WO1988006271A1 - Process for determining the geometrical precision of a linear guiding mechanism - Google Patents
Process for determining the geometrical precision of a linear guiding mechanism Download PDFInfo
- Publication number
- WO1988006271A1 WO1988006271A1 PCT/CH1988/000029 CH8800029W WO8806271A1 WO 1988006271 A1 WO1988006271 A1 WO 1988006271A1 CH 8800029 W CH8800029 W CH 8800029W WO 8806271 A1 WO8806271 A1 WO 8806271A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- measuring
- linear
- guide
- deviations
- sensors
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B5/00—Measuring arrangements characterised by the use of mechanical techniques
- G01B5/0002—Arrangements for supporting, fixing or guiding the measuring instrument or the object to be measured
- G01B5/0009—Guiding surfaces; Arrangements compensating for non-linearity there-of
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/02—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
- G01B21/04—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
- G01B21/042—Calibration or calibration artifacts
Definitions
- the invention relates to a method for determining the geometric accuracy of a linear guide which has a slide which can be displaced in one direction of a spatial coordinate system and consequently as a rigid body system with a degree of freedom 1 (linear) and with at most five individual deviations consisting of Rolling (EAX), pitch (EBX), yaw (ECX), straightness Y (EYX) and straightness Z (EZX) is considered by determining these individual I deviations.
- EAX Rolling
- EBX pitch
- ECX yaw
- EYX straightness Y
- EZX straightness Z
- Linear guides are used in many machines and machine parts.
- the machine tools represent a large field of application.
- the guides secure movements of machine parts against one another in a specific, preferably straight path and are designed either as sliding guides or Ro II guides.
- Another type of guide are the right-hand guides, which define the changing positions of machine parts with respect to one another, for example a tailstock on a machine bed or a counterhold for milling machines.
- the invention is concerned with the measurement of such guides mentioned above, these measurements should allow a statement about the quality, ie the accuracy of the guide len.
- the measurements are limited to linear guides, which make up the largest part of the guides used. The purpose of these measurements is to determine the geometric accuracy of a linear guide.
- a rigid body In three-dimensional space, a rigid body has six degrees of freedom with three translations and three rotations.
- a linear guide can therefore, viewed as a rigid body system with a degree of freedom 1 (linear), have a maximum of five individual deviations, for each reference there would be two translations and three rotations. The values of these five individual deviations fully describe the geometric accuracy of a linear guide.
- the linear guide is assigned a measuring base approximately parallel to its direction and a measuring device is attached to the guide which carries five length measuring sensors by means of which the measuring base is scanned, one for Measuring point of the guide in one position five distances measured simultaneously in two mutually perpendicular planes and the individual deviations are then calculated.
- FIG. 1 is a coordinate system for presen- tation of the names (according to ISO), Flg. 2 shows a schematic illustration of a
- FIG. 3 is a schematic representation of the complete measurement of an internal guide in the form of a stiffness map
- Fig. 4 is a schematic presen- tation of a
- FIG. 5 shows the stiffness map of the measurement on the machine according to FIG. 4.
- Fig. 1 the coordinate system with the six degrees of freedom for a rigid body and the corresponding short names are shown. If the linear guide to be measured is placed in its longitudinal extent in the X-axis, the designations shown in FIG. 1 result for the same deviations. With these five deviations, the geometric accuracy of the guidance can be fully described. According to the Maxwe I I 'see theory, also called kinematic construction principles or 6-point theorem, it is sufficient to record five measurement variables for each measuring point in a linear guide in order to be able to calculate the individual deviations therefrom.
- FIG. 2 a device is shown schematically in FIG. 2.
- a linear guide 1 to be measured for example a
- a machine arm 2 is attached to the machine bed 2 of a machine tool and a slide 3 that can be moved on the bed 2.
- the measuring arm 4 is supported on a base 5 which is fastened on the slide 3, for example by means of a magnet.
- the measuring arm 4 and the base 5 are constructed in such a way that they can be regarded as rigid.
- the measuring arm 4 carries at its free end a measuring head 6 which is designed as an angle with two legs 7, 8 arranged at right angles.
- the measuring head 6 is assigned to a measuring body 9, which serves as a measuring base.
- the measuring body 9 is set up approximately parallel to the linear guide 1.
- the length measuring sensors 10 are mounted in the measuring head 6, two of which are arranged in the vertical leg 7 and three in the horizontal leg 8 of the measuring head 6. However, it is possible to arrange the length measuring sensors 10 in a different way. In order for the inductive or capacitive length measuring sensors 10 to lie against the measuring body 9 within their displacement path, it is aligned approximately parallel to the linear guide 1.
- the connection I lines 12 of the sensors 10 are connected to a switch 13 which connects the individual sensors 10 to a computer 15 via a line 14.
