WO1989001520A1 - Procaryotic xylose isomerase muteins and method to increase protein stability - Google Patents
Procaryotic xylose isomerase muteins and method to increase protein stability Download PDFInfo
- Publication number
- WO1989001520A1 WO1989001520A1 PCT/US1988/002765 US8802765W WO8901520A1 WO 1989001520 A1 WO1989001520 A1 WO 1989001520A1 US 8802765 W US8802765 W US 8802765W WO 8901520 A1 WO8901520 A1 WO 8901520A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amino acid
- mutein
- substitution
- leu
- convert
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2462—Lysozyme (3.2.1.17)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/90—Isomerases (5.)
- C12N9/92—Glucose isomerase (5.3.1.5; 5.3.1.9; 5.3.1.18)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/02—Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
Definitions
- This invention relates to improved mutant forms of an industrially valuable enzyme and to site-specific mutations to direct microbial production of these forms. More specifically, the invention relates to mutated procaryotic xylose isomerases with improved stability and/or catalytic activity, and/or lowered pH optima, and to a method for predicting certain amino acid substitutions that increase the stability of proteins.
- fructose is sweeter to human taste than an equivalent amount of glucose or sucrose.
- Fructose has nutritional advantages over glucose or sucrose as a sweetener because less fructose is needed to impart a desired level of sweetness, and because it does not support the growth of the bacteria responsible for dental plaque as well as does sucrose which is the only economically competitive sweetener.
- the maximum exploitation of these benefits depends on rendering fructose economically competitive with alternative sweeteners, by devising the least expensive process for manufacturing food-grade fructose.
- the Streptomyces enzyme commonly used for commercial fructose production is most accurately designated xylose isomerase (XI), because it has much higher activity in converting xylose to xylulose than turning glucose into fructose.
- XI xylose isomerase
- the purified enzyme is immobilized by adsorption to a solid support packed into a column, or "reactor", through which a concentrated solution of glucose is passed at the highest feasible temperature.
- the enzyme near the reactor inlet experiences a high concentration of glucose and low concentration of fructose.
- the enzyme near the reactor outlet is exposed to approximately equal concentrations of glucose and fructose.
- the isomerase catalytic rate (V) depends on glucose (S) and fructose (P) concentrations ([ ]) as indicated in the following rate equation:
- [E] o is the total enzyme concentration
- K S is the Michaelis constant for glucose
- K P is the Michaelis constant for fructose
- V/[E] o is the enzyme specific activity, an expression of the catalytic effectiveness per enzyme molecule.
- f and k report the intrinsic catalytic activities of the glucose-saturated and fructose-saturated enzyme active sites, respectively representing the maximum possible forward (glucose ⁇ fructose) and reverse (fructose ⁇ glucose) values of V/[E] o for a given temperature and pH.
- K S , K P , , and r vary with temperature, generally increasing with increased temperature below the temperature range where conformational unfolding of the enzyme occurs.
- K S and K P do not necessarily equal the respective dissociation constants for glucose and fructose, they probably approximate the dissociation constants in the case of Streptomyces XI, and therefore are inversely related to the affinities of the enzyme for glucose and fructose substrates.
- XI catalytic activity in the industrially relevant (forward) direction is enhanced by environmental or mutational changes which increase kcat or K P or decrease k cat or K S , increase the intrinsic forward catalytic efficiency or affinity for glucose or decrease the intrinsic reverse catalytic efficiency or affinity of XI for fructose.
- Currently used industrial glucose isomerization processes do not produce the maximum possible (equilibrium) percent conversion of glucose to fructose because the reaction slows as equilibrium is approached. Improvements which permit closer approach to equilibrium by weakening the fructose-XI interaction or by strengthening glucose-XI binding can be as valuable as improvements which permit conversion at higher temperature, where the equilibrium percent conversion is greater.
- atomic resolution i.e. x-ray crystallographic data on the xylose isomerase active site permits the selection of a limited number of protein structural changes to increase net catalytic activity, for example, by strengthening the binding of glucose or by weakening the binding of fructose.
- Xylose isomerase isolated from S. rubiginosus has a pH optimum at 25°C of 8.8 and at 75°C the pH optimum drops to 7.3.
- the commercial isomerization reaction is normally run at 55°C to 65°C at a pH of approximately 6.5. Even at 65°C and pH 6.5 there is a significant amount of alkaline degradation of fructose and glucose to colored and bitter byproducts that are undesirable in high-fructose corn syrup. If the pH optimum of glucose isomerase could be dropped to from pH 5.5 to 6.5 there would be less alkaline degradation of fructose or glucose. Additionally, the isomerization reaction could be run at a pH at which the enzyme should have greater activity.
- Computer graphic analysis of X-ray crystallographic stucture of a protein also provides the ability to predict amino acid alterations that may reduce the pH optimum of an enzyme.
- the enzyme xylose isomerase could be used to produce a high fructose corn syrup commercially at a lower pH without any loss in activity, thereby reducing the alkaline formation of undesirable degradation products of glucose and fructose.
- Such a mutein would also be desirable for use with other enzymes of low pH optima, e.g. glucoamylase, thereby reducing the overall number of steps required to manufacture high- fructose corn syrup, in single batch processes.
- Site-specific mutagenesis permits substitution, deletion or insertion of selected nucleotide bases within a DNA sequence encoding a protein of interest using synthetic DNA oligonucleotides having the desired sequence.
- Recombinant DNA procedures are used to substitute the synthetic sequence for the target sequence to introduce the desired mutation. (See Craik et al., Science. 228:291 (1985) for a review of these procedures).
- Mutant xylose isomerases having characteristics which vary from native enzyme would be useful.
- mutant isomerases having enhanced oxidation and thermal stability would be useful to extend the commercial utility of the enzyme.
- the present invention provides mutated forms ("muteins") of enzymatically active procaryotic xylose isomerase.
- muteins enzymatically active procaryotic xylose isomerase.
- Site-specific mutagenesis of the sequence encoding the enzyme was designed to produce the muteins. Regions of structural homology between xylose isomerases from several microorganisms were identified.
- the present invention provides muteins containing specific modifications of procaryotic xylose isomerase, and materials and methods useful in producing these proteins, as well as modified microorganisms and cell lines useful in their production.
- Other aspects of the invention include the expression constructs and products thereof for the modified xylose isomerases as well as cloning vectors containing the DNA encoding the modified xylose isomerases.
- the DNA encoding the reference procaryotic xylose isomerase is modified using site-directed gapped circle mutagenesis enabling the generation of a change at a selected site within the coding region of the isomerase.
- a change is introduced into isolated DNA encoding procaryotic xylose isomerase which, upon expression of the DNA, results in substitution of at least one amino acid at a predetermined site in the xylose isomerase, or insertion of a polylinker peptide for fusing at least two subunits of the xylose isomerase protein.
- the present invention also provides a method of enhancing thermostability in proteins by introducing proline amino acid substitutions into a protein to decrease the entropy of unfolding of the protein.
- the modified xylose isomerases of the invention may exhibit improved stability and/or catalytic activity, and may have varied K S or K P .
- the muteins may exhibit a lowered pH optimum.
- Another aspect of the invention is a method for increasing the stability of a protein comprising substituting a glycine amino acid residue having a negative phi angle with an alanine to decrease the conf igurational entropy of unfolding of the protein.
- xylose isomerase mutein having a change in at least one position in the native amino acid sequence at a position equivalent to a native amino acid residue selected from the group consisting of Lysine 183 , Lysine 289 , Histidine 54 , Histidine 220 , Methionine 223 , Arginine 140 , Tryptophan 16 , Tryptophan 137 , Phenylalanine 94 , Glycine 146 , Glycine 166 , Glycine 197 , Glycine 219 , Glycine 231 , Glycine 248 , Glycine 298 , Glycine 305 , Glycine 369 , Leucine 15 , Alanine 29 , Alanine 33 , Asparagine 107 , Arginine 109 , Glycine 146 , Valine 151 , Glycine 189 , Leucine 15 , Alanine 29 , Alanine 33 , Asparagine 107 , Arginine
- Figure 1 is drawings depicting the structure of native and mutant T4 lysozymes as described in Example I, infra.
- IB electron density map showing the difference in density between mutant G77A and native lysozyme (coefficients are (F mut -F WT ) and phases are from the refined model of native lysozyme (Weaver and Matthews, J. Mol. Biol. 193:189-199 (1987)). Resolution is 1.7 ⁇ .
- FIGS. 2 are drawings depicting the comparative structures of A82P lysozyme and native lysozyme as described in Example I, infra.
- 2A Electron density difference map for A82P lysozyme minus native lysozyme. (Coefficients, contour levels and conventions are as in Figure 1B, supra. The positive peak indicating the addition of the pyrrolidine ring [of proline] is of height 11 ⁇ ; the negative peak due to displacement of the bound solvent molecule W355 is -11 ⁇ . Part of the side chains of Leu 79 and Arg 80 were omitted for clarity).
- 2B Superposition of the structures of A82P lysozyme (open bonds) and wild-type lysozyme (solid bonds).
- Figure 3 are graphs showing the kinetics of inactivation of native and mutant lysozymes as described in Example I, infra.
- 3A First-order plot, all activities normalized to 1000 units/ ⁇ g at zero time;
- 3B second-order plot,
- a o /A t is the ratio of the initial activity to the activity remaining after time t.
- Figure 4 is a restriction map of the XI gene and flanking region on the Streptomyces rubiginosus chromosome
- Figure 5 shows the DNA sequence and DNA-deduced amino acid sequence of Streptomyces rubiginosus xylose isomerase used as the reference protein
- Figure 6 is a comparison of the amino acid sequence of native reference Streptomyces rubiginosus XI with the amino acid sequences of native XI from other organisms;
- Figure 7 is a graph depicting the effect of temperature on the glucose/fructose equilibrium
- Figure 8 is a graph of relative activity of Streptomyces rubiginosus XI as a function of temperature.
- Figure 9 is a graph of the pH activ profile of a xylose isomerase.
- xylose isomerase refers to the xylose isomerase encoded by a DNA sequence obtained from Streptomyces rubiginosus (S. rubiginosus) derived from ATCC strain 21,175 as described in U.S. Patent No. 4,410,627, incorporated herein by reference.
- XI is an enzyme having the characteristics of converting glucose to fructose and xylose to xylulose. Enzymes having this activity have an enzyme classification number of E.C.5.3.1.5.
- “Mutein” in relation to the “reference” XI refers to a pr ⁇ - tein having a related amino acid sequence which has enzymatic activity substantially the same as the reference XI in that the enzyme converts glucose to fructose and xylose to xylulose. However, it contains one or more amino acid substitutions, inversions, deletions or insertions for amino acid residues. These residues have been selected by predicting structural and chemical alterations that will result from particular substitutions at particular locations in the protein using x-ray crystallographic structural data for the reference XI. The term also includes a protein having an amino acid sequence related to the reference XI, but containing fused subunits.
- “Expression vector” refers to a DNA construct containing a DNA sequence encoding XI, which is operably linked to a suitable control sequence capable of effecting the expression of said DNA in a suitable host.
- control sequences include a promoter to effect transcription, an optional operator sequence to control such transcription, a sequence encoding a suitable RNA ribosome binding site, and sequences which control termination of transcription and translation.
- the vector may be a plasmid, a phage particle, or simply a potential genomic insert. Once transformed into a suitable host, the vector may replicate and function independently of the host genome, or may, in some instances, integrate into the genome itself.
- plasmid and "vector” are sometimes used interchangeably as the plasmid is the most common form of vector at present.
- the invention is intended to include such other forms of expression vectors which serve equivalent functions and which are, or become, known in the art.
- Recombinant host cells "host cells”, “cells”, “cell cultures” and so forth are used interchangeably to designate individual cells, cell lines, cell cultures and harvested cells which have been or are intended to be transformed with the recombinant vectors of the invention.
- the terms also include the progeny of the cells originally receiving the vector.
- Transformed refers to any process for altering the DNA content of the host, including in vitro transformation procedures as described below, phage infection, or such other means for effecting controlled DNA uptake as are known in the art.
- operably linked refers to the situation wherein the sequences or genes are juxtaposed in such a manner as to permit their ordinary functionality.
- a promoter operably linked to a coding sequence refers to those linkages where the promoter is capable of controlling the expression of the sequence.
- Control sequences refers to DNA sequences which control the expression of the sequence which encodes the mutein. Examples include promoters for transcription initiation, optionally with an operator, enhancer regions, ribosome binding site sequences and translation signals which initiate and terminate translation of the gene. Such control sequences must be compatible with, i.e., operable in, the host into which they will be inserted.
- a number of naturally occurring xylose isomerases and their genes may be obtained from a variety of procaryotic organisms, such as Bacillus subtilis, Ampullariella species, bcth disclosed in U.S. Patent No. 3,826,714, S. rubiginosus (ATCC 21,175 disclosed in U.S. Patent Nos. 3,666,628 and 4,410,627) and E. coli.
- procaryotic organisms such as Bacillus subtilis, Ampullariella species, bcth disclosed in U.S. Patent No. 3,826,714, S. rubiginosus (ATCC 21,175 disclosed in U.S. Patent Nos. 3,666,628 and 4,410,627) and E. coli.
- the foregoing patents are incorporated by reference herein.
- naturally occuring mutants of xylose isomerase may be employed as sources for genetic material for mutation.
- the DNA sequence encoding the gene for S. rubiginosus xylose isomerase may be obtained and cloned in accord with the general method herein. As will be seen from the examples, this method includes determining at least a portion of the amino acid sequence for the enzyme, synthesizing labeled probes having putative sequences encoding sequenced regions of the xylose isomerase, preparing genomic DNA libraries prepared from chromosomal DNA isolated from S. rubiginosus cells expressing the isomerase, and screening the library for the gene encoding xylose isomerase by hybridization to the labeled probes. Positively hybridizing clones are then restriction enzyme mapped and sequenced.
- xylose isomerase gene has been identified and cloned, a number of modifications are undertaken to modify the gene to encode enzyme muteins with improved characteristics compared to the reference enzyme, for industrial uses.
- the reference enzyme is the enzyme prior to the modifications as described herein.
- Crucial to selection of sites for mutagenesis is procurement of an atomic-resolution x-ray crystal structure of the reference enzyme.
- Computer graphics analysis of the enzyme's crystal structure allows the identification of specific sites for alteration that may result in muteins possessing improved properties.
- a strategy may be devised using a computer-based model-building system, for example using computer assistance such as the Proteus computer program described by Pabo et al., Biochem. 25:5987-5991 (1986), incorporated by reference herein.
- computer assistance such as the Proteus computer program described by Pabo et al., Biochem. 25:5987-5991 (1986), incorporated by reference herein.
- such methodology involves analyzing geometric aspects of protein structure revealed, for example, by x-ray diffraction crystallography.
- such a strategy takes into account how the proposed modification will fit with the remaining (unmodified) portion of the protein, taking into consideration the environment of the amino acid residues.
- the stability of a protein structure is determined by the net difference in free energy between the folded and unfolded forms of the protein. Both enthalpy and entropy contribute to the free energy terms.
- S conf R In z where R is the gas constant and z is the number of conformations available to that residue in the unfolded state. (Schellman, C.R.Trav.Lab. Carlsberg Ser. Chim. 29:230-259 (1955).)
- the value of z is not the same for all amino acids.
- the pyrrolidine ring of proline restricts this residue to fewer conformations than are available to the other amino acids.
- Nemethy, et al., supra, estimated that the backbone contribution to the entropy of unfolding of an alanine relative to a glycine is -2.4 cal/deg ⁇ mol ("eu") (1 cal 4.184J).
- a proline relative to an alanine can be estimated to have a relative conf igurational entropy of unfolding of about -4 cal/deg ⁇ mol ("eu").
- -4 cal/deg ⁇ mol corresponds to a change of 1.4 kcal in the free energy of unfolding and an increase in the melting temperature of about 3.5°C.
- the present invention provides a method for predicting substitution by certain amino acids to decrease the contigurational entropy of unfolding a protein, thus increasing protein stability.
- the most effective substitutions contemplated are those in which amino acids in a protein are replaced with prolines.
- Another useful substitution contemplated is to replace glycine residues in a protein with alanine.
- the three-dimensional structure of a protein is obtained, for example by X-ray crystallography. From the three- dimensional coordinates the backbone conformational angles (phi ⁇ and psi ⁇ ) are calculated and listed. Direct, visual inspection of these ⁇ , ⁇ angles permits the selection of all possible sites where an amino acid such as proline can be accommodated.
- proline substitution there is also a restriction on the ⁇ and ⁇ values of the amino acid in the amino acid sequence of the protein immediately preceding the site of the proposed proline substitution. This restriction is as follows: If the ⁇ value of the residue preceding the proline substitution site is between 0o and -90° then the substitution site itself must have ⁇ and ⁇ values in Region 1.
- the substitution site itself can have ⁇ and ⁇ values in either Region 1 or Region 2.
- ⁇ and ⁇ values are based on an analysis of the conformations of proline residues in all protein structures refined to a resolution of 1.7 ⁇ or better. These ⁇ and ⁇ values were determined from the coordinates of proteins (x,y,z values) deposited in the Brookhaven Data Bank, Brookhaven, NY (Bernstein et al., J. Mol. Biol. 112: 535-542 (1977), Coordinate listing of January 1, 1987).
- each site must be inspected to determine if the substitution can be made without disruption of the three-dimensional structure of the protein. Amino acid substitutions that would cause unfavorable steric interactions with other parts of the protein structure are avoided. Removal of an amino acid that makes favorable interactions with neighboring protein atoms is also avoided.
- the inspection of the three- dimensional protein structure can be carried out in different ways, for example by using a wire model of the structure, or by displaying a model of the structure on a graphics system with a program such as FRODO (described by Jones in Crystallographic Univ. Press, Oxford, pp. 303-317 (1982), available from Evans and Sutherland, Salt Lake City, UT 84108).
- the method of the invention for predicting sites for replacement of glycine with alanine is similar in principle to that used for the proline substitutions.
- a three- dimensional model of the protein is then inspected to determine those glycine to alanine substitutions that can be made without perturbing the three-dimensional structure of the protein.
- the enhancement of protein stability based on the difference between backbone conf igurational entropy of different amino acids is not restricted to replacements involving proline or glycine. Residues such as threonine, valine and isoleucine with branched ⁇ -carbons restrict the backbone conformation more than nonbranched residues. As a consequence, there are many possible amino acid substitutions that alter the backbone conf igurational entropy of unfolding of a protein and that may be used to increase protein stability.
- the preselected substitution site may be any amino acid residue except proline and the amino acid introduced at the site is proline.
- the preselected substitution site may be a glycine amino acid residue with a negative phi angle and the amino acid introduced is alanine.
- Another aspect of the invention is a method for increasing the stability of a protein comprising substituting a glycine amino acid residue having a negative phi angle with an alanine to decrease the configurational entropy of unfolding of the protein.
- Streptomyces rubiginosus (S. rubiginosus), xylose isomerase mutein having a change in at least one position in the native amino acid sequence at a position equivalent to a native amino acid residue selected from the group consisting of Lysine 183 , Lysine 289 , Histidine 54 , Histidine 220 , Methionine 223 , Arginine 140 , Tryptophan 16 , Tryptophan 137 , Phenylalanine 94 , Glycine 146 , Glycine 166 , Glycine 197 , Glycine 219 , Glycine 231 , Glycine 248 , Glycine 298 , Glycine 305 , Glycine 369 , Leucine 15 , Alanine 29 , Alanine 33 , Asparagine 107 , Arginine 109 , Glycine 146 , Valine 151 , Glycine 189 , Leucine 15 , Alanine 29 ,
- the change is in the lysine amino acid residue equivalent to Lys 183 and the change is substitution by an amino acid selected from the group consisting of Arg, Gln, Asn, Asp, Glu, Ser, Thr, His, Tyr, Ala, Val, Leu and lle; or
- the change is in the lysine amino acid residue equivalent to Lys 289 and the change is substitution by an amino acid selected from the group consisting of Arg, Gln, Asn, Asp, Glu, Ser Thr, His, Tyr, Ala, Val, Leu and lle; or
- the change is in the histidine amino acid residue equivalent to His 54 and the change is substitution by an amino acid selected from the group consisting of Gln, Glu, Asn, Asp, Ser, Thr, Ala, Val, and Tyr; or
- the change is in the histidine amino acid residue equivalent to His 220 and the change is substitution by an amino acid selected from the group consisting of Gln, Glu, Asn, Asp, Ser, Thr, Ala, Val, and Tyr; or
- the change is in the methionine amino acid residue equivalent to Met 223 and the change is subsitution by an amino acid selected from the group consisting of Gly, Ala, Val, Leu, lle, Phe, Tyr, Gln, and Asn; or
- the change is in the arginine amino acid residue equivalent to Arg 140 and the change is substitution by an amino acid selected f rom the group cons ist ing of Gin, Asn , Glu, Asp , l le , Leu, Ala, Val, and Tyr; or
- the change is in the tryptophan amino acid residue equivalent to Trp 16 and the change is substitution by an amino acid selected from the group consisting of Asn, Gln, Ser, Thr, Gly, Ala, Val, Leu, lle, Tyr, Phe, and His; or
- the change is in the tryptophan amino acid residue equivalent to Trp 137 and the change is substitution by an amino acid selected from the group consisting of Asn, Gln, Ser, Thr, Gly, Ala, Val, Leu, lle, Tyr, Phe, and His; or
- the change is in the phenylalanine amino acid residue equivalent to Phe 94 and the change is substitution by an amino acid selected from the group consisting of Thr, Ser, His, Val, Gly, Ala, lle, Leu, Asn, and Gln; or
- the change is substitution of the glycine amino acid residue equivalent to Gly x where x is selected from the group consisting of residues 146, 166, 197, 219, 231, 248, 298, 305 and 369, and the Gly substituted with an amino acid other than glycine; or
- the change is substitution by proline in the amino acid residue equivalent to an amino acid residue selected from the group consisting of Leu 15 , Asp 28 , Ala 29 , Arg 32 , Ala 33 , Ser 64 , Asn 107 , Arg 109 , Gly 146 , Val 151 , Gly 189 , Leu 192 , Glu 207 , Val 218 , Ile 252 , Arg 259 , Arg 292 , Thr 342 , Arg 354 , Gly 369 , Arg 177 , and Asp 345; or
- the change is double substitutions of cysteine in the amino acid residues equivalent to pairs of amino acid residues selected from the group consisting of Trp 270 and Gly 146 , Phe 320 and His 382 , Glu 337 and Arg 109 , Gly 189 and Glu 144 , Gly 251 and Gly 225 , Ala 336 and Val 98 , Gln 249 and Gly 219 , and/or Gly 207 and Asp 163; or
- the change is substitution by tyrosine in the amino acid residues equivalent to an amino acid residue selected from the group consisting of Asp 9 , Gln 21 , Ala 29 , Arg 32 , Glu 38 , Leu 46 , Asp 56 , Leu 58 , Val 127 , Thr 133 , Ala 136 , Arg 177 , Ile 180 , Leu 193 , Leu 211 , Asn 227 , Gln 234 , Ala 238 , Leu 246 , Arg 284 , Arg 308 , Leu 311 , Arg 316 , Leu 335 , Val 362 , Met 370 , Leu 375 and Leu 383 ; or the change is substitution by phenylalanine in the amino acid residue equivalent to an amino acid residue selected from the group consisting of Leu 46 , Asp 56 , Leu 58 , Thr 133 , Ala 136 , Ile 180 , Leu 193
- the change is substitution by tryptophan in the asparagine amino acid residue equivalent to Asn 227; or
- the change is substitution by an amino acid residue selected from the group consisting of Ala, Val, Leu, lle, Ser, Thr, His, Tyr, Lys, Arg, Met and Pro in the amino acid residue equivalent to an amino acid residue selected from the group consisting of Gln 21 , Asn 92 , Asn 107 , Asn 185 , Asn 227 , Gln 234 , Gln 256 , Asn 309 , and Gln 377; or
- the change is in the aspartic acid amino acid residue equivalent to Asp 57 and the change is substitution by an amino acid selected from the group consisting of Lys, Arg, Gly, Ala, Gln, Asn, Thr and Ser; or
- the change is in the glutamic acid amino acid residue equivalent to Glu 186 and the change is substitution by an amino acid selected from the group consisting of Lys, Arg, Gly, Ala, Gln, Asn, Thr and Ser; or
- the change is substitution of the aspartic acid amino acid residue equivalent to Asp 57 and the substitution is with an amino acid other than aspartic acid or glutamic acid; or
- the change is substitution in the glutamic acid amino acid residue equivalent to Glu 186 and the change is substitution by an amino acid other than aspartic acid or glutamic acid; or
- the change is substitution by glutamine in the glutamic acid amino acid residue equivalent to Glu 221; or the change is substitution by glutamine in the glutamic acid amino acid residue equivalent to Glu 141 .
- Still another aspect of the invention is a nucleic acid encoding the xylose isomerase of the invention where the nucleic acid is substantially free of nucleic acid that does not encode the xylose isomerase.
- Another specific aspect of the invention is an expression vector for mutant procaryotic xylose isomerase which has the nucleic acid of the invention operably linked to control sequences compatible with a host cell.
- Another aspect of the invention is a method for enhancing the conversion of glucose to fructose and xylose to xylulose by exposing an effective amount of the xylose isomerase muteins of the invention to glucose and xylose, respectively.
- Still another aspect of the invention is an expressed xylose isomerase mutein which exhibits a change in one or more of the characteristics of chemical stability, , r , K S , K P , temperature stability, specific activity of the isomerase and a lowered ph optimum, as compared to a reference xylose isomerase.
- the DNA sequence encoding the protein is site-specifically mutagenized to substitute nucleotides encoding selected amino acids at the predetermined positions within the sequence.
- Site-specific mutagenesis also known as primer-directed mutagenesis
- a preferred procedure is gapped circle mutagenesis (Kramer et al., Nucl. Acids Res. 12:9441-9456 (1986)).
- the DNA sequence encoding the gene to be mutagenized is ligated into an M13 vector having amber mutations which prevent its replication.
- the oligonucleotide primer incorporating the desired nucleotide changes is ultimately joined to a similar M13 vector lacking the mutation.
- the phage incorporating primer preferentially replicates in a susceptible host, thus enriching for the altered gene.
- site-specific mutagenesis is performed by cloning the DNA sequence encoding the reference enzyme into a convenient M13 cloning vector and using an appropriate primer, to convert a residue at an identified position for example, to a conservative amino-acid replacement.
- a synthetic oligonucleotide complementary except in areas of limited mismatching to the desired sequence, is used as a primer in the synthesis of a strand complementary to the single-stranded reference isomerase sequence in the phage vector.
- the resulting double-stranded DNA is transformed into a phage-supporting host bacterium. Cultures of the transformed bacteria are plated in top agar, permitting plaque formation from single cells which harbor the phage.
- plaques 50% of the plaques will consist of phage containing the mutant form; 50% will have the original sequence.
- the plaques will be enriched for phage having the mutant form.
- the plaques are hybridized with kinased synthetic primer under stringency conditions which permit hybridization only with the desired sequence which will form a perfect match with the probe. Hybridizing plaques are then picked and cultured, and the DNA is recovered.
- the mutated cloned xylose isomerase genes may then be ligated into an expression vector (which may also be the cloning vector) with requisite regions for replication in the host.
- the vector is transfected into a host for enzyme synthesis, and the recombinant host cells are cultured under conditions favoring enzyme synthesis, usually selection pressure such as is supplied by the presence of an antibiotic, the resistance to which is encoded by the vector. Culture under these conditions results in enzyme yields multifolds greater than the wild type enzyme synthesis of the parent organism, even if it is the parent organism that is transformed.
- the mutated cloned xylose isomerases are used to transform a host cell in order to express the mutated isomerase.
- the mutated xylose isomerase gene is ligated into a high copy number plasmid.
- This plasmid replicates in hosts in the sense that it contains the well-known elements necessary for plasmid replication: a promoter operably linked to the gene (which may be the gene's own homologous promoter if it is recognized, i.e., transcribed by the host), a transcription termination and polyadenylation region (necessary for stability of the mRNA transcribed by the host from the xylose isomerase gene) which is exogenous or is supplied by the endogenous terminator region of the isomerase gene and, preferably, a selection gene such as an antibiotic resistance gene that enables continuous growth in antibiotic-containing media.
- a promoter operably linked to the gene which may be the gene's own homologous promoter if it is recognized, i.e., transcribed by the host
- a transcription termination and polyadenylation region (necessary for stability of the mRNA transcribed by the host from the xylose isomerase gene) which is exogenous or is supplied
- High copy number plasmids also contain an origin of replication compatible with the host, thereby enabling large numbers of plasmids to be generated in the cytoplasm without chromosomal limitations.
- Procaryotes most frequently are represented by various strains of E. coli. However, other microbial strains may also be used, such as bacilli for example, Bacillus subtilis, Pseudomonas sp., Streptomyces rubiginosus; various species of fungi or other microorganisms.
- plasmid vectors which contain replication sites and control sequences derived from a species compatible with the host are used.
- E. coli is typically transformed using derivatives of pBR322, a plasmid derived from an E. coli species by Bolivar, et al., Gene 2:95 (1977).
- pBR322 contains genes for ampicillin and tetracycline resistance, and thus provides additional markers which can be either retained or destroyed in constructing the desired vector.
- Commonly used procaryotic control sequences which are defined herein to include promoters for transcription initiation, optionally with an operator, along with ribosome binding site sequences, include such commonly used promoters as the betalactamase (penicillinase) and lactose (lac) promoter systems (Chang, et al., Nature (1977) 198:1056), the tryptophan (trp) promoter system (Goeddel, et al., Nucleic Acids Res (1980) 8:4057), and the lambda derived PL promoter and N-gene ribosome binding site (Shimatake, et al., Nature (1981) 292:128), which has been made useful as a portable control cassette.
- phosphatase A (phoA) system described by Chang, et al., in European Publication No. 196,864 published October 8, 1986, and assigned to the same assignee and incorporated herein by reference.
- phoA phosphatase A
- any available promoter system compatible with procaryotes can be used.
- eucaryotic microbes such as yeast
- yeast may also be used as hosts.
- Laboratory strains of Saccharomyces cerevisiae. Baker's yeast are frequently used, although a number of other strains are commonly available.
- Many plasmid vectors suitable for yeast expression are known. (See, for example, Stinchcomb, et al., Nature 282:39 (1979), Tschempe, et al., Gene 10:157 (1980) and Clarke, L., et al., Meth. Enzvmol. 101:300 (1983)).
- Control sequences for yeast vectors include promoters for the synthesis of glycolytic enzymes (Hess, et al., J . Adv. Enzyme. Reg.
- glycolytic enzymes such as glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3 phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.
- glycolytic enzymes such as glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3 phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.
- promoters which have the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, and enzymes responsible for maltose and galactose utilization (Holland, ibid). It is also believed that terminator sequences are desirable at the 3' end of the coding sequences. Such terminators are found in the 3' untranslated region following the coding sequences in yeast-derived genes. Many of the vectors illustrated contain control sequences derived from the enolase gene containing plasmid peno 46 (Holland, M. J., et al., J. Biol. Chem.
- eucaryotic host cell cultures derived from multicellular organisms. See, for example, Tissue Culture. Academic Press, Cruz and Patterson, editors (1973).
- Useful host cell lines include murine myelomas NS1, VERO and HeLa cells, and Chinese hamster ovary (CHO) cells.
- Expression vectors for such cells ordinarily include promoters and control sequences compatible with mammalian cells such as, for example, the commonly used early and late promoters from Simian Virus 40 (SV 40) (Fiers, et al., Nature 273:113 (1978)), or other viral promoters such as those derived from polyoma, Adenovirus 2, bovine papiloma virus (BPV), or avian sarcoma viruses, or immunoglobulin promoters and heat shock promoters .
- SV 40 Simian Virus 40
- BPV bovine papiloma virus
- avian sarcoma viruses or immunoglobulin promoters and heat shock promoters .
- Plant cells are also now available as hosts, and control sequences compatible with plant cells such as the nopaline synthase promoter and polyadenylation signal sequences (Depicker, A., et al., J. Mol. Appl. Gen. 1:561 (1982)) are available. Recently, in addition, expression systems employing insect cells utilizing the control systems provided by baculovirus vectors have been described (Miller, D.W., et al., in Genetic Engineering. Setlow, J.K., et al., eds., Plenum Publishing, Vol. 8, pp. 277-297 (1986)).
- transformation is done using standard techniques appropriate to such cells.
- the calcium treatment employing calcium chloride as described by Cohen, S. N., Proc. Natl. Acad. Sci. (USA) 69:2110 (1972), is used for procaryotes or other cells which contain substantial cell wall barriers.
- Infection with Agrobacterium tumefaciens (Shaw, C. H., et al., Gene 23:315 (1983)) is used for certain plant cells.
- the calcium phosphate precipitation method of Graham and van der Eb, Virology 52:546 (1978) is preferred.
- Transformations into yeast are carried out according to the method of Van Solingen, P., et al., J. Bact. 130:946 (1977) and Hsiao, C. L., et al., Proc. Natl. Acad. Sci. (USA) 76:3829 (1979).
- Southern Analysis is a method by which the presence of DNA sequences in a digest or DNA-containing composition is confirmed by hybridization to a known, labeled oligonucleotide or DNA fragment.
- Southern Analysis shall mean separation of digests on 1 percent agarose and depurination as described by G. Wahl et al., PNAS (USA). 76:3683-3687 (1979), transfer to nitrocellulose by the method of E. Southern, J. Mol. Biol. 98:503-517 (1975), and hybridization as described by Maniatis et al., Cell. 15:687-701 (1978).
- cDNA or genomic libraries are screened using the colony or plaque hybridization procedure.
- Bacterial colonies, or the plaques for phage are lifted onto duplicate nitrocellulose filter papers (S & S type BA-85).
- the plaques or colonies are lysed and DNA is fixed to the filter by sequential treatment for 5 min with 500 mM NaOH, 1.5 M NaCl.
- the filters are washed twice for 5 min each time with 5 x standard saline citrate (SSC) and are air dried and baked at 80°C for 2 hr.
- SSC standard saline citrate
- the samples are then hybridized by incubation at the appropriate temperature for about 24-36 hours using the hybridization buffer containing kinased probe (for oligomers). Longer cDNA or genomic fragment probes may be labeled by nick translation or by primer extension.
- the conditions of both prehybridization and hybridization depend on the stringency desired, and vary, for example, with probe length. Typical conditions for relatively long (e.g., more than 30-50 nucleotide) probes employ a temperature of 42°C and hybridization buffer containing about 20%-50% formamide. For the lower stringencies needed for oligomeric probes of about 15 nucleotides, lower temperatures of about 25°-42oC, and lower formamide concentrations (0%-20%) are employed. For longer probes, the filters may be washed, for example, four times for 30 minutes, each time at 40o-50°C with 2 x SSC, 0.2% SDS and 50 mM sodium phosphate buffer at pH 7, then washed twice with 0.2 x SSC and 0 . 2% SDS , air dried, and are autoradiographed at -70 °C for 2 to 3 days. Washing conditions are somewhat less harsh for shorter probes. Minor variations from these specified hybridization methods are described in the examples below.
