WO1988006227A1 - Apparatus for recovering waste heat of sintering - Google Patents

Apparatus for recovering waste heat of sintering Download PDF

Info

Publication number
WO1988006227A1
WO1988006227A1 PCT/JP1988/000147 JP8800147W WO8806227A1 WO 1988006227 A1 WO1988006227 A1 WO 1988006227A1 JP 8800147 W JP8800147 W JP 8800147W WO 8806227 A1 WO8806227 A1 WO 8806227A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
exhaust gas
sintering
turbine
water
Prior art date
Application number
PCT/JP1988/000147
Other languages
French (fr)
Japanese (ja)
Inventor
Toshio Tsukuda
Original Assignee
Sumitomo Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries, Ltd. filed Critical Sumitomo Heavy Industries, Ltd.
Publication of WO1988006227A1 publication Critical patent/WO1988006227A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/185Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters using waste heat from outside the plant
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/26Cooling of roasted, sintered, or agglomerated ores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B21/00Open or uncovered sintering apparatus; Other heat-treatment apparatus of like construction
    • F27B21/06Endless-strand sintering machines

Definitions

  • the present invention recovers sintering gas from a sintering plant exhaust gas and sinter ore from a cooler exhaust gas to generate over-mature steam to drive a turbine generator. It relates to a sintering waste heat recovery device.
  • the exhaust gas that has been sucked in from the air outlet 4 and is sucked and sucked passes through the intake main pipe 5 and is sucked into a main exhaust fan (not shown).
  • the exhaust gas from the wind boxes 6, 7, and 8 near the end of the exhaust gas wind box group was led to the heat exchanger 9 and exchanged. After that, it enters the suction main pipe 5 and merges with other exhaust gas to be sucked into the main exhaust fan.
  • the steam generated by the heat exchanger 9 is led to a steam drum 10.
  • the highly turbid sinter that has been removed from the sintering machine is fed to the chiller 1 and migrates toward the ore mining part of the chiller.
  • Cooling air is blown upward from below by the holes 12 and 13 to cool the hot sinter 3), and the air is overripened and enters the hood 14 and the conduit 15 Then, it is sent to the heat exchanger 16 of the cooling system.
  • the exhaust gas after heat exchange is circulated and used as cooling air.
  • the steam generated from the heat exchanger 16 enters the steam drum 10 via the conduit 17.
  • the steam drum 10 receives and mixes the steam from the heat exchangers 9 and 16 and averages them.
  • the averaged steam is supplied to the turbine generator 18 to obtain stable electric power.
  • a heat exchanger for exhaust gas and water from a sinter cooler a heat exchanger for exhaust gas and water from a sinter cooler, and a heat exchanger for both heat exchangers are provided.
  • a steam dram that mixes and retains the generated steam
  • a sintering and maturation recovery device consisting of a Darbin generator driven by steam from the dram.
  • the exhaust gas portion of the maximum gas concentration of 450 to 500 E C was separately taken out, and the steam from the steam drum was superheated.
  • 17 to 20 / 3 ⁇ 4 ZOTG generates 34 to 37 7 ⁇ of over-ripened steam and supplies it to a steam turbine, which is characterized by the fact that it is supplied to a steam turbine.
  • Equipment is provided.
  • FIG. 1 is a schematic diagram showing an example of a conventional sintering waste heat recovery device.
  • Fig. 2 shows an embodiment of the sintering waste heat recovery apparatus of the present invention.
  • FIG. 3 is a graph showing the exhaust gas temperature of the sinter ore cooler.
  • Reference numeral 101 denotes a sintering machine, which sinters a sintering raw material 140 in a firing furnace 102 and then blows it through a wind box 111 to blowers 117, 1.
  • sintering of the raw material is promoted by sucking the layer and passing the layer through the sintering raw material.
  • the wind box 114 is divided into 14 mining sides and 3 mining sides, which are connected to ducts 115 and 118, respectively.
  • Duct 115 communicates with the chimney via electric dust collector 116 and arrow 117.
  • duct 118 is connected to hood 123 via pre-starter 120, boiler 121, and blower 122.
  • the hoods 12 and 23 cover the upper surface of the sintered ore corresponding to Ito.
  • a sinter arrayer 103 is provided downstream of the sintering machine 101 on the mining side, and a hot screen 104 is installed below it.
  • Reference number 105 is a return hopper located below the screen.
  • the sinter ore 110 is connected to the hot screen 104 in succession.
  • Wind box 1 1 1 Divided into two parts, each with a fan from No. 13 to No. 1 to No. 7 and a fan from No. 14 to No. 8 to to 13 Send in.
  • the upper surface of the sinter corresponding to the wind box to 1 to Tono 7 is divided into two parts: a part corresponding to Not 1 and a part corresponding to to 2 to ⁇ 7. , Each of which is covered by a hood 107 and a hood 108.
  • the exhaust outlet of the hood “! 08” communicates with the air supply section of the fan 113 via the polarizer 112.
  • the hood 1107 The outlet is connected to an independent super heater 135, and the exhaust gas is discharged as it is.
  • the water from the water supply tank 124 is degassed by the deaerator 125, and part of the water is discharged from the boiler 121 by the pump 131. After being led to the area near the exit and undergoing heat exchange with exhaust gas, it is stored in boiler drums 132.
  • the ripened water in the boiler drum 1 3 2 is circulated through the center of the boiler 1 2 1 by the pump 1 3 3, and becomes part of the steam to form the boiler drum 1 Returned to 3 2.
  • the steam of the boiler drum 13 is ripened and exchanged with the hot gas at the exhaust gas inlet of the boiler 12, and is converted into superheated steam in the steam header 13. Accumulate.
  • part of the water in the deaerator 125 is guided by the pump 127 to the vicinity of the exhaust gas outlet of the boiler 112, where heat is exchanged, and part of the water is removed. Then it is returned to the deaerator 1 25. A part is introduced into a predetermined portion of the boiler 112 by a pump 128, where heat is exchanged there, and collected in a boiler drum 127. Is In addition, the pump According to 130, hot water is circulated through the hot gas portion on the exhaust gas inlet side of the boiler 112 to recover heat.
  • Boiler ram Boiler ram
  • the steam in the 129 is permeated on the most exhaust side of the boiler 11 ⁇ , and is sent to the steam header 134.
  • Steam vapor header one 1 3 4 is overheated et Is to have you to scan over path Heater 1 3 5, in the state of over-ripe vapor 3 5 0 e G in 1 8 Z CT ⁇ G It is sent to the turbine "136" to drive it, and the
  • the steam leaving the turbine 1336 is condensed through the condenser 1338 and returned to the water, and is returned to the water supply tank 124 by the pump 1339.
  • the gas temperature in the superheater 135 is over 450, which is sufficient because the superheat is over 100 ° G.
  • the over-ripened steam at 350 can be obtained.
  • the steam consumption per kWh is about 5.0 / ⁇ , and the turbine efficiency will be significantly improved compared to the past.

