WO1988004971A1 - Control apparatus for automatic arc welding machines - Google Patents

Control apparatus for automatic arc welding machines Download PDF

Info

Publication number
WO1988004971A1
WO1988004971A1 PCT/JP1987/000854 JP8700854W WO8804971A1 WO 1988004971 A1 WO1988004971 A1 WO 1988004971A1 JP 8700854 W JP8700854 W JP 8700854W WO 8804971 A1 WO8804971 A1 WO 8804971A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
welding
arc
correction
welding torch
Prior art date
Application number
PCT/JP1987/000854
Other languages
English (en)
French (fr)
Inventor
Kenichi Toyoda
Toru Mizuno
Nobutoshi Torii
Yuichi Kanda
Shigehiro Morikawa
Original Assignee
Fanuc Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Ltd filed Critical Fanuc Ltd
Priority to DE8787907252T priority Critical patent/DE3779908T2/de
Publication of WO1988004971A1 publication Critical patent/WO1988004971A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/127Means for tracking lines during arc welding or cutting

Definitions

  • the present invention relates to a control device for an automatic arc welding machine, and in particular, to automatically perform arc welding by piercing a welding torch along a welding line, and to perform arcing by weaving with an arc sensor.
  • the present invention relates to a control device for an automatic arc welding machine that detects current and compensates for movement of a welding torch.
  • Automatic arc welding machines wire a welding torch along a welding line of a base material to be welded, and at the same time, detect an arc current generated by the weaving with an arc sensor to weld the welding torch. This automatically compensates for the movement of the wire and automatically performs the arc welding of the base metal welding line. That is, when the actual welding line of the base material to be welded is out of the indicated welding line, the arc sensor is used to move the welding torch exactly along the actual welding line. It processes the arc current detected in step 1 to compensate for the movement of the welding torch.
  • the processing of the arc current in the control device of the conventional automatic arc welding machine includes, for example, observing the position and magnitude of the peak value of the arc current detected by the arc sensor, The welding torch is adjusted according to the position, size, etc. where the peak value was observed. The welding torch is moved along the actual welding line of the base metal by moving a predetermined amount.
  • the arc current detected by the arc sensor shows an unstable wave due to disturbance or the like at the time of arc welding.
  • the peak value of the arc current is processed by smoothing the current waveform using a filter or the like, but the arc current is changed due to the welding torch deviating from the welding line of the base material and the arc is caused by disturbance. It is difficult to distinguish from a change in the arc current, and a peak value of the arc current appears due to a cause other than the deviation between the welding torch and the welding line. Disclosure of inventions that also provided compensation
  • arc welding is automatically performed by weaving a welding torch along a welding line, and an arc current is detected by an arc sensor to detect the arc current due to the ivebing.
  • the arc current is detected every half cycle of the diving, and the arc current is integrated with the time and is integrated every 1 Z 4 cycles.
  • Area calculating means for calculating the two areas of the first area; first area comparing and determining means for comparing the two areas to determine a first area having a large value and a second area having a small value;
  • a first correction area is calculated by subtracting a predetermined time of the first area 3 ⁇ 4 from the first area, and the first correction area is calculated.
  • a second area comparison / determination means for comparing and determining the magnitude of the corrected area and the second area; and, when the first corrected area is larger than the second area, correcting a reference value by a correction function. Accordingly, there is provided a control device for an automatic arc welding machine, characterized by comprising a movement compensating means for compensating for the movement of the welding torch. According to the control device of the automatic arc welding machine of the present invention, the welding torch is welded along the welding line and the arc welding is automatically performed, and the arc current due to the diving is the arc current. It is detected by the sensor and the movement of the welding torch is compensated.
  • the arc current detected every half cycle of the wing-bing is integrated over time by the area calculation means to calculate two areas every one to four cycles.
  • the first area comparison / determination means compares the two areas with each other, and determines a first area having a large value and a second area having a small value.
  • the second area comparison / determination means compares and determines the magnitude of the first correction area obtained by subtracting a predetermined time at the end of the first area from the first area and the second area. You. Then, when the first correction area is larger than the second area, the movement compensation means corrects the reference value with the correction function to compensate for the movement of the welding torch. This makes it possible to perform arc welding by accurately moving the welding torch along the base metal welding line even if the taught welding line and the base metal to be actually welded are misaligned. it can. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 shows an embodiment of a control device for an automatic arc welding machine according to the present invention.