- the respective measuring position 20 of the measuring arm 4 is also transmitted to the computer 15 via a position sensor 17.
- 16 denotes a device, for example a printer or a plotter, on which the values calculated by the computer 15 are shown.
- FIG. 3 Such an expression by means of a plotter is shown schematically in FIG. 3.
- the values EAX, EBX, ECX, EYX and EZX according to FIG. 1 are shown on the X axis, which corresponds to the length of the linear guide. These five curves are collectively referred to as a rigidity map.
- Frg. 4 and 5 is a practical example of such a measurement.
- a bed milling machine is shown, on the cross arm of which the measurement is carried out in the X-axis.
- the measuring arm (not shown) is in this case attached to the spindle 21 and is slidably mounted on the horizontal linear guide 22.
- the horizontal linear guide 22 is supported on the displaceable stand 23, while the measuring body (not shown) is set up on the stationary bed 24.
- the measuring arm thus projects downward and, with the measuring head, engages around the measuring body mounted on the bed 24.
- FIG. 5 The result of this measurement is shown in FIG. 5 in the form of a stiffness map. It can be seen from this that the measurements were carried out several times during a back and forth movement.
- the graph for ECX shows the deflection of the guide 22 when the lockers I see 21 reach the end of the guide 22. In this diagram, hysteresis phenomena are also the most fixed Ibar.
- the five individual deviations depend on the individual probe positions with respect to the measuring point 20, on which the individual deviations are calculated.
- This point is usually where the base 5 of the measuring arm is attached. However, this point can also be set at any other position, i.e.
- the geometry of the measuring device can be determined by the software of the computer provided that the connections are rigid.
- the absolute accuracy of the sensors depends on the measuring path with regard to the measuring point, whereby the repeatability is mainly due to the mechanical construction of the sensors, e.g. , through the
- the measuring body 9 must be fixed in such a way that a displacement is not possible even with the smallest forces
- the measurements for setting up a rigidity card can be carried out in three different ways.
- the simplest measurement is done manually, whereby the approach to the measuring point and the triggering of the measurement apparatus l is carried out.
- With automatic static measurement the measuring position is approached and then the measurement is carried out, whereupon the next measuring point is approached. The whole process is done automatically.
- Schi iessl I can record the measured values while the sled is moving, which is also called flying measurement.
- the application of the invention is not limited to the measurement of a linear guide. Basically, all systems that have linear guides or can generate linear movements, e.g. multi-axis systems such as robots can be measured. For this purpose, such a system is strongly connected to the measuring head of the measuring device. The system's deviations from the linear movement are recorded analogously to the measurement of linear guides described,
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
A measuring device, whereby a measuring body (9), to which is appended a measuring head (6) carrying lenth-measuring sensors (10), is mounted approximately parallel to the linear guiding mechanism to be measured. The measuring head (6) is held on a measuring arm (4) mounted in a base (5) on the linear guiding mechanism (1). The distances between two mutually perpendicular planes are measured by means of the length-measuring sensors (10), and the individual deviations for rolling, pitching, yawing, straightness Y and straightness Z of the linear guiding mechanism are derived by calculation using a simple and cost-effective measuring technique and equipment in comparison with known mechanisms.
Description
Verfahren zur Feststel lung der geometrischen Genauigkeit einer l inearen Führung Method for determining the geometric accuracy of a linear guide
Die Erfindung betrifft ein Verfahren zur Feststel lung der geometrischen Genauigkeit einer l inearen Führung welche einen in einer Richtung eines räuml ichen Koordinatensystems verschiebbaren Schl itten aufweist und demzufolge als Starrkörpersystem mit einem Freiheitsgrad 1 (l inear) und mit höchstens fünf Einze Iabwe ichungen , bestehend aus Rol len (EAX) , Nicken (EBX) , Gieren (ECX), Geradheit Y (EYX) und Geradheit Z (EZX) betrachtet wird, durch Ermittlung dieser Einze I abwe i chungen .The invention relates to a method for determining the geometric accuracy of a linear guide which has a slide which can be displaced in one direction of a spatial coordinate system and consequently as a rigid body system with a degree of freedom 1 (linear) and with at most five individual deviations consisting of Rolling (EAX), pitch (EBX), yaw (ECX), straightness Y (EYX) and straightness Z (EZX) is considered by determining these individual I deviations.
Lineare Führungen finden in vielen Maschinen und Maschinentei len Anwendung. Ein grosses Anwendungsgebiet stel len hierbei die Werkzeugmaschinen dar. Bei diesen sichern die Führungen Bewegungen von Maschinentei len gegeneinander in einer bestimmten, vorzugsweise geraden Bahn und sind entweder als Gl e i tführungen oder Ro I I führungen ausgebi ldet. Eine weitere Art von Führungen sind die Ri chtführungen , welche veränderl iche Stel lungen von Maschinentei len zueinander festlegen, z.B. einen Reitstock auf einem Maschinenbett oder einem Gegenhalter bei Fräsmaschinen.