Abstract

An apparatus for recovering waste heat of sintering comprises a heat exchanger for the exhaust gas of a sintering machine and water, a heat exchanger for the exhaust gas of a sintered mineral cooling machine and water and a steam drum for mixing and keeping the steam generated from both heat exchangers, wherein the steam supplied from the steam drum drives a turbine generator. Of the exhaust gas from the sintered mineral cooling machine, that portion of the exhaust gas which has a maximum gas temperature of from 450 to 500°C is taken out separately for superheating the steam from the steam drum to obtain a superheated steam of 340 to 370°C at 17 to 20 kg/cm2G. This superheated steam is supplied to the steam turbine. Since the degree of heating of the superheated steam supplied to the turbine exceeds 100°C and steam consumption can be reduced, a turbine efficiency can be remarkably improved when compared with the prior art technique.

Description

明 細 書 焼 結 排 熱 回 収 装 置 技術分野  Technical paper sintering waste heat recovery equipment
本発明 は焼結工場の焼結機排ガ ス お よ び焼結鉱の 冷 機排ガ ス か ら の排熟を 回収 し 過熟蒸気を発生 さ せ 、 タ ー ビ ン発電機を駆動 す る焼結排熱回収装置 に 関 す る も ので あ る 。  The present invention recovers sintering gas from a sintering plant exhaust gas and sinter ore from a cooler exhaust gas to generate over-mature steam to drive a turbine generator. It relates to a sintering waste heat recovery device.
背景技術  Background art
従来、 焼結機の排鉱側 部分の 排ガス と 水 と の熱交換 に よ り 発生 し た蒸気 と 、 焼結鉱冷却機の給鉱側部分の排ガ ス と 水 と の熱交換 に よ り 発生 し た 蒸気 と を 単一蒸気 ド ラ ム に お い て 混合保持 し 、 そ の混合蒸気 に よ り 蒸気 タ ー ビ ン を駆勤 す る よ う な焼結排熱装匱が知 ら れて い る 。 第 1 図 に従い 、 従来例 に つ い て 説明 す る 。 1 は焼結機で あ り 、 装入 さ れた 原料 は点火炉 2 に よ り 点火さ れ俳鉱部 3 に 向 つ て 移行 す る が 、 移行中 に 下方の ウ ィ ン ド ボ ッ ク ス 4 よ り 吸気 さ れ 、 吸'気さ れた 排ガ ス は吸気本管 5 を通 り 主排 風機 ( 図示せず ) に 吸引 さ れる 。 こ の排ガ ス 中 ウ ィ ン ド ボ ッ ク ス 群の終端部付近の ウ ィ ン ドボ ッ ク ス 6 , 7 , 8 の排ガ ス は熱交換器 9 に 導か れ て熟交換 さ れ た の ち 、 吸 気本管 5 に入 り 他の 排ガ ス と 合流 し て 主排風機に 吸 引 さ れる 。 こ の熱交換器 9 に よ り 発生 し た 蒸気 は 、 蒸気 ド ラ ム 1 0 に 導かれる 。 一方、 焼結機か ら排鉱された高濁の焼結鈹は冷 機 1 に給鉱さ れ冷 機の排鉱部に向かっ て移行するが、 移 行する園 に ウ ィ ン— ポッ ク ス 1 2 , 1 3 に よ り 冷却用空 気が下方か ら 上向きに吹き込ま れ髙温の焼結鉱を冷 3]し 、 空気は過熟されてフ ー ド 1 4に入 り 導管 1 5 によっ て冷 却璣の熱交換器 1 6へ送ら れる。 熱交換後の排ガス は冷 用空気 と して循環使用 される 。 熱交換器 1 6か ら発生 し た蒸気は導管 1 7 によ り蒸気 ド ラム 1 0に入る 。 蒸気 ドラム 1 0は熱交換器 9お よび 1 6か らの蒸気を受け混 合さ れ平均化される。 この平均化さ れた蒸気はタ ー ビン 発電機 1 8 に供给され、 安定 した電力 を得る こ とができ る 。 Conventionally, the steam generated by the heat exchange between the exhaust gas and the water on the exhaust side of the sintering machine and the heat exchange between the exhaust gas and the water on the feed side of the sinter cooling machine There is known a sintering heat-exchanger which mixes and holds the generated steam in a single steam drum and drives a steam turbine by the mixed steam. ing . The conventional example will be described with reference to FIG. Reference numeral 1 denotes a sintering machine, and the charged raw material is ignited by an ignition furnace 2 and moves toward a mining section 