  • FIG. 2 is a diagram for explaining the eave operation of the welding torch.
  • Fig. 3 shows the relationship between the welding line of the base metal in contact with the ribbon and the wiping movement of the welding torch.
  • Fig. 4 (a) and (b) show the arc current in Fig. 3,
  • FIGS. 5 (a) to 5 (c) are diagrams for explaining the process of moving and detecting the welding torch when the arc current shown in FIG. 4 (b) is detected, and
  • FIG. 6 is a front view showing an example of the control operation according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram schematically showing an embodiment of a control device for a self-ft arc welding machine according to the present invention.
  • the welding torch 5 arc-welds the base material while feeding the welding part 51, and the tip of the welding part 51 and the base material are applied by a voltage applied by a welding power source (not shown). It is designed to generate an arc between them. Arc current flowing between the tip of the welding wire 51 and the base metal-measured by the arc sensor 8, and the arc current data is sent to the microphone ⁇ processor 7. Will be supplied.
  • welding torch 5 The movement is controlled by the welding torch moving device 6 that operates in accordance with the command of the y-torch 7, and the welding torch moving device 6 moves the base material along the welding line and performs the bibbing operation.
  • the storage device 9 stores the correction function and the like, and is capable of transmitting stored data of the correction function and the like to the micro-processor ⁇ ⁇ ⁇ in accordance with a command from the microprocessor 7. I have.
  • FIG. 2 is a view for explaining the weaving operation of the welding torch
  • FIG. 3 shows the relationship between the welding line of the base metal to be welded and the movement of the welding torch wiping.
  • the welding torch 5 crosses the welding line 13.
  • the wing is moved.
  • the weaving operation of the welding torch 13 involves not only horizontal zigzag movement but also vertical movement. This vertical movement is, for example, such that it rises above the welding line 13, and this weaving operation changes the waveform of the arc current detected by the arc sensor 8 to change the welding current.
  • the arc welding of the members 11 and 12 is ensured.
  • the welding rollers 51 are supplied sequentially and continuously from the center of the welding torch 5. Then, an arc discharge is generated between the leading end of the welding wire 51 and the member 11 or the member 12, and the high heat associated with the arc discharge melts the welding wire 51 and causes the member 11 and the member 11 to melt. It is designed to perform welding with 1 2.
  • Fig. 4 (a) and (b) show the arc current in Fig. 3.
  • Fig. 4 (a) shows a waveform when the welding torch 5 moves from one end A of the viving to the other end B0 in Fig. 3
  • Figs. b) are shows the waveform when the welding torch 5 moves from one end a t your Keruu I one Bing in Figure 3 to the other end B t '.
  • Fig. 4 (a) when the taught welding line coincides with the actual welding line 13 and the weaving movement of the welding tip 5 is performed accurately, the arc current is reduced.
  • the waveform is symmetrical. That is, the time ti at one end A of the weaving and the other end B. In the middle of the time t 3 and time t 2 in, at a minimum of the waveform of the arc current, that Do equal Ku is the area S ia and area S 2A.
  • the arc current wave will not be bilaterally symmetric, and Time t at one end of A! And Te central time t 3 odor and time t 2 at the other end, the waveform of the arc current and the area S la and the area S 2a does not become minimum will be different.
  • the arc current changes as shown in Fig. 4 (b) because the welding torch 5 is difficult to move from the member 11 at one end and the other end B! As shown by the broken line in Fig. 3. This is the case where it is shifted so as to approach the member 1 in FIG.
  • FIG. 5 (a) to FIG. 5 (c) are diagrams for explaining the process of correcting the movement of the welding torch when the arc current shown in FIG. 4 (b) is detected.
  • FIG. 5 is a flowchart showing an example of a control operation according to the present invention.
  • FIGS. 5 and 6 an example of the operation of the control device of the automatic arc welding machine of the present invention will be described with reference to FIGS. 5 and 6.
  • step 70 when the processing for correcting the cloud transfer force of the welding torch is started, it is determined in step 70 whether or not the end condition is satisfied.
  • the end condition is the length of the welding line input in advance or the like. If it is determined in Step 70 that the end condition is satisfied, the movement correction processing of the welding torch ends. .
  • step 7Q If it is determined in step 7Q that the termination condition is not satisfied, the flow advances to step 71 to move the welding torch 5 in accordance with the reference value by a half cycle of the riving. Proceeding to step 72, the arc current is detected by the arc sensor 8.