- Plasmids containing the desired coding and control sequences employs standard ligation and restriction techniques which are well understood in the art. Isolated plasmids, DNA sequences, or synthesized oligonucleotides are cleaved, tailored, and religated in the form desired.
- Site-specific DNA cleavage is performed by treating the DNA with the suitable restriction endonuclease(s) under conditions which are generally understood in the art, and the particulars of which are specified by the manufacturer of these commercially available restriction enzymes. See, e.g., New England Biolabs, Product Catalog (New England Biolabs , Beverly, MA) . In general , about 1 ⁇ g of plasmid or DNA sequence is cleaved by one unit of enzyme in about 20 ⁇ l of buffer solution. An excess of restriction enzyme is typically used to insure complete digestion of the DNA substrate; however, it may be desirable to carry out partial digestions in which some but not all of the sites of a given restriction enzyme in the DNA are cleaved.
- Such partial digestions are accomplished by varying the concentration of restriction enzyme or length of time the restriction digestion is carried out. Incubation times of about one hour to two hours at about 37°C are workable, although variations can be tolerated. After each incubation, protein is removed by extraction with phenol/chloroform, and may be followed by ether extraction, and the nucleic acid recovered from aqueous fractions by precipitation with ethanol. If desired, size separation of the cleaved fragments may be performed by polyacrylamide gel or agarose gel electrophoresis using standard techniques. A general description of size separations are found in Methods in Enzymology (1980) 65:499-560; Lawn et al., Nucl. Acids Res.
- Restriction cleaved fragments may be blunt ended by treating with the large fragment of E. coli DNA polymerase I (Klenow) in the presence of the four deoxynucleotide triphosphates (dNTPs) using incubation times of about 15 to 25 min at 20° to 25°C in 50mM Tris pH 7.6, 50mM NaCl, 6mM MgCl 2 , 6mM dTT, about 10 U/ ⁇ l Klenow and 5-10 ⁇ M dNTPs.
- E. coli DNA polymerase I Klenow
- dNTPs deoxynucleotide triphosphates
- the Klenow fragment fills in at 5' sticky ends but chews back protruding 3' single strands, even though the four dNTPs are present. If desired, selective repair can be performed by supplying only one of the, or selected, dNTPs within the limitations dictated by the nature of the sticky ends. After treatment with Klenow, the mixture is extracted, with phenol/chloroform and ethanol precipitated. Treatment under appropriate conditions with SI nuclease results in hydrolysis of any single-stranded portion.
- Ligations are performed in 15-30 ⁇ l volumes under the following standard conditions and temperatures: 20mM Tris-HCl, pH 7.5, 10mM MgCl 2 , 10mM dTT, 33 ⁇ g/ml BSA, 10 mM-50 mM NaCl, and either 40 ⁇ M ATP, 0.01-0.02 (Weiss) units T4 DNA ligase at 0°C (for "sticky end” ligation) or 1mM ATP, 0.3-0.6 (Weiss) units T4 DNA ligase at 14oC (for "blunt end” ligation). Intermolecular "sticky end” ligations are usually performed at 33-100 ⁇ g/ml total DNA concentrations (5-100 nM total end concentration). Intermolecular blunt end ligations (usually employing a 10-30 fold molar excess of linkers) are performed at 1 ⁇ M total, ends concentration.
- vector construction employing "vector fragments”
- the vector fragment is commonly treated with bacterial alkaline phosphatase (BAP) in order to remove the 5' phosphate and prevent religation of the vector.
- BAP digestions are conducted at pH 8 in approximately 150 ⁇ M Tris, in the presence of Na + and Mg +2 using about 1 unit of BAP per ⁇ g of vector at 60°C for about one hour.
- the preparation is extracted with phenol/chloroform and ethanol precipitated.
- religation can be prevented in vectors which have been double digested by additional restriction enzyme digestion of the unwanted fragments.
- the isolated DNA is analyzed by restriction and/or sequenced by the dideoxy method of Sanger, et al., P.N.A.S. (U.S.A.), 74:5463 (1977) as further described by Messing, et al., Nucleic Acids Res. 9:309 (1981), or by the method of Maxam, et al., Methods in Enzymology 65:499 (1980).
- Synthetic oligonucleotides may be prepared by the triester method of Matteucci, et al., J. Am. Chem. Soc. 103:3185-3191 (1981), or using automated synthesis methods. Kinasing of single strands prior to annealing or for labeling is achieved using an excess, e.g., approximately 10 units of polynucleotide kinase to 1 nM substrate in the presence of 50 mM Tris, pH 7.6, 10 mM MgCl 2 . 5 mM dithiothreitol, 1-2 mM ATP. If kinasing is for labeling of probe, the ATP will contain high specific activity 32 ⁇ P.
- the synthetic oligonucleotide is used as a primer to direct synthesis of a strand complementary to the phage, and the resulting double-stranded DNA is transformed into a phage- supporting host bacterium. Cultures of the transformed bacteria are plated in top agar, permitting plaque formation from single cells which harbor the phage.
- Hpst strains that may be used in cloning and expression herein are as follows:
- E. coli strain MM294 obtained from the American Type Culture Collection, Rockville, MD (ATCC, No. 53,131) is used as the host. This particular strain contains a plasmid, pAW721, and should be plasmid cured prior to use.
- E. coli strain MM294 or DG101 may be used for expression under control of the trp promoter and trpE translation initiation signal in the expression vector pTRP3, E. coli strain MM294 or DG101, may be used.
- pTRP3 has been accepted for deposit under the terms of the Budapest Treaty, under accession No. ATCC 39,946.
- E. coli strains susceptible to phage infection such as E. coli K12 strain DG98 (ATCC No. 39,768) and HB2151 (commercially available from Anglican Biotechnology Ltd., Colchester, Essex, UK) are employed.
- Mammalian expression may be performed in COS-7, COS-A2, CV-1, and murine cells, and insect cell based expression in Spodoptera frugipeida.
- mutant xylpse isomerases expressed upon transformation of the suitable hosts have similar enzymatic activity to the reference xylose isomerase and are screened for those that exhibit desired characteristics, for example, kinetic parameters, oxidation stability, thermal stability, lowered pH optima and the like.
- a change in kinetic parameters is defined as an alteration in kcat f , k catr , K S and/or K P .
- Procaryotic xylose isomerase muteins with increased or diminished , k , K S or K P values may be obtained as described herein.
- the objective will be to obtain a mutein having a greater (numerically larger) k cat for the forward reactions (glucose to fructose, and xylose to xylulose), and a reduced (numerically smaller) K S for the substrates glucose or xylose, thereby enabling the use of the enzyme to more efficiently process its target substrate.
- k cat and K S are measured by known procedures, for example by analysis of the progress curve for these known parameters in the enzyme/substrate reaction.
- the rate of the reaction may be measured as a function of substrate concentration.
- Data are preferably analyzed by fitting to the Michaelis- Menten equation using a non-linear regression algorithm such as that described by Marquardt, J. Soc. Ind. Appl.
- a lowered pH optimum is defined as a shift in the peak of the pH vs. activity profile toward lower pH values.
- pH vs. activity profiles are measured by known assay procedures under controlled pH conditions.
- Procaryotic xylose isomerase muteins having a lowered (numerically smaller) pK a may be obtained as described herein. These muteins may possess lowered pH optima.
- the deduced amino acid sequence of the recombinant gene for xylose isomerase obtained as described above is shown in Figure 5 (A and B).
- This sequence was used in conjunction with x-ray crystallographic analysis and molecular modeling using a computer graphics system to display and analyze the three-dimensional structure of xylose isomerase, including the active site.
- the effects of replacement, insertion or deletion of one or more key amino acid residues for example the effects on non-covalent interactions between the active site and the substrate (glucose) or end product (fructose), are determined.
- Sites within the DNA sequence for the xylose isomerase of the invention are thus targeted for mutation to improve the activity and stability of the enzyme, for example, to alter the catalytic properties by reducing the K S and increasing the increasing K P , decreasing k and/or by increasing the enzyme's stability toward thermal and chemical inactivation.
- These same mutations may be used at homologous locations within the DNA sequences for other xylose isomerases obtained from other microorganisms, since many of the amino acid residues selected for mutation are conserved between the various isomerases as shown in Figure 6.
- the present invention promotes high efficiency of glucose conversion and high yields of fructose, using muteins of procaryotic xylose isomerase which may be used industrially for isomerization of glucose to fructose.
- the various mutation strategies of the present invention may be grouped as follows:
- Mutations are directed to removal of certain amino acids at selected positions that contain an amino group capable of reacting with a reducing sugar such as glucose so as to irreversibly inactivate the enzyme. These mutations result in removal of lysine amino acids, the only amino acid containing epsilon amino groups, that can react with a reducing sugar to irreversibly inactivate the enzyme (i.e., undergo Maillard reaction). In these mutations, as in the others, it is preferable to attempt to maintain similar structure and/or chemical properties, for example by introducing amino acids that have similar numbers of atoms, or by conserving salt bridges, hydrophobic interactions or hydrogen bonds, thereby maintaining a conformation like that of the native protein.
- oxidation of methionine, histidine or tryptophan residues at or near the active site may lead to a reduction in catalytic activity.
- Histidine contains an imidazole group, and tryptophan an indole group that may be oxidized. Mutations are targeted to replace methionine or histidine residues with amino acids that are not likely to be oxidized, such as glutamine or glycine.
- Arginine contains a guanido group susceptible to modification by dicarbonyl compounds such as 2,3- butanedione. Similar dicarbonyl compounds may inactivate xylose isomerase. Removal or replacement of arginine may prevent inactivation.
- Glycine residues in selected positions e.g. alpha helices, ⁇ -strands or random structures that can accept the increased bulk of the substituted methyl group, are substituted with alanine residues to confer additional stabilization.
- proline substitutions are made at selected positions (the polypeptide-backbone torsion angles must accept the atypical proline angle values) to reduce the entropy of the unfolded form of the protein , and stabi lize the nat ive conformat ion .
- proline substitution sites may be based on analysis of Phi/ssi ( ⁇ , ⁇ ) angles computed from the X-ray structure of the reference protein using the method of the invention, or may be based on analysis of the amino acid sequences of homologous proteins.
- proline substitutions may be made in the reference XI at positions identified from comparison of the highly homologous and thermostable XI from Ampullariella which contains several proline residues that are not present in the reference XI. Additional stabilizing alterations include the introduction of disulfide bridges at conformationally acceptable positions in the XI structure. Both intersubunit or intrasubunit disulfide bridges in the tetrameric xylose isomerase are contemplated within this invention.
- aromatic amino acid residues such as tyros ine, phenylalanine and tryptophan near aromatic clusters within the enzyme are also within the scope of the invention, to stabilize the enzyme at sites where the additional bulk of aromatic groups will not distort the overall conformation.
- amino acids asparagine and glutamine residues
- substitutions with amino acids such as alanine and valine that cannot undergo such reactions.
- the structural gene for xylose isomerase is duplicated and the two copies of the gene are fused via a DNA sequence encoding a short peptide segment, between 3 and 10 amino acids long, between the N-terminus of one gene copy and the C-terminus of the other.
- oligoglycine or a combination of glycine and additional amino acids such as alanine, serine, threonine or proline is used as the short peptide sequence.
- the N-terminus of one gene copy can be fused directly to the C-terminus of a second gene copy, or short deletions encoding for 1 to 3 amino acids can be made at either end prior to fusion.
- selected amino acids are mutated to alter the electrostatic potential at the xylose isomerase active site. This may be accomplished by changing negatively charged amino acids to positively charged amino acids near the active-site of the xylose isomerase, while preserving residues directly involved in substrate binding and catalysis (e.g. histidine at position 54 (His 54 )).
- the mutated isomerase proteins may be more stable than the currently used naturally occurring enzymes at the high temperatures, near 100°C, needed to reach the desired conversion levels (greater than 55% fructose). Some of the stabilizing mutations simply reduce the rate of thermally induced unfolding of the protein conformation. Others prevent covalent modifications of the enzyme which might reduce catalytic activity or conformational stability.
- the isomerase muteins may have improved catalytic activity for any combination of three reasons: increased intrinsic catalytic activity, increased affinity for substrate glucose, or decreased affinity for product fructose. The muteins may also exhibit lowered pH optima.
- the improvements contemplated herein are intended to improve the economics of glucose isomerization for several reasons.
- Increased stability toward conformational unfolding (thermal stabilization) and/or inactivating covalent modification increases the permissible operating temperature and resulting percent conversion of glucose, or increases the operating lifetime of a given batch of catalyst, thus reducing the cost of catalyst per unit of product.
- Increased catalytic activity at a given operating temperature allows a given amount of catalyst to bring a mixture of glucose and fructose closer to equilibrium in less time. It also may reduce the amount of enzyme required, again lowering the cost of catalyst per unit of product.
- the isomerases herein may be obtained as salts. Accordingly, the present invention includes electrically neutral and salt forms of the designated xylose isomerases and the term xylose isomerase refers to the organic structural backbone regardless of ionization state.
- the muteins are particularly useful for the food processing industry.
- the xylose isomerases may be produced by fermentation as described herein and recovered by suitable techniques. (Anstrup, Industrial Aspects of Biochemistry, ed. B. Spencer, pp 23-46 (1974)).
- T4L T4 lysoszyme
- Two different types of amino acid substitutions were performed; the first, Glycine to Alanine and the second, Xaa to Proline where Xaa is any amino acid.
- Gly 77 was replaced with alanine as described below. Alanine was chosen to avoid possible secondary effects that might occur with a larger side chain.
- the mutant protein with a Gly 77 to Ala 77 substitution was designated G77A.
- Mutant lysozymes G77A and A82P were obtained by oligonucleotide-directed mutagenesis (Zoller et al., DNA 3:479-488 (1984)). Procedures for mutagenesis, cloning, DNA sequencing, and protein purification were as described elsewhere (Alber et al., in Protein Structure, Folding and Design, UCLA Symp. Liss, NY, pp. 307-318 (1986); Alber et al., Methods Enzymol. 154:511-533 (1987); Grutter et al., J.Mol. Biol., 197:315-329 (1987) and Owen et al., J.Mol. Biol. 165:229-248 (1983), all of which are incorporated by reference herein).
- the primer used to replace alanine with proline at position 82 was 5'-GTTTTAATTTAGGATTTCTC-3'.
- a degenerate oligonucleotide 5'-CTCAGAATTGNGCGAACAG-3' where N indicates a mixture of C, T and A, was used.
- This oligonucleotide codes for alanine, serine and threonine replacements of Gly 77 . Mutants were identified by differential hybridization of plaque lifts an dot blots to the mutagenic primers (Zoller and Smith, supra; and Alber and Matthews, supra).
- a typical reaction mix contains 0.1 pmole M13 template, 2 pmoles kinased mutagenic oligonucleotide, 0.5 pmole M13 sequencing primer, 0.5X ligase buffer, 0.5X Klenow buffer, 0.5 mM dNTP's, 0.5 mM rATP, 3 U of T4 DNA ligase and 2 U of the large fragment (Klenow) of DNA polymerase. After incubation at 16.C for 8-16 hours, this mixture is used to transform E. coli JM101 in broth culture. This step separates heteroduplex heterozygotes. The number of independent transformants is estimated by plating aliquots of transformed cells. The frequency of mutagenesis is 2-20%.
- mutant lysozyme genes were subcloned into an expression system including plasmid pHSe5 provided by Dr. David C. Muchmore (Institute of Molecular Biology, University of Oregon, Eugene, OR). In this system, the lysozyme gene is flanked by tandem lac and tac promoters and the trp terminator. Tight control of expression is provided by the presence of the lacl q gene on the plasmid. The trp terminator eliminates selection against cells harboring the expression plasmid.
- the lysozyme was purified from lysates of induced plasmid-bearing cells by column chromatography on CM sepharose (Griffey et al., Biochemistry 24:817-822 (1985); and Alber and Matthews, supra). Cells were grown to 9 x 10 8 /ml with vigorous aeration. Induction of lysozyme expression was initiated by addition of isopropyl ⁇ -D-thiogalactoside (Calbiochem) to 8 x 10- 4 M. The cells were incubated with reduced aeration and stirred for 2 h and then collected by centrifugation at 4000 rpm for 5 min in a Beckman J21 centrifuge using a JA10 rotor.
- the cells were resuspended in 20 mL of 50 mM tris(hydroxy- methyl)aminomethane (Tris) and 1 mM ⁇ -mercaptoethanol buffer, pH 7.4, containing 1 mM CaCl 2 and 10 mM MgCl 2 .
- Tris tris(hydroxy- methyl)aminomethane
- EDTA was added to give a concentration of 10 mM and the container was shaken gently. After a few hours, the cells were lysed.
- DNase was added to a final concentration of 1 ⁇ g/mL, and the cellular debris was removed by centrifugation at 12,000 rpm for 20 min.
- the supernatant was decanted and dialyzed against 50 mM Tris, 1 mM ⁇ -mercaptoethanol, and 1 mM ethyl- enediaminetetraacetic acid (EDTA) buffer, pH 7.4, overnight at 4°C.
- This material was loaded on a 2 x 30 cm column of CM-Sepharose equilibrated with the same buffer.
- the supernatant from the first centrifugation (4000 rpm for 5 min) was dialyzed against H 2 O and then also added to the column to recover lysozyme lost during incubation due to cell lysis.
- the column was washed with 6 L of the buffer to remove unwanted proteins and was then eluted with a linear gradient from 0 to 0.3 M NaCl in the buffer.
- the protein elutes as a single peak.
- the protein-containing fractions were pooled, dialyzed, and loaded onto another 1-mL column of CM-Sepharose for concentrating. This was eluted with 100 mM sodium phosphate and 0.5 M sodium chloride buffer, pH 5.6. Typical yield of purified T4 lysozyme was about 50 mgm.
- Crystals of G77A and A82P were obtained under conditions similar to those used for the native enzyme (Remington et al., J.Mol. Biol. 118:81-98 (1978); and Weaver et al., J.Mol. Biol. 193:189-199 (1987)), incorporated by reference.
- X-ray diffraction data to 1.7- ⁇ resolution were collected by oscillation photography as described by Weaver et al., supra, and Schmid et al., Acta Crystallogr. Sect. A 37:707-710 (1981), incorporated by reference herein. Each data set consisted of about 14,000 independent reflections with agreement between equivalent intensities of 6-7%.
- Phage T4 lysozyme can be unfolded reversibly under controlled conditions. The transitions were monitored as the change in dichroism at 223 nm, as has been described (Becktel et al., Biopplymers 26:619-623 (1987) incorporated by reference herein). In practice, great care was taken to ensure that the experimental measurements were reversible and reproducible. Fresh protein samples purified in the absence of chloroform were extensively dialyzed against oxygen-free buffers and reducing agent. Ionic strength was kept above 0.15 with KCl or NaCl, and pH was adjusted with HCl (pH 2-3), 10 mM acetate buffer (pH 4-5) or 10 mM phosphate buffer (pH 5.5-7). Protein concentration was kept below 30 ⁇ g/ml to avoid irreversible aggregation at high temperature.
- Circular dichroism was monitored using a Jasco J-500C instrument equipped with a Hewlett-Packard 89100A thermoionic controller. The temperature of the sample was changed at a constant rate, typically 1oK per minute, under the control of a Hewlett-Packard 87 XM computer. The temperature and optical signal were digitized for subsequent analysis. Denaturation and renaturation were both monitored to ensure reversibility.
- Thermal denaturation of T4 lysozyme was followed by measuring the optical properties of a solution of the purified protein as a function of temperature. Fluorescence emission and circular dichrcism provide the most sensitive methods of optical measurement.
- the optical spectrum e.g. the molar ellipticity at 223 nm, which is sensitive to protein secondary structure
- the fraction of the material that is (un) folded can be calculated at each temperature.
- the equilibrium measurements of the wild-type and mutant lysozymes were consistent with the two-state assumption.
- the ratio of the fraction of the protein in the unfolded and folded conformations is the equilibrium constant (K) for the denaturation reaction.
- thermodynamic parameters were derived from van't Hoff analyses of reversible thermal denaturations of the native and mutant proteins.
- Equilibrium constants were obtained from the fraction of native protein present under a given set of conditions of sequence, temperature, and pH.
- T m is the temperature of denaturation
- ⁇ T is the difference in melting temperature.
- ⁇ H is the enthalpy of unfolding
- ⁇ H is the difference in unfolding enthalpy of mutant and wild-type proteins measured at the melting temperature of the wild-type protein.
- ⁇ S is the entropy of unfolding
- ⁇ S is the difference in unfolding entropy of mutant and wild-type proteins.
- the difference between the free energy of unfolding of mutant and wild-type proteins, ⁇ G, is the observed free energy of stabilization and can be compared with -T m S z,y , which is the backbone entropic stabilization estimated from Eq. 3.
- the temperature variation of the enthalpy and entropy of denaturation for these T4 lysozymes, ⁇ C p was determined to be 2.0 ⁇ 0.2 kcal/deg-mol.
- XI was isolated from Streptomyces rubiginosis strain C3 obtained from CETUS Corporation, Emeryville, CA using the following method.
- the purification scheme for crude extract involves the following steps: filtering the extract to remove insoluble material; precipitating enzyme with alkyldimethylbenzyl ammonium chloride (BTC) to remove impurities not precipitated with the BTC; further filtration with salt; removal of BTC by adsorption resin; desalting and concentration by ultrafiltration to remove low molecular weight impurities; adsorption of the isomerase enzyme on a GDC (granular DEAE cellulose) column to remove unadsorbed impurities; washing and eluting column with sodium chlcride (NaCl) to solubilize the isomerase; and gel filtration. Ultraf iltration is used for enzyme desalting and concentration between the various steps and in some cases the preparation may be sufficiently pure for certain applications so that the gel filtration step may be eliminated.
- BTC alkyldimethylbenzyl ammonium chloride
- Crude isomerase extract was prepared by fermentation of Streptomyces strain C3 which was derived from ATCC 21,175. At the completion of fermentation, i.e., when isomerase activity was at a maximum, the intracellular enzyme was extracted from the mycelia by treatment with lysozyme and cationic surfactant (BTC). The extraction procedure was rapid and efficient with complete isomerase solubilization occurring within 2-4 hours. After extraction, insoluble materials, consisting mostly of disrupted cell debris, were removed by precoat filtration. The resulting soluble extract had an isomerase potency of 35-50 international xylose isomerase units ("U”)/ml. The specific activity (U/mg protein) of the crude extract was difficult to estimate because protein determination is limited by interference from various components of the extract. 2-3 U/mg was expected.
- BTC lysozyme and cationic surfactant
- the optimum concentration of BTC to be added to the extract was determined in a preliminary experiment. This was accomplished by taking several aliquots of the extract and adding various amounts of BTC. The resulting precipitates were removed by centrifugation and aliquots of the supernates taken for isomerase assay as described below. The lowest BTC concentration at which complete or nearly complete isomerase precipitation takes place was the optimum concentration for the larger scale precipitation with the crude extract. Generally a BTC concentration of 1000-2000 ppm should be sufficient for complete isomerase precipitation.
- BTC precipitation the pH of the extract was adjusted to pH 7.0 to 7.3 and the BTC solution (100 mg/ml) added slowly with vigorous stirring. After additions of BTC the suspension was stirred for 20-30 minutes. A small aliquot was taken and centrifuged, and the supernates were assayed for isomerase activity to test for completeness of isomerase precipitation.
- filter aid approximately 5g HyFlo SuperCel/liter of suspension
- the resulting filter cake was washed with several portions of water to remove entrained solubles.
- the filter cake was suspended in a minimum volume of 0.5 N NaCl, pH 7.0 (100-200 ml per liter of original extract) and stirred for thirty minutes. The suspension was then filtered using a vacuum and the filter cake washed with several small portions of salt solutions without vacuum. The filtrate and washings were well mixed and samples taken for determination of protein, BTC, and isomerase activity.
- Soluble BTC-835 alkyldimethylbenzyl ammonium chloride, Onyx Chemical Co.
- concentration was estimated by measuring ultraviolet absorbance over the 290-240 nm range.
- BTC has three distinct absorbance peaks at 269, 262 and 256 nm with very little absorbance at 280 nm.
- ultrafiltration was accomplished with either an Amicon CH4 hollow fiber concentrator or with Amicon 401 or 201 stirred cells using the appropriate Amicon cartridges or membranes.
- Monitoring for enzyme retention was accomplished by periodic UV scan of the ultraf iltrates. Where enzyme leakage was indicated by UV absorbance, samples were checked by the isomerase described below.
- BTC removal was effected by treatment with a strong acid cation exchange resin in the sodium form.
- Resins such as AG-50 (BioRad Laboratories, Richmond, CA) will adsorb BTC in the presence of 0.5N NaCl without affecting isomerase.
- Other procedures for removal of BTC include treatment with activated carbon or ultraf i Itration-diaf iltration.
- the AG-50 resin was added directly to the BTC-isomerase (approximately 1 g dry base resin per 100 ml) solution and the pH was adjusted to 7.0 after a brief period of gentle stirring. The suspension was stirred gently for about 20 minutes and the pH readjusted to 7 when necessary.
- the resin was allowed to settle by gravity and a sample of the supernatant was taken for UV scan to test for BTC removal. If BTC removal was not complete, additional resin was added until no BTC remained. An additional test for BTC removal can be carried out by diluting a portion of the resin supernate 1 to 5 with water. The presence of residual BTC will be indicated by the formation of a precipitate due to the insolubility of the BTC-isomerase at lower salt concentration.
- the resin was removed by filtration, and the filtrate desalted and concentrated by ultrafiltration with an Amicon CH4 hollow fiber cartridge.
- the starting solution for ultrafiltration was optimally free of any insoluble material, and was filtered through a 0.45 micron filter when necessary. Ultrafiltration was carried out until the retentate volume was reduced to a minimum consistent with reasonable flux rate.
- the retentate was then diluted with 5-10 volumes of water and the pH readjusted to 7. Ultrafiltration was continued. This dilution- diafiltration was repeated two more times. The final retentate had a specific activity of 30-35 U/ml. Recovery of activity based on the starting crude extract was 85-90%.
- GDC adsorption-desorption was carried out with a column of granular DEAE-cellulose (Whatman Ltd., Clifton, N.J.). To prepare the column, 300 g GDC was equilibrated in lOmM Tris buffer. This suspension was poured into a 5 cm x 20 cm chromatography column to form a uniform bed. The column was then washed using two liters of 10mM Tris at a flow rate of approximately 10 ml/min. Washing with buffer was continued until the effluent pH was between 6.8 and 7.2.
- the enzyme solution (ultrafilter retentate) was applied directly to the column at a flow rate of approximately 5 ml/min. A total of 2x10 5 -3 x 10 5 U of enzyme can be applied.
- the effluent from the column was monitored for UV absorbance and periodic samples were assayed using the isomerase assay.
- the column was washed with 3-4 liters of 0.15N NaCl at a flow rate of approximately 20 ml/min. This washing step removed weakly adsorbed impurities, as evidenced by the yellow color and UV absorbance of the effluent. Near the end of the washing step the effluent was nearly colorless and contained very little UV absorbing material.
- Elution of the isomerase was accomplished by washing the column with 0.45N NaCl in 10mM Tris, pH 7, at a flow rate of 10 ml/min.
- the effluent from the elution step was collected in 200 ml fractions which were monitored for UV absorbance and isomerase activity.
- Isomerase activity began to elute immediately after a void volume of 800-900 ml of e-luate was collected. More than 90% of the total activity eluted in the first five 200 ml fractions of eluate.
- Fractions with isomerase activity of 20 U/ml and specific activity of 40 U/mg were pooled for desalting and concentration by ultraf iltration.
- the pooled GDC column fractions were desalted and concentrated using either the CH4 concentrator or the 401 stirred cell (30,000 molecular weight cutoff).
- the CH4 unit was used to reduce the volume to 200 ml, and two or three 5 volume diafiltrations were conducted with water to remove salt.
- the CH4 retentate was then further concentrated with the stirred ultrafiltration cell. If the enzyme was to be further purified by gel filtration, diafiltration with 20mM phosphate buffer, pH 7.0, was used to adjust the buffer concentration.
- Recovery of activity from the GDC step was greater than 90% of the activity applied to the column, yielding an overall recovery of about 80% based on the starting extract.
- the specific activity was 40-45 U/mg, indicating that the enzyme was 90-95% pure on a protein basis.
- Total sample volume applied to the column was less than 20 ml, with smaller volumes being more desirable.
- the sample was applied carefully to the top of the column without disturbing the gel bed, and allowed to flow into the column by gravity. Application of the sample was followed by two 1 ml buffer applications to assure that the sample was completely washed into the bed.
- the column was then eluted with 20mM phosphate buffer at a flow rate of 0.6-0.7 ml/min.
- the column effluent was continuously monitored for absorbance at 280 nm, and fractions (10 ml each) were collected automatically. The fractions were analyzed for protein (A 280 ) and isomerase activity as described elsewhere.
- the final specific activity was 46 U/mg with an overall recovery of about 70% based on starting extract.
- XI protein is isolated from Streptomyces rubiginosus strain C3 derived from S. rubiginosus ATCC 21,175 using the method described in U.S. Patent No. 4,410,627, which is incorporated herein by reference.
- the strain is grown by submerged aerobic fermentation on a medium with the following composition (by percent weight) dextrose 9.0%, corn steep liquor (solids) 0.06%, diammonium phosphate 0.008%, magnesium sulfate 0.06%, antifoam (pluronic PL-61) 0.003%.
- the medium is sterilized at 121°C for 45 min, cooled and adjusted to pH 6.8-7.0.
- the medium is inoculated with 14% (v/v) of an inoculm comprising the contents of a seed fermenter prepared with the S. rubiginosus strain.
- XI protein is extracted from the S. rubiginosus strain by adding 0.35% Maquat MC 1412 (Mason Chemical Co.) and 10 ppm of hen's egg lysozyme and agitating for 5 hr at 40°C, pH 6.3 to 6.6. The mixture is then filtered to provide a solution of unpurified xylose isomerase.
- the crude isomerase is purified by adsorption on DEAE- cellulose, filtering and washing the adsorbed product with 0.1M NaCl solution to remove impurities, and then desorbing by contacting with 0.45M NaCl solution.
- the pH of all solutions is maintained at 7.5 during the purification step.
- the solution of partially purified isomerase obtained thereby is mixed with 3 volumes of 95% ethanol at 0°C to precipitate the isomerase.
- Perlite filter aid is added, the solids recovered by filtration, and air dried to provide a soluble XI preparation containing 2500 U/g. Specific activity of the preparation thus prepared is 40 U/mg of protein.
- Xylose isomerase activity was measured by incubating the protein sample with a buffered solution of glucose for a fixed period of time, quenching the reaction, and then quantitating the amount of product (fructose) made by high performance liquid chromatography (HPLC) analysis.
- HPLC high performance liquid chromatography
- 1 unit of activity is that amount of enzyme that produces 1 ⁇ mole fructose/min under the defined reaction conditions.
- a 20 ⁇ l sample of enzyme (0-3 units of activity) was mixed with 1 ml of substrate mixture (3 M in D-glucose, 25 mM maleic acid (adjusted to pH 6.5 at 60°C with NaOH), 10 mM MgSO 4 and 1 mM COCI 2 ) (previously equilibrated at 60°C) to initiate the reaction:
- the enzyme plus substrate mixture was incubated for 20 minutes at 60°C in a closed tube. At the end of this incubation, 0.5 ml of IN HCl was added to stop the reaction. Precipitated protein was removed by centrifugation, and an aliquot of the supernatant solution was removed for quantitation of fructose by HPLC analysis.
- the separation of fructose from unreacted glucose was accomplished using a Beckman liquid chromatograph equipped with a Waters Assoc. (Waters Assoc, Milford, MA), WISP 710B autoinjector. Waters Assoc. differential refractometer (Model R401) and a Shimadzu C-R3A integrator (Shimadzu Corp., Kyoto, Japan). Carbohydrates were separated using an Applied Science carbohydrate analysis column (amine phase, 250 mm X 4.6 mm) using isocratic sample elution with an acetronitrile/water (80%/20%) solvent flowing at 1.3 ml/min. Integration of peak areas for the resolved fructose peaks from standard fructose solutions or from test samples, allowed quantitation of fructose production for the test samples during the 20 minute incubation.
- Purified XI is subjected to further analysis to determine the amino ("NH 2 ”)-terminal end of the mature protein.
- Oligodeoxynucleotide probes were made using conventional methods. Using polynucleotide kinase, the probes were labeled with [32 ⁇ P]-ATP having a specific activity of 3000 Ci/mole, supplied by New England Nuclear Labs (Boston, MA). The labeled probes were purified by gel filtration on a Biogel P-4 gel (BioRad Laboratories, Richmond, CA). Two pools of four probes were made.
- Pool 1 consisted of probes having the following sequences GGTTG(A/G)TA(A/G)TTCAT and pool 2 consisted of probes having the following sequences GGCTG(A/G)TA(A/G)TTCAT, wherein the nucleotides in the parentheses are alternate nucleotide bases.
- the two pools were constructed to cover all possible nucleotide ambiguities in the XI gene in the region coding for the NH 2 -terminal region.
- Plasmid pBR322 DNA was isolated and purified essentially as described in Birnboim et al., Nuc. Acids Res. 7:1513(1979), incorporated by reference herein. After purification of the plasmid in CsCl, the DNA preparation was further digested with RNase at a concentration of 40 ⁇ g/ml at 37oC for 30 minutes and subsequently extracted with phenol and ether. The RNA-free plasmid DNA was then completely digested with Bam HI and dephosphorylated with calf intestinal alkaline phosphatase.
- Two hundred ⁇ g of the Bam HI digested cloning vector (pBR322) were mixed at a 1:2 molar ratio with the partially digested S. rubiginosus DNA in ligation buffer under sticky end conditions. After ligation, an aliquot of the reaction mixture containing approximately 100 ⁇ g of the cloning vector was used to transform CaCl 2 -treated competent E. coli strain MM294. The transformed E. coli were diluted ten-fold with 2 x L-broth by volume and were incubated for 90 min at 37°C. The culture was then further diluted 25-fold with 2 x L-broth con taining 100 ⁇ g/ml ampicillin. The dilute culture was then incubated at 37°C with shaking, overnight. After incubation, the concentration of glycerol in the culture was adjusted to 15% and the mixture was stored at 70oC.
- the transformant gene bank prepared as described above was thawed and plated on L-agar plates containing 40 ⁇ g/ml of ampicillin to obtain approximately 400 individual colonies per plate. Colonies were then transferred to nitrocellulose filters as described in Maniatis et al., Molecular Cloning, supra. Filters were prehybridized by the method described in Woo, Methods in Enzymology 68:389 (1979), incorporated by reference herein.
- the plasmids of each positive colony were isolated as described above and characterized by restriction enzyme fragment analysis using Pst I, Bgl III and Sma I. Three types of clones were distinguished. Two of the representative clones, pTWl and pTW2, carried 4.3 and 7.5 kb Sau 3A1 inserts, respectively. The third representative clone, pTW3, carried a 12 kb insert which was believed to arise by linkage of two Sau 3A1 fragments of the S. rubiginosus digest.
- the oligodeoxyribonucleotide designated CS26 having the sequence 5' -GGCTGGTAGTTCAT-3', was found to hybridize strongly with the S. rubiginosus C3 DNA, and in particular, hybridized 10 times more strongly with the transformant designated pTWl which carried a 4.3 kb insert.