3, but during the transfer, a lower wind box is used. The exhaust gas that has been sucked in from the air outlet 4 and is sucked and sucked passes through the intake main pipe 5 and is sucked into a main exhaust fan (not shown). The exhaust gas from the wind boxes 6, 7, and 8 near the end of the exhaust gas wind box group was led to the heat exchanger 9 and exchanged. After that, it enters the suction main pipe 5 and merges with other exhaust gas to be sucked into the main exhaust fan. The steam generated by the heat exchanger 9 is led to a steam drum 10. On the other hand, the highly turbid sinter that has been removed from the sintering machine is fed to the chiller 1 and migrates toward the ore mining part of the chiller. Cooling air is blown upward from below by the holes 12 and 13 to cool the hot sinter 3), and the air is overripened and enters the hood 14 and the conduit 15 Then, it is sent to the heat exchanger 16 of the cooling system. The exhaust gas after heat exchange is circulated and used as cooling air. The steam generated from the heat exchanger 16 enters the steam drum 10 via the conduit 17. The steam drum 10 receives and mixes the steam from the heat exchangers 9 and 16 and averages them. The averaged steam is supplied to the turbine generator 18 to obtain stable electric power.
し か し なが ら 、 第 1 図 に示す倒では次の欠点を免がれ る こ とができない 。 回収ガス温度が 3 0 0乃至 3 5 0で であるため、 回収蒸気が 8乃至 1 ^ / cm1 Gで 2 5 & 乃至 2 8 0での過熱蒸気 しか得る こ と ができない 。 この よ う に低圧蒸気であるこ とから 、 大出力 タ ー ビンを設置 する ため に は、 タ ー ビ ン入口 のガバナーが大き く な り 、 大容量と するの は難しい。 ま た 、 断熱長が小さ く タ ー ビ ン出力 が小さ く なるので、 1 kWH 当 り の蒸気消費量が多 い 。 Ί 例 と して 、 圧カ 1 4 ½ノ《?2 6温度が 2 8 011の 過熱蒸気の場合、 6. 5 Z kWH , Ht ( 断熱長 ) - 1 8 5 K calZ となる 。 さ ら に 、 低速、 大型とな り機械効 率が悪い。 次に 、 蒸気の過熟度につ いて言及するなら ば、 一股に飽和蒸気温度に 1 0 01;以上を加えた温度の過熱 度が必要で あ る と 云 わ れ て い る 。 い ま 、 1 4 Z an 2 G の圧力で は 、 飽和蒸気温度が約 1 9 7 で あ る た め 3 0However, the following disadvantages cannot be avoided with the tilt shown in Fig. 1. Since the stripping gas temperature is at 3 0 0-3 5 0, recovery steam is not is possible to get only superheated steam at 2 5 & to 2 8 0 8 to 1 ^ / cm 1 G. Because of this low-pressure steam, it is difficult to increase the governor at the turbine inlet and increase the capacity to install a large-output turbine. Also, since the adiabatic length is short and the turbine output is small, the steam consumption per 1 kWH is large. As an Ί example, pressures 1 4 ½ Bruno "2 6 when the temperature is 2 8 011 superheated steam, 6. 5 Z kWH, Ht (adiabatic length) -? A 1 8 5 K calZ. In addition, the machine is slow and large, resulting in poor mechanical efficiency. Next, when referring to the degree of steam overmaturation, the superheat of the temperature obtained by adding 1001 to the saturated steam temperature at once It is said that a degree is required. At a pressure of 14 Z an 2 G, the saturated steam temperature is about 1997, so that 30