  • to move by a half cycle of the webbing in accordance with the reference value means to move the welding torch 5 along the taught welding line, and this reference value is stored in the storage device 9. Etc. in advance.
  • step 72 the arc current is detected by the arc sensor 8, and then in step 73, the minimum value of the detected arc current is reduced to zero as shown in Fig. 5 (b).
  • step 74 the arc current is integrated with respect to time to calculate two areas and S2 for each 1/4 cycle. Also steps.
  • step 70 Proceed to 71 and wire the welding torch 5 to the reference value. of It will be moved by a half cycle. At this time, if the taught welding line coincides with the actual welding line 13 and the weaving movement of the welding torch 5 is performed accurately, the arc current waveform becomes symmetrical, and the left and right wiping is performed. —Two areas and S z per 1/4 cycle, which are the integral values of bing current, are equal.
  • step 75 If it is determined that S> S 2 (or S 2 > S i) in step 75, for example, as shown in FIG.
  • step 76 in so that as shown in FIG. 5 (c), issued Ki correction area S 2C was reduced Ki predetermined time ⁇ min of the area S Zb end from the larger area S 2b, the correction area The magnitude of S 2 C and the smaller area S lc are compared and determined.
  • the supplemental front-product S 2 c is the area obtained by integrating from the center time t 3C of the remaining time obtained by subtracting the predetermined time from the half-cycle time of the weaving to the time t zc
  • the area S lc is the area integrated from time t, to the median time t 3C .
  • the area S Zb determined to be large in step 75 is subtracted by the predetermined time or minute (S) at the end of the area S 2b from the area S Zb, and then the magnitude of the smaller area S lc is compared again and determined. This is because the change in the arc current due to disturbance or the like is excluded, and only the change in the arc current due to the position of the welding torch 5 and the members 11 and 12 to be welded is recognized.
  • the predetermined time (a,, a z) is the area S zc (S!, S 2 )
  • S zc S!, S 2
  • step 76 when it is determined to be compared with S i -S,> S 2 (or S z -S a 2 > S, the process proceeds to step 77 and the reference is made by the correction function. Correct the value. If it is determined in step 76 that -S a,> S 2 (or not S 2 -Soz > SJ), the process proceeds to step 71 via step 70 and the welding is performed. The torch 5 is moved by a half cycle of the biving according to the reference value.
  • step 78 it is determined whether the condition is the end condition.
  • the termination condition of step 78 is the same as the termination condition of step 70, and if it is determined that the termination condition is satisfied in step 78, welding torch 5
  • the movement correction processing is completed, and if it is determined in step 78 that the termination condition is not satisfied, the flow proceeds to step 79.
  • step 79 the welding torch 5 is moved by a half cycle of the wiping according to the correction value, and then the operation proceeds to step 72.
  • the correction value is a value obtained by correcting the reference value by the correction function in step 77.
  • the welding torch movement correction processing is repeated every half cycle of the weaving until it is determined in Steps 70 and 78 that the termination condition is satisfied. It will be.
  • the correction function corrects the movement of the welding torch when it is determined in step 76 that S i -S a,> S 2 (or S 2 -S a 2 > S).
  • the reference value for moving the welding torch along the line is corrected, and the correction of the reference value to compensate for the movement of the welding torch is based on weaving half a cycle earlier.
  • the arc current captures the next half cycle of the diving operation.
  • the correction function used is as follows: The larger the difference between the two areas (the difference between the left and right wiving current integrated values) for each one-fourth cycle of the arc current, the gentler the rising curve Are preferred. In other words, if the difference between the integrated current values of the left and right weaving is small and the deviation of the welding torch is small, the welding torch can be detected with high sensitivity. When the difference between the current integrated values of the welding and the welding torch is large and the deviation of the welding torch is large, the welding torch is prevented from meandering by performing abrupt correction.
  • a C ⁇ is used as a correction amount, and is used as a correction constant.
  • a correction function that satisfies the following expression is preferable.
  • the above-mentioned correction function is relatively simple in mathematical processing, and can also perform actual correction appropriately.
  • the two areas used in the above correction function are The area is not limited to the corrected area S 2 c and the area S! C which have been subjected to the predetermined processing in step 76, but may be, for example, the areas S, S 2 (S B and S 2 b ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding In General (AREA)
  • Arc Welding Control (AREA)
  • Manipulator (AREA)