- Plasmids pTW1, pTW2 and pTW3 were analysed with a number of restriction enzymes.
- S. rubiginosus genomic DNA was digested with the same restriction endonucleases, and fragments of the proper molecular weight hybridized under stringent conditions with CS26, confirming the location of the translation start site of the gene.
- Nru I-Pst I restriction fragment carrying the 5' end of the gene was further subcloned into the Sma I-Pst I sites of either M13mpl0 or M13mpll replicative form (RF) DNA (obtained from Bethesda Research Laboratories, Bethesda, MD). Single- stranded DNA was isolated, purified as described in Messing, Methods in Enzymology, 101:20 (1983), incorporated by reference herein, and hybridized to probes CS26 and HW03. The results shown in Table III indicated that the transcriptional direction of the gene is from left to right in the restriction map of the gene shown in Figure 4.
- RF M13mpl0 or M13mpll replicative form
- (-) indicates that the antisense-strand is in the phage. 2 one ⁇ g of single-stranded phage DNA was used for each hybridization.
- the DNA sequence of the entire xylose isomerase gene was determined based upon the restriction map of Figure 1 and the determination of the transcription orientation. The complete DNA sequence and deduced amino acid sequence is shown in Figure 5. Comparison of the entire sequence for S. rubiginosus XI with published sequences for other known native procaryotic isomerases ( Figure 6) reveals substantial sequence identity between the XI of these organisms.
- Construction of an expression vector plasmid pTW11 for expression of the XI muteins in E. coli was as follows. The 1.4 kb Nru I-Sma I restriction fragment carrying the entire coding sequence of the glucose isomerase gene from pTW1 was isolated and subcloned into the Sma I site of M13mpl0 RF DNA. The orientation was such that the ATG initiation codon of the gene was approximately 220 bp from the Eco RI site of the phage, which was designated phage ⁇ TW23.
- the new phage having the desired insert was screened by hybridization with the mutagenesis primer labeled using polynucleotide kinase and [32 ⁇ P]ATP (3000 Ci/mmole, New England Nuclear) as follows: prehybridization was carried out by the procedure of Woo, Methods in Enzymology 68:389 (1979), incorporated by reference herein.
- the same procedure was used to insert a Hind III site preceding the translation initiation codon of the xylose isomerase gene in phage ⁇ TW31 except that the synthetic oligodeoxyribonucleotide had the sequence 5'-GTACTTCATAACTCTTCGCGGCTC-3' and the hybridization and washes were carried out at 65°C.
- the phage carrying the xylose isomerase gene with the introduced translation termination codon and two Hind III sites bordering the gene was designated phage ⁇ TW32.
- the xylose isomerase gene was isolated from phage ⁇ TW32 by digestion with Hind III and was ligated into the Hind III site of E. coli expression vector pTRP3 (ATCC No.
- the E. coli strain DG101 (thi-1, endA1, hsdR17, SupE44, lac18, lacZM15) was mutagenized using Nitrosoguanidine (NTG) at a concentration of approximately 200 ⁇ g/ml of medium for approximately 30 minutes.
- NVG Nitrosoguanidine
- the bacteria were pelleted, washed in minimum salts medium, resuspended in minimal salts medium containing 0.5% xylose, and were grown for approximately 30 minutes at 37°C.
- D-cycloserine was added to a concentration of 100 ⁇ g/ml and the culture was incubated at 37°C for approximately 30 minutes.
- the cells were centrifuged, washed in minimal salts medium, and then grown in rich L-broth for approximately 30 minutes at 37°C.
- E. coli strain DG101 xyl- transformed with pTW11 were deposited into applicants' depository under accession number CMCC 2210. This strain was deposited in the ATCC on August 5, 1987 under accession number 67,489.
- Oligonucleotide primers are synthesized complementary to the DNA sequence of the reference xylose isomerase gene fragment, except for regions of limited nucleotide mismatching to accomplish the desired mutation. Gapped circle site-specific mutagenesis as described by Kramer et al., supra, is used to convert the amino acid at the selected position to a different amino acid. Towards this end, plasmid pTW11 and phage m13mp10 carrying amber mutations are digested completely with Eco RI and Bam HI. The small fragment of pTW11 and the large fragment of M13mp10 are isolated and ligated together.
- the phage having the small Eco RI- Bam HI fragment from pTW11 and large fragment of M13mpl0 is designated TVW8.
- a "gapped circle” in which the DNA sequence to be mutagenized remains single- stranded and the remaining DNA is double-stranded is formed in which the single-stranded region includes the XI gene.
- oligonucleotide primers described below are hybridized to the gapped circle DNA (phage TVW8) under hybridization conditions, for example, in a mixture containing 100mM NaCl, 20mM Tris-HCl, pH 7.9, 20mM MgCl 2 and 20mM ⁇ -mercaptoethanol by heating at 67°C for five minutes and 42°C for 25 minutes. Primer extension is carried out using DNA polymerase large fragments in the presence of dNTPs. The ends of the extended primer are ligated using T4 ligase and ATP. The reactions are terminated by heating to 80°C. The mixture is then used to transform competent E.
- coli strain HB 2151 which are plated onto agar plates and incubated overnight to obtain phage plaques, and grown under conditions suitable for inducing the phage.
- the plaques are probed using the same [32 ⁇ P]-labeled primer using kinase at standard prehybridization and hybridization conditions at high stringency (e.g. 42°C for 8 hours). Plaques which hybridize to probes are lifted and are confirmed by sequencing.
- the phage DNA containing the coding sequence for the mutagenized xylose isomerase gene are isolated.
- the DNA segment comprising the mutagenized XI gene is removed by Hind III digestion.
- the small Hind III fragment is isolated, purified, and ligated into plasmid pTRP3, previously digested with Hind III.
- oligonucleotide primers are used for site- specific mutagenesis to obtain muteins of xylose isomerase resistant to chemical inactivation in E. coli:
- Val 54 XI mutein 5'-GAGGTCGTCGTCGACGAACGTGACGCC-3';
- Val 223 XI mutein 5'-GTTCAGCCCGGCCACCTGCTCGTGGCC-3';
- Val 140 to obtain the Val 140 XI mutein, 5'-CTCGGCACCCTCGACGCCGCCCCAGGC-3';
- Example VIII The procedure of Example VIII is followed in substantial detail to produce xylose isomerase muteins having altered catalytic properties. Second strand synthesis and recovery of the desired XI muteins uses the following oligonucleotide primers:
- Trp 16 to Asn 16 to obtain the Asn 16 XI mutein 5'-CCAGCCGACGGTGTTCAGTCCGAAGGTG-3'
- Trp 16 to Gln 16 to obtain the Gln 16 XI mutein 5'-CCAGCCGACGGTCTGCAGTCCGAAGGTG-3'
- Trp 16 to Ser 16 to obtain the Ser 16 XI mutein, 5'-CCAGCCGACGGTCGACAGTCCGAAGGTG-3';
- Trp 16 to Thr 16 to obtain the Thr 16 XI mutein, 5'-CCAGCCGACGGTCGTCAGTCCGAAGGTG-3';
- Trp 16 to Gly 16 to obtain the Gly 16 XI mutein, 5'-CCAGCCGACGGTCCCCAGTCCGAAGGTG-3';
- Trp 16 to Ala 16 to obtain the Ala 16 XI mutein, 5'-CCAGCCGACGGTCGCCAGTCCGAAGGTG-3';
- Trp 16 to Val 16 to obtain the Val 16 XI mutein, 5'-CCAGCCGACGGTCACCAGTCCGAAGGTG-3';
- Trp 16 to Leu 16 to obtain the Leu 16 XI mutein, 5'-CCAGCCGACGGTCAGCAGTCCGAAGGTG-3';
- Trp 16 to Ile 16 to obtain the Ile 16 XI mutein, 5'-CCAGCCGACGGTGATCAGTCCGAAGGTG-3';
- Trp 16 to Tyr 16 to obtain the Tyr 16 XI mutein, 5'-CCAGCCGACGGTGTACAGTCCGAAGGTG-3';
- Trp 16 to Phe 16 to obtain the Phe 16 XI mutein, 5'-CCAGCCGACGGTGAACAGTCCGAAGGTG-3';
- Trp 16 to His 16 to obtain the His 16 XI mutein, 5'-CCAGCCGACGGTGTGCAGTCCGAAGGTG-3';
- Trp 137 to Asn 137 to obtain the Asn 137 XI mutein, 5'-CTCGCGGCCGCCGTTGGCCACATAGGTC-3';
- Trp 137 to Gln 137 to obtain the Gln 137 XI mutein, 5'-CTCGCGGCCGCCCTGGGCCACATAGGTC-3'; to convert Trp 137 to Ser 137 to obtain the Ser 13 7XI mutein, 5'-CTCGCGGCCGCCCGAGGCCACATAGGTC-3';
- Trp 137 to Thr 137 to obtain the Thr 137 XI mutein, 5'-CTCGCGGCCGCCCGTGGCCACATAGGTC-3';
- Trp 137 to Gly 137 to obtain the GIy 137 XI mutein, 5'-CTCGCGGCCGCCCCCGGCCACATAGGTC-3';
- Trp 137 to Ala 137 to obtain the Ala 137 XI mutein, 5'-CTCGCGGCCGCCCGCGGCCACATAGGTC-3';
- Trp 137 to Val 137 to obtain the Val 137 XI mutein, 5'-CTCGCGGCCGCCCACGGCCACATAGGTC-3';
- Trp 137 to Leu 137 to obtain the Leu 137 XI mutein, 5'-CTCGCGGCCGCCCAGGGCCACATAGGTC-3';
- Trp 137 to Ile 137 to obtain the Ile 137 XI mutein, 5'-CTCGCGGCCGCCGATGGCCACATAGGTC-3';
- Trp 137 to Tyr 137 to obtain the Tyr 137 XI mutein, 5'-CTCGCGGCCGCCGTAGGCCACATAGGTC-3';
- Trp 137 to Phe 137 to obtain the Phe 137 XI mutein, 5'-CTCGCGGCCGCCGAAGGCCACATAGGTC-3';
- Trp 137 to His 137 to obtain the His 137 XI mutein, 5'-CTCGCGGCCGCCGTGGGCCACATAGGTC-3';
- Example IX The procedure of Example IX is followed in substantial detail, except that the mutagenesis primers differ. Second strand synthesis and recovery of the desired XI muteins uses the following oligonucleotide primers to change alpha-helical Glycine residues to Alanine residues:
- a proline residue was substituted for the amino acid that occurs in the reference XI, and the computer-generated model for the potential mutant XI was visually examined for unfavorable steric contact (interpenetration of the Van der Waals surfaces for any proline vs. XI atom). This analysis allowed the rejection of many candidate proline-substitution mutations.
- primers are used to introduce proline residues to produce thermostable xylose isomerase muteins:
- Val 151 to Pro 151 to obtain the Pro 151 XI mutein, 5'-GAGGGCGTCCCGCGGGTCCTTGGCGCC-3'; to convert Gly 189 to Pro 189 to obtain the Pro 189 XI mutein, 5'-GAGCAGGATGTCGGGGCGCGGCTCGTTC-3';
- locations in the reference xylose isomerase for proline substitution are selected by comparing the amino acid sequence of Ampullariella xylose isomerase with that of the reference XI to select residues in the reference xylose isomerase for proline substitution.
- thermostable xylose isomerase muteins The following primers are used to introduce aromatic amino acid residues to produce thermostable xylose isomerase muteins:
- Trp 227 XI mutein 5'-GCCGTGCGGGAACCACAGCCCGGCCATC-3';
- Val 362 to Phe 362 to obtain the Phe 362 XI mutein, 5'-GCCGCCGCGTCGAAGTCGAACTCCTCG-3';
- primers are used to substitute amino acid residues for residues that are located near the interface of subunits of the xylose isomerase protein that may undergo deamidation, to produce xylose isomerase muteins more stable toward irreversible thermal inactivation: to convert Gln 21 to Ala 21 to obtain the Ala 21 XI mutein, 5'-GGGGTCCCGTCCGGCCCAGCCGACGGTCC-3';
- Val 21 to obtain the Val 21 XI mutein, 5'-GGGGTCCCGTCCGACCCAGCCGACGGTCC-3';
- Lys 92 XI mutein 5'-GGTGGGTGAACAGCTTGGTGGTGGCCATCG-3';
- Lys 107 XI mutein 5'-GCACGTCGCGGTCCTTGGCGGTGAAGCCG-3'
- Lys 185 XI mutein T'CGCCGCGCGGCTCCTTCGGCTTGGGCTCG-3';
- Val 227 XI mutein 5'-GCCGTGCGGGAAGACCAGCCCGGCCATC-3';
- Val 234 XI mutein 5'-CGCCCACAGCGCGACCGCGATGCCGTGCG-3';
- Val 309 XI mutein 5'-GAGGATCAGGTAGACGCGCATGCAGCCGGC-3';
- Val 377 XI mutein 5'-GGTCCATCGCCAGGACGTCCAGGCGCTCG-3';
- the following primers are used to introduce two cysteine residues to produce disulfide bridges in the xylose isomerase protein to create thermostable xylose isomerase muteins:
- Trp 270 to Cys 270
- Gly 146 to Cys 146 , 5'-CAGGTCCACCAGGCAGAACGCGGCCCGC-3', and 5'-GTCCTTGGCGCCGCACGACTCGGCACCC-3', to obtain the Cys 270 Cys 146 XI mutein;
- Example IX The procedure of Example IX is followed in substantial detail, except that the mutagenesis primers differ.
- Second strand synthesis and recovery of the desired XI muteins uses the following oligonucleotide primers to alter amino acids within 15 angstroms of the enzyme active site to eliminate negative charges or introduce positive charges to produce xylose isomerase muteins with lowered pH optima as follows:
- the isomerase activity of the reference and xylose isomerase muteins obtained as described above, is assayed using the substrates glucose, fructose, xylose and xylulose.
- Kinetic measurements are taken of the K P , K S , f , and k r for both equilibrium reactions using the HPLC assay previously described.
- Kinetic parameters are obtained by analysis of the progress curves of the reactions, using a program that carries out a weighted linear or nonlinear least-squares regression analysis of data by using the Lineweaver-Burk or Michaelis- Menten equations, respectively, such as that described by Roberts, in Enzyme Kinetics, Cambridge Univ. Press, Cambridge p.
- Reference XI or XI mutein is produced and purified as described in Example II.
- the purified protein is adjusted to an average activity of 1.8-2.0 U/ml as determined by HPLC assay, and after precooling in a salt and ice bath, is mixed with glucose solution also precooled (400 g/1 glucose, 25 mM maleic acid, 10mM MgSO 4 , pH 6.5) in a 1:1 ratio at 1°C and distributed into 100 ⁇ l thin-walled glass micropipettes (Fisher Scientific, Pittsburgh, PA) which are flame-sealed and incubated in heating baths at different isomerization temperatures for 40 minutes.
- Temperatures of the heating baths are set at 1°C intervals over the range at which the enzyme shows the full range of inactivation (85°C to 100°C for the reference XI).
- One bath is set at the reference temperature approximately 10°C below the temperature of half maximum enzyme activity.
- the buffer solution is mixed with the glucose substrate in a 1:1 ratio and distributed into 100 ⁇ l thin-walled glass micropipettes which are sealed and incubated in water baths at the same temperatures and incubation time as used for the enzyme test samples.
- the reaction is terminated by immersing the micropipettes in a salt-ice bath, and 65 ⁇ l of isomerase is removed from each micropipette. 2 ⁇ l of IN HCl is added to stop the isomerase reaction.
- the isomerase is assayed for fructose and glucose by HPLC using a Beckman Liquid Chromatograph as described in Example II.
- the HPLC results are calculated as the degree of isomerization (I T ) at each temperature as follows:
- the percent dry basis fructose data is used to calculate the temperature at which the half-life is 20 minutes [T 20 ] as a measure of thermostability, as follows.
- the activity function (L T ) at each temperature is calculated as follows:
- the relative activity (A r ) at each of the test temperature is calculated as follows:
- the best reference temperature is about 10°C below the temperature at which 50% of maximum activity is displayed.
- T test (or reference) temperature in °C
- Relative activity is plotted vs. temperature as shown in Figure 8. Relative activity is related to heating time and to enzyme half-life according to the following relationship:
- T 20 is reported to the nearest 0.1°C as a standard expression of thermostability.
- thermostable xylose isomerase muteins are clearly identified by the T 20 method.
- the pH optima of the xylose isomerase muteins produced as described in Example XII above, is determined by studying activity of the enzymes under various pH conditions as follows.
- the reference XI or XI mutein is produced and purified as described in Example II.
- the purified protein is dialyzed against distilled water after which the protein concentration is adjusted to 0.3 mg/ml.
- Substrate solutions containing 2 mM magnesium chloride, 40% glucose and 20 mM buffer are adjusted to the desired pH at 60°C.
- an appropriate buffer is selected from the group; sodium phosphate (pH 6.0-8.0), sodium bisulfite (pH 6.0-8.0), N,N-bis(2-hydroxyethyl) glycine (pH 7.3-9.3), 3-(N-morpholino) propanesulfonic acid (pH 6.2-8.2).
- a 50 ⁇ l aliquot of dialyzed enzyme is mixed with a 50 ⁇ l aliquot of buffered substrate, the mixture is placed in a 250 ⁇ l tube, the tube is sealed and incubated at 60°C for 40 minutes. Reactions are stopped by the addition of 5 ⁇ l of 1 N hydrochloric acid. Samples are then assayed for fructose production by HPLC assay as described in Example II.
- HPLC results are expressed as percent relative activity. That reaction pH which gives the greatest conversion of glucose to fructose is arbitrarily assigned as having 100% relative activity. The activity observed at all other pH values is expressed as a percent of the maximum activity.
- pH vs. activity profiles indicate the pH optimum, under defined reaction conditions (e.g. ionic strength and temperature), for the enzyme being tested.
- reaction conditions e.g. ionic strength and temperature
- relative activity plotted vs. pH indicates pH optima obtained for the reference XI as shown in Figure 9.
- the muteins should display greater catalytic activity at a lowered pH.
- the recombinantly produced S. rubiginosus xylose isomerase and muteins set forth herein may be used to convert glucose to fructose or xylose to xylulose in various industrial processes.
- the various muteins may be resistant to various inactivation reactions and more stable, under extreme conditions of temperature and pH, than native XI.
- K cat may be increased
- K S may be decreased
- the pH optimum of the muteins may be reduced.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Xylose isomerase (XI) muteins useful in the conversion of glucose to fructose or xylose to xylulose are obtained in usable amounts by protein structural and recombinant DNA methods, including x-ray crystallography, cloning, computer graphic modeling and site-directed mutagenesis and expression of the bacterial DNA sequences encoding native procaryotic xylose isomerase. These native sequences are altered to encode the xylose isomerase muteins having improved catalytic function and/or thermostability, and/or a lowered pH optimum. A method for predicting protein-stabilizing amino acid substitutions is also provided.
Description
PROCARYOTIC XYLOSE ISOMERASE MUTEINS AND METHOD TO INCREASE PROTEIN STABILITY
This invention relates to improved mutant forms of an industrially valuable enzyme and to site-specific mutations to direct microbial production of these forms. More specifically, the invention relates to mutated procaryotic xylose isomerases with improved stability and/or catalytic activity, and/or lowered pH optima, and to a method for predicting certain amino acid substitutions that increase the stability of proteins.
The conversion of glucose to fructose by the enzyme xylose isomerase is an important industrial process because fructose is sweeter to human taste than an equivalent amount of glucose or sucrose. Fructose has nutritional advantages over glucose or sucrose as a sweetener because less fructose is needed to impart a desired level of sweetness, and because it does not support the growth of the bacteria responsible for dental plaque as well as does sucrose which is the only economically competitive sweetener. However, the maximum exploitation of these benefits depends on rendering fructose economically competitive with alternative sweeteners, by devising the least expensive process for manufacturing food-grade fructose.
Current industrial practice uses a single-step enzyme- catalyzed isomerization of glucose to an approximately equilibrated mixture of glucose and fructose, known as high- fructose syrup. Using this process, at equilibrium, only approximately 50% of the glucose has been transformed (Tewari et al., Appld. Bioch. and Biotech. 11:17-24 (1985)). Because percentage conversion varies directly with temperature, the fructose yield, and potentially the process economics, benefit from performing industrial glucose isomerization at the highest practical temperature.
Enzymes which catalyze the isomerization of sugars, including glucose, have been isolated from various organisms, including Bacillus subtilis, Escherichia coli, Ampullariella species and several Streptomyces species. The Streptomyces enzyme commonly used for commercial fructose production is most accurately designated xylose isomerase (XI), because it has much higher activity in converting xylose to xylulose than turning glucose into fructose. For industrial use, the purified enzyme is immobilized by adsorption to a solid support packed into a column, or "reactor", through which a concentrated solution of glucose is passed at the highest feasible temperature. The enzyme near the reactor inlet experiences a high concentration of glucose and low concentration of fructose. The enzyme near the reactor outlet is exposed to approximately equal concentrations of glucose and fructose. At any level in the catalytic reactor, the isomerase catalytic rate (V) depends on glucose (S) and fructose (P) concentrations ([ ]) as indicated in the following rate equation:
In this equation [E]o is the total enzyme concentration, KS is the Michaelis constant for glucose, KP is the Michaelis constant for fructose, and V/[E]o is the enzyme specific activity, an expression of the catalytic effectiveness per enzyme molecule.
f and k
report the intrinsic catalytic activities of the glucose-saturated and fructose-saturated enzyme active sites, respectively representing the maximum possible forward (glucose → fructose) and reverse (fructose → glucose) values of V/[E]o for a given temperature and pH. KS, KP, , and r, vary with
temperature, generally increasing with increased temperature below the temperature range where conformational unfolding of the enzyme occurs. Although KS and KP do not necessarily equal the respective dissociation constants for glucose and fructose, they
probably approximate the dissociation constants in the case of Streptomyces XI, and therefore are inversely related to the affinities of the enzyme for glucose and fructose substrates.
XI catalytic activity in the industrially relevant (forward) direction is enhanced by environmental or mutational changes which increase kcat or KP or decrease kcat or KS, increase the intrinsic forward catalytic efficiency or affinity for glucose or decrease the intrinsic reverse catalytic efficiency or affinity of XI for fructose. Currently used industrial glucose isomerization processes do not produce the maximum possible (equilibrium) percent conversion of glucose to fructose because the reaction slows as equilibrium is approached. Improvements which permit closer approach to equilibrium by weakening the fructose-XI interaction or by strengthening glucose-XI binding can be as valuable as improvements which permit conversion at higher temperature, where the equilibrium percent conversion is greater.
The preceding rate equation implies that there are many ways to change , k , K
S or KP to get a net increase in V/[E]o ·
Detrimental changes in one or more kinetic parameters can be outweighed by beneficial changes in others. Some combinations of changes would reduce net activity. Structural changes affecting activity will alter several or all of the parameters, not all of them favorably, for two reasons:
(a) The four kinetic parameters are inescapably linked through the Haldane relationship:
At a given temperature and pH, a change in one parameter must be accompanied by a balancing change in some combination of the others to preserve the value of Keq, the equilibrium constant; and
(b) The relatively few amino acid residues which line the xylose isomerase active site interact with glucose, fructose, and catalytic intermediates. These interactions determine the values of the four kinetic parameters. Changing any one active site residue will strengthen or weaken several of these interactions and therefore modify several parameters.
It is thus difficult to target a simple set of improvements in catalytic activity because a change which improves one parameter may have strongly damaging effects on others. However, atomic resolution i.e. x-ray crystallographic data on the xylose isomerase active site permits the selection of a limited number of protein structural changes to increase net catalytic activity, for example, by strengthening the binding of glucose or by weakening the binding of fructose.
Recently, computer-graphic examination of the active sites of enzymes other than XI has led to successful prediction of structural changes affecting just kcat, Km, and substrate specificity for these enzymes (Wilkinson et al.. Nature 307:187-188 (1984); and Craik et al., Science 228:291 (1985)).
In addition to identifying active site mutations that may improve kinetic parameters, computerized graphical examination of the atomic-resolution crystallographic data for XI also permits prediction of amino acid substitutions, insertions, or deletions to stabilize the enzyme toward conformational unfolding or inactivating chemical reactions. Following are several recent examples of structurally stablizing mutations accomplished by site-specific or random mutagenesis.
Replacement of a glycine residue located in an o-helix has conformationally stabilized a neutral proteinase, increasing the thermal melting temperature by several degrees centigrade (Imanaka et al., Nature 324:695 (1986)).
Replacement of amino acids in the hydrophobic core of a protein with aromatic residues such as tyrosine, especially at positions near preexisting clusters of aromatic side chains, has been shown to promote resistance to thermal inactivation in kanamycin nucleotidyl transferase (Liao et al., Biochem. 83:576-580 (1986)), and phage Lambda repressor (Hecht et al., Biochem. 81:5685-5689 (1984)).
The introduction of new disulfide bonds to create covalent crosslinks between different parts of a polypeptide has been used to improve the thermal stability of bacteriophage T4 lysozyme (Perry et al., Science 226:555 (1984)), bacteriophage Lambda repressor (Sauer et al., Biochem. 125:5992 (1986)), E. coli dihydrofolate reductase (Villafranca et al., Biochem. 26:2182 (1987)), and subtilisin BPN' (Pantoliano et al., Biochem. 26:2077-2083 (1987)). A recently developed computer program (Pabo et al., Biochem. 25:5987-5991 (1986)) permits efficient scanning of the crystallographicallv determined three-dimensional structure of a protein to suggest those sites where insertion of two cysteines might lead to disulfide bonds which would not disrupt the larger-scale conformation while stabilizing the local conformation.
Deamidation of an asparagine residue near the inter-subunit interface of a homodimeric protein (triose phosphate isomerase) promotes irreversible thermal denaturation of this enzyme. Replacement of this asparagine with isoleucine enhanced thermal stability (Ahern et al., P.N.A.S. USA 84:675-679 (1987)).
Fusion of the subunits of the homotetrameric enzyme, β - galactosidase, by duplication and in-phase head-to-tail fusion of the structural gene for the enzyme, using a DNA polylinker coding for a number of additional amino acids, resulted in a protein that was more stable toward proteolysis and heat compared to the wild-type enzyme (Kuchinke et al., EMBO J. 4(4) :1067-1073 (1985)).
Another class of potentially inactivating reactions include oxidation of amino acid residues at or near the active site of an enzyme, leading to a loss or reduction in catalytic activity. For example, oxidation of a key methionine residue in the protein subtilisin has been shown to lead to loss of proteolytic activity (Markland et al., in The Enzymes (P. Boyer, ed. ) Vol. 111:561 Academic Press (1971)). Replacement of that methionine by a serine, alanine or leucine residue resulted in an oxidation- resistant mutant protein (Estell et al., J. Biol. Chem. 260:6518-6521 (1985)).
Recent studies also have shown that some amino acid substitutions may have cumulative beneficial effects on thermal stability of the protein subtilisin (Bryan et al., J. Cellular Biochem. Supp. 11C (N305) (1987); Matsumura et al., Nature (Letters) 323:356-358 (1986)).
Xylose isomerase isolated from S. rubiginosus (strain C3) has a pH optimum at 25°C of 8.8 and at 75°C the pH optimum drops to 7.3. The commercial isomerization reaction is normally run at 55°C to 65°C at a pH of approximately 6.5. Even at 65°C and pH 6.5 there is a significant amount of alkaline degradation of fructose and glucose to colored and bitter byproducts that are undesirable in high-fructose corn syrup. If the pH optimum of glucose isomerase could be dropped to from pH 5.5 to 6.5 there would be less alkaline degradation of fructose or glucose. Additionally, the isomerization reaction could be run at a pH at which the enzyme should have greater activity.
Computer graphic analysis of X-ray crystallographic stucture of a protein also provides the ability to predict amino acid alterations that may reduce the pH optimum of an enzyme. By reducing this parameter, the enzyme xylose isomerase could be used to produce a high fructose corn syrup commercially at a lower pH without any loss in activity, thereby reducing the
alkaline formation of undesirable degradation products of glucose and fructose. Such a mutein would also be desirable for use with other enzymes of low pH optima, e.g. glucoamylase, thereby reducing the overall number of steps required to manufacture high- fructose corn syrup, in single batch processes.
Recently, studies have shown that the pKa of enzyme activesite functional groups, and consequently the pH optimum of enzymes can be altered by specific mutations near, but not necessarily at, the active-site[s] of the enzyme subtilisin (Thomas et al., Nature 318:375-376, (1985); Sternberg et al., Nature 330:86-88, (1987)). In these studies, site-specific mutations within 10-15 angstroms of the active-site histidine residue (His64) lowered the pKa of subtilisin by 0.18 to 1.00 (for a double mutant) pKa units. Although naturally occurring glucose isomerases may have pH optima that vary from pH 7 to pH 9, none have a pH optimum as low as desired (for example pH 5.5).
Classical mutation of bacteria using radiation or chemicals has been used to produce mutant strains having different properties including altered protein activity. However, selective improvement of the organisms or the proteins has not been realized due to the randomness of the mutation process, which also requires tedious selection and screening steps to identify organisms which may possess the desired characteristics. Furthermore, with random mutagenesis an undesirable property may result along with the characteristic sought in the mutation.
More recently, random mutagenesis has been replaced by site- specific (also known as primer-directed) mutagenesis. Site- specific mutagenesis permits substitution, deletion or insertion of selected nucleotide bases within a DNA sequence encoding a protein of interest using synthetic DNA oligonucleotides having the desired sequence. Recombinant DNA procedures are used to substitute the synthetic sequence for the target sequence to
introduce the desired mutation. (See Craik et al., Science. 228:291 (1985) for a review of these procedures). Development of the M13 bacteriophage vectors (Messing, in Methods in Enzymology 101:20-78 (1983)) permits cloning of DNA fragments into single- stranded circular recombinants capable of autonomous replication. A modification of site-specific mutagenesis, termed gapped circle mutagenesis, provides an improved method for selective mutagenesis using oligonucleotide primers (Kramer et al., Nuc. Acids Res. 12:9441-9456 (1984)). Kits for carrying out site-specific mutagenesis and the gapped circle method are commercially available.
Mutant xylose isomerases having characteristics which vary from native enzyme would be useful. In particular, mutant isomerases having enhanced oxidation and thermal stability would be useful to extend the commercial utility of the enzyme.
Unfortunately, unless proteins share regions of substantial sequence or structural homology, it is not possible to generalize among proteins to predict, based on beneficial mutation of one protein, precisely where the sequence encoding another protein should be changed to improve the performance of that protein. It is therefore generally necessary to undertake an analysis of the precise structural and functional features of the particular protein to be altered in order to determine which amino acids to alter to produce a desired result such as increased thermostability or catalytic activity.
Summary of the Invention
The present invention provides mutated forms ("muteins") of enzymatically active procaryotic xylose isomerase. Analysis of the structure of Streptomyces rubiginosus xylose isomerase (XI), to select alterations encoding the enzyme to enhance stability and/or activity and/or lower the pH optimum of the resulting XI
muteins, was undertaken. Site-specific mutagenesis of the sequence encoding the enzyme was designed to produce the muteins. Regions of structural homology between xylose isomerases from several microorganisms were identified.
Accordingly, the present invention provides muteins containing specific modifications of procaryotic xylose isomerase, and materials and methods useful in producing these proteins, as well as modified microorganisms and cell lines useful in their production. Other aspects of the invention include the expression constructs and products thereof for the modified xylose isomerases as well as cloning vectors containing the DNA encoding the modified xylose isomerases.
The DNA encoding the reference procaryotic xylose isomerase is modified using site-directed gapped circle mutagenesis enabling the generation of a change at a selected site within the coding region of the isomerase. By this method, a change is introduced into isolated DNA encoding procaryotic xylose isomerase which, upon expression of the DNA, results in substitution of at least one amino acid at a predetermined site in the xylose isomerase, or insertion of a polylinker peptide for fusing at least two subunits of the xylose isomerase protein.
The present invention also provides a method of enhancing thermostability in proteins by introducing proline amino acid substitutions into a protein to decrease the entropy of unfolding of the protein.
The modified xylose isomerases of the invention may exhibit improved stability and/or catalytic activity, and may have varied KS or KP. In addition, the muteins may exhibit a lowered
pH optimum.
One aspect of the invention is a method for increasing the stability of a protein by substituting an amino acid at a
preselected substitution site in the protein, the substitution site selected to have phi and psi backbone conformational angles in the range of phi = -40° to -90° when psi = 0° to -60°, or in the range of phi = -40° to -95° when psi = 120° to 180° and the site capable of accommodating the amino acid without disruption of the three-dimensional structure of the protein such that introduction of the amino acid decreases the configurational entropy of unfolding of the protein.
Another aspect of the invention is a method for increasing the stability of a protein comprising substituting a glycine amino acid residue having a negative phi angle with an alanine to decrease the conf igurational entropy of unfolding of the protein.
Another aspect of the invention is a method for selecting substitution sites suitable for introduction of amino acids in a protein such that introduction of the amino acids increases the stability of the protein by a) determining from the crystallographic structure of a protein the backbone conformational angles phi and psi of said protein; b) screening the phi and psi angles determined in step a) to identify potential substitution sites in the protein having conformational phi and psi angles in the range of phi = -40° to -90° when psi = 0° to -60°, or in the range of -phi = -40° to -95° when psi = 120° to 180° for introduction of said amino acids; and c) examining a structural model of the protein to from the potential substitution sites identified in step b) substitution sites that will accomodate substitution of an amino acid without disruption of the three-dimensional structure of the protein, such that substitution of the substitution site results in a decrease in the configurational entropy of unfolding of the protein.
In yet another aspect of the invention Streptomyces rubiginosus, (S. rubiginosus), xylose isomerase mutein is provided having a change in at least one position in the native
amino acid sequence at a position equivalent to a native amino acid residue selected from the group consisting of Lysine183, Lysine289, Histidine54, Histidine220, Methionine223, Arginine140, Tryptophan16, Tryptophan137, Phenylalanine94, Glycine146, Glycine166, Glycine197, Glycine219, Glycine231, Glycine248, Glycine298, Glycine305, Glycine369, Leucine15, Alanine29, Alanine33, Asparagine107, Arginine109, Glycine146, Valine151, Glycine189, Leucine192, Glutamic acid207, Arginine259, Threonine342, Arginine354, Glycine369, Aspartic acid28, Arginine32, Serine64, Valine218, Arginine292, Isoleucine252, Aspartic acid9, Glutamine21, Alanine29, Arginine32, Glutamic acid38, Leucine46, Aspartic acid56, Leucine58, Valine127, Threonine133, Alanine136, Arginine177, Isoleucine180, Leucine193, Leucine211, Asparagine227, Glutamine234, Alanine238, Leucine246, Arginine284, Arginine308, Leucine311, Arginine316, Leucine335, Valine362, Methionine370, Leucine375, Leucine383, Glutamine21, Asparagine92, Asparagine107, Asparagine185, Asparagine227, Glutamine234, Glutamine256, Asparagine309, Glutamine377, Tryptophan270, Glycine146, Phenylalanine320, Histidine382, Glutamic acid337, Arginine109, Glycine189, Glutamic acid144, Glycine251, Glycine225, Alanine366, Valine98, Glutamine249, Glycine219, Glutamic acid207, Aspartic acid163, Aspartic acid57, Glutamic acid186; Glutamic acid141, Glutamic acid221, Aspartic acid287; Arginine177; and Aspartic acid345.