0 以 上 の過熱度が必要な わ け で あ る 。 と こ-ろ が 、 排ガ ス 溫度が 3 0 0 乃至 3 5 0 °G であ る た めガ ス と 蒸気 の熱 交換 に よ り 所望の 3 0 0 C 以上の過熱度を得る こ と は極 め て 困難で あ る云 わ ざる を得な い 。 Only a superheat of 0 or more is required. However, since the exhaust gas density is 300 to 350 ° G, it is not possible to obtain a desired superheat degree of 300 C or more by heat exchange between gas and steam. I have to say that it is extremely difficult.
結論 と し て 第 1 図 の ご と き装蹬 で は電力 と し て の 回 収 効率が充分 と はい え な い 。  As a conclusion, the equipment shown in Fig. 1 cannot be said to have sufficient power recovery efficiency.
本発明 は上記 の ご と き欠点を 除去 し よ り 髙溫 髙圧の過 熱蒸気を発生で き る よ う に 改良さ れた焼結排熱回収装置 を提供 す る こ と を 目 的 と す る も の で あ る 。  It is an object of the present invention to provide a sintering waste heat recovery apparatus improved to eliminate the above-mentioned drawbacks and to generate a superheated steam at a low pressure. It is something.
発明の 開示  Disclosure of the invention
本発明 に よ れば 、 焼結機の 排ガ ス と 水 と の熟交換器 と 、 焼結鉱冷却機の排ガ ス と水 と の熱交換器 と 、 こ の 両熱交 換器か ら 発生 す る蒸気 を 混合保持 す る 蒸.気 ド ラ ム と 、 '該 ド ラ ム か ら の蒸気 に よ っ て 、 駆動 さ れる ダー ビ ン発電機 と よ り な る焼結排熟回収装置 に お い て 、 焼結鉱冷却機の 最高ガス 溻度 4 5 0 乃至 5 0 0 EC の排ガ ス 部分を別個 に 取 り 出 し 、 上記蒸気 ド ラ ム か ら の 蒸気を過熱 し て 、 1 7 乃至 2 0 /¾ Z OT G で 3 4 0 乃至 3 7 0 Ϊ の過熟蒸気を 発生 せ し め蒸気 タ ー ビ ン に 供給す る こ と を特徴 と す る焼 結排熟回収装置が提供さ れる 。 According to the present invention, a heat exchanger for exhaust gas and water from a sinter cooler, a heat exchanger for exhaust gas and water from a sinter cooler, and a heat exchanger for both heat exchangers are provided. A steam dram that mixes and retains the generated steam, and a sintering and maturation recovery device consisting of a Darbin generator driven by steam from the dram. In the sinter cooling machine, the exhaust gas portion of the maximum gas concentration of 450 to 500 E C was separately taken out, and the steam from the steam drum was superheated. , 17 to 20 / ¾ ZOTG generates 34 to 37 7 熟 of over-ripened steam and supplies it to a steam turbine, which is characterized by the fact that it is supplied to a steam turbine. Equipment is provided.
, 図面の 鼯車な説明  , Description of drawings
第 1 図 は従来の焼結排熱回収装置の 1 例 を示す概要図 で あ る 。 第 2 図 は本発明 の焼結排熱回収装置の一実施例 を示す概要図である 。 第 3図は焼結鉱冷 機の排ガス溫 度を示すグラ フである。 Fig. 1 is a schematic diagram showing an example of a conventional sintering waste heat recovery device. Fig. 2 shows an embodiment of the sintering waste heat recovery apparatus of the present invention. FIG. FIG. 3 is a graph showing the exhaust gas temperature of the sinter ore cooler.
発明を実施する ための最良の形態 以下本発明の一実施例を第 2 図に基づき説明する 。 参照番号 1 0 1 は焼結機であ り 、 焼結原料 1 4 0を点 火炉 1 0 2 で点火 し た後、 ウ ィ ン ドボック ス 1 1 4を介 し てブロ ワ 1 1 7 , 1 2 2 に よ り 、 ェヤ ーを吸引 し 、 そ のェヤー を焼結原料中に通すこ と によ り 、 原料の焼結を 促進 し ている 。 ウィ ン ドボッ ク ス 1 1 4 は給鉱側 1 4個 と排鉱側 3個 と に分け ら れ、 それぞれダク 卜 1 1 5 およ び 1 1 8 に接続 し ている 。 ダク ト 1 1 5 は電気集塵機 1 1 6 、 ァロ ワ 1 1 7 を介 し て煙突に連通 し ている。 一方 ダク ト 1 1 8 はプ レダス タ ー 1 2 0、 ボイ ラー 1 2 1 、 ブロ ワ 1 2 2 を介し て フ ッ ド 1 2 3 に連通 し ている 。 フ ッ ド 1 2 3 は上記铪鉱側 1 4個の Ito.8乃至 Να 1 4 に対応 する焼結鉱上面を覆っ ている 。  