Description

n 自動アーク溶接機の制御装置 技術分野
本発明は自動アーク溶接機の制御装置に関し、 特に、 溶接 線に沿って溶接 ト —チをゥ ィ —ビングさせて自動的にアーク 溶接を行い、 且つ、 アークセ ンサでウ ィ ービングによるァ一 ク電流を検出して溶接 ト ーチの移動を補償する 自動アーク溶 接機の制御装置に関する。 背景技術
自動アーク溶接機は、 溶接しよ う とする母材の溶接線に沿 つて溶接 ト ーチをウ イ —ビングさせ、 同時に、 アーク セ ンサ でウ ィ ービングによるアーク電流を検出して溶接 ト ーチの移 動を補償し、 母材の溶接線を自動的にアーク溶接する もので ある。 すなわち、 溶接しょ う とする母材の実際の溶接線が教 示された溶接線から外れている とき、 溶接 ト ーチを実際の溶 接線に沿わせて正確に移動させるために、 アーク セ ンサで検 出されたアーク電流を処理して溶接 ト ーチの移動を補償する ものである。
従来の自動アーク溶接機の制御装置におけるアーク電'流の 処理と しては、 例えば、 アークセ ンサによ り検出されたァー ク電流のピー ク値の位置および大き さ等を観測し、 そのピー ク値が観測された位置および大き さ等に応じて溶接 ト ーチを 所定量だけ移動させ、 溶接トーチを母材の実際の溶接線に沿 つて移動させるようになされている。
ところで、 アークセ ンサにより検岀されるアーク電流は、 アーク溶接時における外乱等により不安定な波彤を示す。 特 に、 アーク電流のピーク値はフ ィルタ等により電流波形を平 滑化して処理するとはいえ、 溶接ト—チが母材の溶接線から 外れたことによるァーク電流の変化と外乱等によるァ—ク電 流の変化との区別がつきにく く、 また、 溶接トーチと溶接線 とのずれ以外に起因してァ一ク電流のピーク値が現出するた めに溶接トーチの誤った移動捕償を行う ことにもなつていた 発明の開示
本発明の目的は、 教示された溶接線と実際に溶接する母材 の溶接線とがずれていても、 溶接トーチを母材の溶.接線に沿 つて正確に移動させてァ一ク溶接を行う ことにある。
本発明によれば、 溶接線に沿って溶接 トーチをウ イ —ビン グさせて自動的にアーク溶接を行い、 且つ、 アークセ ンサで 前記ゥ ィ 一ビングによるアーク電流を検岀して前記溶接 ト ― チの移動を補償する自動アーク溶接機の制御装置において、 前記ァ一ク電流をゥ ィ一ビングの半周期ごとに検出し、 該ァ ーク電流を時間で積分して 1 Z 4 周期ごとの 2つの面積を算 出する面積算出手段、 前記 2つの面積の大小を比較し、 値の 大きい第 1 の面積と値の小さい第 2 の面積とを判別する第 1 の面積比較判別手段、 前記第 1 の面積 ら該第 1 の面積 ¾部 の所定時間分を減箕して第 1 の補正面積を算 ffiし、 該第 1 の 補正面積と前記第 2 の面積との大小を比較判別する第 2 の面 積比較判別手段、 および、 前記第 1 の補正面積が前記第 2 の 面積より も大きいとき、 補正関数により基準値を補正して前 記溶接 トーチの移動を補償する移動補償手段を具備する こ と を特徴とする自動アーク溶接機の制御装置が提供される。 本発明の自動アーク溶接機の制渝装置によれば、 溶接 ト ー チは溶接線に沿ってウ イ —ビングされて自動的にアーク溶接 が行われる と共に、 ゥ ィ 一ビングによるアーク電流はアーク セ ンサで検出され、 溶接 ト―チの移動が補償される。 ウ イ — ビングの半周期ごとに検出されたアーク電流は、 面積算出手 段により時間で積分されて 1ノ 4 周期ごとの 2つの面積が算 出される。 また、 第 1 の面積比較判別手段によって 2 つの面 積の大小が比較され、 値の大きい第 1 の面積と値の小さい第 2 の面積とが判別される。 さ らに、 第 2 の面積比較判別手段 により第 1 の面積から該第 1 の面積端部の所定時間分が減算 された第 1 の補正面積と上記第 2 の面積との大小が比較判別 される。 そして、 第 1 の補正面積が第 2 の面積より も大きい とき、 移動補償手段により補正関数で基準値を補正して溶接 トーチの移動を補償する こ とになる。 これにより、 教示され た溶接線と実際に溶接する母材の溶接線とがずれていても、 溶接 ト ーチを母材の溶接線に沿って正確に移動させてアーク 溶接を行う こ とができる。 図面の簡単な説明
第 1 図は本発明の自動アーク溶接機の制御装置の一実施例 を概略的に示すブロ ック図、
第 2図は溶接 トーチのゥ イ ービング動作を説明するための 図、
第 3図は榕接する母材の溶接線と溶接トーチのウ イ —ビン グ移動との関係を示す図、
第 4図 ( a ) および ( b ) は第 3図におけるアーク電流を 示す図、
第 5図 ( a ) 〜 ( c ) は第 4図 ( b ) に示されるアーク電 流が検出された場合の溶接トーチの移動捕正処理を説明する ための図、 および、
第 6図は本発明に基づく制御動作の一例を示すフ口—チヤ — トでめ 。 発明を実施するための最良の形態
以下、 図面を参照して本発明に孫る自動アーク溶接機の制 御装置の一実施例を説明する。
第 1図は本発明の自 ftアーク溶接機の制御装置の一実施例 を概略的に示すブ口 ック図である。