Die Erfindung befasst sich mit dem Messen solcher vorstehend genannten Führungen, wobei diese Messungen eine Aussage über die Qualität, d.h. der Genauigkeit der Führung erlauben sol len. Die Messungen werden hierbei auf lineare Führungen beschränkt, die den grössten Tei l al ler verwendeten Führungen ausmachen. Bei diesen Messungen geht es darum, die geometrische Genauigkeit einer l inearen Führung festzustel len.Linear guides are used in many machines and machine parts. The machine tools represent a large field of application. In these, the guides secure movements of machine parts against one another in a specific, preferably straight path and are designed either as sliding guides or Ro II guides. Another type of guide are the right-hand guides, which define the changing positions of machine parts with respect to one another, for example a tailstock on a machine bed or a counterhold for milling machines. The invention is concerned with the measurement of such guides mentioned above, these measurements should allow a statement about the quality, ie the accuracy of the guide len. The measurements are limited to linear guides, which make up the largest part of the guides used. The purpose of these measurements is to determine the geometric accuracy of a linear guide.
Ein starrer Körper hat im dreidimensionalen Raum sechs Freiheitsgrade mit drei Translationen und drei Rotationen. Eine l ineare Führung kann demzufolge, als Starrkörpersystem mit einem Freiheitsgrad 1 (l inear) betrachtet, höchstens fünf Einzelabweichungen aufweisen, für jede Bezugs läge zwei Translationen und drei Rotationen. Mit den Werten dieser fünf Einze Iabwe ichungen kann die geometrische Genauigkeit einer linearen Führung vol lständig beschrieben werden.In three-dimensional space, a rigid body has six degrees of freedom with three translations and three rotations. A linear guide can therefore, viewed as a rigid body system with a degree of freedom 1 (linear), have a maximum of five individual deviations, for each reference there would be two translations and three rotations. The values of these five individual deviations fully describe the geometric accuracy of a linear guide.
Für die Messung dieser Einzel abwe ichungen werden verschiedene Messgeräte benützt, wie sie auch in den heute bereits existierenden Vorschriften für die Bestimmung der Genauigkeit von Linearführungen festgelegt sind. Für diese Messungen werden Laser- Interferometer, Autoko I I imatoren und Fluchtungsfernrohre verwendet. Mit der Wasserwaage können Winkelabwe ichungen gemessen werden; nicht gemessen werden können jedoch das Rol len an der vertikalen und das Gieren an der horizontalen Führung. Mit dem Laser- lnterferometer können al le Einzel abweichungen mit Ausnahme des Rol lens gemessen werden, während mit dem Autoko I I imator al le Winkel abwe ichungen , jedoch ohne Rol len, und mit dem Fluchtungsfernrohr al le Geradheitsabweichungen gemessen werden können. Die Durchführung von solchen Messungen an
Linearführungen ist mit einem ausserordent I ich grossen, zeitl ichen Aufwand (mehrere Tage) verbunden, da die Handhabung der genannten Messgeräte aufwendig ist. Deshalb fehlen für die Beurtei lung der geometrischen Genauigkeit einer Linearführung meistens genügend Daten, so dass demzufolge auch keine Kennwerte definiert werden könnten. Es fehlen demnach auch statistische Werte, welche eine richtige Beurtei lung einer Linearführung erlauben. Bei den bekannten Messverfahren besteht zudem der Nachtei l , dass nicht al le Einze I abwe ichungen gleichzeitig gemessen werden können.Various measuring devices are used to measure these individual deviations, as they are also specified in the existing regulations for determining the accuracy of linear guides. Laser interferometers, Autoko II imators and alignment telescopes are used for these measurements. Angle deviations can be measured with a spirit level; however, the roll on the vertical guide and the yaw on the horizontal guide cannot be measured. All individual deviations with the exception of the roller can be measured with the laser interferometer, while all angles can be measured with the Autoko II imator, but without rollers, and all straightness deviations can be measured with the alignment telescope. The implementation of such measurements Linear guides are extremely time-consuming (several days) because the handling of the measuring devices mentioned is complex. For this reason, there is usually not enough data to assess the geometric accuracy of a linear guide, so that no characteristic values could be defined. There are also no statistical values that allow a linear guide to be correctly assessed. The known measuring methods also have the disadvantage that not all individual deviations can be measured simultaneously.
Es ist deshalb Aufgabe der Erfindung, ein Verfahren der eingangs beschriebenen Art so weiter auszugestal en, dass in verhä I tn i smäss ig kurzer Zeit gleichzeitig ermittelte Daten vorl iegen und dass der gerätetechnische Aufwand wesentlich verringert werden kann.It is therefore an object of the invention to further develop a method of the type described at the outset such that data which have been determined at the same time are present in a relatively short time and that the outlay on equipment can be significantly reduced.
