicidal composition |
US6468944B1 (en) | 1991-01-08 | 2002-10-22 | M. Wayne Bugg | Method of preparing glyphosate herbicide formulations |
US5196044A (en) * | 1991-01-08 | 1993-03-23 | Mycogen Corporation | Process and composition for controlling weeds |
EP0494386A1 (en) * | 1991-01-08 | 1992-07-15 | Mycogen Corporation | Novel process and composition for controlling weeds |
WO1992011764A1 (en) * | 1991-01-08 | 1992-07-23 | Monsanto Company | Improved herbicidal formulation |
EP0990390A1 (en) * | 1991-01-08 | 2000-04-05 | Mycogen Corporation | Novel process and composition for controlling weeds |
US5681792A (en) * | 1991-01-08 | 1997-10-28 | Mycogen Corporation | Process and composition for controlling weeds |
US5683962A (en) * | 1991-01-08 | 1997-11-04 | Mycogen Corporation | Process and composition for controlling weeds |
US5683959A (en) * | 1991-01-08 | 1997-11-04 | Mycogen Corporation | Process and composition for controlling weeds |
US5683961A (en) * | 1991-01-08 | 1997-11-04 | Mycogen Corporation | Process and composition for controlling weeds |
US6034034A (en) * | 1991-01-08 | 2000-03-07 | Mycogen Corp. | Process and composition for controlling weeds |
US5703013A (en) * | 1991-01-08 | 1997-12-30 | Mycogen Corporation | Process and composition for controlling weeds |
US5994269A (en) * | 1991-01-08 | 1999-11-30 | Monsanto Company | Method of preparing glyphosate herbicide formulations |
US5703012A (en) * | 1991-01-08 | 1997-12-30 | Mycogen Corporation | Process and composition for controlling weeds |
US5703011A (en) * | 1991-01-08 | 1997-12-30 | Mycogen Corporation | Process and composition for controlling weeds |
US5703014A (en) * | 1991-01-08 | 1997-12-30 | Mycogen Corporation | Process and composition for controlling weeds |
US5948731A (en) * | 1991-11-22 | 1999-09-07 | Mycogen Corporation | Herbicidally-active fatty acid salts |
WO1993009669A1 (en) * | 1991-11-22 | 1993-05-27 | Mycogen Corporation | Novel herbicidally-active fatty acid salts |
US5703019A (en) * | 1991-11-22 | 1997-12-30 | Mycogen Corporation | Herbicidally-Active fatty acid allphatic amine salts |
EP0916261A1 (en) * | 1991-11-22 | 1999-05-19 | Mycogen Corporation | Novel herbicidally-active fatty acid salts |
US5395851A (en) * | 1992-01-10 | 1995-03-07 | W. Neudorff Gmbh Kg | Tree wound coating composition |
EP0577914A1 (en) * | 1992-07-08 | 1994-01-12 | Monsanto Europe S.A./N.V. | Improved glyphosate compositions and their use |
US5700759A (en) * | 1995-06-07 | 1997-12-23 | Mycogen Corporation | Process and composition for controlling weeds comprising a C7 -C20 |
EP0868849A1 (en) * | 1997-04-04 | 1998-10-07 | W. NEUDORFF GmbH KG | Non-staining herbicidal soap |
US6383985B1 (en) * | 2000-01-10 | 2002-05-07 | Eco-Care Technologies, Inc. | Herbicidal fatty acid and maleic hydrazide salt compositions |
US6486097B2 (en) * | 2000-01-10 | 2002-11-26 | W. Neudorff Gmbh Kg | Herbicidal fatty acid and maleic hydrazide salt compositions |
WO2003015514A1 (en) * | 2001-08-20 | 2003-02-27 | Falcon Lab Llc | Post-emergent herbicidal compositions containing ammonium pelargonate |
WO2006033988A1 (en) * | 2004-09-17 | 2006-03-30 | Monsanto Technology Llc | Glyphosate formulations with early burndown symptoms |
US8268749B2 (en) | 2004-09-17 | 2012-09-18 | Monsanto Technology Llc | Fast symptom glyphosate formulations |
AU2005287122B2 (en) * | 2004-09-17 | 2012-09-27 | Monsanto Technology Llc | Glyphosate formulations with early burndown symptoms |
EP2710892A3 (en) * | 2009-07-21 | 2014-05-21 | Marrone Bio Innovations, Inc. | Use of sarmentine and its analogs for controlling plant pests |
AU2010276286B2 (en) * | 2009-07-21 | 2015-01-29 | Marrone Bio Innovations, Inc. | Use of sarmentine and its analogs for controlling plant pests |
EP3704942A1 (en) * | 2019-03-05 | 2020-09-09 | Filab | Use as a plant growth regulator and/or herbicide |
FR3093402A1 (en) * | 2019-03-05 | 2020-09-11 | Filab | Use as a plant growth regulator and / or herbicide |
CN111406748A (en) * | 2020-04-29 | 2020-07-14 | 上海万力华生物科技有限公司 | Herbicide containing plant source pelargonic acid and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
AU605651B2 (en) | 1991-01-17 |
NZ226600A (en) | 1989-12-21 |
AU2625288A (en) | 1989-05-02 |
EP0335961A1 (en) | 1989-10-11 |
JPH03505722A (en) | 1991-12-12 |
BR8807258A (en) | 1989-10-31 |
AR244499A1 (en) | 1993-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1989003178A1 (en) | Biodegradable herbicidal composition | |
AU656744B2 (en) | Novel process and compositions for controlling weeds | |
Turner et al. | Effect of ammonium sulphate and other additives upon the phytotoxicity of glyphosate to Agropyron repens (L.) Beauv | |
DE69908313T2 (en) | MIXTURES FOR WEED CONTROL IN GLYPHOSATE TOLERANT SOYBEANS | |
FR2624761A1 (en) | PELLETS BASED ON HYDROPHILIC POLYMERS ON WHICH ARE ABSORBED AQUEOUS FORMULATION CONTAINING ONE OR MORE ACTIVE INGREDIENTS | |
US5703011A (en) | Process and composition for controlling weeds | |
JPS5839127B2 (en) | herbicide composition | |
KR20100119897A (en) | Herbicidal method | |
US5700759A (en) | Process and composition for controlling weeds comprising a C7 -C20 | |
US5597778A (en) | Herbicidal compositions containing DMSO | |
GB2259912A (en) | Plant growth stimulator | |
WO2024066031A1 (en) | Herbicidal and insecticidal composition of 4-chloro-o-tolyloxyacetic acid, sodium salt and thiosultap-disodium | |
GB2024016A (en) | Degradation of pesticide residues | |
JPS59484B2 (en) | herbicide composition | |
US6387850B1 (en) | Pesticide composition and method | |
US4020182A (en) | Pesticidal formaldehyde concentrate | |
NO151026B (en) | INSECTICID AND AKARICID MIXTURE CONTAINING GELATIN, AND USING THE MIXTURE FOR AA FIGHTING INSECT AND MEDICINE | |
WO2000053018A1 (en) | Herbicidal composition | |
JPS5818311A (en) | Herbicide composition | |
Albrigo | Methods for evaluation of spray chemical phytotoxicity to citrus | |
US20040121026A1 (en) | Non-toxic composition for the control of epiphytic weeds | |
US3515535A (en) | Herbicidal composition | |
JPS58109403A (en) | Method for combatting small insect pests | |
JP2549142B2 (en) | Herbicide composition | |
JP2024532323A (en) | Herbicidal combinations for agricultural use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU BR DK JP KR NO |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LU NL SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1988909664 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1988909664 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1988909664 Country of ref document: EP |