溶接 トーチ 5 は、 溶接ヮィ ャ 5 1を送給しながら母材をァ ーク溶接するものであり、 溶接電源 (図示しない) により印 加された電圧で溶接ヮィャ 5 1 の先端と母材との間にァ -ク を発生させるようになされている。 この溶涹ワイ ャ 5 1 の先 端と母材との間に流されるァ一ク電流-ぱアークセンサ 8 によ つて測定され、 そのアーク電'流のデータはマイ ク πプロセ ッ サ 7に供耠される。 また、 溶接 トーチ 5 は、 マイ ク ロプロセ y サ 7 の指令に従って動作する溶接 ト ―チ移動装置 6 によ り 移動制御され、 この溶接 ト —チ移動装置 6 により母材の溶接 線に沿った移動およびゥ ィ —ビング動作等が行われる。 こ こ で、 記憶装置 9 は、 補正関数等を記憶する もので、 マイ ク ロ プロセ ッサ 7 の指令により補正関数等の記憶データをマイ ク 口プロセ ッサ Ί に送出でき るよう になされている。
第 2 図は溶接 ト ーチのウ イ —ビング動作を説明するための 図であり 、 第 3 図は溶接する母材の溶接線と溶接 ト ーチのゥ ィ一ビング移動との関係を示す図である。
第 2図および第 3 図に示されるよ う に、 例えば、 V形状に 配置された部材 1 1 と部材 1 2 とをアーク溶接する場合、 溶 接 ト ーチ 5 は溶接線 1 3 を横切るよ う にウ イ —ビング移動さ れる。 この溶接 ト ーチ 1 3 のウ イ —ビング カ作は、 水平方向 のジグザグ移動だけでな く 、 垂直方向の移動を伴っている。 この垂直方向の移動は、 例えば、 溶接線 1 3 の上部で高 く な るよう なもので、 このウ イ一ビング動作によ り アークセ ンサ 8 で検出されるアーク電流の波形を変化させて溶接 ト ーチ 5 の移動制御を行う と共に、 部材 1 1 と部材 1 2 のアーク溶接 を確実に行う よ う になされている。
溶接ヮ ィ ャ 5 1 は溶接 ト ーチ 5 の中央から順次連続して供 給されるよ う になされている。 そして、 溶接ワイ ヤ 5 1 の先 端と部材 1 1 または部材 1 2 との間にアーク放電を生じさせ、 このアーク放電に伴う高熱によ り溶接ワイ ヤ 5 1 を溶かして 部材 1 1 と部材 1 2 との溶接を行う よ う になされている。
第 4図 ( a ) および ( b ) は第 3図におけるアーク電流を 示す図であり、 第 4図 ( a ) は溶接トーチ 5が第 3図におけ るゥ ィ 一ビングの一端 A から他端 B 0 に移動したときの波 形を示し、 また、 第 4図 ( b ) は溶接 トーチ 5が第 3図にお けるゥ ィ 一ビングの一端 A t から他端 B t に移動したときの 波形を示して'いる。
第 4図 ( a ) に示されるように、 教示された溶接線と実際 の溶接線 1 3 とが一致して溶接ト一:チ 5 のウイ —ビング移動 が的確に行われると、 アーク電流の波形は左右対称となる。 すなわち、 ウ ィ ービングの一端 Aひ における時間 t i と他端 B。 における時間 t 2 との中央の時間 t 3 において、 アーク 電流の波形の最小となり、 面積 S iaと面積 S 2Aとが等し く な る。
第 4図 ( b ) に示されるように、 教示された溶接線 1 4 と 実際の溶接線 1 3 とがずれると、 アーク電流の波 は左右対 称とはならず、 また、 ウ イ 一ビングの一端 A における時間 t ! と他端 における時 t 2 との中央の時間 t 3 におい て、 アーク電流の波形が最小とはならずに面積 S l aと面積 S 2aとが相違することになる。 アーク電流が第 4図 ( b ) の ように変化するのは、 第 3図中の破線で示されるように、 溶 接トーチ 5がー端 で部材 1 1から難れ、 他端 B! で部材 1 2 に接近するようにずれた場合である。
第 5図 ( a ) 〜 ( c ) ば第 4図 ( b ) に示されるァ—ク電 流が検出された場合の溶接ト一チの移動補正処理を説明する ための図であり、 第 6図は本発明に基づく制御動作の一例を 示すフローチャー トである。 以下、 第 5図および第 6図を参照して本発明の自動アーク 溶接機の制御装置の動作の一例を説明する。
まず、 溶接 トーチの移雲力補正処理が開始される と、 ステ ツ プ 7 0 で終了条件かどうかが判別される。 この終了条件とし ては、 予め入力された溶接線の長さ等のものであり、 ステツ プ 7 0 で終了条件を満足している と判別される と、 溶接 トー チの移動補正処理は終了する。
ステ ップ 7 Qで終了条件が満足されていないと判別される と、 ステップ 7 1 に進んで溶接 トーチ 5 を基準値に従つてゥ ィ ービングの半周期分だけ移動させ、 さ らに、 ステ ップ 7 2 に進んでアークセ ンサ 8 により アーク電流を検出する。 こ こ で、 基準値に従ってウ イ —ビングの半周期分だけ移動させる という こ とは、 教示された溶接線に沿って溶接 トーチ 5を移 動させるこ とであり、 この基準値は記憶装置 9等に予め記憶 されている。
ステ ップ 7 2 において、 アーク セ ンサ 8 でアー ク電流を検 出した後、 ステップ 7 3で、 第 5図 ( b ) に示されるよ うに . その検出されたアーク電流の最小値を零に一致させ、 さ らに. ステップ 7 4でアーク電流を時間で積分して 1ノ4 周期ごと の 2 つの面積 および S 2 を算出する。 また、 ステ ツフ。
7 5 で 3 , > S 2 (または S z > S i:)かどうかを比較判別する( そして、 ステ ツ フ' 7 5 で > S 2 ( たは S 2 > S ,)ではな いと判別される と、 すなわち、 2 つの面積 S , および S z が 一致する と判別される と、 ステ ッ プ 7 0 を介してステ ツ フ。 7 1 に進み、 溶接 トーチ 5 を基準値に従ってウ イ —ビングの 半周期分だけ移動させることになる。 このとき、 教示された 溶接線と実際の溶接線 1 3 とが一致して溶接トーチ 5 のウ イ ―ビング移動が的確に行われていると、 アーク電流の波形は 左右対称となり、 左右ウ イ —ビングの電流積分値である 1/4 周期ごとの 2つの面積 および S z は等しくなる。