Diese Aufgabe wird gemäss der Erfindung dadurch gelöst, dass der l inearen Führung eine Messbasis etwa paral lel zu ihrer Richtung zugeordnet wird und an der Führung eine Messvorrichtung befestigt wird, welche fünf Längenmess-Sensoren trägt, mittels welchen die Messbasis abgetastet wird, wobei für einen Messpunkt der Führung in einer Position fünf Abstände gleichzeitig in zwei zueinander senkrechten Ebenen gemessen und hierauf die Einze I abwe ichungen berechnet werden.This object is achieved according to the invention in that the linear guide is assigned a measuring base approximately parallel to its direction and a measuring device is attached to the guide which carries five length measuring sensors by means of which the measuring base is scanned, one for Measuring point of the guide in one position five distances measured simultaneously in two mutually perpendicular planes and the individual deviations are then calculated.
Ein Ausführungsbe i spie I der Erfindung ist in der Zeichnung dargestel lt und nachfolgend beschrieben. Es ze igen :An exemplary embodiment of the invention is shown in the drawing and described below. Show it :
Fig. 1 ein Koordinatensystem zur Darstel lung der Bezeichnungen (nach ISO) ,
Flg. 2 eine schematische Darstellung einer1 is a coordinate system for presen- tation of the names (according to ISO), Flg. 2 shows a schematic illustration of a
Einrichtung zum Ausmessen einer l inearen Führung,Device for measuring linear guidance,
Fig. 3 eine schematische Darstel lung der vol lständigen Messung einer Ijnearen Führung in Form einer Stei figkei tskarte ,3 is a schematic representation of the complete measurement of an internal guide in the form of a stiffness map,
Fig. 4 eine schemattsche Darstel lung einerFig. 4 is a schematic presen- tation of a
Bettfräsmaschine mit einer Messung der X-Achse undBed milling machine with a measurement of the X axis and
Fig. 5 die Stei figkei tskarte der Messung an der Maschine nach Fig. 4.5 shows the stiffness map of the measurement on the machine according to FIG. 4.
In Fig. 1 sind das Koordinatensystem mit den sechs Freiheitsgraden für einen starren Körper und die entsprechenden Kurzbezeichnungen dargestellt. Wird die auszumessende Linearführung in ihrer Längsausdehnung in die X-Achse gelegt, ergeben sich für die EtnzeIabweichungen derselben die in Fig. 1 aufgeführten Bezeichnungen. Mit diesen fünf Einze \abwe ichungen kann die geometrische Genauigkeit der Führung vol lständig beschrieben werden. Gemäss der Maxwe I I ' sehen Theorie, auch kinematische Konstruktionsprinzipien oder 6-Punkte-Theor re genannt, genügt es, bei einer Linearführung pro Messstel le fünf Messgrössen zu erfassen, um die Einzel bweichungen daraus berechnen zu können.In Fig. 1, the coordinate system with the six degrees of freedom for a rigid body and the corresponding short names are shown. If the linear guide to be measured is placed in its longitudinal extent in the X-axis, the designations shown in FIG. 1 result for the same deviations. With these five deviations, the geometric accuracy of the guidance can be fully described. According to the Maxwe I I 'see theory, also called kinematic construction principles or 6-point theorem, it is sufficient to record five measurement variables for each measuring point in a linear guide in order to be able to calculate the individual deviations therefrom.
Damit diese fünf Einze I abwe ichungen in einer Messung erfasst werden können, wird eine in Fig. 2 schematisch dargestel lte Einrichtung vorgesehen. Auf einer auszumessenden Linearführung 1, die beispielweise ein
Maschinenbett 2 einer Werkzeugmaschine und einen auf dem Bett 2 verschiebbaren Schl itten 3 umfassen kann, ist ein Messarm 4 befestigt. Der Messarm 4 ist an einem Sockel 5 abgestützt, der auf dem Schl itten 3, z.B. mittels eines Magneten, befestigt ist. Der Messarm 4 und der Sockel 5 sind so konstruiert, dass sie als starr betrachtet werden können. Der Messarm 4 trägt an seinem freien Ende einen Messkopf 6, der als Winkel mit zwei rechtwinkl ig angeordneten Schenkeln 7, 8 ausgebi ldet ist. Der Messkopf 6 ist einem Messkörper 9 zugeordnet, der als Messbasis dient. Der Messkörper 9 wird etwa paral lel zur Linearführung 1 aufgestel lt.So that these five individual deviations can be recorded in one measurement, a device is shown schematically in FIG. 2. On a linear guide 1 to be measured, for example a A machine arm 2 is attached to the machine bed 2 of a machine tool and a slide 3 that can be moved on the bed 2. The measuring arm 4 is supported on a base 5 which is fastened on the slide 3, for example by means of a magnet. The measuring arm 4 and the base 5 are constructed in such a way that they can be regarded as rigid. The measuring arm 4 carries at its free end a measuring head 6 which is designed as an angle with two legs 7, 8 arranged at right angles. The measuring head 6 is assigned to a measuring body 9, which serves as a measuring base. The measuring body 9 is set up approximately parallel to the linear guide 1.