Figure 1 is drawings depicting the structure of native and mutant T4 lysozymes as described in Example I, infra. IA: Stereo drawing showing the structure of native T4 lysozyme in the vicinity of Gly77; solid circles = oxygen atoms, half-solid circles = nitrogen atoms and open circles = carbon atoms, broken lines = hydrogen bonds; IB: electron density map showing the difference in density between mutant G77A and native lysozyme (coefficients are (Fmut-FWT) and phases are from the refined model of native lysozyme (Weaver and Matthews, J. Mol. Biol. 193:189-199 (1987)).
Resolution is 1.7 Å. Positive contours (solid lines) and negative contours (broken lines) are drawn at levels of ± 4σ, where σ is the root-mean square density throughout the unit cell. The native structure is superimposed. Amino acids are indentified by the one-letter code. The positive peak due to the addition of the β-carbon at residue 77 is of height 13σ). 1C: Superposition of the structures of G77A lysozyme (open bonds) and native lysozyme (solid bonds).
Figure 2 are drawings depicting the comparative structures of A82P lysozyme and native lysozyme as described in Example I, infra. 2A: Electron density difference map for A82P lysozyme minus native lysozyme. (Coefficients, contour levels and conventions are as in Figure 1B, supra. The positive peak indicating the addition of the pyrrolidine ring [of proline] is of height 11σ; the negative peak due to displacement of the bound solvent molecule W355 is -11σ. Part of the side chains of Leu79 and Arg80 were omitted for clarity). 2B: Superposition of the structures of A82P lysozyme (open bonds) and wild-type lysozyme (solid bonds).
Figure 3 are graphs showing the kinetics of inactivation of native and mutant lysozymes as described in Example I, infra. 3A: First-order plot, all activities normalized to 1000 units/μg at zero time; 3B: second-order plot, Ao/At is the ratio of the initial activity to the activity remaining after time t. (Second-order rate constants: native: 10.4 X 104 mol-1.sec-1 G77A, 6.7 X 103 mol-1.sec-1; and A82P, 2.1 X 104 mol-1.sec-1.
Figure 4 is a restriction map of the XI gene and flanking region on the Streptomyces rubiginosus chromosome;
Figure 5 (A and B) shows the DNA sequence and DNA-deduced amino acid sequence of Streptomyces rubiginosus xylose isomerase used as the reference protein;
Figure 6 is a comparison of the amino acid sequence of native reference Streptomyces rubiginosus XI with the amino acid sequences of native XI from other organisms;
Figure 7 is a graph depicting the effect of temperature on the glucose/fructose equilibrium;
Figure 8 is a graph of relative activity of Streptomyces rubiginosus XI as a function of temperature; and
Figure 9 is a graph of the pH activ profile of a xylose isomerase.
Definitions
As used herein "reference" xylose isomerase ("XI") refers to the xylose isomerase encoded by a DNA sequence obtained from Streptomyces rubiginosus (S. rubiginosus) derived from ATCC strain 21,175 as described in U.S. Patent No. 4,410,627, incorporated herein by reference. As used herein, XI is an enzyme having the characteristics of converting glucose to fructose and xylose to xylulose. Enzymes having this activity have an enzyme classification number of E.C.5.3.1.5.
"Mutein" in relation to the "reference" XI, refers to a pr¬- tein having a related amino acid sequence which has enzymatic activity substantially the same as the reference XI in that the enzyme converts glucose to fructose and xylose to xylulose. However, it contains one or more amino acid substitutions, inversions, deletions or insertions for amino acid residues. These residues have been selected by predicting structural and chemical alterations that will result from particular substitutions at particular locations in the protein using x-ray crystallographic structural data for the reference XI. The term also includes a protein having an amino acid sequence related to the reference XI, but containing fused subunits.
"Expression vector" refers to a DNA construct containing a DNA sequence encoding XI, which is operably linked to a suitable control sequence capable of effecting the expression of said DNA in a suitable host. Such control sequences include a promoter to effect transcription, an optional operator sequence to control such transcription, a sequence encoding a suitable RNA ribosome binding site, and sequences which control termination of transcription and translation. The vector may be a plasmid, a phage particle, or simply a potential genomic insert. Once transformed into a suitable host, the vector may replicate and function independently of the host genome, or may, in some instances, integrate into the genome itself. In the present specification, "plasmid" and "vector" are sometimes used interchangeably as the plasmid is the most common form of vector at present. However, the invention is intended to include such other forms of expression vectors which serve equivalent functions and which are, or become, known in the art.
"Recombinant host cells", "host cells", "cells", "cell cultures" and so forth are used interchangeably to designate individual cells, cell lines, cell cultures and harvested cells which have been or are intended to be transformed with the recombinant vectors of the invention. The terms also include the progeny of the cells originally receiving the vector.
"Transformed" refers to any process for altering the DNA content of the host, including in vitro transformation procedures as described below, phage infection, or such other means for effecting controlled DNA uptake as are known in the art.
"Operably linked" as used herein regarding DNA sequences or genes refers to the situation wherein the sequences or genes are juxtaposed in such a manner as to permit their ordinary functionality. For example, a promoter operably linked to a coding sequence refers to those linkages where the promoter is capable of controlling the expression of the sequence.
"Control sequences" refers to DNA sequences which control the expression of the sequence which encodes the mutein. Examples include promoters for transcription initiation, optionally with an operator, enhancer regions, ribosome binding site sequences and translation signals which initiate and terminate translation of the gene. Such control sequences must be compatible with, i.e., operable in, the host into which they will be inserted.
A number of naturally occurring xylose isomerases and their genes may be obtained from a variety of procaryotic organisms, such as Bacillus subtilis, Ampullariella species, bcth disclosed in U.S. Patent No. 3,826,714, S. rubiginosus (ATCC 21,175 disclosed in U.S. Patent Nos. 3,666,628 and 4,410,627) and E. coli. The foregoing patents are incorporated by reference herein. In addition, naturally occuring mutants of xylose isomerase may be employed as sources for genetic material for mutation.
The DNA sequence encoding the gene for S. rubiginosus xylose isomerase may be obtained and cloned in accord with the general method herein. As will be seen from the examples, this method includes determining at least a portion of the amino acid sequence for the enzyme, synthesizing labeled probes having putative sequences encoding sequenced regions of the xylose isomerase, preparing genomic DNA libraries prepared from chromosomal DNA isolated from S. rubiginosus cells expressing the isomerase, and screening the library for the gene encoding xylose isomerase by hybridization to the labeled probes. Positively hybridizing clones are then restriction enzyme mapped and sequenced.
Once the xylose isomerase gene has been identified and cloned, a number of modifications are undertaken to modify the gene to encode enzyme muteins with improved characteristics compared to the reference enzyme, for industrial uses. The
reference enzyme is the enzyme prior to the modifications as described herein.
Crucial to selection of sites for mutagenesis is procurement of an atomic-resolution x-ray crystal structure of the reference enzyme. Computer graphics analysis of the enzyme's crystal structure allows the identification of specific sites for alteration that may result in muteins possessing improved properties.
To facilitate selection of the desired modifications, a strategy may be devised using a computer-based model-building system, for example using computer assistance such as the Proteus computer program described by Pabo et al., Biochem. 25:5987-5991 (1986), incorporated by reference herein. Generally, such methodology involves analyzing geometric aspects of protein structure revealed, for example, by x-ray diffraction crystallography. Preferably, such a strategy takes into account how the proposed modification will fit with the remaining (unmodified) portion of the protein, taking into consideration the environment of the amino acid residues.
The stability of a protein structure is determined by the net difference in free energy between the folded and unfolded forms of the protein. Both enthalpy and entropy contribute to the free energy terms. The contribution of any given residue to the configurational entropy of unfolding of the polypeptide backbone of a protein can be estimated as Sconf = R In z where R is the gas constant and z is the number of conformations available to that residue in the unfolded state. (Schellman, C.R.Trav.Lab. Carlsberg Ser. Chim. 29:230-259 (1955).) The value of z is not the same for all amino acids. The pyrrolidine ring of proline restricts this residue to fewer conformations than are available to the other amino acids. As a consequence, the backbone configurational entropy of protein unfolding varies from one amino acid to another; glycine has the largest and proline has the least conformational entropy change of unfolding.
An exact evaluation of ΔSconf requires a statistical averaging over all conformations. However, an approximate estimate can be obtained by considering the area that is available to a given amino acid in a Ramachandran et al. conformational map (Ramachandran et al., J.Mol. Biol. 7:95-99 (1963)). If γy is the relative area in a conformational map accessible to amino acid Y (where γ = 1 for the entire map) and γN is the relative area that corresponds to residue Y in the folded structure, then the entropy of unfolding for residue Y is given (Nemethy et al., J. Phys. Chem. 70:998-1004 (1966)) by
ΔSConf(Y) = R 1n(γγ/γN) [2]
From Eq. 2 and the assumption that changes in γN are negligible (see below), one can estimate the relative entropy of unfolding of a different type of residue, Z, relative to Y, namely,
ΔSZY = ΔSconf(Z) - ΔSconf(Y) = R ln(γz/γy) [3]
On this basis, Nemethy, et al., supra, estimated that the backbone contribution to the entropy of unfolding of an alanine relative to a glycine is -2.4 cal/deg·mol ("eu") (1 cal = 4.184J). On the same basis, a proline relative to an alanine can be estimated to have a relative conf igurational entropy of unfolding of about -4 cal/deg·mol ("eu"). For T4 lysozyme at pH 6.5, -4 cal/deg·mol corresponds to a change of
1.4 kcal in the free energy of unfolding and an increase in the melting temperature of about 3.5°C.
The present invention provides a method for predicting substitution by certain amino acids to decrease the contigurational entropy of unfolding a protein, thus increasing protein stability. The most effective substitutions contemplated are those in which amino acids in a protein are replaced with prolines. Another useful substitution contemplated is to replace glycine residues in a protein with alanine. To carry out the method of
the invention, the three-dimensional structure of a protein is obtained, for example by X-ray crystallography. From the three- dimensional coordinates the backbone conformational angles (phi Φ and psi ψ) are calculated and listed. Direct, visual inspection of these Φ,ψ angles permits the selection of all possible sites where an amino acid such as proline can be accommodated. The values of Φ and ψ at the substitution site must be within one of two regions. In Region 1, Φ = -40° to -90° and ψ = 0° to -60°. In Region 2, Φ = -40° to -95° and ψ = 120° to 180°. Sites with Φ and ψ values 10° or more inside these limits are preferred. For proline substitution there is also a restriction on the Φ and ψ values of the amino acid in the amino acid sequence of the protein immediately preceding the site of the proposed proline substitution. This restriction is as follows: If the ψ value of the residue preceding the proline substitution site is between 0º and -90° then the substitution site itself must have Φ and ψ values in Region 1. If the ψ value of the residue preceding the proline substitution site is not between 0° and -90° then the substitution site itself can have Φ and ψ values in either Region 1 or Region 2. These quoted Φ and ψ values are based on an analysis of the conformations of proline residues in all protein structures refined to a resolution of 1.7 Å or better. These Φ and ψ values were determined from the coordinates of proteins (x,y,z values) deposited in the Brookhaven Data Bank, Brookhaven, NY (Bernstein et al., J. Mol. Biol. 112: 535-542 (1977), Coordinate listing of January 1, 1987).
Once the Φ and ψ values have been used to obtain potential sites for amino acid replacement, each site must be inspected to determine if the substitution can be made without disruption of the three-dimensional structure of the protein. Amino acid substitutions that would cause unfavorable steric interactions with other parts of the protein structure are avoided. Removal of an amino acid that makes favorable interactions with neighboring
protein atoms is also avoided. The inspection of the three- dimensional protein structure can be carried out in different ways, for example by using a wire model of the structure, or by displaying a model of the structure on a graphics system with a program such as FRODO (described by Jones in Crystallographic Univ. Press, Oxford, pp. 303-317 (1982), available from Evans and Sutherland, Salt Lake City, UT 84108).
The method of the invention for predicting sites for replacement of glycine with alanine is similar in principle to that used for the proline substitutions. First the Φ and ψ values of all glycine residues in the protein are inspected. Only those glycines with a negative value of Φ are possible candidates for replacement with alanine because a positive value of Φ is known to be unfavorable for residues with a β-carbon (Ramachandran et al., J. Mol. Biol. 7:95-99 (1963)). A three- dimensional model of the protein is then inspected to determine those glycine to alanine substitutions that can be made without perturbing the three-dimensional structure of the protein.
The enhancement of protein stability based on the difference between backbone conf igurational entropy of different amino acids is not restricted to replacements involving proline or glycine. Residues such as threonine, valine and isoleucine with branched β-carbons restrict the backbone conformation more than nonbranched residues. As a consequence, there are many possible amino acid substitutions that alter the backbone conf igurational entropy of unfolding of a protein and that may be used to increase protein stability.
One specific aspect of the present invention is a method for increasing the stability of a protein by substituting an amino acid at a preselected substitution site in the protein, the substitution site selected to have phi and psi backbone conformational angles in the range of phi = -40° to -90° when psi =
0° to -60°, or in the range of phi = -40° to -95° when psi = 120 º to 180° and the site is capable of accommodating the amino acid without disruption of the three-dimensional structure of the protein such that introduction of the amino acid decreases the configurational entropy of unfolding of the protein. The preselected substitution site may be any amino acid residue except proline and the amino acid introduced at the site is proline. The preselected substitution site may be a glycine amino acid residue with a negative phi angle and the amino acid introduced is alanine.
Another aspect of the invention is a method for increasing the stability of a protein comprising substituting a glycine amino acid residue having a negative phi angle with an alanine to decrease the configurational entropy of unfolding of the protein.
Another specific aspect of the invention is a method for selecting substitution sites suitable for introduction of amino acids in a protein such that introduction of the amino acids increases the stability of the protein by a) determining from the crystallographic structure of a protein the backbone conformational angles phi and psi of the protein; b) screening the phi and psi angles determined in step a) to identify potential substitution sites in the protein having conformational phi and psi angles in the range of phi = -40° to -90° when psi = 0° to -60°, or in the range of phi = -40° to -95° when psi = 120° to 180° for introduction of the amino acids; and c) examining a structural model of the protein to determine from the potential substitution sites identified in step b) substitution sites that will accommodate substitution of an amino acid without disruption of the three-dimensional structure of the protein, whereby substitution of the site results in a decrease in the configurational entropy of unfolding of the protein.
If the amino acid introduced in the above-described method of the invention is proline, then the step of screening (step b) has the additional substep of determining whether the amino acid residue preceding the potential substitution site identified in step b) has psi angles between 0° and -90°, and if so, then the step c) of examining comprises the substep of determining a substitution site having phi and psi angles in the range phi = -40° to -90° when psi = 0° to -60°.
Another specific aspect of the invention provides Streptomyces rubiginosus, (S. rubiginosus), xylose isomerase mutein having a change in at least one position in the native amino acid sequence at a position equivalent to a native amino acid residue selected from the group consisting of Lysine183, Lysine289, Histidine54, Histidine220, Methionine223, Arginine140, Tryptophan16, Tryptophan137, Phenylalanine94, Glycine146, Glycine166, Glycine197, Glycine219, Glycine231, Glycine248, Glycine298, Glycine305, Glycine369, Leucine15, Alanine29, Alanine33, Asparagine107, Arginine109, Glycine146, Valine151, Glycine189, Leucine192, Glutamic acid207, Arginine259, Threonine342, Arginine354, Glycine369, Aspartic acid28, Arginine32, Serine64, Valine218, Arginine292, Isoleucine252, Aspartic acid9, Glutamine21, Alanine29, Arginine32, Glutamic acid38, Leucine46, Aspartic acid56, Leucine58, Valine127, Threonine133, Alanine136, Arginine177, Isoleucine180, Leucine193, Leucine211, Asparagine227, Glutamine234, Alanine238, Leucine246, Arginine284, Arginine308, Leucine311, Arginine316, Leucine335, Valine362, Methionine370, Leucine375, Leucine383, Glutamine21, Asparagine92, Asparagine107, Asparagine185, Asparagine227, Glutamine234, Glutamine256, Asparagine309, Glutamine377, Tryptophan270, Glycine146, Phenylalanine320, Histidine382, Glutamic acid337, Arginine109, Glycine189, Glutamic acid144, Glycine251, Glycine225, Alanine366, Valine98, Glutamine249, Glycine219, Glutamic acid207, Aspartic acid163, Aspartic acid 57,
Glutamic acid 186; Glutamic acid 141, Glutamic acid221, Aspartic acid287; Arginine177; and Aspartic acid345.
In another specific aspect of the invention the change is in the lysine amino acid residue equivalent to Lys183 and the change is substitution by an amino acid selected from the group consisting of Arg, Gln, Asn, Asp, Glu, Ser, Thr, His, Tyr, Ala, Val, Leu and lle; or
the change is in the lysine amino acid residue equivalent to Lys289 and the change is substitution by an amino acid selected from the group consisting of Arg, Gln, Asn, Asp, Glu, Ser Thr, His, Tyr, Ala, Val, Leu and lle; or
the change is in the histidine amino acid residue equivalent to His54 and the change is substitution by an amino acid selected from the group consisting of Gln, Glu, Asn, Asp, Ser, Thr, Ala, Val, and Tyr; or
the change is in the histidine amino acid residue equivalent to His220 and the change is substitution by an amino acid selected from the group consisting of Gln, Glu, Asn, Asp, Ser, Thr, Ala, Val, and Tyr; or
the change is in the methionine amino acid residue equivalent to Met223 and the change is subsitution by an amino acid selected from the group consisting of Gly, Ala, Val, Leu, lle, Phe, Tyr, Gln, and Asn; or
the change is in the arginine amino acid residue equivalent to Arg140 and the change is substitution by an amino acid selected f rom the group cons ist ing of Gin, Asn , Glu, Asp , l le , Leu, Ala, Val, and Tyr; or
the change is in the tryptophan amino acid residue equivalent to Trp16 and the change is substitution by an amino acid
selected from the group consisting of Asn, Gln, Ser, Thr, Gly, Ala, Val, Leu, lle, Tyr, Phe, and His; or
the change is in the tryptophan amino acid residue equivalent to Trp137 and the change is substitution by an amino acid selected from the group consisting of Asn, Gln, Ser, Thr, Gly, Ala, Val, Leu, lle, Tyr, Phe, and His; or
the change is in the phenylalanine amino acid residue equivalent to Phe94 and the change is substitution by an amino acid selected from the group consisting of Thr, Ser, His, Val, Gly, Ala, lle, Leu, Asn, and Gln; or
the change is substitution of the glycine amino acid residue equivalent to Glyx where x is selected from the group consisting of residues 146, 166, 197, 219, 231, 248, 298, 305 and 369, and the Gly substituted with an amino acid other than glycine; or
the change is substitution by proline in the amino acid residue equivalent to an amino acid residue selected from the group consisting of Leu15, Asp28, Ala29, Arg32, Ala33, Ser64, Asn107, Arg109, Gly146, Val151, Gly189, Leu192, Glu207, Val218, Ile252, Arg259, Arg292, Thr342, Arg354, Gly369, Arg177, and Asp345; or
the change is double substitutions of cysteine in the amino acid residues equivalent to pairs of amino acid residues selected from the group consisting of Trp270 and Gly146, Phe320 and His382, Glu337 and Arg109, Gly189 and Glu144, Gly251 and Gly225, Ala336 and Val98, Gln249 and Gly219, and/or Gly207 and Asp163; or
the change is substitution by tyrosine in the amino acid residues equivalent to an amino acid residue selected from the group consisting of Asp9, Gln21, Ala29, Arg32, Glu38, Leu46, Asp56, Leu58, Val127, Thr133, Ala136, Arg177, Ile180, Leu193, Leu211, Asn227, Gln234, Ala238, Leu246, Arg284, Arg308, Leu311, Arg316, Leu335, Val362, Met370, Leu375 and Leu383; or
the change is substitution by phenylalanine in the amino acid residue equivalent to an amino acid residue selected from the group consisting of Leu46, Asp56, Leu58, Thr133, Ala136, Ile180, Leu193, Leu211, Asn227, Gln234, Ala238, Leu246, Leu311, Leu335, Val362, Met370, Leu375 and Leu383; or
the change is substitution by tryptophan in the asparagine amino acid residue equivalent to Asn227; or
the change is substitution by an amino acid residue selected from the group consisting of Ala, Val, Leu, lle, Ser, Thr, His, Tyr, Lys, Arg, Met and Pro in the amino acid residue equivalent to an amino acid residue selected from the group consisting of Gln21, Asn92, Asn107, Asn185, Asn227, Gln234, Gln256, Asn309, and Gln377; or
the change is in the aspartic acid amino acid residue equivalent to Asp57 and the change is substitution by an amino acid selected from the group consisting of Lys, Arg, Gly, Ala, Gln, Asn, Thr and Ser; or
the change is in the glutamic acid amino acid residue equivalent to Glu186 and the change is substitution by an amino acid selected from the group consisting of Lys, Arg, Gly, Ala, Gln, Asn, Thr and Ser; or
the change is substitution of the aspartic acid amino acid residue equivalent to Asp57 and the substitution is with an amino acid other than aspartic acid or glutamic acid; or
the change is substitution in the glutamic acid amino acid residue equivalent to Glu186 and the change is substitution by an amino acid other than aspartic acid or glutamic acid; or
the change is substitution by glutamine in the glutamic acid amino acid residue equivalent to Glu221; or
the change is substitution by glutamine in the glutamic acid amino acid residue equivalent to Glu141.
Still another aspect of the invention is a nucleic acid encoding the xylose isomerase of the invention where the nucleic acid is substantially free of nucleic acid that does not encode the xylose isomerase.
Another specific aspect of the invention is an expression vector for mutant procaryotic xylose isomerase which has the nucleic acid of the invention operably linked to control sequences compatible with a host cell.
Another aspect of the invention is a method for enhancing the conversion of glucose to fructose and xylose to xylulose by exposing an effective amount of the xylose isomerase muteins of the invention to glucose and xylose, respectively.
Still another aspect of the invention is an expressed xylose isomerase mutein which exhibits a change in one or more of the characteristics of chemical stability, , r, KS, KP,
temperature stability, specific activity of the isomerase and a lowered ph optimum, as compared to a reference xylose isomerase.
After the desired modifications are selected, the DNA sequence encoding the protein is site-specifically mutagenized to substitute nucleotides encoding selected amino acids at the predetermined positions within the sequence.
In the following examples, modifications will be described in two different proteins, xylose isomerase and bacteriophage T4 lysozyme. It is to be understood that the above method of protein stabilization applies to proteins in general and is not restricted to the two examples provided herein.
Site-specific mutagenesis (also known as primer-directed mutagenesis) is a technique which is well-established in the art. A preferred procedure is gapped circle mutagenesis (Kramer et al., Nucl. Acids Res. 12:9441-9456 (1986)). In this method the DNA sequence encoding the gene to be mutagenized is ligated into an M13 vector having amber mutations which prevent its replication. The oligonucleotide primer incorporating the desired nucleotide changes is ultimately joined to a similar M13 vector lacking the mutation. The phage incorporating primer preferentially replicates in a susceptible host, thus enriching for the altered gene.
In general, site-specific mutagenesis is performed by cloning the DNA sequence encoding the reference enzyme into a convenient M13 cloning vector and using an appropriate primer, to convert a residue at an identified position for example, to a conservative amino-acid replacement. A synthetic oligonucleotide complementary, except in areas of limited mismatching to the desired sequence, is used as a primer in the synthesis of a strand complementary to the single-stranded reference isomerase sequence in the phage vector. The resulting double-stranded DNA is transformed into a phage-supporting host bacterium. Cultures of the transformed bacteria are plated in top agar, permitting plaque formation from single cells which harbor the phage. Theoretically, 50% of the plaques will consist of phage containing the mutant form; 50% will have the original sequence. Using the gapped circle method, the plaques will be enriched for phage having the mutant form. The plaques are hybridized with kinased synthetic primer under stringency conditions which permit hybridization only with the desired sequence which will form a perfect match with the probe. Hybridizing plaques are then picked and cultured, and the DNA is recovered.
The mutated cloned xylose isomerase genes may then be ligated into an expression vector (which may also be the cloning
vector) with requisite regions for replication in the host. The vector is transfected into a host for enzyme synthesis, and the recombinant host cells are cultured under conditions favoring enzyme synthesis, usually selection pressure such as is supplied by the presence of an antibiotic, the resistance to which is encoded by the vector. Culture under these conditions results in enzyme yields multifolds greater than the wild type enzyme synthesis of the parent organism, even if it is the parent organism that is transformed.
The mutated cloned xylose isomerases are used to transform a host cell in order to express the mutated isomerase. In the preferred embodiment, the mutated xylose isomerase gene is ligated into a high copy number plasmid. This plasmid replicates in hosts in the sense that it contains the well-known elements necessary for plasmid replication: a promoter operably linked to the gene (which may be the gene's own homologous promoter if it is recognized, i.e., transcribed by the host), a transcription termination and polyadenylation region (necessary for stability of the mRNA transcribed by the host from the xylose isomerase gene) which is exogenous or is supplied by the endogenous terminator region of the isomerase gene and, preferably, a selection gene such as an antibiotic resistance gene that enables continuous growth in antibiotic-containing media. High copy number plasmids also contain an origin of replication compatible with the host, thereby enabling large numbers of plasmids to be generated in the cytoplasm without chromosomal limitations. However, it is within the scope of the invention herein to integrate multiple copies of the isomerase gene into the host genome. This is facilitated by bacterial strains that are particularly susceptible to homologous recombination. The resulting host cells are termed recombinant host cells.
Standard Methods
Most of the techniques which are used to transform cells, construct vectors, effect hybridization with probe, and the like as well as to perform x-ray crystallography of a protein, are widely practiced in the art, and most practitioners are familiar with the standard resource materials which describe specific conditions and procedures (see for example, Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, NY (1982)). However, for convenience, the following paragraphs may serve as a guideline.
Control Sequences And Corresponding Hosts
Procaryotes most frequently are represented by various strains of E. coli. However, other microbial strains may also be used, such as bacilli for example, Bacillus subtilis, Pseudomonas sp., Streptomyces rubiginosus; various species of fungi or other microorganisms. In such procaryotic systems, plasmid vectors which contain replication sites and control sequences derived from a species compatible with the host are used. For example, E. coli is typically transformed using derivatives of pBR322, a plasmid derived from an E. coli species by Bolivar, et al., Gene 2:95 (1977). pBR322 contains genes for ampicillin and tetracycline resistance, and thus provides additional markers which can be either retained or destroyed in constructing the desired vector. Commonly used procaryotic control sequences which are defined herein to include promoters for transcription initiation, optionally with an operator, along with ribosome binding site sequences, include such commonly used promoters as the betalactamase (penicillinase) and lactose (lac) promoter systems (Chang, et al., Nature (1977) 198:1056), the tryptophan (trp) promoter system (Goeddel, et al., Nucleic Acids Res (1980) 8:4057), and the lambda derived PL promoter and N-gene ribosome binding site (Shimatake, et al., Nature (1981) 292:128), which
has been made useful as a portable control cassette. Also useful is the phosphatase A (phoA) system described by Chang, et al., in European Publication No. 196,864 published October 8, 1986, and assigned to the same assignee and incorporated herein by reference. However, any available promoter system compatible with procaryotes can be used.
In addition to bacteria, eucaryotic microbes, such as yeast, may also be used as hosts. Laboratory strains of Saccharomyces cerevisiae. Baker's yeast, are frequently used, although a number of other strains are commonly available. Many plasmid vectors suitable for yeast expression are known. (See, for example, Stinchcomb, et al., Nature 282:39 (1979), Tschempe, et al., Gene 10:157 (1980) and Clarke, L., et al., Meth. Enzvmol. 101:300 (1983)). Control sequences for yeast vectors include promoters for the synthesis of glycolytic enzymes (Hess, et al., J . Adv. Enzyme. Reg. 7:149 (1968); Holland, et al., Biochemistry 17:4900 (1978)). Additional promoters known in the art include the promoter for 3-phosphoglycerate kinase (Hitzeman, et al., J. Biol. Chem. 255:2073 (1980)), and those for other glycolytic enzymes, such as glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3 phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase. Other promoters, which have the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, and enzymes responsible for maltose and galactose utilization (Holland, ibid). It is also believed that terminator sequences are desirable at the 3' end of the coding sequences. Such terminators are found in the 3' untranslated region following the coding sequences in yeast-derived genes. Many of the vectors illustrated contain control sequences derived from the
enolase gene containing plasmid peno 46 (Holland, M. J., et al., J. Biol. Chem. 256:1385 (1981)) or the LEU2 gene obtained from YEp13 (Broach, J., et al., Gene 8:121 (1978)), however, any vector containing a yeast compatible promoter, origin of replication and other control sequences is suitable.
It is also, of course, possible to express genes encoding polypeptides in eucaryotic host cell cultures derived from multicellular organisms. See, for example, Tissue Culture. Academic Press, Cruz and Patterson, editors (1973). Useful host cell lines include murine myelomas NS1, VERO and HeLa cells, and Chinese hamster ovary (CHO) cells. Expression vectors for such cells ordinarily include promoters and control sequences compatible with mammalian cells such as, for example, the commonly used early and late promoters from Simian Virus 40 (SV 40) (Fiers, et al., Nature 273:113 (1978)), or other viral promoters such as those derived from polyoma, Adenovirus 2, bovine papiloma virus (BPV), or avian sarcoma viruses, or immunoglobulin promoters and heat shock promoters . This system is disclosed in U. S . Patent No. 4,419,446. A modification of this system is described in U.S. Patent No. 4,601,978. General aspects of mammalian cell host system transformations have been described by Axel; U.S. Patent No. 4,399,216 issued August 16, 1983. It now appears, also, that "enhancer" regions are important in optimizing expression; these are, generally, sequences found upstream of the promoter region. Origins of replication may be obtained, if needed, from viral sources. However, integration into the chromosome is a common mechanism for DNA replication in eucaryotes.
Plant cells are also now available as hosts, and control sequences compatible with plant cells such as the nopaline synthase promoter and polyadenylation signal sequences (Depicker, A., et al., J. Mol. Appl. Gen. 1:561 (1982)) are available.
Recently, in addition, expression systems employing insect cells utilizing the control systems provided by baculovirus vectors have been described (Miller, D.W., et al., in Genetic Engineering. Setlow, J.K., et al., eds., Plenum Publishing, Vol. 8, pp. 277-297 (1986)).
Transformations
Depending on the host cell used, transformation is done using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described by Cohen, S. N., Proc. Natl. Acad. Sci. (USA) 69:2110 (1972), is used for procaryotes or other cells which contain substantial cell wall barriers. Infection with Agrobacterium tumefaciens (Shaw, C. H., et al., Gene 23:315 (1983)) is used for certain plant cells. For mammalian cells without such cell walls, the calcium phosphate precipitation method of Graham and van der Eb, Virology 52:546 (1978) is preferred. Transformations into yeast are carried out according to the method of Van Solingen, P., et al., J. Bact. 130:946 (1977) and Hsiao, C. L., et al., Proc. Natl. Acad. Sci. (USA) 76:3829 (1979).
Probe of cDNA or Genomic Libraries
"Southern Analysis" is a method by which the presence of DNA sequences in a digest or DNA-containing composition is confirmed by hybridization to a known, labeled oligonucleotide or DNA fragment. For the purposes herein, Southern Analysis shall mean separation of digests on 1 percent agarose and depurination as described by G. Wahl et al., PNAS (USA). 76:3683-3687 (1979), transfer to nitrocellulose by the method of E. Southern, J. Mol. Biol. 98:503-517 (1975), and hybridization as described by Maniatis et al., Cell. 15:687-701 (1978).
cDNA or genomic libraries are screened using the colony or plaque hybridization procedure. Bacterial colonies, or the
plaques for phage are lifted onto duplicate nitrocellulose filter papers (S & S type BA-85). The plaques or colonies are lysed and DNA is fixed to the filter by sequential treatment for 5 min with 500 mM NaOH, 1.5 M NaCl. The filters are washed twice for 5 min each time with 5 x standard saline citrate (SSC) and are air dried and baked at 80°C for 2 hr.
The gels for Southern blot or the duplicate filters for cDNA or genomic screening are prehybridized at 25°-42°C for 6-8 hr with 10 ml per filter of DNA hybridization buffer without probe (0-50% formamide, 5-6 x SSC, pH 7.0, 5x Denhardt's solution (polyvinylpyrrolidine, plus Ficoll and bovine serum albumin; 1 x = 0.02% of each), 20-50 mM sodium phosphate buffer at pH 7.0, 0.2% SDS, 20 μg/ml poly U (when probing cDNA), and 50 μg/ml denatured salmon sperm DNA) . The samples are then hybridized by incubation at the appropriate temperature for about 24-36 hours using the hybridization buffer containing kinased probe (for oligomers). Longer cDNA or genomic fragment probes may be labeled by nick translation or by primer extension.
The conditions of both prehybridization and hybridization depend on the stringency desired, and vary, for example, with probe length. Typical conditions for relatively long (e.g., more than 30-50 nucleotide) probes employ a temperature of 42°C and hybridization buffer containing about 20%-50% formamide. For the lower stringencies needed for oligomeric probes of about 15 nucleotides, lower temperatures of about 25°-42ºC, and lower formamide concentrations (0%-20%) are employed. For longer probes, the filters may be washed, for example, four times for 30 minutes, each time at 40º-50°C with 2 x SSC, 0.2% SDS and 50 mM sodium phosphate buffer at pH 7, then washed twice with 0.2 x SSC and 0 . 2% SDS , air dried, and are autoradiographed at -70 °C for 2 to 3 days. Washing conditions are somewhat less harsh for shorter probes.
Minor variations from these specified hybridization methods are described in the examples below.
Vector Construction
Construction of suitable vectors containing the desired coding and control sequences employs standard ligation and restriction techniques which are well understood in the art. Isolated plasmids, DNA sequences, or synthesized oligonucleotides are cleaved, tailored, and religated in the form desired.
Site-specific DNA cleavage is performed by treating the DNA with the suitable restriction endonuclease(s) under conditions which are generally understood in the art, and the particulars of which are specified by the manufacturer of these commercially available restriction enzymes. See, e.g., New England Biolabs, Product Catalog (New England Biolabs , Beverly, MA) . In general , about 1 μg of plasmid or DNA sequence is cleaved by one unit of enzyme in about 20 μl of buffer solution. An excess of restriction enzyme is typically used to insure complete digestion of the DNA substrate; however, it may be desirable to carry out partial digestions in which some but not all of the sites of a given restriction enzyme in the DNA are cleaved. Such partial digestions are accomplished by varying the concentration of restriction enzyme or length of time the restriction digestion is carried out. Incubation times of about one hour to two hours at about 37°C are workable, although variations can be tolerated. After each incubation, protein is removed by extraction with phenol/chloroform, and may be followed by ether extraction, and the nucleic acid recovered from aqueous fractions by precipitation with ethanol. If desired, size separation of the cleaved fragments may be performed by polyacrylamide gel or agarose gel electrophoresis using standard techniques. A general description of size separations are found in Methods in Enzymology (1980) 65:499-560; Lawn et al., Nucl. Acids Res. 9:6113-6114 (1981) and Goeddel et al., Nucl. Acids Res. 8:4057 (1980)).