また、 ステップ 7 5で S > S 2 (または S 2 > S i )と判別 されると、 例えば、 第 5図 ( b ) に示されるように、 面積
S i bより も面積 S 2 bが大きいと判別されるとステップ 7 6 に 進むことになる。 ステップ 7 6では、 第 5図 ( c ) に示され るように、 大きい方の面積 S 2bからその面積 S Zb端部の所定 時間 α分だけ減箕した補正面積 S 2Cを箕出し、 補正面積 S 2 C と小さい方の面積 S l cとの大小を比較判別する。 ここで、 補 正面-積 S 2 cはウ イ一ビ—ングの半周期の時間から所定時間 を 減算した残りの時間の中央時間 t 3Cから時間 t zcまで積分し た面積であり、 上記小さい方の面積 S l cは時間 t , から中央 時間 t 3Cまで積分した面積である。 ここで、 ステップ 7 5で 大きいと判別された面積 S Zbからその面積 S 2b端部の所定時 間 or分 ( S ) だけ減算してから再度小さい方の面積 S l cと の大小を比較判別するのは、 外乱等によるアーク電流の変化 を排除し、 溶接トーチ 5 と溶接する部材 1 1および 1 2 との 位置闋孫によるアーク電流の変化だけを認識するためである。 同様に、 所定時間 分だけの面積を減箕するとき、 この所定 時間 ( a , , a z ) が面積 S z c ( S ! , S 2 ) の端部とされ ているのは、 外乱等によるアーク電流の変化が、 一般的に、 面積の端部で発生するためであり、 溶接トーチ 5 と溶接する 部材 1 1 および 1 2 との位置関係によるアーク電流の変化だ けを認識するためである。
以上のよう に、 ステ ップ 7 6 で S i - S , > S 2 (または S z - S a 2 > S , )と比較判別される と、 ステ ップ 7 7 に進 んで補正関数により基準値を補正する。 また、 ステ ッ プ 7 6 で - S a , > S 2 (または S 2 - S o z > S Jではないと 判別される と、 ステ ッ プ 7 0 を介してステ ッ プ 7 1 に進み、 溶接 ト ーチ 5 を基準値に従ってウ イ —ビングの半周期分だけ 移動させる こ とになる。
そ して、 ステ ップ 7 7 で補正関数により基準値を補正する と、 ステ ップ 7 8 に進んで終了条件かどうかが判別される。 このステ ップ 7 8 の終了条件は、 ステ ッ プ 7 0 の終了条件と 同じであり 、 このステ ッ プ 7 8 で終了条件を満足している と 判別される と、 溶接 ト ーチ 5 の移動補正処理は終了し、 ステ ッ プ 7 8 で終了条件が満足されていないと判別される と、 ス テ ツ プ 7 9 に進むこ とになる。
ステ ッ プ 7 9 では、 溶接 ト ーチ 5 を補正値に従ってウ イ — ビングの半周期分だけ移動させ、 そして、 ステ ッ プ 7 2 に進 むこ とになる。 こ こで、 補正値とは、 ステ ップ 7 7 において 補正関数により基準値を補正した値である。
以上詳述したよ う に、 溶接 ト ーチの移動補正処理はステ ツ プ 7 0 およびステ ッ プ 7 8 で終了条件が満足されたと判別さ れるまでウ ィ ービングの半周期ごとに缲り返される こ とにな る。
次に、 上記ステ ッ プ 7 7 における補正関数について説明す る。
補正関数は、 ステップ 7 6で S i - S a , > S 2 (または S 2 - S a 2 > S と比較判別されたときに、 溶接トーチの移動 を補正するものであり、 教示された溶接線に沿って溶接 ト一 チを移動させる基準値を修正するものである。 こ こで、 基準 値を捕正して溶接トーチの移動を捕償するのは、 半周期前の ウイ一ビングによるアーク電流で次の半周期のゥ ィ 一ビング 動作を捕正するこ とになる。
こ こで、 使用される補正関数としては、 アーク電流の 1ノ 4 周期ごとの 2つの面積の差 (左右ウ イ —ビングの電流積分値 の差) が大きければ大きい程、 緩やかな立上りの曲線を示す ものが好ましい。 すなわち、 左右ウ イ —ビングの電流積分値 の差が小さ く、 溶接トーチのずれが小さいと.きには、 溶接 ト ーチを感度良く捕正することができ、 また、 左右ゥ ィ —ビン グの電流積分値の差が大き く 、 溶接ト—チのずれが大きいと きには、 急激な補正をして溶接トーチに蛇行を行わせるよう なことがないようになされている。
このような条件を潢たす補正関数としては、 様々なものが 存在するが、 例えば、 A C ^ を補正量とし、 また、 を補 正定数として、
Δ C X = ( I S z z / S i c - 1 ί ) i z x A ,
なる式を潢たす補正関数が好適である。 - 上記した補正関数は、 数学的処理が比較的簡単であり、 ま た、 実際の補正も適切に行う ことができるものである。 ここ で、 上記補正関数において使甩される 2つの面積は、 ステ ツ プ 7 6 で所定の処理が行われた補正面積 S 2 cおよび面積 S ! c に限定される ものではな く 、 例えば、 ステ ッ プ 7 4 で箕出さ れた面積 S , および S 2 ( S ! bおよび S 2 b ) であってもよい。