Im Messkopf 6 sind fünf Längenmess-Sensoren 10 gelagert, von denen zwei im vertikalen Schenkel 7 und drei im horizontalen Schenkel 8 des Messkopfes 6 angeordnet sind. Es ist jedoch mögl ich, die Längenmess-Sensoren 10 in anderer Weise anzuordnen. Damit die beispielweise induktiven oder kapazitiven Längenmess-Sensoren 10 innerhalb ihres Verschiebungsweges am Messkörper 9 anl iegen, wird er etwa paral lel zur Linearführung 1 ausgerichtet. Die Verbindungs I e i tungen 12 der Sensoren 10 sind mit einem Schalter 13 verbunden, der die einzelnen Sensoren 10 über eine Leitung 14 mit einem Rechner 15 verbindet. Die jewei l ige Messlage 20 des Messarmes 4 wird über einen Lagegeber 17 ebenfal ls an den Rechner 15 übertragen. Mit 16 ist ein Gerät, z.B. ein Drucker oder ein Plotter bezeichnet, auf dem die vom Rechner 15 errechneten Werte dargestel lt werden. Ein solcher Ausdruck mittels eines Plotters ist schematisch aus Fig. 3 ersichtl ich. Ueber die X-Achse, die der Länge der Linearführung entspricht, werden die Werte EAX, EBX, ECX, EYX und EZX gemäss Fig. 1 dargestel lt. Diese fünf Kurven werden gesamthaft als Ste i figke i tskarte bezeichnet.
In Frg. 4 und 5 ist ein praktisches Beispiel für eine solche Messung dargestel lt. In Fig. 4 ist eine Bettfräsmaschine dargestel lt, an deren Querarm die Messung in der X-Achse erfolgt. Der Messarm (nicht dargestel lt) ist hierbei auf dem Spinde I sehI i tten 21 befestigt und auf der horizontalen Linearführung 22 verschiebbar gelagert. Die horizontale Linearführung 22 ist am verschiebbaren Ständer 23 abgestützt, während der Messkörper (nicht dargestel lt) auf dem ortsfest gelagertn Bett 24 aufgestel lt ist. Der Messarm ragt somit nach abwärts und umgreift mit dem Messkopf den auf dem Bett 24 gelagerten Messkörper.Five length measuring sensors 10 are mounted in the measuring head 6, two of which are arranged in the vertical leg 7 and three in the horizontal leg 8 of the measuring head 6. However, it is possible to arrange the length measuring sensors 10 in a different way. In order for the inductive or capacitive length measuring sensors 10 to lie against the measuring body 9 within their displacement path, it is aligned approximately parallel to the linear guide 1. The connection I lines 12 of the sensors 10 are connected to a switch 13 which connects the individual sensors 10 to a computer 15 via a line 14. The respective measuring position 20 of the measuring arm 4 is also transmitted to the computer 15 via a position sensor 17. 16 denotes a device, for example a printer or a plotter, on which the values calculated by the computer 15 are shown. Such an expression by means of a plotter is shown schematically in FIG. 3. The values EAX, EBX, ECX, EYX and EZX according to FIG. 1 are shown on the X axis, which corresponds to the length of the linear guide. These five curves are collectively referred to as a rigidity map. In Frg. 4 and 5 is a practical example of such a measurement. In FIG. 4 a bed milling machine is shown, on the cross arm of which the measurement is carried out in the X-axis. The measuring arm (not shown) is in this case attached to the spindle 21 and is slidably mounted on the horizontal linear guide 22. The horizontal linear guide 22 is supported on the displaceable stand 23, while the measuring body (not shown) is set up on the stationary bed 24. The measuring arm thus projects downward and, with the measuring head, engages around the measuring body mounted on the bed 24.
Das Ergebnis dieser Messung ist in Fig. 5 in Form einer Stei figkei tskarte dargestel lt. Es ist daraus ersichtlich, dass die Messungen mehrmals während einer Hin- und Herbewegung durchgeführt wurden. Das Diagramm für ECX zeigt die Durchbiegung der Führung 22, wenn der Spinde I sehI i tten 21 an das Ende der Führung 22 gelangt. In diesem Diagramm sind zudem Hysterese-Erscheinungen festste I Ibar .The result of this measurement is shown in FIG. 5 in the form of a stiffness map. It can be seen from this that the measurements were carried out several times during a back and forth movement. The graph for ECX shows the deflection of the guide 22 when the lockers I see 21 reach the end of the guide 22. In this diagram, hysteresis phenomena are also the most fixed Ibar.