Restriction cleaved fragments may be blunt ended by treating with the large fragment of E. coli DNA polymerase I (Klenow) in the presence of the four deoxynucleotide triphosphates (dNTPs) using incubation times of about 15 to 25 min at 20° to 25°C in 50mM Tris pH 7.6, 50mM NaCl, 6mM MgCl2, 6mM dTT, about 10 U/μl Klenow and 5-10μM dNTPs. The Klenow fragment fills in at 5' sticky ends but chews back protruding 3' single strands, even though the four dNTPs are present. If desired, selective repair can be performed by supplying only one of the, or selected, dNTPs within the limitations dictated by the nature of the sticky ends. After treatment with Klenow, the mixture is extracted, with phenol/chloroform and ethanol precipitated. Treatment under appropriate conditions with SI nuclease results in hydrolysis of any single-stranded portion.
Ligations are performed in 15-30 μl volumes under the following standard conditions and temperatures: 20mM Tris-HCl, pH 7.5, 10mM MgCl2, 10mM dTT, 33 μg/ml BSA, 10 mM-50 mM NaCl, and either 40μM ATP, 0.01-0.02 (Weiss) units T4 DNA ligase at 0°C (for "sticky end" ligation) or 1mM ATP, 0.3-0.6 (Weiss) units T4 DNA ligase at 14ºC (for "blunt end" ligation). Intermolecular "sticky end" ligations are usually performed at 33-100 μg/ml total DNA concentrations (5-100 nM total end concentration). Intermolecular blunt end ligations (usually employing a 10-30 fold molar excess of linkers) are performed at 1 μM total, ends concentration.
In vector construction employing "vector fragments", the vector fragment is commonly treated with bacterial alkaline phosphatase (BAP) in order to remove the 5' phosphate and prevent religation of the vector. BAP digestions are conducted at pH 8 in approximately 150 μM Tris, in the presence of Na+ and Mg+2 using about 1 unit of BAP per μg of vector at 60°C for about one hour. In order to recover the nucleic acid fragments, the preparation is extracted with phenol/chloroform and ethanol
precipitated. Alternatively, religation can be prevented in vectors which have been double digested by additional restriction enzyme digestion of the unwanted fragments.
Verification of Construction
In the constructions set forth below, correct ligations for plasmid construction are confirmed by first transforming E. coli strain MM294, or other suitable host with the ligation mixture. Successful transformants are selected by ampicillin, tetracycline or other antibiotic resistance or using oth markers depending on the mode of plasmid construction, as is understood in the art . Plasmids from the transformants are then prepared according to the method of Clewell, et al., P.N.A.S. (USA) 62:1159 (1969), optionally following chloramphenicol amplification (Clewell, J. Bacteriol. (1972) 110:667). The isolated DNA is analyzed by restriction and/or sequenced by the dideoxy method of Sanger, et al., P.N.A.S. (U.S.A.), 74:5463 (1977) as further described by Messing, et al., Nucleic Acids Res. 9:309 (1981), or by the method of Maxam, et al., Methods in Enzymology 65:499 (1980).
Preparation of Synthetic Oligonucleotides . for Modification of DNA
Synthetic oligonucleotides may be prepared by the triester method of Matteucci, et al., J. Am. Chem. Soc. 103:3185-3191 (1981), or using automated synthesis methods. Kinasing of single strands prior to annealing or for labeling is achieved using an excess, e.g., approximately 10 units of polynucleotide kinase to 1 nM substrate in the presence of 50 mM Tris, pH 7.6, 10 mM MgCl2. 5 mM dithiothreitol, 1-2 mM ATP. If kinasing is for labeling of probe, the ATP will contain high specific activity 32γP. The synthetic oligonucleotide is used as a primer to direct synthesis of a strand complementary to the phage, and the resulting double-stranded DNA is transformed into a phage- supporting host bacterium. Cultures of the transformed bacteria
are plated in top agar, permitting plaque formation from single cells which harbor the phage.
Hosts Exemplified
Hpst strains that may be used in cloning and expression herein are as follows:
For cloning and sequencing, and for expression of the construction under control of most bacterial promoters, E. coli strain MM294 obtained from the American Type Culture Collection, Rockville, MD (ATCC, No. 53,131) is used as the host. This particular strain contains a plasmid, pAW721, and should be plasmid cured prior to use. For expression under control of the trp promoter and trpE translation initiation signal in the expression vector pTRP3, E. coli strain MM294 or DG101, may be used. pTRP3 has been accepted for deposit under the terms of the Budapest Treaty, under accession No. ATCC 39,946.
For M13 phage recombinants E. coli strains susceptible to phage infection, such as E. coli K12 strain DG98 (ATCC No. 39,768) and HB2151 (commercially available from Anglican Biotechnology Ltd., Colchester, Essex, UK) are employed.
Mammalian expression may be performed in COS-7, COS-A2, CV-1, and murine cells, and insect cell based expression in Spodoptera frugipeida.
The mutant xylpse isomerases expressed upon transformation of the suitable hosts have similar enzymatic activity to the reference xylose isomerase and are screened for those that exhibit desired characteristics, for example, kinetic parameters, oxidation stability, thermal stability, lowered pH optima and the like.
A change in kinetic parameters is defined as an alteration in kcatf, kcatr, KS and/or KP. Procaryotic xylose isomerase muteins with increased or diminished , k , KS or KP
values may be obtained as described herein. Generally, the objective will be to obtain a mutein having a greater (numerically larger) kcat for the forward reactions (glucose to fructose, and xylose to xylulose), and a reduced (numerically smaller) KS for the substrates glucose or xylose, thereby enabling the use of the enzyme to more efficiently process its target substrate. kcat and KS are measured by known procedures, for example by analysis of the progress curve for these known parameters in the enzyme/substrate reaction. The rate of the reaction may be measured as a function of substrate concentration. Data are preferably analyzed by fitting to the Michaelis- Menten equation using a non-linear regression algorithm such as that described by Marquardt, J. Soc. Ind. Appl. Math. 11:431-441(1963). A lowered pH optimum is defined as a shift in the peak of the pH vs. activity profile toward lower pH values. pH vs. activity profiles are measured by known assay procedures under controlled pH conditions. Procaryotic xylose isomerase muteins having a lowered (numerically smaller) pKa may be obtained as described herein. These muteins may possess lowered pH optima.
The deduced amino acid sequence of the recombinant gene for xylose isomerase obtained as described above is shown in Figure 5 (A and B). This sequence was used in conjunction with x-ray crystallographic analysis and molecular modeling using a computer graphics system to display and analyze the three-dimensional structure of xylose isomerase, including the active site. In this manner the effects of replacement, insertion or deletion of one or more key amino acid residues, for example the effects on non-covalent interactions between the active site and the substrate (glucose) or end product (fructose), are determined.
Sites within the DNA sequence for the xylose isomerase of the invention are thus targeted for mutation to improve the activity and stability of the enzyme, for example, to alter the catalytic properties by reducing the KSand increasing the increasing
KP, decreasing k and/or by increasing the enzyme's stability
toward thermal and chemical inactivation. These same mutations may be used at homologous locations within the DNA sequences for other xylose isomerases obtained from other microorganisms, since many of the amino acid residues selected for mutation are conserved between the various isomerases as shown in Figure 6.
The present invention promotes high efficiency of glucose conversion and high yields of fructose, using muteins of procaryotic xylose isomerase which may be used industrially for isomerization of glucose to fructose. The various mutation strategies of the present invention may be grouped as follows:
Minimization of Inactivating Chemical Reactions
Mutations are directed to removal of certain amino acids at selected positions that contain an amino group capable of reacting with a reducing sugar such as glucose so as to irreversibly inactivate the enzyme. These mutations result in removal of lysine amino acids, the only amino acid containing epsilon amino groups, that can react with a reducing sugar to irreversibly inactivate the enzyme (i.e., undergo Maillard reaction). In these mutations, as in the others, it is preferable to attempt to maintain similar structure and/or chemical properties, for example by introducing amino acids that have similar numbers of atoms, or by conserving salt bridges, hydrophobic interactions or hydrogen bonds, thereby maintaining a conformation like that of the native protein. In addition, oxidation of methionine, histidine or tryptophan residues at or near the active site may lead to a reduction in catalytic activity. Histidine contains an imidazole group, and tryptophan an indole group that may be
oxidized. Mutations are targeted to replace methionine or histidine residues with amino acids that are not likely to be oxidized, such as glutamine or glycine. Arginine contains a guanido group susceptible to modification by dicarbonyl compounds such as 2,3- butanedione. Similar dicarbonyl compounds may inactivate xylose isomerase. Removal or replacement of arginine may prevent inactivation.
Enhancement of Catalytic Properties
Based on the x-ray structure of S. rubiginosus xylose isomerase, and molecular modeling studies involving substrate docking to the enzyme's active site, tryptophan residues at positions 16 and 137 in the amino acid sequence of the reference enzyme, and a phenylalanine residue at position 94 appear to be critical residues forming the substrate binding site. Because glucose is a larger molecule than xylose (glucose contains an additional -CH, OH), the binding site of xylose isomerase appears to be too small to readily accommodate the larger glucose molecule. Replacement of these key amino acid residues by amino acids possessing small functional groups may reduce the KS for glucose, f and/or KP may also be altered.
Thermostabilization
Glycine residues in selected positions, e.g. alpha helices, β-strands or random structures that can accept the increased bulk of the substituted methyl group, are substituted with alanine residues to confer additional stabilization. In addition, proline substitutions are made at selected positions (the polypeptide-backbone torsion angles must accept the atypical proline angle values) to reduce the entropy of the unfolded form of the protein , and stabi lize the nat ive conformat ion . Select ion of proline substitution sites may be based on analysis of Phi/ssi (Φ, ψ) angles computed from the X-ray structure of the reference
protein using the method of the invention, or may be based on analysis of the amino acid sequences of homologous proteins. For example, proline substitutions may be made in the reference XI at positions identified from comparison of the highly homologous and thermostable XI from Ampullariella which contains several proline residues that are not present in the reference XI. Additional stabilizing alterations include the introduction of disulfide bridges at conformationally acceptable positions in the XI structure. Both intersubunit or intrasubunit disulfide bridges in the tetrameric xylose isomerase are contemplated within this invention. Introduction of aromatic amino acid residues such as tyros ine, phenylalanine and tryptophan near aromatic clusters within the enzyme are also within the scope of the invention, to stabilize the enzyme at sites where the additional bulk of aromatic groups will not distort the overall conformation.
To prevent deamidation reactions, selected amino acids (asparagine and glutamine residues) near interfaces between subunits are altered by substitutions with amino acids such as alanine and valine that cannot undergo such reactions.
In addition, or as an alternative to amino acid substitution for increased stability, the structural gene for xylose isomerase is duplicated and the two copies of the gene are fused via a DNA sequence encoding a short peptide segment, between 3 and 10 amino acids long, between the N-terminus of one gene copy and the C-terminus of the other. Preferably oligoglycine or a combination of glycine and additional amino acids such as alanine, serine, threonine or proline is used as the short peptide sequence. Alternatively, the N-terminus of one gene copy can be fused directly to the C-terminus of a second gene copy, or short deletions encoding for 1 to 3 amino acids can be made at either end prior to fusion.
Lowered pH Optimum
To lower the pH optimum (lower pKa) selected amino acids are mutated to alter the electrostatic potential at the xylose isomerase active site. This may be accomplished by changing negatively charged amino acids to positively charged amino acids near the active-site of the xylose isomerase, while preserving residues directly involved in substrate binding and catalysis (e.g. histidine at position 54 (His54)).
The mutated isomerase proteins, or "muteins", may be more stable than the currently used naturally occurring enzymes at the high temperatures, near 100°C, needed to reach the desired conversion levels (greater than 55% fructose). Some of the stabilizing mutations simply reduce the rate of thermally induced unfolding of the protein conformation. Others prevent covalent modifications of the enzyme which might reduce catalytic activity or conformational stability. The isomerase muteins may have improved catalytic activity for any combination of three reasons: increased intrinsic catalytic activity, increased affinity for substrate glucose, or decreased affinity for product fructose. The muteins may also exhibit lowered pH optima.
These improvements are not completely independent. For example, increasing affinity for substrate can result in increased thermal stability by reducing the fraction of time that an enzyme active site is empty, as it generally is true that binding of substrates or products to an enzyme active site stabilizes the protein conformation.
The improvements contemplated herein are intended to improve the economics of glucose isomerization for several reasons. Increased stability toward conformational unfolding (thermal stabilization) and/or inactivating covalent modification increases the permissible operating temperature and resulting percent
conversion of glucose, or increases the operating lifetime of a given batch of catalyst, thus reducing the cost of catalyst per unit of product. Increased catalytic activity at a given operating temperature allows a given amount of catalyst to bring a mixture of glucose and fructose closer to equilibrium in less time. It also may reduce the amount of enzyme required, again lowering the cost of catalyst per unit of product.
Any number of mutations proposed herein may be combined in a single mutein. Obviously, a particular substitution at one location rules out replacement with another amino acid at that same location in that particular mutein.
The isomerases herein may be obtained as salts. Accordingly, the present invention includes electrically neutral and salt forms of the designated xylose isomerases and the term xylose isomerase refers to the organic structural backbone regardless of ionization state.
The muteins are particularly useful for the food processing industry. The xylose isomerases may be produced by fermentation as described herein and recovered by suitable techniques. (Anstrup, Industrial Aspects of Biochemistry, ed. B. Spencer, pp 23-46 (1974)).
The following examples are presented to illustrate the present invention and to assist one of ordinary skill in making and using the same. The examples are not intended in any way to otherwise limit the scope of the disclosure or the protection granted by Letters Patent hereon.
EXAMPLE I
The method of the invention for predicting amino acid substitutions to reduce the entropy of unfolding was used to alter bacteriophage T4 lysoszyme ("T4L"). Two different types of amino
acid substitutions were performed; the first, Glycine to Alanine and the second, Xaa to Proline where Xaa is any amino acid. There are 11 glycines in T4 lysozyme, of which three (Gly77, Gly110 and Gly113) have Φ and ψ conformational angles that are within the allowed range for amino acids with a β-carbon. Inspection of these glycine sites using the graphics display program FRODO, supra, suggested that glycine residues at positions 77 and 113 could potentially accomodate a β-carbon without sterically interfering with neighboring atoms. Gly77 was replaced with alanine as described below. Alanine was chosen to avoid possible secondary effects that might occur with a larger side chain. The mutant protein with a Gly77 to Ala77 substitution was designated G77A.
For the Xaa to Pro substitution, potential sites were screened by inspecting the Φ and ψ conformational angles using the criteria described above. Of the 164 amino acids in T4L, 17 residues met the above criteria. Two of these were already proline residues in the native lysozyme. Inspection with FRODO was used to eliminate sites where a proline side chain would sterically interfere with neighboring atoms. Sites where the side chain of a residue appeared to participate in intramolecular interactions within the native structure were also removed from consideration. This screening procedure left three preferred candidates for proline substitutions: Lys60, Ala82, and Ala93. The mutant Ala82 to Pro (A82P) was constructed and is described here.
Mutant lysozymes G77A and A82P were obtained by oligonucleotide-directed mutagenesis (Zoller et al., DNA 3:479-488 (1984)). Procedures for mutagenesis, cloning, DNA sequencing, and protein purification were as described elsewhere (Alber et al., in Protein Structure, Folding and Design, UCLA Symp. Liss, NY, pp. 307-318 (1986); Alber et al., Methods Enzymol. 154:511-533 (1987); Grutter et al., J.Mol. Biol.,
197:315-329 (1987) and Owen et al., J.Mol. Biol. 165:229-248 (1983), all of which are incorporated by reference herein).
Expression System
The primer used to replace alanine with proline at position 82 was 5'-GTTTTAATTTAGGATTTCTC-3'. For position 77 a degenerate oligonucleotide, 5'-CTCAGAATTGNGCGAACAG-3' where N indicates a mixture of C, T and A, was used. This oligonucleotide codes for alanine, serine and threonine replacements of Gly77. Mutants were identified by differential hybridization of plaque lifts an dot blots to the mutagenic primers (Zoller and Smith, supra; and Alber and Matthews, supra). A typical reaction mix contains 0.1 pmole M13 template, 2 pmoles kinased mutagenic oligonucleotide, 0.5 pmole M13 sequencing primer, 0.5X ligase buffer, 0.5X Klenow buffer, 0.5 mM dNTP's, 0.5 mM rATP, 3 U of T4 DNA ligase and 2 U of the large fragment (Klenow) of DNA polymerase. After incubation at 16.C for 8-16 hours, this mixture is used to transform E. coli JM101 in broth culture. This step separates heteroduplex heterozygotes. The number of independent transformants is estimated by plating aliquots of transformed cells. The frequency of mutagenesis is 2-20%. Mutant sequences were then confirmed by DNA sequencing. Only alanine replacements were obtained at position 77 from the degenerate primer. To isolate the proteins, the mutant lysozyme genes were subcloned into an expression system including plasmid pHSe5 provided by Dr. David C. Muchmore (Institute of Molecular Biology, University of Oregon, Eugene, OR). In this system, the lysozyme gene is flanked by tandem lac and tac promoters and the trp terminator. Tight control of expression is provided by the presence of the laclq gene on the plasmid. The trp terminator eliminates selection against cells harboring the expression plasmid. The lysozyme was purified from lysates of induced plasmid-bearing cells by column chromatography on CM sepharose (Griffey et al., Biochemistry 24:817-822 (1985); and Alber and Matthews, supra). Cells were grown to 9 x 108/ml with
vigorous aeration. Induction of lysozyme expression was initiated by addition of isopropyl β-D-thiogalactoside (Calbiochem) to 8 x 10-4 M. The cells were incubated with reduced aeration and stirred for 2 h and then collected by centrifugation at 4000 rpm for 5 min in a Beckman J21 centrifuge using a JA10 rotor. The cells were resuspended in 20 mL of 50 mM tris(hydroxy- methyl)aminomethane (Tris) and 1 mM β-mercaptoethanol buffer, pH 7.4, containing 1 mM CaCl2 and 10 mM MgCl2. To promote cell lysis, EDTA was added to give a concentration of 10 mM and the container was shaken gently. After a few hours, the cells were lysed. DNase was added to a final concentration of 1 μg/mL, and the cellular debris was removed by centrifugation at 12,000 rpm for 20 min. The supernatant was decanted and dialyzed against 50 mM Tris, 1 mM β-mercaptoethanol, and 1 mM ethyl- enediaminetetraacetic acid (EDTA) buffer, pH 7.4, overnight at 4°C. This material was loaded on a 2 x 30 cm column of CM-Sepharose equilibrated with the same buffer. The supernatant from the first centrifugation (4000 rpm for 5 min) was dialyzed against H2O and then also added to the column to recover lysozyme lost during incubation due to cell lysis. The column was washed with 6 L of the buffer to remove unwanted proteins and was then eluted with a linear gradient from 0 to 0.3 M NaCl in the buffer. The protein elutes as a single peak. The protein-containing fractions were pooled, dialyzed, and loaded onto another 1-mL column of CM-Sepharose for concentrating. This was eluted with 100 mM sodium phosphate and 0.5 M sodium chloride buffer, pH 5.6. Typical yield of purified T4 lysozyme was about 50 mgm.
Structures of Mutant Lysozymes
Crystals of G77A and A82P were obtained under conditions similar to those used for the native enzyme (Remington et al., J.Mol. Biol. 118:81-98 (1978); and Weaver et al., J.Mol. Biol. 193:189-199 (1987)), incorporated by reference. X-ray diffraction data to 1.7-Å resolution were collected by oscillation
photography as described by Weaver et al., supra, and Schmid et al., Acta Crystallogr. Sect. A 37:707-710 (1981), incorporated by reference herein. Each data set consisted of about 14,000 independent reflections with agreement between equivalent intensities of 6-7%.
In the map showing the difference in electron density between G77A and native T4L (Fig. 1B), the strongest positive feature confirms the addition of the methyl group at residue 77. There are also strong positive and negative features indicating a shift in the nearby side chain of Glu108. Refinement of the G77A structure (R = 15.7% at 1.7 Å resolution) with the "TNT" package of programs (Tronrud et al., Acta Crystallogr. Sect. A. 43:489-501 (1987) available from University of Oregon, Eugene, OR incorporated by reference herein, indicates that the carboxyl oxygen of Glu108 closest to Ala77 (Fig. 1A) moves 1.3 Å relative to its position in native lysozyme (Fig. 1C). In addition, several backbone atoms in the vicinity of the substitution site move
0.25-0.35 Å. These shifts are also indicated in Fig. 1B. Otherwise, the G77A structure appears to be essentially identical to the native protein. As judged by inspection of the three- dimensional structures of G77A and native lysozyme, the movement of Glu108 does not suggest any structural basis for differences in energy of the respective folded proteins. Although the carboxyl of Glu108 moves 1 Å, it is not in close contact with the α-carbon of Gly77 of native lysozyme (closest approach, 3.6 Å) or with the β-carbon of Ala77 of G77A lysozyme (closest approach,
3.9 Å). The only apparent interactions of the carboxyl group of Gly108 that contribute to the stability of native lysozyme are two hydrogen bonds, one from the side chain of Asn81 (distance,
2.5 Å) and the other from a bound water molecule (distance,
2.7 Å) (Fig. 1A). Both of these hydrogen bonds are retained with respective distances 2.6 Å and 2.7 Å in the mutant structure (Fig. 1C).
In the case of mutant A82P, the difference map (Fig. 2A) shows the expected positive density corresponding to the addition of the pyrrolidine ring. An adjacent negative feature clearly indicates the displacement of a water molecule (W355) bound to the peptide nitrogen of Ala82 in wild-type lysozyme. The water molecule is bound to native lysozyme and presumably remains bound in the unfolded state. This bound water molecule should contribute approximately equally to the free energy of the two forms. Similarly, in the mutant protein the water molecule cannot bind to either the folded or the unfolded form of the protein and, again, should have no net effect. Refinement of the A82P structure to an R value of 15.8% at 1.7-Å resolution shows that it is virtually identical with native lysozyme (Fig. 2B). The refined crystal structures of G77A and A82P provide experimental justification of the assumption made in obtaining Eq. 3, supra, that the backbone configuration of the native state is not changed by the mutations.
Thermal Stability
The specific activity of both mutant lysozymes was measured at 22°C in the standard turbidity assay described by Tsugita et al., J.Mol.Chem. 243:391-397 (1968); and Tsugita, in The Enzymes, ed. Boyer, Academic Press, NY, 3rd Ed., Vol. 5, pp. 343-411 (1971)), incorporated by reference herein. The specific activity of both mutants was very close to that of native lysozyme. Stability toward irreversible inactivation was assessed by dissolving the proteins at 30 μl/ml in 100 mM KH2PO4/100mM KCl/1mM EDTA, pH 6.5, and 300 μl aliquots were equilibrated at 65°C. After incubation at 65°C, samples were removed, plunged into ice and then diluted. The specific activity remaining as a function of time was measured (Perry et al., Science 226:555-557 (1980); Tsugita, 1971 and 1968, supra, inccrporated by reference herein). When displayed as a first-order plot (Fig. 3A), (Perry et al., Science 226; 555-557 (1984); and Perry et al., Protein Eng.
1:101-105 (1987), incorporated by reference herein), the loss of activity of wild-type losozyme appeared to be approximately biphasic. However, the thermal inactivation is better described as being second order in protein concentration (Fig. 3B). This result suggests that irreversible loss of activity is due to a bimolecular process such as intermolecular crosslinking. Whether considered as a first- or second-order process, the loss of activity of mutants G77A and A82P is significantly slower than that of native lysozyme.
Phage T4 lysozyme can be unfolded reversibly under controlled conditions. The transitions were monitored as the change in dichroism at 223 nm, as has been described (Becktel et al., Biopplymers 26:619-623 (1987) incorporated by reference herein). In practice, great care was taken to ensure that the experimental measurements were reversible and reproducible. Fresh protein samples purified in the absence of chloroform were extensively dialyzed against oxygen-free buffers and reducing agent. Ionic strength was kept above 0.15 with KCl or NaCl, and pH was adjusted with HCl (pH 2-3), 10 mM acetate buffer (pH 4-5) or 10 mM phosphate buffer (pH 5.5-7). Protein concentration was kept below 30 μg/ml to avoid irreversible aggregation at high temperature.
Circular dichroism was monitored using a Jasco J-500C instrument equipped with a Hewlett-Packard 89100A thermoionic controller. The temperature of the sample was changed at a constant rate, typically 1ºK per minute, under the control of a Hewlett-Packard 87 XM computer. The temperature and optical signal were digitized for subsequent analysis. Denaturation and renaturation were both monitored to ensure reversibility.
Thermal denaturation of T4 lysozyme was followed by measuring the optical properties of a solution of the purified protein as a function of temperature. Fluorescence emission and circular
dichrcism provide the most sensitive methods of optical measurement. When the protein unfolds, the optical spectrum (e.g. the molar ellipticity at 223 nm, which is sensitive to protein secondary structure) undergoes a cooperative change. Assuming that the spectrum at any temperature is a linear combination of the spectra of only the native and denatured states of the protein, the fraction of the material that is (un) folded can be calculated at each temperature. The equilibrium measurements of the wild-type and mutant lysozymes were consistent with the two-state assumption. The ratio of the fraction of the protein in the unfolded and folded conformations is the equilibrium constant (K) for the denaturation reaction.
At pH 6.5 for both replacements and at pH 2 for A82P the net free energy change introduced was positive and the mutant proteins were more stable than the native protein (Table I). The enhancement of thermal stability was due to a decrease in entropy rather than changes in enthalpy (Table I).
At pH 6.5 the observed increase in thermodynamic stability of each mutant structure relative to native lysozyme was 50-60% of that expected theoretically (Table I). Considering the simplifications that underlie the theory, the agreement was remarkably good. The theoretical estimate for the change in free energy assumes that this change is solely entropic. Compensation by changes in enthalpy would lessen the stabilization. In the case of A82P, the structure of the mutant lysozyme was virtually identical to native lysozyme (Fig. 2B), and the observed increase in stability can reasonably be attributed to the change in backbone conf igurational entropy. For G77A, however, the substitution of alanine for glycine resulted in localized changes in the protein structure (Fig. 1C) that either offset or enhanced the entropic contribution to the free energy of unfolding. It should also be noted that the crystal structures were determined at pH 6.7 and were, therefore, relevant to the enhanced stability of
G77A at pH 6.5 but did not necessarily reflect the structure of lysozyme at pH 2.0 where Gluioδ was protonated and the mutant protein was less stable than the native protein.
1/ The thermodynamic parameters were derived from van't Hoff analyses of reversible thermal denaturations of the native and mutant proteins. Equilibrium constants were obtained from the fraction of native protein present under a given set of conditions of sequence, temperature, and pH. Tm is the temperature of denaturation, and ΔT is the difference in melting temperature. ΔH is the enthalpy of unfolding, and ΔΔH is the difference in unfolding enthalpy of mutant and wild-type proteins measured at the melting temperature of the wild-type protein. ΔS is the entropy of unfolding, and ΔΔS is the difference in unfolding entropy of mutant and wild-type proteins. The difference between the free energy of unfolding of mutant and wild-type proteins, ΔΔG, is the observed free energy of stabilization and can be compared with -TmSz,y, which is the backbone entropic stabilization estimated from Eq. 3. The temperature variation of the enthalpy and entropy of denaturation for these T4 lysozymes, ΔCp, was determined to be 2.0 ± 0.2 kcal/deg-mol.
EXAMPLE II
Purification of Xylose Isomerase (XI) from Streptomyces rubiginosus Strain C3
XI was isolated from Streptomyces rubiginosis strain C3 obtained from CETUS Corporation, Emeryville, CA using the following method.
The purification scheme for crude extract involves the following steps: filtering the extract to remove insoluble material; precipitating enzyme with alkyldimethylbenzyl ammonium chloride (BTC) to remove impurities not precipitated with the BTC; further filtration with salt; removal of BTC by adsorption resin; desalting and concentration by ultrafiltration to remove low molecular weight impurities; adsorption of the isomerase enzyme on a GDC (granular DEAE cellulose) column to remove unadsorbed impurities; washing and eluting column with sodium
chlcride (NaCl) to solubilize the isomerase; and gel filtration. Ultraf iltration is used for enzyme desalting and concentration between the various steps and in some cases the preparation may be sufficiently pure for certain applications so that the gel filtration step may be eliminated.
Crude isomerase extract was prepared by fermentation of Streptomyces strain C3 which was derived from ATCC 21,175. At the completion of fermentation, i.e., when isomerase activity was at a maximum, the intracellular enzyme was extracted from the mycelia by treatment with lysozyme and cationic surfactant (BTC). The extraction procedure was rapid and efficient with complete isomerase solubilization occurring within 2-4 hours. After extraction, insoluble materials, consisting mostly of disrupted cell debris, were removed by precoat filtration. The resulting soluble extract had an isomerase potency of 35-50 international xylose isomerase units ("U")/ml. The specific activity (U/mg protein) of the crude extract was difficult to estimate because protein determination is limited by interference from various components of the extract. 2-3 U/mg was expected.
Any turbidity in the crude extract was removed by laboratory filtration through a precoat of filter aid.
The optimum concentration of BTC to be added to the extract was determined in a preliminary experiment. This was accomplished by taking several aliquots of the extract and adding various amounts of BTC. The resulting precipitates were removed by centrifugation and aliquots of the supernates taken for isomerase assay as described below. The lowest BTC concentration at which complete or nearly complete isomerase precipitation takes place was the optimum concentration for the larger scale precipitation with the crude extract. Generally a BTC concentration of 1000-2000 ppm should be sufficient for complete isomerase precipitation.
For BTC precipitation the pH of the extract was adjusted to pH 7.0 to 7.3 and the BTC solution (100 mg/ml) added slowly with vigorous stirring. After additions of BTC the suspension was stirred for 20-30 minutes. A small aliquot was taken and centrifuged, and the supernates were assayed for isomerase activity to test for completeness of isomerase precipitation.
When precipitation was complete, filter aid (approximately 5g HyFlo SuperCel/liter of suspension) was admixed and the suspension filtered using Whatman 3 paper and a laboratory vacuum. The resulting filter cake was washed with several portions of water to remove entrained solubles.
To solublize the precipitated BTC-isomerase complex, the filter cake was suspended in a minimum volume of 0.5 N NaCl, pH 7.0 (100-200 ml per liter of original extract) and stirred for thirty minutes. The suspension was then filtered using a vacuum and the filter cake washed with several small portions of salt solutions without vacuum. The filtrate and washings were well mixed and samples taken for determination of protein, BTC, and isomerase activity.
Protein Concentration
Protein concentration was determined by measuring ultraviolet absorbance at 280 nm. An Extinction Coefficient of 15.4 (1 mg/ml = 1.54 A280), determined based on amino acid composition of the protein was used to convert absorbance to isomerase protein concentration. Samples for protein determination were diluted to an A280 of 0.2-1.0. Turbid samples should be filtered or centrifuged before dilution. Absorbance was measured in 1 cm quartz cuvettes using a suitable blank. The absorbance was scanned from approximately 320 nm to approximately 240 nm. Purified isomerase has a characteristic absorbance spectrum with a distinctive maximum at 278 nm and a minimum at 250 nm. An
A280/A260 ratio of approximately 1.6 was typical of highly purified isomerase preparations.
BTC Estimation
Soluble BTC-835 (alkyldimethylbenzyl ammonium chloride, Onyx Chemical Co.) concentration was estimated by measuring ultraviolet absorbance over the 290-240 nm range. BTC has three distinct absorbance peaks at 269, 262 and 256 nm with very little absorbance at 280 nm. To estimate BTC concentration the absorbance at 262 nm was measured and corrected for protein absorbance at this wavelength. An extinction coefficient of 9.5 was used to convert absorbance to concentration (1 mg/ml = 0.95
A262).
Ultrafiltration
Depending upon the volume of sample to be handled, ultrafiltration was accomplished with either an Amicon CH4 hollow fiber concentrator or with Amicon 401 or 201 stirred cells using the appropriate Amicon cartridges or membranes. Monitoring for enzyme retention was accomplished by periodic UV scan of the ultraf iltrates. Where enzyme leakage was indicated by UV absorbance, samples were checked by the isomerase described below.
Most of the procedures described were carried out at room temperature. To minimize chances of microbial contamination enzyme solutions were filtered through 0.45 or 0.2 Millipore membranes, and were stored in the cold between purification steps.
BTC removal was effected by treatment with a strong acid cation exchange resin in the sodium form. Resins such as AG-50 (BioRad Laboratories, Richmond, CA) will adsorb BTC in the presence of 0.5N NaCl without affecting isomerase. Other procedures for removal of BTC, include treatment with activated carbon or ultraf i Itration-diaf iltration.
The AG-50 resin was added directly to the BTC-isomerase (approximately 1 g dry base resin per 100 ml) solution and the pH was adjusted to 7.0 after a brief period of gentle stirring. The suspension was stirred gently for about 20 minutes and the pH readjusted to 7 when necessary. The resin was allowed to settle by gravity and a sample of the supernatant was taken for UV scan to test for BTC removal. If BTC removal was not complete, additional resin was added until no BTC remained. An additional test for BTC removal can be carried out by diluting a portion of the resin supernate 1 to 5 with water. The presence of residual BTC will be indicated by the formation of a precipitate due to the insolubility of the BTC-isomerase at lower salt concentration.
After removal of BTC, the resin was removed by filtration, and the filtrate desalted and concentrated by ultrafiltration with an Amicon CH4 hollow fiber cartridge. The starting solution for ultrafiltration was optimally free of any insoluble material, and was filtered through a 0.45 micron filter when necessary. Ultrafiltration was carried out until the retentate volume was reduced to a minimum consistent with reasonable flux rate. The retentate was then diluted with 5-10 volumes of water and the pH readjusted to 7. Ultrafiltration was continued. This dilution- diafiltration was repeated two more times. The final retentate had a specific activity of 30-35 U/ml. Recovery of activity based on the starting crude extract was 85-90%.
To prepare the enzyme for GDC adsorption sufficient 1M Tris buffer, pH 7.0, and IM MgSO was added so that the concentration of each was 10mM in the enzyme solution. Microbial contamination, when the enzyme was to be stored for any period of time, was reduced by filtration through a 0.45 micron Millipore filter.
GDC adsorption-desorption was carried out with a column of granular DEAE-cellulose (Whatman Ltd., Clifton, N.J.). To prepare the column, 300 g GDC was equilibrated in lOmM Tris buffer.
This suspension was poured into a 5 cm x 20 cm chromatography column to form a uniform bed. The column was then washed using two liters of 10mM Tris at a flow rate of approximately 10 ml/min. Washing with buffer was continued until the effluent pH was between 6.8 and 7.2.
The enzyme solution (ultrafilter retentate) was applied directly to the column at a flow rate of approximately 5 ml/min. A total of 2x10 5-3 x 105 U of enzyme can be applied. During enzyme application, and in subsequent washing and elution steps, the effluent from the column was monitored for UV absorbance and periodic samples were assayed using the isomerase assay. After the enzyme was applied, the column was washed with 3-4 liters of 0.15N NaCl at a flow rate of approximately 20 ml/min. This washing step removed weakly adsorbed impurities, as evidenced by the yellow color and UV absorbance of the effluent. Near the end of the washing step the effluent was nearly colorless and contained very little UV absorbing material.