Claims

請 求 の 範 西
1 . 溶接線に沿って溶接トーチをウイ —ビングさせて自動 的にァーク溶接を行い、 且つ、 アークセンサで前記ゥ イ ービ ングによるアーク電流を検岀して前記溶接ト—チの移動を補 償する自動アーク溶接機の制御装置において、
前記ァーク電流をウ イ —ビングの半周期ごとに検出し、 該 ァ―ク電流を時間で積分して 1 /4 周期ごとの 2つの面積を 箕出する面積箕出手段、
前記 2つの面積の大小を比較し、 値の大きい第 1 の面積と 値の小さい第 2の面積とを判別する第 1 の面積比較判別手段. 前記第 1 の面積から該第 1 の面積端部の所定時間分を減算 して第 1 の補正面積を箕出し、 該第 1 の補正面積と前記第 2 の面積との大小を比較判別する第 2の面積比較判別手段、 お よび、
前記第 1 の補正面積が前記第 2 の面積より も大きいとき、 補正関数により基準値を補正して前記溶接トーチの移動を補 償する移動捕償手段を具備することを特徴とする自動アーク 溶接機の制御装置。
2 . 前記補正関数は、 前記第 1 の捕正面積が前記第 2 の面 積より も大きい程、 緩やかな立上りの曲線となっている請求 の範囲第 1項に記載の装置。
3 , 前記第 1 の補正面積は前記ゥ ィ 一ビングの半周期の時 間から前記第 1 の面積端部の所定時間を減箕した残りの時間 の中央から積分した面積とされ、 前記第 2 の面積は前記ゥ ィ 一ビングの半周期の時間から前記第 1 の面積端部の所定時間 を減算した残り の時間の中央まで積分した面積とされている 請求の範囲第 2項に記載の装置。
4 . 前記補正関数は、 下記の式で表される請求の範囲第 2 項に記載の装置。
Δ C , = ( I S 2 C / S 1 C - 1 I ) 1 / 2 X Δ ,
こ こで、 △ C , は補正量、
S 1 Cは第 1 の補正面積、
S 2 は第 2 の面積、
厶, は補正定数である。
5 . 前記面積算出手段は、 前記検出されたアーク電流の最 小値を零に一致させた後、 時間で積分して 1 / 4 周期ごとの 2つの面積を算出するようになつ-ている請求の範囲第 1 項に 記載の装置。
6 . 瑢接線に ¾つて溶接 ト ーチをゥ ィ一ビングさせて自動 的にアーク溶接を行い、 且つ、 アークセ ンサにより前記ウ イ —ビングによるアーク電流を検出して前記溶接 ト ーチの移動 を補償する自動アーク溶接機の制御装置において、
前記アーク電流をウ ィ ービングの半周期ごとに検出 玄タ アーク電流を時間で積分して 1 / 4 周期ごとの 2 つの面積を 算出する面積算出手段、 および、
前記溶接 トーチの移動補正が必要かどうかを判別する補正 判別手段を具備し、 前記溶接 ト -チの移動補正が必要な場合 前記 2つの面積の大きい方の面積が前記 2つの面積の小さい 方の面積より も大きい程、 緩やかな立上りの補正閔数曲線に 従って基準値を補正して前記溶接トーチの移動を捕償するこ とを特徴とする自勣アーク溶接機の制御装置。
7. 前記補正閬数は、 下記の式で表される請求の範囲第 6 項に記載の装 a。
Δ C! = ( ! S 2C/ S 1 C- 1 I ) 1/2 X 厶!
ここで、 A d は補正量、
S I Cは第 1 の補正面積、
S 2Cは第 2 の面積、
Δ ϊ は補正定数である。
PCT/JP1987/000854 1986-12-27 1987-11-05 Control apparatus for automatic arc welding machines WO1988004971A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE8787907252T DE3779908T2 (de) 1986-12-27 1987-11-05 Regelanordnung fuer selbsttaetige bogenschweissvorrichtung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61309258A JPH0630809B2 (ja) 1986-12-27 1986-12-27 自動ア−ク溶接機の制御装置
JP61/309258 1986-12-27