BEST MODE FOR CARRYING OUT THE INVENTION One embodiment of the present invention will be described below with reference to FIG. Reference numeral 101 denotes a sintering machine, which sinters a sintering raw material 140 in a firing furnace 102 and then blows it through a wind box 111 to blowers 117, 1. According to 22, sintering of the raw material is promoted by sucking the layer and passing the layer through the sintering raw material. The wind box 114 is divided into 14 mining sides and 3 mining sides, which are connected to ducts 115 and 118, respectively. Duct 115 communicates with the chimney via electric dust collector 116 and arrow 117. On the other hand, duct 118 is connected to hood 123 via pre-starter 120, boiler 121, and blower 122. The hoods 12 and 23 cover the upper surface of the sintered ore corresponding to Ito.
焼結機 1 0 1 の排鉱側後段に はシン タ ーアレー カ ー 1 0 3 が設け ら れその下方に はホッ 卜 スク リ ーン 1 0 4が 配設さ れている'。 参照番号 1 0 5 はスク リ ー ン下方に設 け ら れた返鉱ホッパーである。 ホッ ト スク リ ー ン 1 0 4 上お よびシ ンタ ーア レー力 一 1 0 3 を囲んで、 さ ら に ゥ イ ン ドボック No. 1 5乃至 to. 1 7 に対応する焼結鉱上面 域をカバーする よ う に フッ ドが設け ら れ、 放熟を防いで いる。 ホッ ト ス ク リ ーン 1 0 4 に連続し て 、 焼結鉱冷 1 1 0が接続さ れて いる 。 ウ ィ ン ドボッ ク ス 1 1 1 を 2つ に分け 、 Να 1 乃至 No.7 に は フ ァ ン 1 1 3 に よ り 、 ま た Να 8乃至 to 1 3 に は フ ァ ン 1 4 2に よ り そ れぞれェ ャ 一を送 り 込む。 ウ ィ ン ド ボ ッ ク ス to 1 乃 至 to. 7 に 対応 す る焼結鉱上面を Not 1 に対応す る部分 と 、 to.2乃至 Να 7 に 対応 す る部分の 2つ に 分 け 、 そ れぞれが フ ッ ド 1 0 7 お よ び フ ッ ド 1 0 8 に よ っ て覆わ れ て い る 。 フ ッ ド "! 0 8 の 排ガ ス 出 口 は ポ イ ラ一 1 1 2 を介 し て 、 上記の フ ァ ン 1 1 3 の給気部 に連通 し て いる 。 フ ッ ド 1 0 7出 口 は独 立ス ーパ ヒ ー タ 1 3 5 に 連通 さ れ排ガス はそ の ま ま 排出 さ れる 。 A sinter arrayer 103 is provided downstream of the sintering machine 101 on the mining side, and a hot screen 104 is installed below it. Reference number 105 is a return hopper located below the screen. Surrounding the hot screen 104 and surrounding the center of the array 103, and furthermore, the upper surface area of the sinter corresponding to the indock boxes Nos. 15 to 17 A hood is provided to cover the water, preventing ripening. The sinter ore 110 is connected to the hot screen 104 in succession. Wind box 1 1 1 Divided into two parts, each with a fan from No. 13 to No. 1 to No. 7 and a fan from No. 14 to No. 8 to to 13 Send in. The upper surface of the sinter corresponding to the wind box to 1 to Tono 7 is divided into two parts: a part corresponding to Not 1 and a part corresponding to to 2 to Να7. , Each of which is covered by a hood 107 and a hood 108. The exhaust outlet of the hood “! 08” communicates with the air supply section of the fan 113 via the polarizer 112. The hood 1107 The outlet is connected to an independent super heater 135, and the exhaust gas is discharged as it is.