Elution of the isomerase was accomplished by washing the column with 0.45N NaCl in 10mM Tris, pH 7, at a flow rate of 10 ml/min. The effluent from the elution step was collected in 200 ml fractions which were monitored for UV absorbance and isomerase activity. Isomerase activity began to elute immediately after a void volume of 800-900 ml of e-luate was collected. More than 90% of the total activity eluted in the first five 200 ml fractions of eluate. Fractions with isomerase activity of 20 U/ml and specific activity of 40 U/mg were pooled for desalting and concentration by ultraf iltration.
The pooled GDC column fractions were desalted and concentrated using either the CH4 concentrator or the 401 stirred cell (30,000 molecular weight cutoff). The CH4 unit was used to reduce the volume to 200 ml, and two or three 5 volume diafiltrations were conducted with water to remove salt. The CH4
retentate was then further concentrated with the stirred ultrafiltration cell. If the enzyme was to be further purified by gel filtration, diafiltration with 20mM phosphate buffer, pH 7.0, was used to adjust the buffer concentration.
Recovery of activity from the GDC step was greater than 90% of the activity applied to the column, yielding an overall recovery of about 80% based on the starting extract. The specific activity was 40-45 U/mg, indicating that the enzyme was 90-95% pure on a protein basis.
Gel filtration was carried out with a column of Fractogel TSK HW-55 (Pierce Chemical Co., Rockford, IL) capable of separating proteins in the 50,000-500,000 MW range. The gel was equilibrated in 20mM sodium phosphate buffer according to the manufacturer's recommendation, and used to prepare a 2.5 cm x 90 cm uniformly packed bed. The column was then equilibrated with phosphate buffer at a flow rate of 0.6-0.7 ml/min for at least 16 hours before use.
Total sample volume applied to the column was less than 20 ml, with smaller volumes being more desirable. The sample was applied carefully to the top of the column without disturbing the gel bed, and allowed to flow into the column by gravity. Application of the sample was followed by two 1 ml buffer applications to assure that the sample was completely washed into the bed. The column was then eluted with 20mM phosphate buffer at a flow rate of 0.6-0.7 ml/min. The column effluent was continuously monitored for absorbance at 280 nm, and fractions (10 ml each) were collected automatically. The fractions were analyzed for protein (A280) and isomerase activity as described elsewhere.
Typically, for the isomerase purified by BTC precipitation followed by DGC adsorption-desorption, enzyme elution was preceded by elution of a small peak of U.V.-absorbing material which
probably represents some higher molecular weight protein contaminant. The specific activities of the first and last fractions from isomerase elution were generally lower than those of the middle fractions. These first and last fractions were discarded, since enzyme purity was considered to be more important than recovery. The pooled active fractions were ultrafiltreed with a 100,000 molecular weight cutoff membrane using the 201 stirred cell. Very little U.V. absorbing material was found in the ultrafiltrate from this step, indicating that the enzyme was free of lower molecular weight protein contaminants. The final diafiltered retentate was filtered through a 0.2 Millipore filter to eliminate microbial contamination during storage.
The final specific activity was 46 U/mg with an overall recovery of about 70% based on starting extract.
The results of each step as set forth above were tabulated in terms of total activity, specific activity, and recovery as shown in Table II.
12.5x104 U of Fraction IV was used for gel filtration step.
Alternatively XI protein is isolated from Streptomyces rubiginosus strain C3 derived from S. rubiginosus ATCC 21,175 using the method described in U.S. Patent No. 4,410,627, which is incorporated herein by reference. The strain is grown by submerged aerobic fermentation on a medium with the following composition (by percent weight) dextrose 9.0%, corn steep liquor (solids) 0.06%, diammonium phosphate 0.008%, magnesium sulfate 0.06%, antifoam (pluronic PL-61) 0.003%. The medium is sterilized at 121°C for 45 min, cooled and adjusted to pH 6.8-7.0. The medium is inoculated with 14% (v/v) of an inoculm comprising the contents of a seed fermenter prepared with the S. rubiginosus strain. XI protein is extracted from the S. rubiginosus strain by adding 0.35% Maquat MC 1412 (Mason Chemical Co.) and 10 ppm of hen's egg lysozyme and agitating for 5 hr at 40°C, pH 6.3 to 6.6. The mixture is then
filtered to provide a solution of unpurified xylose isomerase. The crude isomerase is purified by adsorption on DEAE- cellulose, filtering and washing the adsorbed product with 0.1M NaCl solution to remove impurities, and then desorbing by contacting with 0.45M NaCl solution. The pH of all solutions is maintained at 7.5 during the purification step. The solution of partially purified isomerase obtained thereby is mixed with 3 volumes of 95% ethanol at 0°C to precipitate the isomerase. Perlite filter aid is added, the solids recovered by filtration, and air dried to provide a soluble XI preparation containing 2500 U/g. Specific activity of the preparation thus prepared is 40 U/mg of protein.
Purification following these procedures results in an enzyme having greater than 90% purity based on SDS-PAGE electrophoresis.
Xylose Isomerase Assay
Xylose isomerase activity was measured by incubating the protein sample with a buffered solution of glucose for a fixed period of time, quenching the reaction, and then quantitating the amount of product (fructose) made by high performance liquid chromatography (HPLC) analysis.
1 unit of activity is that amount of enzyme that produces 1 μmole fructose/min under the defined reaction conditions.
A 20 μl sample of enzyme (0-3 units of activity) was mixed with 1 ml of substrate mixture (3 M in D-glucose, 25 mM maleic acid (adjusted to pH 6.5 at 60°C with NaOH), 10 mM MgSO4 and 1 mM COCI2) (previously equilibrated at 60°C) to initiate the reaction:
The enzyme plus substrate mixture was incubated for 20 minutes at 60°C in a closed tube. At the end of this
incubation, 0.5 ml of IN HCl was added to stop the reaction. Precipitated protein was removed by centrifugation, and an aliquot of the supernatant solution was removed for quantitation of fructose by HPLC analysis.
The separation of fructose from unreacted glucose was accomplished using a Beckman liquid chromatograph equipped with a Waters Assoc. (Waters Assoc, Milford, MA), WISP 710B autoinjector. Waters Assoc. differential refractometer (Model R401) and a Shimadzu C-R3A integrator (Shimadzu Corp., Kyoto, Japan). Carbohydrates were separated using an Applied Science carbohydrate analysis column (amine phase, 250 mm X 4.6 mm) using isocratic sample elution with an acetronitrile/water (80%/20%) solvent flowing at 1.3 ml/min. Integration of peak areas for the resolved fructose peaks from standard fructose solutions or from test samples, allowed quantitation of fructose production for the test samples during the 20 minute incubation.
EXAMPLE III N-terminal Sequencing of S. rubiginosus Xylose Isomerase
Purified XI is subjected to further analysis to determine the amino ("NH2")-terminal end of the mature protein.
Edman degradation determination of XI amino acid sequence
Sequence analysis by automated Edman degradation was performed using a Beckman Model 890C sequencer (Beckman Instruments, Palo Alto, CA) following standard methodology. In some instances, in order to reduce background and improve signal to noise ratio, orthopthalaldehyde was used to block non-proline residues according to the method of Bauer et al., Anal. Biochem. 137:134 (1984), incorporated by reference herein.
Results for the first 20 residues of the amino-terminal sequence obtained for Xl are shown in Table lll.
EXAMPLE IV
Construction of oligodeoxynucleotide probes for detection of the N-terminal region of XI from strain C3
Oligodeoxynucleotide probes were made using conventional methods. Using polynucleotide kinase, the probes were labeled with [32γP]-ATP having a specific activity of 3000 Ci/mole, supplied by New England Nuclear Labs (Boston, MA). The labeled probes were purified by gel filtration on a Biogel P-4 gel (BioRad Laboratories, Richmond, CA). Two pools of four probes were made. Pool 1 consisted of probes having the following sequences GGTTG(A/G)TA(A/G)TTCAT and pool 2 consisted of probes having the following sequences GGCTG(A/G)TA(A/G)TTCAT, wherein the nucleotides in the
parentheses are alternate nucleotide bases. The two pools were constructed to cover all possible nucleotide ambiguities in the XI gene in the region coding for the NH2-terminal region.
EXAMPLE V Cloning of the XI gene of strain C3 in Plasmid pBR322
Plasmid preparation
Plasmid pBR322 DNA was isolated and purified essentially as described in Birnboim et al., Nuc. Acids Res. 7:1513(1979), incorporated by reference herein. After purification of the plasmid in CsCl, the DNA preparation was further digested with RNase at a concentration of 40 μg/ml at 37ºC for 30 minutes and subsequently extracted with phenol and ether. The RNA-free plasmid DNA was then completely digested with Bam HI and dephosphorylated with calf intestinal alkaline phosphatase.
Preparation of S. rubiginosus Strain C3 DNA
High molecular weight chromosomal DNA for S. rubiginosus strain C3, a derivative of ATCC 21,175, was isolated according to the methods of Chater et al., Current Topics in Microbiology and Immunology, 96:69 (1982), incorporated by reference herein. The DNA was then partially digested with restriction enzyme Sau 3A1 (New England Biolabs, Beverly, MA) under the conditions suggested by the manufacturer. The 4 to 8 kb fragments from the partially digested chromosomal DNA were isolated by sucrose density gradient centrifugation and were concentrated by DEAE ion exchange chromotography.
Ligation of S. rubiginosus DNA into pBR322 to form a gene bank and Transformation of E. coli with the resulting vector
Two hundred μg of the Bam HI digested cloning vector (pBR322) were mixed at a 1:2 molar ratio with the partially digested S. rubiginosus DNA in ligation buffer under sticky end conditions. After ligation, an aliquot of the reaction mixture containing approximately 100 μg of the cloning vector was used to transform CaCl2-treated competent E. coli strain MM294. The transformed E. coli were diluted ten-fold with 2 x L-broth by volume and were incubated for 90 min at 37°C. The culture was then further diluted 25-fold with 2 x L-broth con taining 100 μg/ml ampicillin. The dilute culture was then incubated at 37°C with shaking, overnight. After incubation, the concentration of glycerol in the culture was adjusted to 15% and the mixture was stored at 70ºC.
Identification- of xylose isomerase clones
The transformant gene bank prepared as described above was thawed and plated on L-agar plates containing 40 μg/ml of ampicillin to obtain approximately 400 individual colonies per plate. Colonies were then transferred to nitrocellulose filters as described in Maniatis et al., Molecular Cloning, supra. Filters were prehybridized by the method described in Woo, Methods in Enzymology 68:389 (1979), incorporated by reference herein. Processed filters were then hybridized with [32γP]-labeled oligonucleotide pool 2(106 cpm/filter) in hybridization buffer (5XSSC, 5X Denhardt's solution, 50 mM sodium phosphate pH 7.0, 100 μg/ml sheared calf thymus DNA, and 1% SDS) at 35ºC overnight. Filters were subsequently washed with 5XSSC, 2XSSC, 2XSSC and IXSSC containing 0.1% SDS at hybridization temperature (35°C) for 15 min. each.
Fifty percent of the transformants were both ampicillin and tetracyline resistant indicating that about half of the transformants carried inserted S. rubiginosus DNA. To confirm this conclusion, ten ampicillin resistant transformants were randomly picked, the plasmid DNA extracted and purified, and restriction enzyme analysis with Eco RI was carried out. Agarose gel electophoresis of the digested plasmid DNA showed that 50% of the DNA was about 4 to 8 kb larger than pBR322. Based on these results, approximately 20,000 transformants were obtained using 20 μg of the cloning vector. Based on the reported size of the Streptpmyces genome, a complete gene library of S. rubiginosus was obtained. Of 20,000 colonies screened, 15 colonies hybridized to the mixture of oligonucleotides in pool 2.
The plasmids of each positive colony were isolated as described above and characterized by restriction enzyme fragment analysis using Pst I, Bgl III and Sma I. Three types of clones were distinguished. Two of the representative clones, pTWl and pTW2, carried 4.3 and 7.5 kb Sau 3A1 inserts, respectively. The third representative clone, pTW3, carried a 12 kb insert which was believed to arise by linkage of two Sau 3A1 fragments of the S. rubiginosus digest.
Of the pool 2 primers, the oligodeoxyribonucleotide designated CS26 having the sequence 5' -GGCTGGTAGTTCAT-3', was found to hybridize strongly with the S. rubiginosus C3 DNA, and in particular, hybridized 10 times more strongly with the transformant designated pTWl which carried a 4.3 kb insert. An oligonucleotide complementary to C26, designated HW03, was constructed for further use.
Plasmids pTW1, pTW2 and pTW3 were analysed with a number of restriction enzymes. The 1.35 kb Sal I, 2.3 kb Pst I and 1.8 kb Sma I restriction fragments from the plasmid inserts
hybridized with prpbe CS26. S. rubiginosus genomic DNA was digested with the same restriction endonucleases, and fragments of the proper molecular weight hybridized under stringent conditions with CS26, confirming the location of the translation start site of the gene. To determine the translational and transcriptional orientation of the gene, the Nru I-Pst I restriction fragment carrying the 5' end of the gene was further subcloned into the Sma I-Pst I sites of either M13mpl0 or M13mpll replicative form (RF) DNA (obtained from Bethesda Research Laboratories, Bethesda, MD). Single- stranded DNA was isolated, purified as described in Messing, Methods in Enzymology, 101:20 (1983), incorporated by reference herein, and hybridized to probes CS26 and HW03. The results shown in Table III indicated that the transcriptional direction of the gene is from left to right in the restriction map of the gene shown in Figure 4.
Table IV
Hybridization of Oligodeoxyribonucleotide probes CS26 and
HW03 with the Single-Stranded Recombinant Phage DNAs carrying the 5'-end of the Glucose Isomerase Gene in Two
Different Orientations
1(+) orientation indicates that the sense-strand of the insert is in the phage,
(-) indicates that the antisense-strand is in the phage. 2 one μg of single-stranded phage DNA was used for each hybridization.
EXAMPLE VI Sequencing of the xylose isomerase gene
The DNA sequence of the entire xylose isomerase gene was determined based upon the restriction map of Figure 1 and the determination of the transcription orientation. The complete DNA sequence and deduced amino acid sequence is shown in Figure 5. Comparison of the entire sequence for S. rubiginosus XI with published sequences for other known native procaryotic isomerases (Figure 6) reveals substantial sequence identity between the XI of these organisms.
For the xylose isomerases with limited amino acid sequence identity to S. rubiginosus xylose isomerase, (i.e. less than 50%), for example enzyme obtained from E. coli and B. subtilis. the conserved amino acid residues are primarily those located at or near the active site of the enzyme. It is contemplated that the below-described alterations in amino acids at the active site of S. rubiginosus XI are likely to produce muteins of these enzymes with similar characteristics to the XI muteins resulting from similar changes in S. rubiginosus XI. In enzymes that are more closely homologous to S. rubiginosus XI, such as Ampullariella sp., similar alterations in amino acid residues located in other regions of the protein, as well as in the active site, are likely to result in comparable changes in the stability and activity of these enzymes.
EXAMPLE VII Expression of Xylose Isomerase Muteins
Construction of the Expression Vector
Construction of an expression vector plasmid pTW11 for expression of the XI muteins in E. coli was as follows. The 1.4 kb Nru I-Sma I restriction fragment carrying the entire coding sequence of the glucose isomerase gene from pTW1 was isolated and subcloned into the Sma I site of M13mpl0 RF DNA. The orientation was such that the ATG initiation codon of the gene was approximately 220 bp from the Eco RI site of the phage, which was designated phage ΦTW23. Ligation of the XI DNA sequence into the phage destroyed the translation termination codon of the gene, and a new one was created by site- specific mutagenesis as described in Zoller and Smith, Methods in Enzymology 100:468 (1983), incorporated by reference herein, using a synthetic oligodeoxyribonucleotide with the sequence 5'-CGACTCTAGATCATCCCCGGGCG-3'. The new phage having
the desired insert was screened by hybridization with the mutagenesis primer labeled using polynucleotide kinase and [32γP]ATP (3000 Ci/mmole, New England Nuclear) as follows: prehybridization was carried out by the procedure of Woo, Methods in Enzymology 68:389 (1979), incorporated by reference herein. Processed filters were then hybridized with the [32γP]--labeled oligodeoxyribonucleotide (106 cpm/filter) in 20 ml hybridization buffer (5XSSC, 5X Denhardt's solution, 50mM sodium phosphate, pH 7.0, 100 μg/ml sheared calf thymus DNA, 1.0% SDS) at 68ºC, overnight. Filters were subsequently washed (15 min each) with 5XSSC, 2XSSC and IXSSC containing 0.1% SDS at hybridization temperature (68°C). The phage having the proper sequence, designated phage TW31, was confirmed by sequencing.
The same procedure was used to insert a Hind III site preceding the translation initiation codon of the xylose isomerase gene in phage ΦTW31 except that the synthetic oligodeoxyribonucleotide had the sequence 5'-GTACTTCATAACTCTTCGCGGCTC-3' and the hybridization and washes were carried out at 65°C. The phage carrying the xylose isomerase gene with the introduced translation termination codon and two Hind III sites bordering the gene was designated phage ΦTW32. The xylose isomerase gene was isolated from phage ΦTW32 by digestion with Hind III and was ligated into the Hind III site of E. coli expression vector pTRP3 (ATCC No. 39,946 deposited Dec. 18, 1984, described by Goeddel et al. Nuc. Acids. Res. 8:4052 (1980)), incorporated by reference herein. The resulting plasmid having the expression of xylose isomerase under the control of the trp operon promotor and trpE translation initiation signal, was designated pTW11. The plasmid having the xylose isomerase gene in the opposite orientation was designated pTW12.
Preparation of E. coli Strain Lacking XI for Screening
The E. coli strain DG101 (thi-1, endA1, hsdR17, SupE44, lac18, lacZM15) was mutagenized using Nitrosoguanidine (NTG) at a concentration of approximately 200 μg/ml of medium for approximately 30 minutes. The bacteria were pelleted, washed in minimum salts medium, resuspended in minimal salts medium containing 0.5% xylose, and were grown for approximately 30 minutes at 37°C. D-cycloserine was added to a concentration of 100 μg/ml and the culture was incubated at 37°C for approximately 30 minutes. The cells were centrifuged, washed in minimal salts medium, and then grown in rich L-broth for approximately 30 minutes at 37°C. The culture was plated on McConkey medium containing 1% xylose, and white colonies were selected. White colonies were transformed with plasmid pTW11 plated on MacConkey medium without xylose. Red colonies, in which the absence of xylose isomerase was complemented by the plasmid, were picked. E. coli strain DG101 xyl- transformed with pTW11 were deposited into applicants' depository under accession number CMCC 2210. This strain was deposited in the ATCC on August 5, 1987 under accession number 67,489.
Recovery of XI Muteins
The transformed E. coli are cultured in LB media with limiting concentrations of tryptophan. After the mutein is induced enzymatically active xylose isomerase mutein is recovered essentially as described in Example I and in U.S. Patent No. 4,410,627, incorporated by reference herein.
EXAMPLE VIII
Site-Specific Mutagenesis of the S. rubiginosus xylose isomerase gene to Minimize Inactivating Reactions
The specific locations for alteration of the DNA sequence encoding XI were selected based on computer-assisted analyses (PS 340, Evans and Sutherland, Salt Lake City, Utah, using MOGLI and Proteus software) of the x-ray crystal structure of xylose isomerase obtained by standard x-ray crystallography methodology.
Oligonucleotide primers, as described below, are synthesized complementary to the DNA sequence of the reference xylose isomerase gene fragment, except for regions of limited nucleotide mismatching to accomplish the desired mutation. Gapped circle site-specific mutagenesis as described by Kramer et al., supra, is used to convert the amino acid at the selected position to a different amino acid. Towards this end, plasmid pTW11 and phage m13mp10 carrying amber mutations are digested completely with Eco RI and Bam HI. The small fragment of pTW11 and the large fragment of M13mp10 are isolated and ligated together. The phage having the small Eco RI- Bam HI fragment from pTW11 and large fragment of M13mpl0 is designated TVW8. To form the gapped circle DNA for use as a template for the oligonucleotide-directed mutagenesis single-stranded TVW8 DNA is mixed with Eco RI-Bam HI digested M13mpl9 RF DNA and the two DNAs are melted together at 100°C and reannealed at 67°C for 30 minutes. A "gapped circle" in which the DNA sequence to be mutagenized remains single- stranded and the remaining DNA is double-stranded is formed in which the single-stranded region includes the XI gene.
The oligonucleotide primers described below are hybridized to the gapped circle DNA (phage TVW8) under hybridization conditions, for example, in a mixture containing
100mM NaCl, 20mM Tris-HCl, pH 7.9, 20mM MgCl2 and 20mM β-mercaptoethanol by heating at 67°C for five minutes and 42°C for 25 minutes. Primer extension is carried out using DNA polymerase large fragments in the presence of dNTPs. The ends of the extended primer are ligated using T4 ligase and ATP. The reactions are terminated by heating to 80°C. The mixture is then used to transform competent E. coli strain HB 2151, which are plated onto agar plates and incubated overnight to obtain phage plaques, and grown under conditions suitable for inducing the phage. The plaques are probed using the same [32γP]-labeled primer using kinase at standard prehybridization and hybridization conditions at high stringency (e.g. 42°C for 8 hours). Plaques which hybridize to probes are lifted and are confirmed by sequencing. The phage DNA containing the coding sequence for the mutagenized xylose isomerase gene are isolated. The DNA segment comprising the mutagenized XI gene is removed by Hind III digestion. The small Hind III fragment is isolated, purified, and ligated into plasmid pTRP3, previously digested with Hind III.
To produce XI genes containing more than one modification, successive rounds of mutagenesis, each using the appropriate primer, are carried out.
Mutein-Encoding Primer Sequences
The following oligonucleotide primers are used for site- specific mutagenesis to obtain muteins of xylose isomerase resistant to chemical inactivation in E. coli:
to convert Lys289 to Arg289 to obtain the Arg289XI mutein, 5'-CGGTCCGCGGCGGGCGGAAGTCGAAGTGC-3;
to convert Lys289 to Gln289 to obtain the Gln289XI mutein, 5'-CGGTCCGCGGCGGCTGGAAGTCGAAGTGC-3';
to convert Lys289 to Asn289 to obtain the Asn289XI mutein, 5'-CGGTCCGCGGCGGGTTGAAGTCGAAGTGC-3';
to convert Lys289 to Asp289 to obtain the Asp289XI mutein, 5'-CGGTCCGCGGCGGGTCGAAGTCGAAGTGC-3''
to convert Lys289 to Glu289 to obtain the Glu289XI mutein, 5'-CGGTCCGCGGCGGCTCGAAGTCGAAGTGC-3';
to convert Lys289 to Ser289 to obtain the Ser289XI mutein, 5'-CGGTCCGCGGCGGGGAGAAGTCGAAGTGC-3';
to convert Lys289 to Thr289 to obtain the Thr289XI mutein, 5'-CGGTCCGCGGCGGGGTGAAGTCGAAGTGC-3';
to convert Lys289 to His289 to obtain the His289XI mutein, 5'-CGGTCCGCGGCGGGTGGAAGTCGAAGTGC-3';
to convert Lys289 to Tyr289 to obtain the Tyr289XI mutein, 5'-CGGTCCGCGGCGGGTAGAAGTCGAAGTGC-3';
to convert Lys289 to Ala289 to obtain the Ala289XI mutein, 5'-CGGTCCGCGGCGGGGCGAAGTCGAAGTGC-3';
to convert Lys289 to Val289 to obtain the Val289XI mutein, 5'CGGTCCGCGGCGGGACGAAGTCGAAGTGC-3';
to convert Lys289 to Leu289 to obtain the Leu289XI mutein, 5'-CGGTCCGCGGCGGGAGGAAGTCGAAGTGC-3';
to convert Lys289 to Ile289 to obtain the Ile289XI mutein, 5'-CGGTCCGCGGCGGGATGAAGTCGAAGTGC-3';
to convert Lys183 to Arg183 to obtain the Arg183XI mutein, 5'-GCGGCTCGTTCGGGCGGGGCTCGATGGC-3';
to convert Lys183 to Gln183 to obtain the Gln183XI mutein, 5'-GCGGCTCGTTCGGCTGGGGCTCGATGGC-3';
to convert Lys183 to Asn183 to obtain the Asn183Xl mutein, 5'-GCGGCTCGTTCGGGTTGGGCTCGATGGC-3';
to convert Lys183 to Asp183 to obtain the Asp183XI mutein, 5'-GCGGCTCGTTCGGGTCGGGCTCGATGGC-3';
to convert Lys183 to Glu183 to obtain the GIu183XI mutein, 5'-GCGGCTCGTTCGGCTCGGGCTCGATGGC-3';
to convert Lys183 to Ser183 to obtain the Ser183XI mutein, 5'-GCGGCTCGTTCGGGGAGGGCTCGATGGC-3';
to convert Lys183 to Thr183 to obtain the Thr183XI mutein, 5'-GCGGCTCGTTCGGGGTGGGCTCGATGGC-3';
to convert Lys183 to His183 to obtain the His183XI mutein, 5'-GCGGCTCGTTCGGGTGGGGCTCGATGGC-3';
to convert Lys183 to Tyr183 to obtain the Tyr183XI mutein, 5'-GCGGCTCGTTCGGGTAGGGCTCGATGGC-3';
to convert Lys183 to Ala183 to obtain the Ala183XI mutein, 5'-GCGGCTCGTTCGGGGCGGGCTCGATGGC-3';
to convert Lys183 to Val183 to obtain the Val183XI mutein, 5'-GCGGCTCGTTCGGGACGGGCTCGATGGC-3';
to convert Lys183 to Leuχ83 to obtain the Leu183XI mutein, 5'-GCGGCTCGTTCGGGAGGGGCTCGATGGC-3';
to convert Lys183 to Ile183 to obtain the Ile183XI mutein, 5'-GCGGCTCGTTCGGGATGGGCTCGATGGC-3';
to convert His54 to Gln54 to obtain the Gln54XI mutein, 5'-GAGGTCGTCGTCCTGGAACGTGACGCC-3';
to convert His54 to GIu54 to obtain the GIu54XI mutein, 5'-GAGGTCGTCGTCCTCGAACGTGACGCC-3';
to convert His54 to Asn54 to obtain the Asn54XI mutein, 5'-GAGGTCGTCGTCGTTGAACGTGACGCC-3';
to convert His54 to ASP54 to obtain the ASP54XI mutein, 5'-GAGGTCGTCGTCGTCGAACGTGACGCC-3';
to convert His54 to Ser54 to obtain the Ser54XI mutein, 5'-GAGGTCGTCGTCGGAGAACGTGACGCC-3';
to convert His54 to Thr54 to obtain the Thr54XI mutein, 5'-GAGGTCGTCGTCGGTGAACGTGACGCC-3';
to convert His54 to Ala54 to obtain the Ala54XI mutein, 5'-GAGGTCGTCGTCGGCGAACGTGACGCC-3';
to convert His54 to Val54 to obtain the Val54XI mutein, 5'-GAGGTCGTCGTCGACGAACGTGACGCC-3';
to convert His54 to Tyr54 to obtain the Tyr54XI mutein, 5'-GAGGTCGTCGTCGTAGAACGTGACGCC-3';
to convert His220 to Gln220 to obtain the Gln220XI mutein, 5'GGCCATCTGCTCCTGGCCGACCTCGGG-3';
to convert His220 to Glu220 to obtain the Glu220XI mutein, 5'-GGCCATCTGCTCCTCGCCGACCTCGGG-3';
to convert His220 to Asn220 to obtain the Asn220XI mutein, 5'-GGCCATCTGCTCGTTGCCGACCTCGGG-3';
to convert His220 to Asp220 to obtain the Asp220XI mutein, 5'-GGCCATCTGCTCGTCGCCGACCTCGGG-3';
to convert His220 to Ser220 to obtain the Ser220XI mutein, 5'-GGCCATCTGCTCGGAGCCGACCTCGGG-3';
to convert His220 to Thr220 to obtain the Thr220XI mutein, 5'-GGCCATCTGCTCGGTGCCGACCTCGGG-3';
to convert His220 to Ala220 to obtain the Ala220XI mutein, 5'-GGCCATCTGCTCGGCGCCGACCTCGGG-3';
to convert His220 to Val220 to obtain the Val220XI mutein, 5'-GGCCATCTGCTCGACGCCGACCTCGGG-3';
to convert His220 to Tyr220 to obtain the Tyr220XI mutein, 5'-GGCCATCTGCTCGTAGCCGACCTCGGG-3';
to convert Met223 to Gly223 to obtain the Gly223XI mutein, 5'-GTTCAGCCCGGCCCCCTGCTCGTGGCC-3';
to convert Met223 to Ala223 to obtain the Ala223XI mutein, 5'-GTTCAGCCCGGCCGCCTGCTCGTGGCC-3';
to convert Met223 to Val223 to obtain the Val223XI mutein, 5'-GTTCAGCCCGGCCACCTGCTCGTGGCC-3';
to convert Met223 to Leu223 to obtain the Leu223XI mutein, 5'-GTTCAGCCCGGCCAGCTGCTCGTGGCC-3';
to convert Met223 to He223 to obtain the Ile223XI mutein, 5'-GTTCAGCCCGGCGATCTGCTCGTGGCC-3';
to convert Met223 to Phe223 to obtain the Phe223XI mutein, 5'-GTTCAGCCCGGCGAACTGCTCGTGGCC-3';
to convert Met223 to Tyr223 to obtain the Tyr223XI mutein, 5'-GTTCAGCCCGGCGTACTGCTCGTGGCC-3';
to convert Met223 to Gln223 to obtain the Gln223XI mutein, 5'-GTTCAGCCCGGCCTGCTGCTCGTGGCC-3';
to convert Met223 to Asn223 to obtain the Asn223XI mutein, 5'-GTTCAGCCCGGCGTTCTGCTCGTGGCC-3';
to convert Arg140 to Gln140 to obtain the Gln140XI mutein, 5'-CTCGGCACCCTCCTGGCCGCCCCAGGC-3';
to convert Arg140 to Asn140 to obtain the Asn140XI mutein, 5'-CTCGGCACCCTCGTTGCCGCCCCAGGC-3';
to convert Arg140 to Glu140 to obtain the Glu140XI Mutein, 5'-CTCGGCACCCTCCTCGCCGCCCAGGC-3';
to convert Arg140 to Asp140 to obtain the Asp140XI mutein, 5'-CTCGGCACCCTCGTCGCCGCCCCAGGC-3';
to convert Arg140 to Ile140 to obtain the Ile140XI mutein, 5'-CTCGGCACCCTCGATGCCGCCCCAGGC-3';
to convert Arg140 to Leu140 to obtain the Leu140XI mutein, 5'-CTCGGCACCCTCGAGGCCGCCCCAGGC-3';
to convert Arg140 to Ala140 to obtain the Ala140XI mutein, 5'-CTCGGCACCCTCGGCGCCGCCCCAGGC-3';
to convert Arg140 to Val140 to obtain the Val140XI mutein, 5'-CTCGGCACCCTCGACGCCGCCCCAGGC-3'; and/or
to convert Arg140 to Tyr140 to obtain the Tyr140XI mutein, 5'-CTCGGCACCCTCGTAGCCGCCCCAGGC-3';
EXAMPLE IX
Site-Specific Mutagenesis of the Xylose Isomerase Gene to Produce Muteins Having Altered Catalytic Properties
The procedure of Example VIII is followed in substantial detail to produce xylose isomerase muteins having altered catalytic properties. Second strand synthesis and recovery of the desired XI muteins uses the following oligonucleotide primers:
to convert Trp16 to Asn16 to obtain the Asn16XI mutein, 5'-CCAGCCGACGGTGTTCAGTCCGAAGGTG-3';
to convert Trp16 to Gln16 to obtain the Gln16XI mutein, 5'-CCAGCCGACGGTCTGCAGTCCGAAGGTG-3';
to convert Trp16 to Ser16 to obtain the Ser16XI mutein, 5'-CCAGCCGACGGTCGACAGTCCGAAGGTG-3';
to convert Trp16 to Thr16 to obtain the Thr16 XI mutein, 5'-CCAGCCGACGGTCGTCAGTCCGAAGGTG-3';
to convert Trp16 to Gly16 to obtain the Gly16XI mutein, 5'-CCAGCCGACGGTCCCCAGTCCGAAGGTG-3';
to convert Trp16 to Ala16 to obtain the Ala16XI mutein, 5'-CCAGCCGACGGTCGCCAGTCCGAAGGTG-3';
to convert Trp16 to Val16 to obtain the Val16XI mutein, 5'-CCAGCCGACGGTCACCAGTCCGAAGGTG-3';
to convert Trp16 to Leu16 to obtain the Leu16XI mutein, 5'-CCAGCCGACGGTCAGCAGTCCGAAGGTG-3';
to convert Trp16 to Ile16 to obtain the Ile16XI mutein, 5'-CCAGCCGACGGTGATCAGTCCGAAGGTG-3';
to convert Trp16 to Tyr16 to obtain the Tyr16XI mutein, 5'-CCAGCCGACGGTGTACAGTCCGAAGGTG-3';
to convert Trp16 to Phe16 to obtain the Phe16 XI mutein, 5'-CCAGCCGACGGTGAACAGTCCGAAGGTG-3';
to convert Trp16 to His16 to obtain the His16XI mutein, 5'-CCAGCCGACGGTGTGCAGTCCGAAGGTG-3';
to convert Trp137 to Asn137 to obtain the Asn137XI mutein, 5'-CTCGCGGCCGCCGTTGGCCACATAGGTC-3';
to convert Trp137 to Gln137 to obtain the Gln137XI mutein, 5'-CTCGCGGCCGCCCTGGGCCACATAGGTC-3';
to convert Trp137 to Ser137 to obtain the Ser137XI mutein, 5'-CTCGCGGCCGCCCGAGGCCACATAGGTC-3';
to convert Trp137 to Thr137 to obtain the Thr137XI mutein, 5'-CTCGCGGCCGCCCGTGGCCACATAGGTC-3';
to convert Trp137 to Gly137 to obtain the GIy137XI mutein, 5'-CTCGCGGCCGCCCCCGGCCACATAGGTC-3';
to convert Trp137 to Ala137 to obtain the Ala137XI mutein, 5'-CTCGCGGCCGCCCGCGGCCACATAGGTC-3';
to convert Trp137 to Val137 to obtain the Val137XI mutein, 5'-CTCGCGGCCGCCCACGGCCACATAGGTC-3';
to convert Trp137 to Leu137 to obtain the Leu137XI mutein, 5'-CTCGCGGCCGCCCAGGGCCACATAGGTC-3';
to convert Trp137 to Ile137 to obtain the Ile137XI mutein, 5'-CTCGCGGCCGCCGATGGCCACATAGGTC-3';
to convert Trp137 to Tyr137 to obtain the Tyr137XI mutein, 5'-CTCGCGGCCGCCGTAGGCCACATAGGTC-3';
to convert Trp137 to Phe137 to obtain the Phe137XI mutein, 5'-CTCGCGGCCGCCGAAGGCCACATAGGTC-3';
to convert Trp137 to His137 to obtain the His137XI mutein, 5'-CTCGCGGCCGCCGTGGGCCACATAGGTC-3';
to convert Phe94 to Thr94 to obtain the Thr94XI mutein, 5'-CACCGGGTGGGTGGTCAGGTTGGTGGTG-3';
to convert Phe94 to Ser94 to obtain the Ser94XI mutein, 5'-CACCGGGTGGGTGGACAGGTTGGTGGTG-3';
to convert Phe94 to His94 to obtain the His94XI mutein, 5'-CACCGGGTGGGTGTGCAGGTTGGTGGTG-3';
to convert Phe94 to Val94 to obtain the Val94XI mutein, 5'-CACCGGGTGGGTGACCAGGTTGGTGGTG-3';
to convert Phe94 to Gly94 to obtain the Gly94XI mutein, 5'-CACCGGGTGGGTGCCCAGGTTGGTGGTG-3';
to convert Phe94 to Ala94 to obtain the Ala94XI mutein, 5'-CACCGGGTGGGTGGCCAGGTTGGTGGTG-3';
to convert Phe94 to Ile94 to obtain the Ile94XI mutein, 5'-CACCGGGTGGGTGATCAGGTTGGTGGTG-3';
to convert Phe94 to Leu94 to obtain the Leu94XI mutein, 5'-CACCGGGTGGGTGAGCAGGTTGGTGGTG-3';
to convert Phe94 to Asn94 to obtain the Asn94XI mutein, 5'-CACCGGGTGGGTGTTCAGGTTGGTGGTG-3'; and/or
to convert Phe94 to Gln94 to obtain the Gln94XI mutein, 5'-CACCGGGTGGGTCTGCAGGTTGGTGGTG-3'.