Publications (1)

Publication Number Publication Date
WO1988004971A1 true WO1988004971A1 (en) 1988-07-14

Family

ID=17990830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1987/000854 WO1988004971A1 (en) 1986-12-27 1987-11-05 Control apparatus for automatic arc welding machines

Country Status (5)

Country Link
US (1) US4857700A (ja)
EP (1) EP0294485B1 (ja)
JP (1) JPH0630809B2 (ja)
DE (1) DE3779908T2 (ja)
WO (1) WO1988004971A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130514A (en) * 1989-05-10 1992-07-14 Daihen Corporation Control apparatus for tracing a weld line in a welding apparatus and control method therefor
KR0124988B1 (ko) * 1994-09-28 1997-12-26 김준성 자동 용접기의 용접선 경로 보정방법
JP3746922B2 (ja) * 1999-08-17 2006-02-22 中央精機株式会社 溶接線の倣い判定装置と倣い制御装置
US20130119032A1 (en) * 2011-11-11 2013-05-16 Lincoln Global, Inc. System and method for welding materials of different conductivity
DE102012202355A1 (de) * 2012-02-16 2013-08-22 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zum Betreiben eines automatisiert steuerbaren Schweißbrenners

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156577A (ja) * 1983-02-23 1984-09-05 Shin Meiwa Ind Co Ltd 溶接線追従方法および装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046870A (ja) * 1983-08-26 1985-03-13 Hitachi Ltd 溶接線倣い制御装置
KR900003972B1 (ko) * 1985-04-30 1990-06-07 닛뽕 고오깡 가부시기가이샤 고속회전 아아크 필릿(fillet)용접의 그루우브 트레이싱(GROOVE TRACING) 제어방법
US4658112A (en) * 1986-01-21 1987-04-14 Crc-Evans Pipeline International, Inc. Welding control by power integration
JPH06117590A (ja) * 1992-10-07 1994-04-26 Nippon Steel Corp 管の継手方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156577A (ja) * 1983-02-23 1984-09-05 Shin Meiwa Ind Co Ltd 溶接線追従方法および装置

Also Published As

Publication number Publication date
EP0294485A4 (en) 1989-11-29
EP0294485A1 (en) 1988-12-14
US4857700A (en) 1989-08-15
JPH0630809B2 (ja) 1994-04-27
DE3779908T2 (de) 1992-12-24
EP0294485B1 (en) 1992-06-17
DE3779908D1 (de) 1992-07-23
JPS63168280A (ja) 1988-07-12

Similar Documents

Publication Publication Date Title
JPS63180372A (ja) 自動溶接装置
WO1988004971A1 (en) Control apparatus for automatic arc welding machines
JP3267912B2 (ja) 溶接トーチの溶接経路補正方法
KR920006679B1 (ko) 자동용접기의 경로보정방법
JPS60250877A (ja) 溶接ビ−ド高さの自動制御方法
JPH0818132B2 (ja) ア−クセンサを用いたウィ−ビング溶接方法
WO1988005362A1 (en) Method of starting arc-sensing
JPH0825024B2 (ja) 自動溶接装置
JPH064194B2 (ja) アーク溶接ロボットによる溶接方法
KR100199979B1 (ko) 용접로봇의 용접제어방법 및 용접제어장치
JP2591357B2 (ja) 距離計算装置およびこれを用いた消耗電極式アーク溶接電源装置
JP2620887B2 (ja) アーク溶接方法
JPH0632861B2 (ja) 溶接ロボツト装置
JPH0462829B2 (ja)
JPH0630810B2 (ja) 自動ア−ク溶接機の制御装置
JPH10272572A (ja) アーク溶接による溶接方法
KR19980013917A (ko) 아크(arc)센서를 이용한 용접선 추종방법
JPS5868472A (ja) 消耗電極式ア−ク溶接装置
KR19980027370A (ko) 용접로봇 제어방법 및 용접제어장치
JPS5954472A (ja) 溶接方法
JPS6311107B2 (ja)
JPH01180783A (ja) 溶接線追従方法
JPH0426942B2 (ja)
JPH0655271A (ja) 消耗電極式アーク溶接方法
JPH08297B2 (ja) リアルタイム制御による自動アーク溶接方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

WWE Wipo information: entry into national phase

Ref document number: 1987907252

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1987907252

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1987907252

Country of ref document: EP