次 に 、 排熟回収系統につ い て 説明 する 。 給水 タ ン ク 1 2 4か ら の水 は脱気器 1 2 5 に よ り 脱気処理さ れ て 一部 は ポ ンプ 1 3 1 に よ り 、 ボ イ ラ ー 1 2 1 の排ガ ス 出 口 近 傍部分 に 導かれ排ガス と 熱交換 さ れた 後ボ イ ラ ー ド ラ ム 1 3 2 に 溜 ら れる 。 ボ イ ラ ー ド ラ ム 1 3 2内 の熟水 は ポ ンプ 1 3 3 に よ り ボ イ ラ ー 1 2 1 の 中央部を循環 し 、 一 部蒸気 と なっ て ボ イ ラ ー ドラ ム 1 3 2 に戻 さ れる 。 ま た 、 ボ イ ラ ー ドラ ム 1 3 2の蒸気 は ボ イ ラ ー 1 2 1 の 排ガス 入口 部分の髙温 ガス と 熟交換 さ れ 、 過熱蒸気 と し て蒸気 ヘ ッ ダ ー 1 3 4に 溜 ら れる 。 一方、 脱気器 1 2 5 中 の水 の一部 は ポ ンプ 1 2 7 に よ り ボ イ ラ ー 1 1 2の排ガス 出 口 近傍に 導かれ、 そ こ で熱交換 さ れ一 部蒸気 と なっ て脱 気器 1 2 5 に 戻さ れる 。 ま た一部 は 、 ポ ンプ 1 2 8 に よ り ボ イ ラ ー 1 1 2 の所定個所 に 導入 さ れ、 そ こ で熱交換 さ れ 、 ボ イ ラ ー ド ラ ム 1 2 9 に 溜 ら れる 。 さ ら に ポ ンプ 1 3 0に よ り 、 ボ イ ラ ー 1 1 2の排ガ ス入口 側の髙温ガ ス部分に熱水を循環させ熱回収を行う 。 ボ イ ラ ー ド ラムNext, a description will be given of the effluent recovery line. The water from the water supply tank 124 is degassed by the deaerator 125, and part of the water is discharged from the boiler 121 by the pump 131. After being led to the area near the exit and undergoing heat exchange with exhaust gas, it is stored in boiler drums 132. The ripened water in the boiler drum 1 3 2 is circulated through the center of the boiler 1 2 1 by the pump 1 3 3, and becomes part of the steam to form the boiler drum 1 Returned to 3 2. The steam of the boiler drum 13 is ripened and exchanged with the hot gas at the exhaust gas inlet of the boiler 12, and is converted into superheated steam in the steam header 13. Accumulate. On the other hand, part of the water in the deaerator 125 is guided by the pump 127 to the vicinity of the exhaust gas outlet of the boiler 112, where heat is exchanged, and part of the water is removed. Then it is returned to the deaerator 1 25. A part is introduced into a predetermined portion of the boiler 112 by a pump 128, where heat is exchanged there, and collected in a boiler drum 127. Is In addition, the pump According to 130, hot water is circulated through the hot gas portion on the exhaust gas inlet side of the boiler 112 to recover heat. Boiler ram
1 2 9内の蒸気 はボイ ラ ー 1 1 ^の 排ガ ス最入側で通熟 さ れ 、 蒸気ヘ ッダー 1 3 4に送 り 込 ま れる 。 蒸気ヘッ ダ 一 1 3 4内 の蒸気はス ーパ ヒ ー タ 1 3 5 に お い て さ ら に 過熱さ れ、 1 8 Z CT^ Gで 3 5 0 eGの過熟蒸気の状態 で タ ー ビ ン " 1 3 6 に送 ら れそれを駆動 し 、 周軸の発電機The steam in the 129 is permeated on the most exhaust side of the boiler 11 ^, and is sent to the steam header 134. Steam vapor header one 1 3 4 is overheated et Is to have you to scan over path Heater 1 3 5, in the state of over-ripe vapor 3 5 0 e G in 1 8 Z CT ^ G It is sent to the turbine "136" to drive it, and the
1 3 7 を 回転さ せる 。 タ ー ビ ン 1 3 6を出 た蒸気 は復水 器 1 3 8 を通っ て凝縮され水に戻さ れポ ンプ 1 3 9 に よ り 給水 タ ン ク 1 2 4に德環さ せ る 。 第 3図 に示す よ う に 、 ス ーパ ヒ ー タ 1 3 5部分 に お ける ガ スの温度は 4 5 0で 以上で あ り 、 過熱度が 1 0 0 °G以上あ る た め充分 3 5 0 で の過熟蒸気を得る こ と ができ る 。 ま た 、 Ί kWH 当 り の 蒸気消費量 は約 5 . 0 /^ と な り 、 従来に 比较 し 、 タ ー ビ ン効率が格段に 改善さ れる 。 Turn 1 3 7. The steam leaving the turbine 1336 is condensed through the condenser 1338 and returned to the water, and is returned to the water supply tank 124 by the pump 1339. As shown in Fig. 3, the gas temperature in the superheater 135 is over 450, which is sufficient because the superheat is over 100 ° G. The over-ripened steam at 350 can be obtained. In addition, the steam consumption per kWh is about 5.0 / ^, and the turbine efficiency will be significantly improved compared to the past.

Claims

請 求 の 範 囲 焼結機の排ガ ス と 水 と の熟交換器 と 、 焼結鉱冷却 機の 排ガ ス と 水 と の 熱交換器 と 、 こ の 両熱交換器か ら 発生 す る蒸気を混合保持 す る蒸気 ド ラ ム と 、 該 ド ラ ム か ら の蒸 気 に よ っ て 、 駆動 さ れる タ ー ピ ン発電機 と よ り な る 焼結 排熱 回収装置 に お い て 、 焼結鉱冷却機 の最高 ガ ス 温度 4 5 0乃 至 5 0 0 Όの 排ガ ス 部分 を別個 に 取 り 出 し 、 上記 蒸気 ド ラ ム か ら の蒸気を過熱 し て 1 7乃 至 2 0 /¾Ζαι2 Gで 3 4 0 ¾至 3 7 0 の過熟蒸気を発生せ し め 、 蒸気 タ ー ビ ン に 供給す る こ と を特徴 と す る 焼結排熱回収装置。 Scope of request Generated from the heat exchanger between the exhaust gas of the sintering machine and water, the heat exchanger between the exhaust gas of the sinter cooling machine and water, and both heat exchangers In a sintering waste heat recovery device consisting of a steam drum that mixes and holds steam and a tapping generator driven by the steam from the drum. Separately take out the exhaust gas portion of the maximum gas temperature of the sinter cooler of 450 to 500 mm and overheat the steam from the steam drum to 17 to A sintering waste heat recovery system characterized in that it generates over-mature steam of 340 to 370 at 20 / ¾Ζαι 2 G and supplies it to the steam turbine.
PCT/JP1988/000147 1987-02-16 1988-02-15 Apparatus for recovering waste heat of sintering WO1988006227A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP62032655A JPH0646140B2 (en) 1987-02-16 1987-02-16 Sintered exhaust heat recovery device
JP62/32655 1987-02-16

Publications (1)

Publication Number Publication Date
WO1988006227A1 true WO1988006227A1 (en) 1988-08-25

Family

ID=12364878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1988/000147 WO1988006227A1 (en) 1987-02-16 1988-02-15 Apparatus for recovering waste heat of sintering

Country Status (3)