EXAMPLE X
Site-Specific Mutagenesis of the Xylose Isomerase Gene To Produce Muteins Having Increased Stability
The procedure of Example IX is followed in substantial detail, except that the mutagenesis primers differ. Second strand synthesis and recovery of the desired XI muteins uses the following oligonucleotide primers to change alpha-helical Glycine residues to Alanine residues:
to convert Gly146 to Ala146 to obtain the Ala146XI mutein, 5'-GCACGTCCTTGGCGCCGGCCGACTCGGCACCC-3';
to convert Gly166 to Ala166 to obtain the Ala166XI mutein, 5'-GGTGACGTACTCGGCGACCAGGTCGAAG-3';
to convert Gly197 to Ala197 to obtain the Ala197XI mutein, 5'-CGCCAGGGCGTGGGCGACGGTGGGGAGC-3';
to convert Gly219 to Ala219 to obtain the Ala219XI mutein, 5'-CCATCTGCTCGTGGGCGACCTCGGGGTTC-3';
to convert Gly231 to Ala231 to obtain the Ala231XI mutein, 5'-GCGCCTGCGCGATCGCGTGCGGGAAGTTC-3';
to convert Gly248 to Ala248 to obtain the Ala248XI mutein, 5'-GATGCCGTTCTGGGCGTTGAGGTCG-3';
to convert Gly298 to Ala298 to obtain the Ala298XI mutein, 5'-GAGGCCCACACCGCGTCGAAGTCCTC-3';
to convert Gly305 to Ala305 to obtain the Ala305XI mutein, 5'-GTTGCGCATGCAGGCGGCCGCCGAGG-3'; and/or
to convert Gly369 to Ala369 to obtain the Ala369XI mutein, 5'-GCTCGAAGGCCATCGCACGGGCCGCCGCC-3'.
EXAMPLE XI
The method of the present invention as described above and in Example I herein, was used to predict amino acid residue positions in the reference xylose isomerase structure that could accomodate proline substitutions. Positions for mutation were initially selected by calculating the phi/psi angles for the various amino acids in the reference XI, and then identifying those residues that met the phi/psi angle criteria set forth in Example I. This led to the selection of twenty-five candidates for proline substitution. The x-ray structure for each mutat ion candidate was examined us ing an interactive computer graphics system. A proline residue was substituted for the amino acid that occurs in the reference XI, and the computer-generated model for the potential mutant XI was visually examined for unfavorable steric contact
(interpenetration of the Van der Waals surfaces for any proline vs. XI atom). This analysis allowed the rejection of many candidate proline-substitution mutations.
The following, primers are used to introduce proline residues to produce thermostable xylose isomerase muteins:
to convert Leu15 to Pro15 to obtain the Pro15XI mutein, 5'-CCGACGGTCCACGGTCCGAAGGTG-3';
to convert Asp28 to Pro28 to obtain the Pro28XI mutein, 5'-GCCGCGTGGCGGGACCGAAGGGGTCC-3';
to convert Ala29 to Pro29 to obtain the Pro29XI mutein, 5'-GCGCCGCGTGGGGTCACCGAAGGGG-3';
to convert Arg32 to Pro32 to obtain the Pro32XI mutein, 5'-CCGGGTCGAGGGCCGGCCGCGTGGCGTC-3';
to convert Ala33 to Pro33 to obtain the Pro33XI mutein, 5'-CCGGGTCGAGGGGGCGCCGCGTGG-3';
to convert Ser64 to Pro64 to obtain the Pro64XI mutein, 5'-GCTCGCTGTCGGGGGAGCCGAAGGGG-3';
to convert Asn107 to Pro107 to obtain the Pro107XI mutein, 5'-CGTCGCGGTCGGGGGCGGTGAAGC-3';
to convert Arg109 to Pro109 to obtain the Pro109XI mutein, 5'-GTAGCGGCGCACGTCGGGGTCGTTGGCGGTG-3';
to convert Gly146 to Pro146 to obtain the Pro146XI mutein, 5'-GCACGTCCTTGGCGCCGGGCGACTCGGCACCC-3';
to convert Val151 to Pro151 to obtain the Pro151XI mutein, 5'-GAGGGCGTCCCGCGGGTCCTTGGCGCC-3';
to convert Gly189 to Pro189 to obtain the Pro189XI mutein, 5'-GAGCAGGATGTCGGGGCGCGGCTCGTTC-3';
to convert Leu192 to Pro192 to obtain the Pro192XI mutein, 5'-CGGTGGGGAGCGGGATGTCGCCGCG-3';
to convert Glu207 to Pro207 to obtain the Pro207XI mutein, 5'-CAGCTCCGGTCGCGGCAGGCGCTCGATG-3';
to convert Val218 to Pro218 to obtain the Pro218XI mutein, 5'-GCTCGTGGCCGGGCTCGGGGTTCACGC-3';
to convert Arg259 to Pro259 to obtain the Pro259XI mutein, 5'-CCCGCGCCGAAGGGGAGGTCCTGGTC-3';
to convert Arg292 to Pro292 to obtain the Pro292XI mutein, 5'-GAAGTCCTCGGTCGGCGGCGGCTTGAAG-3';
to convert Thr342 to Pro342 to obtain the Pro342XI mutein, 5'-CGTAGGCCGCCGGGGGCCGGGCCAG-3';
to convert Arg354 to Pro354 to obtain the Pro354XI mutein, 5'-CGAAGGCGGACGGGTCGTCGAGCAGG-3';
to convert Gly369 to Pro369 to obtain the Pro369XI mutein, 5'-GCTCGAAGGCCATGGGACGGGCCGCCGCC-3'.
In addition, locations in the reference xylose isomerase for proline substitution are selected by comparing the amino acid sequence of Ampullariella xylose isomerase with that of the reference XI to select residues in the reference xylose isomerase for proline substitution.
to convert Ile252 to Pro252 to obtain the Pro252XI mutein, 5'-GGTCGTACTTGGGGCCGTTCTGGCCG-3';
to convert Arg177 to Pro177 to obtain the Pro177XI mutein; 5'-CTCGATGGCGAAGGGGATGTCGTAGCC-3'; and/or
to convert Asp345 to Pro345 to obtain the Pro345XI mutein; 5'-GGCCTGCAGACCGGGGGCCGCCGTGGG-3'.
The following primers are used to introduce aromatic amino acid residues to produce thermostable xylose isomerase muteins:
to convert Asp9 to Tyr9 to obtain the Tyr9XI mutein, 5'-GGTGAACCTGTACTCGGGGGTGGGC-3';
to convert Gln21 to Tyr21 to obtain the Tyr21XI mutein, 5'-GGGGTCCCGTCCGTACCAGCCGACGGTCC-3';
to convert Ala29 to Tyr29 to obtain the Tyr29XI mutein, 5'-GGCGCGCCGCGTGTAGTCACCGAAGGGG-3';
to convert Arg32 to Tyr32 to obtain the Tyr32XI mutein, 5'-GGGTCGAGGGCGTACCGCGTGGCGTCAC-3';
to convert Glu38 to Tyr38 to obtain the Tyr38XI mutein, 5'-CCGCCGCACCGAGTAGACCGGGTCGAGGG-3';
to convert Leu46 to Phe46 to obtain the Phe46XI mutein, 5'-GCCGTGGGCGCCGAACTCGGCCAGCCGCC-3';
to convert Leu46 to Tyr46 to obtain the Tyr46XI mutein, 5'-GCCGTGGGCGCCGTACTCGGCCAGCCGCC-3';
to convert Asp56 to Phe56 to obtain the Phe56XI mutein, 5'-GGGGATGAGGTCGAAGTCGTGGAACGTG-3';
to convert Asp56 to Tyr56 to obtain the Tyr56XI mutein, 5'-GGGGATGAGGTCGTAGTCGTGGAACGTG-3';
to convert Leu58 to Phe58 to obtain the Phe58XI mutein, 5'-GCCGAAGGGGATGAAGTCGTCGTCGTGG-3';
to convert Leu58 to Tyrs5 8o obtain the Tyr58XI mutein, 5'-GCCGAAGGGGATGTAGTCGTCGTCGTGG-3';
to convert Val127 to Tyr127 to obtain the Tyr127XI mutein, 5'-GGCGCCGAGCTCGTACGCGAGGTCGATG-3';
to convert Thr133 to Phe133 to obtain the Phe133XI mutein, 5'-CCAGGCCACATAGAACTCGGCGCCGAGCTC-3';
to convert Thr133 to Tyr133 to obtain the Tyr133XI mutein, 5'-CCAGGCCACATAGTACTCGGCGCCGAGCTC-3'
to convert Ala136 to Phe136 to obtain the Phe136XI mutein, 5'-GGCCGCCCCAGAACACATAGGTCTCGG-3 '
to convert Ala136 to Tyr136 to obtain the Tyr136XI mutein, 5'-GGCCGCCCCAGTACACATAGGTCTCGG-3'
to convert Arg177 to Tyr177 to obtain the Tyr177XI mutein, 5'-GCTCGATGGCGAAGTAGATGTCGTAGCCC-3';
to convert Ile180 to Phe180 to obtain the Phe180XI mutein, 5'-CGGCTTGGGCTCGAAGGCGAAGCGGATG-3';
to convert Ile180 to Tyr180 to obtain the Tyr180XI mutein, 5'-CGGCTTGGGCTCGTAGGCGAAGCGGATG-3';
to convert Leu193 to Phe193 to obtain the Phe193XI mutein, 5'-CCGACGGTGGGGAACAGGATGTCGCC-3';
to convert Leu193 to Tyr193 to obtain the Tyr193XI mutein, 5'-CCGACGGTGGGGTACAGGATGTCGCC-3';
to convert Leu211 to Phe211 to obtain the Phe211XI mutein, 5'-GGTTCACGCCGTAGAACTCCGGTCGCTCC-3';
to convert Leu211 to Tyr211 to obtain the Tyr211XI mutein, 5'-GGTTCACGCCGTAGTACTCCGGTCGCTCC-3';
to convert Asn227 to Phe227 to obtain the Phe227XI mutein, 5'-GCCGTGCGGGAAGAACAGCCCGGCCATC-3';
to convert Asn227 to Tyr227 to obtain the Tyr227XI mutein, 5'-GCCGTGCGGGAAGTACAGCCCGGCCATC-3';
to convert Asn227 to Trp227 to obtain the Trp227XI mutein, 5'-GCCGTGCGGGAACCACAGCCCGGCCATC-3';
to convert Gln234 to Phe234 to obtain the Phe234XI mutein, 5'-CCGCCCACAGCGCGAACGCGATGCCGTG-3';
to convert Gln234 to Tyr234 to obtain the Tyr234XI mutein, 5'-CCGCCCACAGCGCGTACGCGATGCCGTG-3';
to convert Ala238 to Phe238 to obtain the Phe238XI mutein, 5'-GGAACAGCTTGCCGAACCACAGCGCCTGC-3';
to convert Ala238 to Tyr238 to obtain the Tyr238XI mutein, 5'-GGAACAGCTTGCCGTACCACAGCGCCTGC-3'
to convert Leu246 to Phe246 to obtain the Phe246XI mutein, 5'-GTTCTGGCCGTTGAAGTCGATGTGGAAC-3';
to convert Leu246 to Tyr246 to obtain the Tyr246XI mutein, 5'-GTTCTGGCCGTTGTAGTCGATGTGGAAC-3';
to convert Arg284 to Phe284 to obtain the Phe284XI mutein, 5'-GAAGTCGAAGTGGTACGGGCCGCTGTAGC-3';
to convert Arg308 to Tyr308 to obtain the Tyr308XI mutein, 5'-GGATCAGGTAGTTGTACATGCAGCCGG3;
to convert Leu311 to Phe311 to obtain the Phe311XI mutein, 5'-CGCTCCTTGAGGATGAAGTAGTTGCGCATGC-3';
to convert Leu311 to Tyr311 to obtain the Tyr311XI mutein, 5'-CGCTCCTTGAGGATGTAGTAGTTGCGCATGC-3';
to convert Arg316 to Tyr316 to obtain the Tyr316XI mutein, 5'-GAAGGCCGCCGCGTACTCCTTGAGGATC-3';
to convert Leu335 to Phe335 to obtain the Phe335XI mutein, 5'-GCCAGCTCGTCGAAACGGGACGCGC-3';
to convert Leu335 to Tyr335 to obtain the Tyr335XI mutein, 5'-GCCAGCTCGTCGTAACGGGACGCGC-3';
to convert Val362 to Phe362 to obtain the Phe362XI mutein, 5'-GCCGCCGCGTCGAAGTCGAACTCCTCG-3';
to convert Val362 to Tyr362 to obtain the Tyr362XI mutein, 5'-GCCGCCGCGTCGTAGTCGAACTCCTCG-3';
to convert Met370 to Phe370 to obtain the Phe370XI mutein, 5'-CGCTCGAAGGCGAACCCACGGGCCG-3';
to convert Met370 to Tyr370 to obtain the Tyr370XI mutein, 5'-CGCTCGAAGGCGTACCCACGGGCCG-3';
to convert Leu375 to Phe375 to obtain the Phe375XI mutein, 5'-CGCCAGCTGGTCGAAGCGCTCGAAGGC-3';
to convert Leu375 to Tyr375 to obtain the Tyr375XI mutein, 5'-CGCCAGCTGGTCGTAGCGCTCGAAGGC-3';
to convert Leu383 to Phe383 to obtain the Phe383XI mutein, 5'-CGGGCGCCCAGGAAGTGGTCCATCGC-3'; and/or
to convert Leu383 to Tyr383 to obtain the Tyr383XI mutein, 5'-CGGGCGCCCAGGTAGTGGTCCATCGC-3'.
The following primers are used to substitute amino acid residues for residues that are located near the interface of subunits of the xylose isomerase protein that may undergo deamidation, to produce xylose isomerase muteins more stable toward irreversible thermal inactivation:
to convert Gln21 to Ala21 to obtain the Ala21XI mutein, 5'-GGGGTCCCGTCCGGCCCAGCCGACGGTCC-3';
to convert Gln21 to Val21 to obtain the Val21XI mutein, 5'-GGGGTCCCGTCCGACCCAGCCGACGGTCC-3';
to convert Gln21 to Leu21 to obtain the Leu21XI mutein, 5'-GGGGTCCCGTCCGAGCCAGCCGACGGTCC-3';
to convert Gln21 to Ile21 to obtain the Ile21 mutein, 5'-GGGGTCCCGTCCGATCCAGCCGACGGTCC-3';
to convert Gln21 to Ser21 to obtain the Ser21 mutein, 5'-GGGGTCCCGTCCGCTCCAGCCGACGGTCC-3';
to convert Gln21 to Thr21 to obtain the Thr21 mutein, 5'-GGGGTCCCGTCCGGTCCAGCCGACGGTCC-3';
to convert Gln21 to His21 to obtain the His21 mutein, 5'-GGGGTCCCGTCCGTGCCAGCCGACGGTCC-3';
to convert Gln21 to Tyr21 to obtain the Tyr21 mutein, 5'-GGGGTCCCGTCCGTACCAGCCGACGGTCC-3';
to convert Gln21 to Lys21 to obtain the Lys21 mutein, 5'-GGGGTCCCGTCCCTTCCAGCCGACGGTCC-3';
to convert Gln21 to Arg21 to obtain the Arg21 mutein, 5'-GGGGTCCCGTCCGCGCCAGCCGACGGTCC-3';
to convert Gln21 to Met21 to obtain the Met21 mutein, 5'-GGGGTCCCGTCCCATCCAGCCGACGGTCC-3';
to convert Gln21 to Pro21 to obtain the Pro21 mutein, 5'-GGGGTCCCGTCCGGGCCAGCCGACGGTCC-3';
to convert Asn92 to Ala92 to obtain the Ala92 mutein, 5'-GGTGGGTGAACAGGGCGGTGGTGGCCATCG-3 '
to convert Asn92 to Val92 to obtain the Val92 mutein, 5'-GGTGGGTGAACAGGACGGTGGTGGCCATCG-3';
to convert Asn92 to Leu92 to obtain the Leu92 mutein, 5'-GGTGGGTGAACAGGAGGGTGGTGGCCATCG-3';
to convert Asn92 to Ile92 to obtain the Ile92 mutein, 5'-GGTGGGTGAACAGGATGGTGGTGGCCATCG-3';
to convert Asn92 to Ser92 to obtain the Ser92XI mutein, 5'-GGTGGGTGAACAGGCTGGTGGTGGCCATCG-3';
to convert Asn92 to Thr92 to obtain the Thr92XI mutein, 5'-GGTGGGTGAACAGGGTGGTGGTGGCCATCG-3';
to convert Asn92 to His92 to obtain the His92XI mutein, 5'-GGTGGGTGAACAGGTGGGTGGTGGCCATCG-3';
to convert Asn92 to Tyr92 to obtain the Tyr92XI mutein, 5'-GGTGGGTGAACAGGTAGGTGGTGGCCATCG-3';
to convert Asn92 to Lys92 to obtain the Lys92XI mutein, 5'-GGTGGGTGAACAGCTTGGTGGTGGCCATCG-3';
to convert Asn92 to Arg92 to obtain the Arg92XI mutein, 5'-GGTGGGTGAACAGGCGGGTGGTGGCCATCG-3';
to convert Asn92 to Met92 to obtain the Met92XI mutein, 5'-GGTGGGTGAACAGCATGGTGGTGGCCATCG-3';
to convert Asn92 to Pro92 to obtain the Pro92XI mutein, 5'-GGTGGGTGAACAGGGGGGTGGTGGCCATCG-3';
to convert Asn107 to Ala107 to obtain the Ala107Xl mutein, 5'-GCACGTCGCGGTCGGCGGCGGTGAAGCCG-3';
to convert Asn107 to Val107 to obtain the Val107XI mutein, 5'-GCACGTCGCGGTCGACGGCGGTGAAGCCG-3';
to convert Asn107 to Leu107 to obtain the Leu107Xl mutein, 5'-GCACGTCGCGGTCGAGGGCGGTGAAGCCG-3';
to convert Asn107 to Ile107 to obtain the Ile107XI mutein, 5'-GCACGTCGCGGTCGATGGCGGTGAAGCCG-3';
to convert Asn107 to Ser107 to obtain the Ser107XI mutein, 5'-GCACGTCGCGGTCGCTGGCGGTGAAGCCG-3';
to convert Asn107 to Thr107 to obtain the Thr107XI mutein, 5'-GCACGTCGCGGTCGGTGGCGGTGAAGCCG-3';
to convert Asn107 to His107 to obtain the His107XI mutein, 5'-GCACGTCGCGGTCGTGGGCGGTGAAGCCG-3';
to convert Asn107 to Tyr107 to obtain the Tyr107XI mutein, 5'-GCACGTCGCGGTCGTAGGCGGTGAAGCCG-3 ' ?
to convert Asn107 to Lys107 to obtain the Lys107XI mutein, 5'-GCACGTCGCGGTCCTTGGCGGTGAAGCCG-3'
to convert Asn107 to Arg107 to obtain the Arg107XI mutein, 5'-GCACGTCGCGGTCGCGGGCGGTGAAGCCG-3';
to convert Asn107 to Met107 to obtain the Met107XI mutein, 5'-GCACGTCGCGGTCCATGGCGGTGAAGCCG-3';
to convert Asn107 to Pro107 to obtain the Pro107XI mutein, 5'-GCACGTCGCGGTCGGGGGCGGTGAAGCCG-3';
to convert Asn185 to Ala185 to obtain the Ala185XI mutein, 5' -CGCCGCGCGGCTCGGCCGGCTTGGGCTCG-3';
to convert Asn185 to Val185 to obtain the Val185XI mutein, 5'-CGCCGCGCGGCTCGACCGGCTTGGGCTCG-3 '
to convert Asn185 to Leu185 to obtain the Leu185XI mutein, 5'-CGCCGCGCGGCTCGAGCGGCTTGGGCTCG-3';
to convert Asn185 to Ile185 to obtain the Ile185XI mutein, 5'-CGCCGCGCGGCTCGATCGGCTTGGGCTCG-3'
to convert Asn185 to Ser185 to obtain the Ser185Xl mutein, 5'-CGCCGCGCGGCTCGCTCGGCTTGGGCTCG-3';
to convert Asn185 to Thr185 to obtain the Thr185XI mutein, 5'-CGCCGCGCGGCTCGGTCGGCTTGGGCTCG-3';
to convert Asn185 to His185 to obtain the His185XI mutein, 5'-CGCCGCGCGGCTCGTGCGGCTTGGGCTCG-3';
to convert Asn185 to Tyr185 to obtain the Tyr185XI mutein, 5'-CGCCGCGCGGCTCGTACGGCTTGGGCTCG3;
to convert Asn185 to Lys185 to obtain the Lys185XI mutein, T'CGCCGCGCGGCTCCTTCGGCTTGGGCTCG-3';
to convert Asn185 to Arg185 to obtain the Arg185XI mutein, 5'-CGCCGCGCGGCTCGCGCGGCTTGGGCTCG-3';
to convert Asn185 to Met185 to obtain the Met185XI mutein, 5'-CGCCGCGCGGCTCCATCGGCTTGGGCTCG-3';
to convert Asn185 to Pro185 to obtain the Pro185XI mutein, 5'-CGCCGCGCGGCTCGGGCGGCTTGGGCTCG-3';
to convert Asn227 to Ala227 to obtain the Ala227XI mutein, 5'-GCCGTGCGGGAAGGCCAGCCCGGCCATC-3';
to convert Asn227 to Val227 to obtain the Val227XI mutein, 5'-GCCGTGCGGGAAGACCAGCCCGGCCATC-3';
to convert Asn227 to Leu227 to obtain the Leu227XI mutein, 5'-GCCGTGCGGGAAGAGCAGCCCGGCCATC-3';
to convert Asn227 to Ile227 to obtain the Ile227XI mutein, 5'-GCCGTGCGGGAAGATCAGCCCGGCCATC3
to convert Asn227 to Ser227 to obtain the Ser227XI mutein, 5'-GCCGTGCGGGAAGCTCAGCCCGGCCATC-3';
to convert Asn227 to Thr227 to obtain the Thr227XI mutein, 5'-GCCGTGCGGGAAGGTCAGCCCGGCCATC-3';
to convert Asn227 to His227 to obtain the His227XI mutein, 5'-GCCGTGCGGGAAGTGCAGCCCGGCCATC-3';
to convert Asn227 to Tyr227 to obtain the Tyr227XI mutein, 5'-GCCGTGCGGGAAGTACAGCCCGGCCATC-3';
to convert Asn227 to Lys227 to obtain the Lys227XI mutein, 5'-GCCGTGCGGGAACTTCAGCCCGGCCATC-3';
to convert Asn227 to Arg227 to obtain the Arg227XI mutein, 5'-GCCGTGCGGGAAGCGCAGCCCGGCCATC-3';
to convert Asn227 to Met227 to obtain the Met227XI mutein, 5'-GCCGTGCGGGAACATCAGCCCGGCCATC-3';
to convert Asn227 to Pro227 to obtain the Pro227XI mutein, 5'-GCCGTGCGGGAAGGGCAGCCCGGCCATC-3';
to convert Gln234 to Ala234 to obtain the Ala234XI mutein, 5'-CGCCCACAGCGCGGCCGCGATGCCGTGCG-3';
to convert Gln234 to Val234 to obtain the Val234XI mutein, 5'-CGCCCACAGCGCGACCGCGATGCCGTGCG-3';
to convert Gln234 to Leu234 to obtain the Leu234XI mutein, 5'-CGCCCACAGCGCGAGCGCGATGCCGTGCG-3';
to convert Gln234 to Ile234 to obtain the Ile234XI mutein, 5'-CGCCCACAGCGCGATCGCGATGCCGTGCG-3';
to convert Gln234 to Ser234 to obtain the Ser234XI mutein, 5'-CGCCCACAGCGCGCTCGCGATGCCGTGCG-3';
to convert Gln234 to Thr234 to obtain the Thr234XI mutein, 5'-CGCCCACAGCGCGGTCGCGATGCCGTGCG-3';
to convert Gln234 to His234 to obtain the His234XI mutein, 5'-CGCCCACAGCGCGTGCGCGATGCCGTGCG-3';
to convert Gln234 to Tyr234 to obtain the Tyr234XI mutein, 5'-CGCCCACAGCGCGTACGCGATGCCGTGCG-3';
to convert Gln234 to Lys234 to obtain the LVS234XI mutein, 5'-CGCCCACAGCGCCTTCGCGATGCCGTGCG-3';
to convert Gln234 to Arg234 to obtain the Arg234XI mutein, 5'-CGCCCACAGCGCGCGCGCGATGCCGTGCG-3'
to convert Gln234 to Met234 to obtain the Met234XI mutein, 5'-CGCCCACAGCGCCATCGCGATGCCGTGCG-3';
to convert Gln234 to Pro234 to obtain the Pro234XI mutein, 5'-CGCCCACAGCGCGGGCGCGATGCCGTGCG-3';
to convert Gln256 to Ala256 to obtain the Ala256XI mutein, 5'-CGAAGCGGAGGTCGGCGTCGTACTTGATGC-3';
to convert Gln256 to Val256 to obtain the Val256XI mutein, 5'-CGAAGCGGAGGTCGACGTCGTACTTGATGC-3';
to convert Gln256 to Leu256 to obtain the Leu256XI mutein, 5'-CGAAGCGGAGGTCGAGGTCGTACTTGATGC-3';
to convert Gln256 to Ile256 to obtain the Ile256XI mutein, 5'-CGAAGCGGAGGTCGATGTCGTACTTGATGC-3';
to convert Gln256 to Ser256 to obtain the Ser256XI mutein, 5'-CGAAGCGGAGGTCGCTGTCGTACTTGATGC-3';
to convert Gln256 to Thr256 to obtain the Thr256XI mutein, 5'-CGAAGCGGAGGTCGGTGTCGTACTTGATGC-3';
to convert Gln256 to His256 to obtain the His256XI mutein, 5'-CGAAGCGGAGGTCGTGGTCGTACTTGATGC-3';
to convert Gln256 to Tyr256 to obtain the Tyr256XI mutein, 5'-CGAAGCGGAGGTCGTAGTCGTACTTGATGC-3';
to convert Gln256 to Lys256 to obtain the Lys256XI mutein, 5'-CGAAGCGGAGGTCCTTGTCGTACTTGATGC-3';
to convert Gln256 to Arg256 to obtain the Arg25βXI mutein, 5'-CGAAGCGGAGGTCGCGGTCGTACTTGATGC-3';
to convert Gln256 to Met256 to obtain the Met256XI mutein, 5'-CGAAGCGGAGGTCCATGTCGTACTTGATGC-3';
to convert Gln256 to Pro256 to obtain the Pro256XI mutein, 5'-CGAAGCGGAGGTCGGGGTCGTACTTGATGC-3';
to convert Asn309 to Ala309 to obtain the Ala309XI mutein, 5'-GAGGATCAGGTAGGCGCGCATGCAGCCGGC-3';
to convert Asn309 to Val309 to obtain the Val309XI mutein, 5'-GAGGATCAGGTAGACGCGCATGCAGCCGGC-3';
to convert Asn309 to Leu309 to obtain the Leu309XI mutein, 5'-GAGGATCAGGTAGAGGCGCATGCAGCCGGC-3';
to convert Asn309 to Ile309 to obtain the Ile309XI mutein, 5'-GAGGATCAGGTAGATGCGCATGCAGCCGGC-3';
to convert Asn309 to Ser309 to obtain the Ser309XI mutein, 5'-GAGGATCAGGTAGCTGCGCATGCAGCCGGC-3';
to convert Asn309 to Thr309 to obtain the Thr309XI mutein, 5'-GAGGATCAGGTAGGTGCGCATGCAGCCGGC-3';
to convert Asn309 to His309 to obtain the His309XI mutein, 5'-GAGGATCAGGTAGTGGCGCATGCAGCCGGC-3';
to convert Asn309 to Tyr309 to obtain the Tyr309XI mutein, 5'-GAGGATCAGGTAGTAGCGCATGCAGCCGGC-3';
to convert Asn309 to Lys309 to obtain the Lys309XI mutein, 5'-GAGGATCAGGTACTTGCGCATGCAGCCGGC-3';
to convert Asn309 to Arg309 to obtain the Arg309XI mutein, 5'-GAGGATCAGGTAGCGGCGCATGCAGCCGGC-3';
to convert Asn309 to Met309 to obtain the Met309XI mutein, 5'-GAGGATCAGGTACATGCGCATGCAGCCGGC-3';
to convert Asn309 to Pro309 to obtain the Pro309XI mutein, 5'-GAGGATCAGGTAGGGGCGCATGCAGCCGGC-3';
to convert Asn377 to Ala377 to obtain the Ala377XI mutein, 5'-GGTCCATCGCCAGGGCGTCCAGGCGCTCG-3';
to convert Asn377 to Val377 to obtain the Val377XI mutein, 5'-GGTCCATCGCCAGGACGTCCAGGCGCTCG-3';
to convert Asn377 to Leu377 to obtain the Leu377XI mutein, 5'-GGTCCATCGCCAGGAGGTCCAGGCGCTCG-3';
to convert Asn377 to Ile377 to obtain the Ile377XI mutein, 5'-GGTCCATCGCCAGGATGTCCAGGCGCTCG-3';
to convert Asn377 to Ser377 to obtain the Ser377XI mutein, 5'-GGTCCATCGCCAGGCTGTCCAGGCGCTCG-3';
to convert Asn377 to Thr377 to obtain the Thr377XI mutein, 5'-GGTCCATCGCCAGGGTGTCCAGGCGCTCG-3';
to convert Asn377 to His377 to obtain the His377XI mutein, 5'-GGTCCATCGCCAGGTGGTCCAGGCGCTCG-3';
to convert Asn377 to Tyr377 to obtain the Tyr377XI mutein, 5'-GGTCCATCGCCAGGTAGTCCAGGCGCTCG-3';
to convert Asn377 to Lys377 to obtain the Lys377XI mutein, 5'-GGTCCATCGCCAGCTTGTCCAGGCGCTCG-3';
to convert Asn377 to Arg377 to obtain the Arg377XI mutein, 5'-GGTCCATCGCCAGGCGGTCCAGGCGCTCG-3';
to convert Asn377 to Met377 to obtain the Met377XI mutein, 5'-GGTCCATCGCCAGCATGTCCAGGCGCTCG-3'; and/or
to convert Asn377 to Pro377 to obtain the Pro377XI mutein, 5'-GGTCCATCGCCAGGGGGTCCAGGCGCTCG-3'.
The following primers are used to introduce two cysteine residues to produce disulfide bridges in the xylose isomerase protein to create thermostable xylose isomerase muteins:
to convert Trp270 to Cys270, and Gly146 to Cys146, 5'-CAGGTCCACCAGGCAGAACGCGGCCCGC-3', and 5'-GTCCTTGGCGCCGCACGACTCGGCACCC-3', to obtain the Cys270Cys146XI mutein;
to convert Phe320 to Cys320, and His382 to Cys382,
5'-GGTCGGCGCGGCAGGCCGCCGCACGC-3', and
5'-CGCCCAGCAGGCAGTCCATCGCCAGC-3', to obtain the Cys320Cys382XI mutein;
to convert Glu337 to Cys337, and Argxgg to Cys109, 5'-GGGCCGGGCCAGGCAGTCCAGACGGGAC-3', and 5'-CGGCGCACGTCGCAGTCGTTGGCGGTG-3', to obtain the Cys337Cys109XI mutein;
to convert Gly189 to Cys189, and Glu144 to Cys144, 5'-GCAGGATGTCGCAGCGCGGCTCGTTC-3', and
5'-GGCGCCACCCGAGCAGGCACCCTCGCGG-3', to obtain the Cys189Cys144XI mutein;
to convert Gly251 to Cys251, and Gly225 to Cys225, 5'-TCGTACTTGATGCAGTTCTGGCCGTTG-3', and 5'-GCGGGAAGTTCAGGCAGGCCATCTGCTCG-3' , to obtain the Cys251Cys225XI mutein;
to convert Ala366 to Cys366, and Valgs to Cys98, 5'-CCATCCCACGGGCGCACGCCGCGTCGACG-3', and 5'-CGCCGTCCTTGAAGCACGGGTGGGTGAAC-3', to obtain the Cys366Cys98XI mutein;
to convert Gln249 to Cys249, and Gly219 to Cys219, 5'-GTACTTGATGCCGTTGCAGCCGTTGAGGTCG-3'; and 5'-CATCTGCTCGTGGCAGACCTCGGGGTTC-3', to obtain the Cys249Cys219XI mutein; and/or
to convert Glu207 to Cys207, and Asp163 to Cys163, 5'-CAGCTCCGGTCGGCACAGGCGCTCGATG-3', and 5'-CTCGCCGAGCAGGCAGAAGGCCTCCTTC-3', to obtain the Cys207Cys163XI mutein.