Die fünf EinzeI abwe ichungen sind abhängig von den einzelnen Tasterpositionen bezüglich des Messpunktes 20, auf den die Einze l abwei chungen berechnet werden. Dieser Punkt ist in der Regel dort, wo der Sockel 5 des Messarmes befestigt ist. Dieser Punkt kann aber auch an einer anderen beliebigen Stel le angesetzt werden, d.h. die Geometrie der Messvorrtchtung kann unter der Voraussetzung starrer Verbindungen durch die Software des Rechners festgelegt werden.The five individual deviations depend on the individual probe positions with respect to the measuring point 20, on which the individual deviations are calculated. This point is usually where the base 5 of the measuring arm is attached. However, this point can also be set at any other position, i.e. The geometry of the measuring device can be determined by the software of the computer provided that the connections are rigid.
Es sei noch auf die FehI ereinf I üsse hingewiesen. Es sind di es :
a) Formabweichungen des Messkörpers 9, bzw. der Abtastl inien auf demselben,Attention is drawn to the errors. They are: a) shape deviations of the measuring body 9 or the scanning lines thereon,
b) Die Rauhigkeit des Messkörpers 9, wenn nicht berührungs I os abgetastet wird,b) the roughness of the measuring body 9, if no touch I os is scanned,
c) Die absolute Genauigkeit der Sensoren ist abhängig vom Messweg bezügl ich dem Messpunkt, wobei die Wiederholgenauigkeit vor al lem durch die mechanische Konstruktion der Sensoren, z.B. , durch diec) The absolute accuracy of the sensors depends on the measuring path with regard to the measuring point, whereby the repeatability is mainly due to the mechanical construction of the sensors, e.g. , through the
Tasterführung bei induktiven Tastern, beeinflusst wi rd.Button guidance with inductive buttons, influenced wi rd.
d) Der Messkörper 9 muss derart fixiert werden, dass eine Verschiebung auch bei kleinsten Kräften nicht mögl ich is ,d) The measuring body 9 must be fixed in such a way that a displacement is not possible even with the smallest forces,
e) Thermische Einflüsse auf die zu messende Führung können praktisch ausgeschlossen werden, da die Messung einer Ste i f igke i tskarte sehr schnel l durchgeführt v/erden kann.e) Thermal influences on the guide to be measured can be practically ruled out, since the measurement of a stiffness card can be carried out very quickly.
Verschiedene Feh I ere infI üsse können kompensiert oder ausgeschlossen werden. Damit ist die erreichbare Messgenauigkeit im wesentl ichen von der Wiederholgenauigkeit der Sensoren 10 und vom Tasterabstand 11 , siehe Fig. 2, abhängig. Diese Hinweise zeigen aber, dass bei der beschriebenen Einrichtung eine recht hohe Messgenauigkeit erreicht werden kann.Various errors can be compensated for or excluded. The achievable measurement accuracy is essentially dependent on the repetition accuracy of the sensors 10 and on the probe distance 11, see FIG. 2. However, these notes show that a very high measurement accuracy can be achieved with the described device.
Die Messungen zur Aufstel lung einer Ste i figke i tskarte können auf drei verschiedene Arten durchgeführt werden. Die einfachste Messung erfolgt manuel l , wobei das Anfahren des Messpunktes und das Auslösen der Messung
manuel l durchgeführt wird. Beim selbsttätig-statischen Messen wird die Messposition angefahren und anschl iessend die Messung durchgeführt, worauf der nächste Messpunkt angefahren wird. Der ganze Ablauf erfolgt automatisch. Schi iessl ich kann beim dynamischen Verfahren die Aufnahme der Messwerte bei fahrendem Schl itten erfolgen, was auch fliegende Messung benannt wird.The measurements for setting up a rigidity card can be carried out in three different ways. The simplest measurement is done manually, whereby the approach to the measuring point and the triggering of the measurement manuel l is carried out. With automatic static measurement, the measuring position is approached and then the measurement is carried out, whereupon the next measuring point is approached. The whole process is done automatically. Schi iessl I can record the measured values while the sled is moving, which is also called flying measurement.
Die Erfindung ist in ihrer Anwendung nicht nur auf das Ausmessen einer Linearführung beschränkt. Es können damit grundsätzlich al le Systeme, welche Linearführungen aufweisen oder lineare Bewegungen erzeugen können, z.B. mehrachsige Systeme wie Roboter ausgemessen werden. Ein solches System wird hierzu mit dem Messkopf der Messeinrichtung stark verbunden. Die Abweichungen des Systems von der linearen Bewegung werden analog wie bei der beschriebenen Messung von Linearführungen registriert,
The application of the invention is not limited to the measurement of a linear guide. Basically, all systems that have linear guides or can generate linear movements, e.g. multi-axis systems such as robots can be measured. For this purpose, such a system is strongly connected to the measuring head of the measuring device. The system's deviations from the linear movement are recorded analogously to the measurement of linear guides described,
Claims
1. Verfahren zur Feststel lung der geometrischen1. Procedure for determining the geometric
Genauigkeit einer l inearen Führung, welche einen in einer Richtung eines räuml ichen Koordinatensystems (X,Y,Z) verschiebbaren Schl itten aufweist und demzufolge als Starrkörpersystem mit einem Freiheitsgrad 1 (l inear) und mit höchstens fünf Ei nze I abwe i chungen , bestehend aus Rol len (EAX) , Nicken (EBX) , Gieren (ECX), Geradheit Y (EYX) und Geradheit Z (EZX) betrachtet wird, durch Ermittlung dieser Ei nze I abwe i chungen , dadurch gekennzeichnet, dass der l inearen Führung eine Messbasis etwa paral lel zu ihrer Verfahrrichtung zugeordnet wird und an der Führung eine Messvorrichtung befestigt wird, welche fünf Längenmess-Sensoren trägt, mittels welchen die Messbasis abgetastet wird, wobei für einen Messpunkt (X.) der Führung in ein der Position (i) gleichzeitig fünf Abstände in zwei zueinander senkrechten Ebenen gemessen und hieraus die Einzelabweichungen (EAX), (EBX) , (ECX) , (EYX) , (EZX) berechnet werden.Accuracy of an linear guide which has a slide which can be displaced in one direction of a spatial coordinate system (X, Y, Z) and consequently exists as a rigid body system with a degree of freedom 1 (linear) and with a maximum of five individual I deviations from roles (EAX), pitch (EBX), yaw (ECX), straightness Y (EYX) and straightness Z (EZX) is considered by determining these individual I deviations, characterized in that the linear guidance is a Measuring base is assigned approximately parallel to its direction of travel and a measuring device is attached to the guide, which carries five length measuring sensors, by means of which the measuring base is scanned, for one measuring point (X.) of the guide in one of the positions (i) at the same time Five distances measured in two mutually perpendicular planes and the individual deviations (EAX), (EBX), (ECX), (EYX), (EZX) are calculated from this.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass mit der Messvorrichtung, sowohl an horizontal als auch an vertikal verlaufenden l inearen Führungen deren geometrische Genauigkeit ermittelt wird.2. The method according to claim 1, characterized in that with the measuring device, both on horizontally and vertically extending linear guides whose geometric accuracy is determined.
3. Verfahren nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass mit der Messvorrichtung die l ineare Führung kontinuierl ich abgefahren wird und mit den Sensoren fünf Abstände zur Messbasis kontinuierl ich während der Bewegung des Schl ittens gemessen werden sowie deren geometrische Genauigkeit ermi tte 11 wi rd.3. The method according to claim 1 or 2, characterized in that with the measuring device, the linear guide is moved continuously and I with the sensors five distances to the measuring base, continuously while the slide is moving be measured as well as their geometric accuracy 11 wi rd.
Einrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein quaderförmiger Messkörper (9) als Messbasis vorgesehen ist, wobei an dem jewei l igen Messpunkt (11) ein Messarm (4) befestigt ist, der an seinem freien Ende einen Messkopf (6) mit zwei zueinander senkrechten Halteplatten (7, 8) trägt, von denen die eine Platte (7) zwei und die andere Platte drei Längenmess-Sensoren (10) trägt, die senkrecht zur abgetasteten Fläche des Messkörpers stehen und dass ein Rechner zur Auswertung der Messungen eingesetzt ist . Device for carrying out the method according to one of claims 1 to 3, characterized in that a cuboid measuring body (9) is provided as a measuring base, a measuring arm (4) being attached to the free measuring point (11) End carries a measuring head (6) with two mutually perpendicular holding plates (7, 8), of which one plate (7) carries two and the other plate three length measuring sensors (10) which are perpendicular to the scanned surface of the measuring body and that a computer is used to evaluate the measurements.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH51787A CH672548A5 (en) | 1987-02-12 | 1987-02-12 | |
CH517/87-3 | 1987-02-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1988006271A1 true WO1988006271A1 (en) | 1988-08-25 |
Family
ID=4188815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CH1988/000029 WO1988006271A1 (en) | 1987-02-12 | 1988-02-08 | Process for determining the geometrical precision of a linear guiding mechanism |
Country Status (2)
Country | Link |
---|---|
CH (1) | CH672548A5 (en) |
WO (1) | WO1988006271A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0462932A1 (en) * | 1990-06-20 | 1991-12-27 | Fabriques De Tabac Reunies S.A. | Method and apparatus for controlling a movement |
EP0951967A1 (en) * | 1998-04-25 | 1999-10-27 | Institut Für Fertigungstechnik Der Tu Graz | Test gauge for measuring the positional and track precisionof a moving machine part |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3694089A (en) * | 1969-12-23 | 1972-09-26 | Zeiss Stiftung | Device for determining guidance errors |
EP0082441A2 (en) * | 1981-12-23 | 1983-06-29 | Firma Carl Zeiss | Process and device to evaluate and to correct guide-way faults |
DE3526919A1 (en) * | 1985-07-25 | 1986-01-02 | Ulrich Dipl.-Ing. 4950 Minden Griebel | Measuring device for determining the positional accuracy of freely programmable manipulators |
-
1987
- 1987-02-12 CH CH51787A patent/CH672548A5/de unknown
-
1988
- 1988-02-08 WO PCT/CH1988/000029 patent/WO1988006271A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3694089A (en) * | 1969-12-23 | 1972-09-26 | Zeiss Stiftung | Device for determining guidance errors |
EP0082441A2 (en) * | 1981-12-23 | 1983-06-29 | Firma Carl Zeiss | Process and device to evaluate and to correct guide-way faults |
DE3526919A1 (en) * | 1985-07-25 | 1986-01-02 | Ulrich Dipl.-Ing. 4950 Minden Griebel | Measuring device for determining the positional accuracy of freely programmable manipulators |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0462932A1 (en) * | 1990-06-20 | 1991-12-27 | Fabriques De Tabac Reunies S.A. | Method and apparatus for controlling a movement |
US5142917A (en) * | 1990-06-20 | 1992-09-01 | Fabriques De Tabac Reunies, S.A. | Apparatus and method for checking movement |
EP0951967A1 (en) * | 1998-04-25 | 1999-10-27 | Institut Für Fertigungstechnik Der Tu Graz | Test gauge for measuring the positional and track precisionof a moving machine part |
US6433875B1 (en) | 1998-04-25 | 2002-08-13 | Institut für Fertigungstechnik Technische Universität Graz O. Univ. -Prof. Dipl. -Ing. Dr. Techn Adolf Frank | Measuring device for measuring the accuracy of the position and track of a moving machine element |
Also Published As
Publication number | Publication date |
---|---|
CH672548A5 (en) | 1989-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1462760B1 (en) | Apparatus for measuring the position of a probe in a coordinate measuring machine | |
DE69617194T2 (en) | CALIBRATION SYSTEM FOR COORDINATE MEASURING MACHINE | |
EP3049758B1 (en) | Reduction of errors of a rotating device used during the determination of co-ordinates of a workpiece or during the machining of a workpiece | |
EP2199732B1 (en) | Device with roughness measuring probe | |
EP0082441B1 (en) | Process and device to evaluate and to correct guide-way faults | |
EP0317967B1 (en) | Rotation-deflection arrangement for the feeler heads of coordinate-measuring devices | |
DE60311527T3 (en) | WORKPIECE INSPECTION PROCESS AND DEVICE | |
DE2829222C3 (en) | Device for monitoring the position of a movable organ | |
DE602005005839T3 (en) | USE OF SURFACE TESTS | |
EP0597299A2 (en) | coordinate measuring machine | |
DE102015217637B4 (en) | Operation of a confocal white light sensor on a coordinate measuring machine and arrangement | |
DE3714862A1 (en) | FLEXIBLE CNC MULTIPLE-POINT MEASURING DEVICE | |
EP0732563A1 (en) | Coordinate measuring machine incorporating a device for roughness measurement | |
EP1462757B1 (en) | Device for the assessment of the spacial position of a cage sliding along a coordinate axis | |
EP1019669B1 (en) | Device for detecting the position of two bodies | |
DE102008024444B4 (en) | Method and device for calibrating a coordinate measuring machine | |
EP0563058B1 (en) | Method and sensor for the determination of the position of a position-control element relative to a reference body | |
DE4421302C1 (en) | Measurement of roll angle of axis in coordinate measurement machine | |
WO1988006271A1 (en) | Process for determining the geometrical precision of a linear guiding mechanism | |
DE102020208567B4 (en) | Calibration of a reference body for determining the guidance error of a machine axis | |
DE3634688A1 (en) | METHOD AND DEVICE FOR MEASURING GEARS BY MEANS OF A COORDINATE MEASURING DEVICE | |
DE102020111509A1 (en) | Coordinate measuring machine and method for measuring the coordinates of a workpiece | |
DE19818405B4 (en) | Method for detecting geometric deviations of at least one axis of a coordinate measuring machine | |
DE102019134940A1 (en) | Reference arrangement for a coordinate measuring machine, coordinate measuring machine and method for calibrating a coordinate measuring machine | |
DE4126532C2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LU NL SE |