Country Link
EP (1) EP0302120A4 (en)
JP (1) JPH0646140B2 (en)
WO (1) WO1988006227A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734316Y2 (en) * 1989-11-20 1995-08-02 住友重機械工業株式会社 Exhaust heat recovery device in sintering equipment
CN101344359B (en) * 2008-08-20 2011-04-20 首钢总公司 Sintered ring cold exhaust heat stepped recovery power generation system and technique
JP5813344B2 (en) * 2011-03-17 2015-11-17 川崎重工業株式会社 Waste heat recovery power plant for sintering equipment
JP5659981B2 (en) * 2011-07-25 2015-01-28 新日鐵住金株式会社 Control method of exhaust heat recovery equipment in sinter cooler
CN102353276B (en) * 2011-10-10 2013-07-10 西安陕鼓工程技术有限公司 Waste heat comprehensive utilization power generation system and power generation method for sintering production line
US9551241B2 (en) 2012-07-02 2017-01-24 Kawasaki Jukogyo Kabushiki Kaisha Waste heat recovery power generation plant for sintering facility
CN103438723B (en) * 2013-09-10 2015-08-12 中钢集团鞍山热能研究院有限公司 A kind of sintering waste heat comprehensive utilization process and device
EP4012312A1 (en) * 2020-12-11 2022-06-15 Primetals Technologies Austria GmbH Energy recovery and gas purification on a sinter cooler

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619523B2 (en) * 1980-06-30 1986-03-24 Sumitomo Jukikai Kogyo Kk
JPH0637365B2 (en) * 1987-09-03 1994-05-18 株式会社中埜酢店 Control method for seed infectious disease fungus of plant

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142830A (en) * 1980-04-07 1981-11-07 Kawasaki Steel Corp Sintering method for ore material or the like
JPS5827936A (en) * 1981-08-10 1983-02-18 Sumitomo Heavy Ind Ltd Recovering method for waste heat in sintering equipment
JPS58104311A (en) * 1981-12-16 1983-06-21 Sumitomo Metal Ind Ltd Waste heat recovering method
JPS602597B2 (en) * 1982-05-18 1985-01-22 住友重機械工業株式会社 Exhaust gas circulation sintering equipment
DE3371412D1 (en) * 1983-11-16 1987-06-11 Sumitomo Heavy Industries Waste gas circulation method and system for sintering apparatus
JPS619523A (en) * 1984-06-22 1986-01-17 Nippon Steel Corp Heating furnace by conducting electricity
JPS61213329A (en) * 1985-03-16 1986-09-22 Nippon Steel Corp Method for recovering waste heat in sintering installation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619523B2 (en) * 1980-06-30 1986-03-24 Sumitomo Jukikai Kogyo Kk
JPH0637365B2 (en) * 1987-09-03 1994-05-18 株式会社中埜酢店 Control method for seed infectious disease fungus of plant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0302120A4 *

Also Published As

Publication number Publication date
EP0302120A1 (en) 1989-02-08
JPH0646140B2 (en) 1994-06-15
JPS63201488A (en) 1988-08-19
EP0302120A4 (en) 1991-07-10

Similar Documents

Publication Publication Date Title
KR100291967B1 (en) Disconnect assembly for coal pyrolysis gas and char combustion
CN1143054C (en) Electric power generation by combined plant with one gas turbine and one steam turbine
WO1988006227A1 (en) Apparatus for recovering waste heat of sintering
US4071310A (en) Installation for the manufacture of cement
US2200379A (en) Utilization of waste engine heat
JPS61250306A (en) Hot air turbine and steam turbine combination power plant
JPS58143129A (en) Combined gas and steam turbine process
JPS62116821A (en) Combustion apparatus capable of being operated under pressure
EP0910731B1 (en) Method and device for generation of mechanical work and, if desired, heat in an evaporative gas turbine process
KR20020027611A (en) Method and device for increasing the pressure of a gas
GB2108401A (en) Power generating plant
US4365953A (en) Cooler for combustible material
US3340830A (en) Drying and burning pipeline coal in a heat exchange system
US5051040A (en) Fluidized bed combustion system that is controllable under pressure
CN207214688U (en) A kind of coal slime drier
US4244326A (en) Steam generating system
JP2965265B2 (en) Method of temperature control in PFBC plant
KR950001908B1 (en) Recovery device of sintering exhaust heat
CN107314644A (en) A kind of coal slime drier
CN219797262U (en) Device for drying furfural residues by utilizing boiler flue gas
JPH0734316Y2 (en) Exhaust heat recovery device in sintering equipment
JPS62283850A (en) Powder raw material burning apparatus
JPS5857012A (en) Gas-turbine power generating plant utilizing blast furnace gas as fuel
JPS5959241A (en) Stock powder preheating apparatus with waste heat-utilizing installation
US413915A (en) Virgil w

Legal Events

Date Code Title Description
AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT

WWE Wipo information: entry into national phase

Ref document number: 1988901642

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1988901642

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1988901642

Country of ref document: EP