EXAMPLE XII
Site-Specific Mutagenesis of the Xylose Isomerase Gene
To produce Muteins Having Lowered pH Optima
The procedure of Example IX is followed in substantial detail, except that the mutagenesis primers differ. Second strand synthesis and recovery of the desired XI muteins uses the following oligonucleotide primers to alter amino acids within 15 angstroms of the enzyme active site to eliminate negative charges or introduce positive charges to produce xylose isomerase muteins with lowered pH optima as follows:
to convert Asp57 to Lys 57 to obtain the Asp 57 XI mutein; 5'-GCCGAAGGGGATGAGCTTGTCGTCGTGGAACGT-3 '
to convert ASP57 to Arg 57 to obtain the Arg 57 XI mutein; 5'-GCCGAAGGGGATGAGGCGGTCGTCGTGGAACGT-3'
to convert ASP57 to Gly 57 to obtain the Gly 57 XI mutein; 5'-GCCGAAGGGGATGAGGCCGTCGTCGTGGAACGT-3'
to convert ASP57 to Ala 57 to obtain the Ala 57 XI mutein; 5'-GCCGAAGGGGATGAGGGCGTCGTCGTGGAACGT-3'
to convert ASP57 to Gln 57 to obtain the Gln 57 XI mutein; 5'-GCCGAAGGGGATGAGCTGGTCGTCGTGGAACGT-3'
to convert ASP57 to Asn 57 to obtain the Asn 57 XI mutein; 5'-GCCGAAGGGGATGAGGTTGTCGTCGTGGAACGT-3'
to convert ASP57 to Thr 57 to obtain the Thr 57 XI mutein; 5'-GCCGAAGGGGATGAGGGTGTCGTCGTGGAACGT-3'
to convert ASP57 to Ser 57 to obtain the Ser 57 XI mutein; 5'-GCCGAAGGGGATGAGGGAGTCGTCGTGGAACGT-3'
to convert Glu186 to Lys 186 to obtain the Lys 186 XI mutein; 5'-GATGTCGCCGCGCGGCTTGTTCGGCTTGGGCTC-3'
to convert Glu186 to Arg 186 to obtain the Arg 186 XI mutein; 5'-GATGTCGCCGCGCGGGCGGTTCGGCTTGGGCTC-3'
to convert Glu186 to Gly 186 to obtain the Giy 186 XI mutein; 5'-GATGTCGCCGCGCGGGCCGTTCGGCTTGGGCTC-3'
to convert Glu186 to Ala 186 to obtain the Ala 186 XI mutein; 5'-GATGTCGCCGCGCGGGGCGTTCGGCTTGGGCTC-3'
to convert Glu186 to Gln 186 to obtain the Gln 186 XI mutein; 5'-GATGTCGCCGCGCGGCTGGTTCGGCTTGGGCTC-3'
to convert Glu186 to Asn 186 to obtain the Asn 186 XI mutein; 5'-GATGTCGCCGCGCGGGTTGTTCGGCTTGGGCTT-3'
to convert Glu186 to Thr 186 to obtain the Thr 186 XI mutein; 5'-GATGTCGCCGCGCGGCGTGTTCGGCTTGGGCTC-3'
to convert Glu186 to Ser 186 to obtain the Ser 186 XI mutein; 5'-GATGTCGCCGCGCGGCGAGTTCGGCTTGGGCTC-3'
to convert Glu221 to Gln 221 to obtain the Gln 221 XI mutein; 5'-CAGCCCGGCCATCTGCTGGTGGCCGACCTCGGG-3'
to convert Glu141 to Gln 141 to obtain the Gln 141 XI mutein; 5'-ACCCGACTCGGCACCCTGGCGGCCGCCCCAGGC-3'; and/or
to convert Asp287 to Asn 287 to obtain the Asn 287 XI mutein; 5'-CCGCGGCGGCTTGAAGTTGAAGTGCCGCGGGCC-3'.
EXAMPLE XIII
Xylose-Isomerase Muteins Exhibiting Modified Kinetics
The isomerase activity of the reference and xylose isomerase muteins obtained as described above, is assayed using the substrates glucose, fructose, xylose and xylulose. Kinetic measurements are taken of the KP, KS,
f, and k
r for both equilibrium reactions using the HPLC assay previously described. Kinetic parameters are obtained by analysis of the progress curves of the reactions, using a program that carries out a weighted linear or nonlinear least-squares regression analysis of data by using the Lineweaver-Burk or Michaelis- Menten equations, respectively, such as that described by Roberts, in Enzyme Kinetics, Cambridge Univ. Press, Cambridge p. 299-306 (1977), incorporated by reference herein. Data is examined for modified enzymes showing a changed specificity, relative to the reference enzyme, toward either glucose or xylose substrate.
EXAMPLE XIV Determination of Thermostability of Xylose Isomerase Muteins
Reference XI or XI mutein is produced and purified as described in Example II. The purified protein is adjusted to an average activity of 1.8-2.0 U/ml as determined by HPLC assay, and after precooling in a salt and ice bath, is mixed with glucose solution also precooled (400 g/1 glucose, 25 mM maleic acid, 10mM MgSO4, pH 6.5) in a 1:1 ratio at 1°C and distributed into 100 μl thin-walled glass micropipettes (Fisher Scientific, Pittsburgh, PA) which are flame-sealed and incubated in heating baths at different isomerization temperatures for 40 minutes. Temperatures of the heating baths are set at 1°C intervals over the range at which the enzyme shows the full range of inactivation (85°C to 100°C for the reference XI). One bath is set at the reference temperature approximately 10°C below the temperature of half maximum enzyme activity. For the blank samples, the buffer solution is mixed with the glucose substrate in a 1:1 ratio and distributed into 100 μl thin-walled glass micropipettes which are sealed and incubated in water baths at the same temperatures and incubation time as used for the enzyme test samples. The reaction is terminated by immersing the micropipettes in a salt-ice bath, and 65 μl of isomerase is removed from each micropipette. 2 μl of IN HCl is added to stop the isomerase reaction. The isomerase is assayed for fructose and glucose by HPLC using a Beckman Liquid Chromatograph as described in Example II.
The HPLC results are calculated as the degree of isomerization (IT) at each temperature as follows:
F = (% fructose in sample - % fructose in blank)
G = (% glucose in sample)
The percent dry basis fructose data is used to calculate the temperature at which the half-life is 20 minutes [T20] as a measure of thermostability, as follows.
The activity function (LT) at each temperature is calculated as follows:
The relative activity (Ar) at each of the test temperature is calculated as follows:
Ar = (LT/LR) X (kfr/kfT)
LT = activity function at test temperature
LR = activity function at reference temperature
The best reference temperature is about 10°C below the temperature at which 50% of maximum activity is displayed.
= isomerization rate constant calculated at the
test temperature (see formula below)
= isomerization rate constant calculated at the
reference temperature (see formula below)
kf = exp (-6654/(T + 273) + 15.957)
where T is test (or reference) temperature in °C
Relative activity is plotted vs. temperature as shown in Figure 8. Relative activity is related to heating time and to enzyme half-life according to the following relationship:
Graphs of relative activity vs. temperature supply information on half-life. Thus, interpolation as shown on the graph in Figure 8 identifies the temperature at which the half-life is 4 , 20 or 40 minutes .
T40 = 96.0°C T20 = 97.0°C T4 = 99.0°C
T20 is reported to the nearest 0.1°C as a standard expression of thermostability.
The T20 value, the temperature at which the reference or the mutein has a 20 minute half-life, is a sensitive measure of an enzyme's thermostability. Relative to the reference XI thermostabilized muteins should retain more catalytic activity at elevated temperatures. Consequently, a thermostabilized
mutein will have a larger T20 value (it will demonstrate a 20 minute half-life at a temperature at least 1°C higher than the reference enzyme). Quantitation of enzymatic activity to assess thermostability has the advantage of testing both the reversible (conformational) and irreversible (conformational plus chemical) thermoinactivation mechanisms. Many point mutations have been shown to result in muteins that are 2°C-5°C more stable than the parent enzyme. Because the precision of the T20 test can be as low as + 0.1°C, thermostable xylose isomerase muteins are clearly identified by the T20 method.
EXAMPLE XV
Determination of pH Optima of Xylose Isomerase Muteins
The pH optima of the xylose isomerase muteins produced as described in Example XII above, is determined by studying activity of the enzymes under various pH conditions as follows.
The reference XI or XI mutein is produced and purified as described in Example II. The purified protein is dialyzed against distilled water after which the protein concentration is adjusted to 0.3 mg/ml.
Substrate solutions containing 2 mM magnesium chloride, 40% glucose and 20 mM buffer are adjusted to the desired pH at 60°C. Depending upon the pH range to be studied, an appropriate buffer is selected from the group; sodium phosphate (pH 6.0-8.0), sodium bisulfite (pH 6.0-8.0), N,N-bis(2-hydroxyethyl) glycine (pH 7.3-9.3), 3-(N-morpholino) propanesulfonic acid (pH 6.2-8.2).
To determine the XI activity at the selected pH, a 50 μl aliquot of dialyzed enzyme is mixed with a 50 μl aliquot of
buffered substrate, the mixture is placed in a 250 μl tube, the tube is sealed and incubated at 60°C for 40 minutes. Reactions are stopped by the addition of 5 μl of 1 N hydrochloric acid. Samples are then assayed for fructose production by HPLC assay as described in Example II.
The HPLC results are expressed as percent relative activity. That reaction pH which gives the greatest conversion of glucose to fructose is arbitrarily assigned as having 100% relative activity. The activity observed at all other pH values is expressed as a percent of the maximum activity.
Graphs of relative activity vs. pH are referred to as pH vs. activity profiles and indicate the pH optimum, under defined reaction conditions (e.g. ionic strength and temperature), for the enzyme being tested. For the reference XI or XI muteins, relative activity plotted vs. pH indicates pH optima obtained for the reference XI as shown in Figure 9.
Relative to the reference XI, the muteins should display greater catalytic activity at a lowered pH.
The recombinantly produced S. rubiginosus xylose isomerase and muteins set forth herein may be used to convert glucose to fructose or xylose to xylulose in various industrial processes. The various muteins may be resistant to various inactivation reactions and more stable, under extreme conditions of temperature and pH, than native XI. In addition, K catmay be increased, KSmay be decreased, may be
decreased and/or %may be increased. Furthermore, the pH optimum of the muteins may be reduced.
Deposits
On August 5, 1987, Applicants deposited with the American Type Culture Collection, Rockville, MD, USA (ATCC) the mutein
expression vector pTW11 in E. coli DG101 XI- accession no. 67,489. This deposit was made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and the Regulations thereunder (Budapest Treaty). This assures maintenance of a viable culture for 30 years from the date of deposit. The deposit will be made available by ATCC under the terms of the Budapest Treaty, and subject to an agreement between Applicants and ATCC which assures permanent and unrestricted availability upon issuance of the pertinent US patent. The Assignee herein agrees that if the culture on deposit die or is lost or destroyed when cultivated under suitable conditions, it will be promptly replaced upon notification with a viable specimen of the same culture. Availability of the deposit is not to be construed as a license to practice under the authority of any government in accordance with its patent laws.
This deposit was made for the convenience of the relevant public and does not constitute an admission that a written description would not be sufficient to permit practice of the invention or an intention to limit the invention to these specific constructs. Set forth hereinabove is a complete written description enabling a practitioner of ordinary skill to duplicate the construct deposited and to construct alternative forms of DNA, or organisms containing it, which permit the practice of the invention as claimed.
As will be apparent to those skilled in the art in which the invention is addressed, the present invention may be embodied in forms other than those specifically disclosed above without departing from the spirit or essential characteristics of the invention. The particular embodiments of the present invention described above, are, therefore, to be considered in all respects as illustrative and not restrictive.
The scope of the present invention is as set forth in the appended claims rather than being limited to the examples contained in the foregoing description.
Claims
1. A method for increasing the stability of a protein comprising substituting an amino acid at a preselected substitution site in the protein, said substitution site having phi and psi backbone conformational angles in the range of phi = -40° to -90° when psi = 0° to -60°, or in the range of phi = -40° to -95° when psi = 120° to 180° and capable of accomodating said amino acid without disruption of the three- dimensional structure of the protein such that introduction of said amino acid decreases the configurational entropy of unfolding of said protein.
2. The method of Claim 1 wherein said preselected substitution site is any amino acid residue except proline and the amino acid introduced at said site is proline, and said method further comprises the step of determining the phi and psi values of the amino acid residue in the amino acid sequence of the protein immediately preceding the side of said proline substitution, such that if the psi value of the preceding amino acid residue is between 0° and -90° then the substitution site must have phi and psi values in the range of phi
= -40° to -90° when psi = 0° to -60°, but if the psi value of the preceding amino acid residue is not between 0° and -90° the the substitution site may have phi and psi values either in the range of phi = -40° to -90° when psi = 0° to -60°, or in the range of phi = -40° to -95° when psi = 120° to 180°.
3. The method of Claim 1 wherein said preselected substitution site is a glycine amino acid residue and the amino acid introduced is any amino acid having a β carbon atom or branched β carbon atom.
4. A method for increasing the stability of a protein comprising substituting a glycine amino acid residue having a negative phi angle with an alanine to decrease the configurational entropy of unfolding of the protein.
5. A method for selecting substitution sites suitable for introduction of amino acids in a protein such that introduction of said amino acids increases the stability of the protein, comprising the steps of:
a) determining from the crystallographic structure of a protein the backbone conformational angles phi and psi of said protein;
b) screening said phi and psi angles determined in step a) to identify potential substitution sites in said protein having conformational phi and psi angles in the range of phi = -40° to -90° when psi = 0° to -60°, or in the range of phi = -40° to -95° when psi = 120° to 180° for introduction of said amino acids; and
c) examining a structural model of the protein to determine from the potential substitution sites identified in step b) substitution sites that will accomodate substitution of an amino acid without disruption of the three-dimensional structure of the protein, whereby substitution of said substitution site results in a decrease in the configurational entropy of unfolding of the protein.
6. The method of Claim 5 wherein the amino acid to be substituted into said substitution site is proline, and the step of screening of step b) comprises the additional substep of determining whether the amino acid residue preceding the potential substitution site identified in step b) has psi angles between 0° and -90°, and if so then the step c) of examining comprises the substep of determining a substitution site having phi and psi angles in the range phi = -40° to -90° when psi = 0° to -60°.
7. Streptomyces rubiginosus, (S. rubiginosus), xylose isomerase mutein having a change in at least one position in the native amino acid sequence at a position equivalent to a native amino acid residue selected from the group consisting of Lysine183, Lysme289, Histidine54, Histidine220, Methionine223, Arginine140, Tryptophan16, Tryptophan137, Phenylalanine94, Glycine146, Glycine166, Glycine197, Glycine219, Glycine231, Glycine248, Glycine298, Glycine305, Glycine369, Leucine15, Alanine29, Alanine33, Asparagine107, Arginine109, Glycine146, Valine151, Glycine189, Leucine192, Glutamic acid207, Arginine259, Threonine342, Arginine354, Glycine369, Aspartic acid28, Arginine32, Serine64, Valine218, Arginine292, Isoleucine292, Aspartic acid9, Glutamine21, Alanine29, Arginine32, Glutamic acid38, Leucine46, Aspartic acid56, Leucine58, Valine127, Threonine133, Alanine136, Arginine177, Isoleucine180, Leucine193, Leucine211, Asparagine227, Glutamine234, Alanine238, Leucine246, Arginine284, Arginine308, Leucine311, Arginine316, Leucine335, Valine362, Methionine370, Leucine375, Leucine383, Glutamine21, Asparagine92, Asparagine107, Asparagine185, Asparagine227, Glutamine234, Glutamine256, Asparagine309, Glutamine377, Tryptophan270, Glycine146, Phenylalanine320, Histidine382, Glutamic acid337, Arginine109, Glycine189, Glutamic acid144,
Glycine251, Glycine225, Alanine366, Valine98, Glutamine249, Glycine219, Glutamic acid207, Aspartic acid163, Aspartic acid 57, Glutamic acid 186; Glutamic acid 141, Glutamic acid221, Aspartic acid287; Arginine177; and Aspartic acid345.
8. The S. rubiginosus xylose isomerase mutein of Claim 7 wherein the change is in the lysine amino acid residue equivalent to LyS183 and said change is substitution by an amino acid selected from the group consisting of Arg, Gln, Asn, Asp, Glu, Ser, Thr, His, Tyr, Ala, Val, Leu and lle; or the change is in the lysine amino acid residue equivalent to Lysine289 and sai d change is substitution by an amino acid selected from the group consisting of Arg, Gln, Asn, Asp, Glu, Ser Thr, His, Tyr, Ala, Val, Leu and lle; or
the change is in the histidine amino acid residue equivalent to His54 and said change is substitution by an amino acid selected from the group consisting of Gln, Glu, Asn, Asp, Ser, Thr, Ala, Val, and Tyr; or
the change is in the histidine amino acid residue equivalent to His220 and said change is substitution by an amino acid selected from the group consisting of Gln, Glu, Asn, Asp, Ser, Thr, Ala, Val, and Tyr; or
the change is in the methionine amino acid residue equivalent to Met223 and said change is subsitution by an amino acid selected from the group cons isting of Gly, Ala, Val , Leu, lle, Phe , Tyr, Gln, and Asn; or
the change is in the arginine amino acid residue equivalent to Arg140 and said change is substitution by an amino acid selected from the group consisting of Gln, Asn, Glu, Asp, lle, Leu, Ala, Val, and Tyr; or
the change is in the tryptophan amino acid residue equivalent to Trp16 and said change is substitution by an amino acid selected from the group consisting of Asn, Gln, Ser, Thr, Gly, Ala, Val, Leu, lle, Tyr, Phe, and His; or
the change is in the tryptophan amino acid residue equivalent to Trp137 and said change is substitution by an amino acid selected from the group consisting of Asn, Gln, Ser, Thr, Gly, Ala, Val, Leu, lle, Tyr, Phe, and His; or the change is in the phenylalanine amino acid residue equivalent to Phe94 and said change is substitution by an amino acid selected from the group consisting of Thr, Ser, His, Val, Gly, Ala, lle, Leu, Asn, and Gln; or
the change is substitution of the glycine amino acid residue equivalent to Glyx where x is selected from the group consisting of residues 146, 166, 197, 219, 231, 248, 298, 305 and 369, and said Gly substituted with an amino acid other than glycine; or
the change is substitution by proline in the amino acid residue equivalent to an amino acid residue selected from the group consisting of Leu15, Asp28, Ala28, Arg32, Ala33, Ser64, Asn107, Arg109, Gly146, Val151, Gly189, Leu192, Glu207, Val218, Ue252, Arg259, Arg292, Thr342, Arg354, Gly369, Arg177, and Asp345; or
the change is double substitutions of cysteine in the amino acid residues equivalent to pairs of amino acid residues selected from the group consisting of Trp270 and Gly146, Phe320 and His382, Glu337 and Arg109, Gly189 and Glu144, Gly251 and Gly225, Ala336 and Val98, Gln249 and Gly219, and/or Glu207 and Asp163; or
the change is substitution by tyrosine in the amino acid residues equivalent to an amino acid residue selected from the group consisting of Asp9, Gln21, Ala29, Arg32, Glu38, Leu46, Asp56, Leu58, Val127, Thr133, Ala136, Arg177, Ile180, Leu193, Leu211, Asn227, Gln234, Ala238, Leu246, Arg284, Arg308, Leu311, Arg316, Leu335, Val362, Met370, Leu375 and Leu383; or
the change is substitution by phenylalanine in the amino acid residue equivalent to an amino acid residue selected from the group consisting of Leu49, Asp56, Leu58, Thr133, Ala136, Ile180, Leu193, Leu211, Asn227, Gln234, Ala238, Leu246, Leu311, Leu335, Val362, Met370, Leu375 and Leu383; or the change is substitution by tryptophan in the amino acid residue equivalent to Asn227; or the change is substitution by an amino acid residue selected from the group consisting of Ala, Val, Leu, lle, Ser, Thr, His, Tyr, Lys, Arg, Met and Pro in the amino acid residue equivalent to an amino acid residue selected from the group consisting of Gln21, Asn92, Asn107, Asn185, Asn227, Gln234, Gln256, Asn309, and Gln377; or
the change is in the aspartic acid amino acid res idue equivalent to Asp57 and said change is substitution by an amino acid selected from the group consisting of Lys, Arg, Gly, Ala, Gln, Asn, Thr and Ser; or
the change is in the glutamic acid amino acid residue equivalent to Glu186 and said change is substitution by an amino acid selected from the group consisting of Lys, Arg, Gly, Ala, Gln, Asn, Thr and Ser; or
the change is substitution of the aspartic acid amino acid residue equivalent to Asp57 and said substitution is with an amino acid other than aspartic acid or glutamic acid; or
the change is substitution in the glutamic acid amino acid residue equivalent to Glu186 and said change is substitution by an amino acid other than aspartic acid or glutamic acid; or
the change is substitution by glutamine in the glutamic acid amino acid residue equivalent to Glu221; or
the change is substitution by glutamine in the glutamic acid amino acid residue equivalent to Glu141.
9. A nucleic acid encoding the xylose isomerase of Claim 7 or 8 said nucleic acid being substantially free of nucleic acid that does not encode the xylose isomerase of Claim 7 or 8.
10. An expression vector for mutant procaryotic xylose isomerase which comprises the nucleic acid of Claim 9 operably linked to control sequences compatible with a host cell.
11. A method for enhancing the conversion of glucose to fructose and xylose to xylulose which comprises exposing an effective amount of the xylose isomerase mutein of Claim 7 or 8 to glucose and xylose, respectively.
12. The xylose isomerase mutein of Claim 7 wherein the expressed xylose isomerase exhibits a change in one or more of the characteristics of chemical stability, f, r, KS, KP temperature stability, specific activity and a lowered pH optimum of the isomerase, as compared to the reference xylose isomerase.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US084,479 | 1979-10-15 | ||
US07/084,479 US5041378A (en) | 1987-08-11 | 1987-08-11 | Procaryotic xylose isomerase muteins |
US17169388A | 1988-03-22 | 1988-03-22 | |
US171,693 | 1988-03-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1989001520A1 true WO1989001520A1 (en) | 1989-02-23 |
Family
ID=26771023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1988/002765 WO1989001520A1 (en) | 1987-08-11 | 1988-08-10 | Procaryotic xylose isomerase muteins and method to increase protein stability |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU2421588A (en) |
NZ (1) | NZ225798A (en) |
WO (1) | WO1989001520A1 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990000196A1 (en) * | 1988-07-04 | 1990-01-11 | David Mervyn Blow | Xylose isomerase mutants |
EP0351029A1 (en) * | 1988-07-15 | 1990-01-17 | Genencor International, Inc. | Novel glucose isomerase enzymes and their use |
WO1990000601A2 (en) * | 1988-07-15 | 1990-01-25 | Gist-Brocades N.V. | Novel glucose isomerase enzymes and their use |
EP0352474A2 (en) * | 1988-07-19 | 1990-01-31 | Stabra Ag | Thermostable glucose isomerase |
EP0410498A2 (en) * | 1989-06-29 | 1991-01-30 | Gist-Brocades N.V. | Mutant microbial alpha-amylases with increased thermal, acid and/or alkaline stability |
EP0436502A2 (en) * | 1990-01-04 | 1991-07-10 | Genencor International, Inc. | Novel glucose isomerases with an altered pH optimum |
EP0440273A3 (en) * | 1990-01-04 | 1992-01-22 | Gist-Brocades N.V. | Novel glucose isomerases having altered substrate specificity |
EP0483691A2 (en) * | 1990-10-29 | 1992-05-06 | Shigezo Udaka | Xyloseisomerase gene of thermus aquaticus, xyloseisomerase and process for preparation of fructose |
WO1992019726A1 (en) | 1991-05-01 | 1992-11-12 | Novo Nordisk A/S | Stabilized enzymes |
WO1992019729A1 (en) * | 1991-05-01 | 1992-11-12 | Novo Nordisk A/S | Stabilized enzymes and detergent compositions |
US5219751A (en) * | 1990-10-19 | 1993-06-15 | Novo Nordisk A/S Novo Alle, | Xylase isomerase purified from thermotoga maritima and thermotoga neapolitana |
US5268280A (en) * | 1990-10-19 | 1993-12-07 | Novo Nordisk A/S | Method for glucose isomerization using xylose isomerase purified from Thermotoga Maritima and Thermotoga Neapolitana |
US6889145B1 (en) | 2000-03-15 | 2005-05-03 | Northwestern University | Three-dimensional model of a Fc region of an IgE antibody and uses thereof |
US9951326B2 (en) | 2015-07-13 | 2018-04-24 | MARA Renewables Corporation | Enhancing microbial metabolism of C5 organic carbon |
CN114729346A (en) * | 2019-09-13 | 2022-07-08 | 丹尼斯科美国公司 | Thermostable glucose isomerase variants |
CN114774477A (en) * | 2013-02-27 | 2022-07-22 | 丰田自动车株式会社 | Method for producing ethanol using recombinant yeast |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0068647A2 (en) * | 1981-06-22 | 1983-01-05 | The Upjohn Company | Plasmids, plasmid hosts, and their preparation |
US4410627A (en) * | 1982-06-30 | 1983-10-18 | Nabisco Brands, Inc. | Glucose isomerase process |
-
1988
- 1988-08-10 AU AU24215/88A patent/AU2421588A/en not_active Abandoned
- 1988-08-10 WO PCT/US1988/002765 patent/WO1989001520A1/en unknown
- 1988-08-11 NZ NZ225798A patent/NZ225798A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0068647A2 (en) * | 1981-06-22 | 1983-01-05 | The Upjohn Company | Plasmids, plasmid hosts, and their preparation |
US4410627A (en) * | 1982-06-30 | 1983-10-18 | Nabisco Brands, Inc. | Glucose isomerase process |
Non-Patent Citations (8)
Title |
---|
CHEMICAL ABSTRACTS, Volume 100, No. 17, 23 April 1984, (Columbus, Ohio, US), CARRELL, H.L. et al., "X-Ray Crystal Structure of D-Xylose Isomerase At 4-A Resolution", Abstract 135020k; & J. BIOL. CHEM., 1984, 259(5), 3230-6 (Eng). * |
CHEMICAL ABSTRACTS, Volume 106, No. 15, 13 April 1987, (Columbus, Ohio, US), SNOW, MARK E. et al., "Calculating Three-dimensional Changes in Protein Structure Due to Amino-Acid Substitutions; the Variable Region of Immunoglobulins", page 459, Abstract 117680v; & PROTEINS: STRUCT. FUNCT., GENET., 1986, 1(3), 267-79 (Eng). * |
CHEMICAL ABSTRACTS, Volume 108, No. 15, 11 April 1988, (Columbus, Ohio, US), FARBER, GREGORY K. et al., "The 3.0 A Crystal Structure of Xylose Isomerase From Streptomyces Olivochromogenes", Abstract 127608h; & PROTEIN ENG., 1987, 1(6), 459-66 (Eng). * |
CHEMICAL ABSTRACTS, Volume 108, No. 17, 25 April 1988, (Columbus, Ohio, US), HENRICK K. et al., "Comparison of Backbone Structures of Glucose Isomerase From Streptomyces and Arthrobacter", Abstract 146202n; & PROTEIN ENG., 1987, 1(6), 467-9 (Eng). * |
CHEMICAL ABSTRACTS, Volume 90, No. 9, 26 February 1979, (Columbus, Ohio, US), CREIGHTON, THOMAS E., "Possible Implications of Many Proline Residues for the Kinetics of Protein Unfolding and Refolding", page 160, Abstract 68016y; & J. MOL. BIOL., 1978, 125(3), 401-6 (Eng). * |
NATURE, Volume 307, 12 January 1984, pp 187-188, ANTHONY J. WILKINSON et al., "A Large Increase in Enzyme-Substrate Affinity by Protein Engineering". * |
PROC. NATL. ACAD. SCI. U.S.A., Volume 84, pp 6663-6667, October 1987, Biochemistry, B.W. MATTHEWS et al., "Enhanced Protein Thermostability From Site-Directed Mutations That Decrease the Entropy of Unfolding". * |
RESEARCH ARTICLE, 19 April 1985, p. 291, CHARLES S. CRAIK et al., "Redesigning Trypsin: Alteration of Substrate Specificity". * |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990000196A1 (en) * | 1988-07-04 | 1990-01-11 | David Mervyn Blow | Xylose isomerase mutants |
EP0351029A1 (en) * | 1988-07-15 | 1990-01-17 | Genencor International, Inc. | Novel glucose isomerase enzymes and their use |
WO1990000601A2 (en) * | 1988-07-15 | 1990-01-25 | Gist-Brocades N.V. | Novel glucose isomerase enzymes and their use |
WO1990000601A3 (en) * | 1988-07-15 | 1990-02-08 | Gist Brocades Nv | Novel glucose isomerase enzymes and their use |
EP0352474A3 (en) * | 1988-07-19 | 1992-04-29 | Stabra Ag | Thermostable glucose isomerase |
EP0352474A2 (en) * | 1988-07-19 | 1990-01-31 | Stabra Ag | Thermostable glucose isomerase |
EP0410498A2 (en) * | 1989-06-29 | 1991-01-30 | Gist-Brocades N.V. | Mutant microbial alpha-amylases with increased thermal, acid and/or alkaline stability |
EP0410498A3 (en) * | 1989-06-29 | 1991-11-06 | Gist-Brocades N.V. | Mutant microbial alpha-amylases with increased thermal, acid and/or alkaline stability |
EP1264883A2 (en) * | 1990-01-04 | 2002-12-11 | Genencor International, Inc. | Glucose Isomerases having altered substrate specificity |
EP0436502A3 (en) * | 1990-01-04 | 1992-03-18 | Gist-Brocades N.V. | Novel glucose isomerases with an altered ph optimum |
EP0440273A3 (en) * | 1990-01-04 | 1992-01-22 | Gist-Brocades N.V. | Novel glucose isomerases having altered substrate specificity |
EP1264883A3 (en) * | 1990-01-04 | 2002-12-18 | Genencor International, Inc. | Glucose Isomerases having altered substrate specificity |
EP0436502A2 (en) * | 1990-01-04 | 1991-07-10 | Genencor International, Inc. | Novel glucose isomerases with an altered pH optimum |
US5310665A (en) * | 1990-01-04 | 1994-05-10 | Gist-Brocades, N.V. | Glucose isomerases having altered substrate specificity |
US5219751A (en) * | 1990-10-19 | 1993-06-15 | Novo Nordisk A/S Novo Alle, | Xylase isomerase purified from thermotoga maritima and thermotoga neapolitana |
US5268280A (en) * | 1990-10-19 | 1993-12-07 | Novo Nordisk A/S | Method for glucose isomerization using xylose isomerase purified from Thermotoga Maritima and Thermotoga Neapolitana |
EP0483691A2 (en) * | 1990-10-29 | 1992-05-06 | Shigezo Udaka | Xyloseisomerase gene of thermus aquaticus, xyloseisomerase and process for preparation of fructose |
EP0483691A3 (en) * | 1990-10-29 | 1993-04-07 | Shigezo Udaka | Xyloseisomerase gene of thermus aquaticus, xyloseisomerase and process for preparation of fructose |
US5411886A (en) * | 1990-10-29 | 1995-05-02 | Nihon Shokuhin Kako Co., Ltd. | Xylose isomerase gene of Thermus aquaticus |
US5858757A (en) * | 1991-05-01 | 1999-01-12 | Novo Nordisk A/S | Stabilized enzymes and detergent compositions |
US5914306A (en) * | 1991-05-01 | 1999-06-22 | Novo Nordisk A/S | Stabilized enzymes |
WO1992019729A1 (en) * | 1991-05-01 | 1992-11-12 | Novo Nordisk A/S | Stabilized enzymes and detergent compositions |
WO1992019726A1 (en) | 1991-05-01 | 1992-11-12 | Novo Nordisk A/S | Stabilized enzymes |
US6889145B1 (en) | 2000-03-15 | 2005-05-03 | Northwestern University | Three-dimensional model of a Fc region of an IgE antibody and uses thereof |
CN114774477A (en) * | 2013-02-27 | 2022-07-22 | 丰田自动车株式会社 | Method for producing ethanol using recombinant yeast |
CN114774477B (en) * | 2013-02-27 | 2024-04-09 | 丰田自动车株式会社 | Method for producing ethanol using recombinant yeast |
US9951326B2 (en) | 2015-07-13 | 2018-04-24 | MARA Renewables Corporation | Enhancing microbial metabolism of C5 organic carbon |
US10662418B2 (en) | 2015-07-13 | 2020-05-26 | MARA Renewables Corporation | Enhancing microbial metabolism of C5 organic carbon |
CN114729346A (en) * | 2019-09-13 | 2022-07-08 | 丹尼斯科美国公司 | Thermostable glucose isomerase variants |
Also Published As
Publication number | Publication date |
---|---|
AU2421588A (en) | 1989-03-09 |
NZ225798A (en) | 1990-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5041378A (en) | Procaryotic xylose isomerase muteins | |
RU2228357C2 (en) | Recombinant vector expressing polypeptide with glucose oxidase activity, transformed strain of saccharomyces cerevisiae, recombinant polypeptide with glucose oxidase activity and method for it preparing | |
WO1989001520A1 (en) | Procaryotic xylose isomerase muteins and method to increase protein stability | |
Palmer et al. | Isolation of protein FA, a product of the mob locus required for molybdenum cofactor biosynthesis in Escherichia coli | |
US5795761A (en) | Mutants of 2,5-diketo-D-gluconic acid (2,5-DKG) reductase A | |
Tsunasawa et al. | Methionine aminopeptidase from the hyperthermophilic Archaeon Pyrococcus furiosus: molecular cloning and overexperssion in Escherichia coli of the gene, and characteristics of the enzyme | |
CN113801862A (en) | Preparation method of marine streptomyces phospholipase D mutant and recombinant expression strain thereof | |
EP0351029B1 (en) | Novel glucose isomerase enzymes and their use | |
EP0647713B1 (en) | Peptidyl prolyl-cis.trans-isomerase | |
US5700674A (en) | Mutant uricase, a mutant uricase gene, a novel recombinant DNA, and a process for producing mutant uricase | |
EP0464832A2 (en) | Cloned N-methylhydantoinase | |
US5635378A (en) | Variant-type carbohydrate hydrolase, variant gene of the enzyme and method for producing oligosaccharide using the enzyme | |
JP3486942B2 (en) | Thermostable esterase | |
JPH05501651A (en) | P. The oxidoreductase enzyme system obtained from Chrysogenum, the set of genes encoding it, and the use of the oxidoreductase enzyme system or the gene encoding it to increase the production of antibiotics. | |
US5217880A (en) | L-fucose dehydrogenase gene, microorganism having said gene and production of l-fucose dehydrogenase by the use of said microorganism | |
AU638416B2 (en) | Novel glucose isomerase enzymes and their use | |
CN113913414B (en) | Double-base enzyme Kex2 mutant with high stability and high catalytic efficiency | |
JPH06225775A (en) | Fish-originated transglutaminase gene | |
US5376536A (en) | Glucose isomerase enzymes and their use | |
US5459046A (en) | Cytochrome C gene derived from hydrogen bacterium | |
JP3341915B2 (en) | Hyperthermostable protease gene | |
DE102004055686A1 (en) | New modified sarcosine oxidase, useful as diagnostic reagent for measuring creatinine or creatine, has reduced activity on N-ethylglycine, also nucleic acid that encodes it | |
CN112680425B (en) | Alcohol dehydrogenase mutant and application thereof | |
JPH09505989A (en) | .ALPHA.-1,4-Glucan lyase from fungi, its purification, gene cloning and microbial expression | |
JP3477746B2 (en) | Transglutaminase gene from fish |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AT AU BB BG BR CH DE DK FI GB HU JP KP KR LK LU MC MG MW NL NO RO SD SE SU |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BJ CF CG CH CM DE FR GA GB IT LU ML MR NL SE SN TD TG |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |