WO1987007942A1 - Opto-electronic device for determining the distance and the shape of an object - Google Patents

Opto-electronic device for determining the distance and the shape of an object Download PDF

Info

Publication number
WO1987007942A1
WO1987007942A1 PCT/FR1987/000225 FR8700225W WO8707942A1 WO 1987007942 A1 WO1987007942 A1 WO 1987007942A1 FR 8700225 W FR8700225 W FR 8700225W WO 8707942 A1 WO8707942 A1 WO 8707942A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
distance
optical
sensor
receiver
Prior art date
Application number
PCT/FR1987/000225
Other languages
French (fr)
Inventor
Olivier Hignette
Minh Bach Ho
Pierre Midavaine
Jean-Claude Noack
Jean-Pierre Volat
Original Assignee
Bertin & Cie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bertin & Cie filed Critical Bertin & Cie
Publication of WO1987007942A1 publication Critical patent/WO1987007942A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4818Constructional features, e.g. arrangements of optical elements using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only

Definitions

  • the invention relates to an opto-electronic device making it possible, in general, to determine the presence, the distance, the orientation and the shape of an object.
  • Such a device finds very numerous applications in all types of industries and can for example be associated with the terminal member of a robot to control it in a closed loop and guide it during at least the final phase of its movement, in particular to recognize an object and indicate its distance and position relative to a gripping means or a tool equipping the terminal member of the robot.
  • opto-electronic devices capable of being used for this purpose, which include light sources, such as light-emitting diodes activated sequentially and emitting light beams focused on a target, a two-dimensional photosensitive sensor intended to receive on its surface a reflected or retroactive light beam worn by the target, and means of calculation by triangulation of the distance from the target, starting from the position on the sensitive surface of the sensor of the point of impact of the reflected light beam or backscattered by the target.
  • light sources such as light-emitting diodes activated sequentially and emitting light beams focused on a target
  • a two-dimensional photosensitive sensor intended to receive on its surface a reflected or retroactive light beam worn by the target
  • means of calculation by triangulation of the distance from the target starting from the position on the sensitive surface of the sensor of the point of impact of the reflected light beam or backscattered by the target.
  • the light-emitting diodes associated with focusing optics are arranged in a circle around the photosensitive sensor and oriented towards the same point on the optical axis of the sensor, so that their light beams determine a cone, the apex of which is located a few centimeters from the sensor.
  • Such a device makes it possible to determine the orientation as well as the distance of a target with an announced error of less than 0.1 mm, but has only an extremely reduced depth of field (or range of measurement), centimeter order.
  • the invention aims to provide a simple and effective solution to the problem of increasing the depth of field or range of use of such a device, while limiting its size so that it can be easily associated with the terminal organ of a robot, while retaining good accuracy in measuring the distance and the orientation of the surface of a target object. .
  • the invention provides an opto-electronic device for determining the distance and the shape of an object, comprising several light sources each emitting a light beam towards the object, activation means. sequential light sources, a receiver receiving on its surface a light beam reflected or backscattered by the object, means for determining the position of the point of impact of this beam on the surface of the receiver, and means for calculation by triangulation of the distance, the orientation and the shape of the object, characterized in that, to reduce the bulk and increase the depth of field, it includes means associated with the light sources for transforming the light beams that they emit in preferably substantially cylindrical beams which are close to each other and which are substantially parallel or preferably slightly diverging, the optical axis of the recept eur being oriented obliquely on the optical axis of all of the neighboring cylindrical light beams.
  • the device according to the invention can be used with a depth of field "several times greater than that of prior known devices, in which the depth of field was necessarily limited by the fact that the light beams emitted by the sources converged on the optical axis of the receiver at one or more predetermined points which constituted the point or points of
  • the means provided by the invention for producing these neighboring and substantially parallel cylindrical light beams are advantageously optical fibers, the input ends of which are each associated with a light source and the outlet ends of which are assembled in a predetermined arrangement, for example matrix in rows and columns.
  • the light sources can be placed at a fixed point relatively distant from the exit ends of the fibers, while the latter, with their assembly means, can be mounted with a small footprint.
  • a mobile element such as the terminal member of a robot.
  • the cylindrical light beams leaving the optical fibers maintain a substantially constant diameter over a relatively large distance.
  • a focusing optic is associated with the output ends of the optical fibers and acts on the cylindricity of each beam and on the divergence of the set of light beams leaving these fibers.
  • the light sources are light-emitting diodes, preferably laser diodes which emit pulsed and powerful beams of light.
  • the emitting power of the laser diodes is controlled by the intensity of an output signal from the receiver.
  • This receiver can be an analog photosensitive sensor, such as a large PIN diode, and preferably monodirectional to improve the signal to noise ratio.
  • the outlet ends of the optical fibers are kept assembled together by a ferrule, the periphery of which has a slot crossed by a micrometric screw allowing its expansion for mounting and assembling the ends of the fibers and its tightening to maintain the fibers in a determined configuration, for example matrix.
  • This ferrule therefore makes it possible to assemble the outlet ends of the optical fibers with a desired matrix configuration, while avoiding the risks of breaking the fibers during their mounting in the ferrule.
  • FIG. 1 schematically showing a preferred embodiment of a device according to the invention.
  • This device comprises a certain number of light sources 10, which are here constituted by laser diodes connected to a circuit 12 for supply and ignition control.
  • Each laser diode 10 is optionally associated with a focusing optic 14, constituted for example by a section of optical fiber with an index gradient, one end of which is bonded to the corresponding end of the laser diode 10.
  • the section of optical fiber 14 is connected by an adjustable connector 16 to one end of an optical fiber 18 which may have a length of several meters, for example when the laser diodes and their supply and ignition circuits are mounted at a fixed station, while that the other ends of the optical fibers 18 are mounted on a mobile element.
  • optical fibers are assembled together with a determined configuration, for example matrix in rows and colonized by means of a box or ferrule 20 shown in more detail in FIG. 3.
  • the output ends of the optical fibers 18 are thus kept parallel and in the vicinity of one another so as to emit, when the laser diodes 10 are lit sequentially, light beams 22 which are substantially cylindrical and parallel or which have a slight divergence, with a determined spacing.
  • These cylindrical light beams 22 are oriented towards the surface of the object 24 whose presence, distance, orientation and / or shape must be determined, and are preferably aligned in the axis of movement of the movable member on which the housing 20 is mounted.
  • a focusing optic 26 mounted at the outlet of the housing 20 makes it possible to obtain that the light beams 22 are substantially cylindrical and parallel or with a slight divergence.
  • An analog photosensitive sensor 28, associated with a focusing optic 30, is placed in the vicinity of the housing 20 and is oriented so that its optical axis 32 and the optical axis of all the light beams cylindrical 22 are arranged obliquely to each other, and at a small distance from each other.
  • the sensor 28 is preferably constituted by a one-dimensional PIN diode comprising an electrode at each of its longitudinal ends for delivering a current il, 12 respectively, the intensity of which is a function of the position relative to the center O of the diode of the point d impact I of a ray or light beam 34 diffused by the surface of the object 24.
  • the output electrodes of the sensor 28 are connected to an analog circuit 36 for processing the two output signals from the sensor 28, comprising means for amplifying and integrating the signals as well as an analog-to-digital converter, the outputs of which are connected to inputs of a circuit 38, comprising a microprocessor, for calculation by triangulation of the distance between the output ends of the diodes 18 and the surface of the object 24.
  • a circuit 38 comprising a microprocessor
  • Knowledge of the distance from the object 24 allows , via a control circuit 40 connected to the calculation circuit 38, to control in a closed loop the mobile element on which the housing 20 and the sensor 28 are mounted, and to guide it, at least during the phasefinal movement, towards the object 24.
  • the calculation circuit also makes it possible to control the emission power of the laser diodes 10 to the intensity of a signal supplied by the sensor 28, in order to avoid saturation of this sensor and to make it operate with optimal dynamics.
  • FIG. 2 shows in more detail the constitution of a device according to the invention.
  • Each output electrode of the photosensitive sensor 28 is connected to the input of an analog amplification and integration circuit 42, the output of which is connected to the input of an analog-digital conversion circuit 44.
  • the circuits 42 and 44 can be formed by electronic cards directly associated with the sensor 28 and forming a compact assembly with the latter.
  • the outputs of the converters 44 are connected, on the one hand to the inputs of an adder circuit 46 and on the other hand, to the inputs of a subtractor circuit 48 performing respectively the calculation of the addition and the subtraction of the output signals of the two circuits 44.
  • the output of the adder circuit 46 is connected to the input of a circuit 50 for exceeding the energy threshold test, one output of which is connected to an input of a circuit 52 for adjusting the power emission of the laser diodes 10 and of which another output is connected, with the output of the subtractor circuit 48, to the inputs of a circuit 54 for calculating the ratio between the difference and the sum of the output signals of the circuits 44.
  • This ratio is proportional to the distance between the center of the sensor 28 and the point of impact of a light beam scattered by the object and then makes it possible to determine the distance from the object 24, either by calculation or by comparison with tables of values previously e stored in a memory 56.
  • the information thus obtained is stored in a register 58, where the information corresponding each to the lighting of a different laser diode 10 is successively stored.
  • the output of the circuit comprising the register 58 is connected to an input of an incrementing circuit 60, another input of which is connected to an initialization means 62 and the output of which is connected, with the output of the adjustment circuit 52 , at the inputs of a circuit 64 for controlling the sequential ignition of the diodes 10.
  • the information contained in the register of circuit 58 is transmitted to a circuit 66 developing a control strategy, the output of which is connected to the circuit 40 for controlling the mobile element on which the sensor 28 and the diode output ends are mounted. 18 (and / or possibly to a circuit for controlling the movement of the object 24).
  • the dashed line 68 indicates a separation between the components which are mounted on a mobile element and those which are mounted on a fixed station.
  • the device according to the invention may comprise nine laser diodes and therefore nine optical fibers 18, the output ends of which are assembled in a 3 ⁇ 3 square matrix.
  • the spacing of the light beams leaving the optical fibers 18 can vary between 5 and 10 mm depending on the reaiisaton, each beam having a diameter of about 2 mm in the possible range of 50-250 mm.
  • the error on a distance measurement is less than 0.3 mm at a distance of 50 mm and less than 1 mm at a distance of 250 mm.
  • the duration of acquisition and calculation of information corresponding to the lighting of a laser diode is less than a millisecond, which makes it possible, for example, to control a robot in real time.
  • an operator moves a target and performs distance measurements with the device according to the invention.
  • the comparison between the actual distances and the corresponding measured distances defines the calibration characteristics.
  • the calculation circuits make it possible, from a few of these characteristics, to carry out a smoothing in order to obtain the calibration curve.
  • This curve includes all the geometrical parameters of the device and makes it possible to take into account the non-linearity of the response of the sensor. It thus defines the response of the sensor from its field of vision to its entire photosensitive surface and therefore makes it possible to optimize its dynamics.
  • FIG. 3 schematically representing a housing or a ferrule 20 for assembling the ends of nine optical fibers 18 into a 3 ⁇ 3 square matrix.
  • a mechanical ferrule is produced which is taken up by EDM or digital wire sparking, the dimensions and shape of which are adapted to the desired arrangement. It further comprises, at its periphery, a slot 70, for example with a width of approximately 100 microns, which is crossed by a micrometric screw 72.
  • a micrometric screw 72 By enlarging the slot 70 by means of the micrometric screw 72, one obtains an increase in the perimeter surrounded by the ferrule 20, which makes it possible to introduce the various optical fibers into it.
  • the latter are then glued, then the slot 70 is tightened by means of the micrometric screw 72 and the ferrule is locked in the retracted position. A collective polishing of the optical assembly thus obtained is then carried out.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The opto-electronic device for determining the distance and the shape of an object comprises a plurality of light sources such as laser diodes (10) associated with optical fibers (18) transforming the light beams emitted into substantially parallel cylindrical neighbouring beams (22) which are orientated towards the surface of the object (24) to be recognized. A photosensitive sensor (28) such as a PIN diode receives a light beam (34) diffused by the object and is associated with calculation means (38) determining by triangulation the distance of the object. The invention applies particularly to the closed-loop piloting of the terminal number of a robot.

Description

DISPOSIΗF OPTO-ELECTRONIQUE POUR LA DETERMINATION DE LA DISTANCE ET DE LA FORME D'UN OBJETOPTO-ELECTRONIC DEVICE FOR DETERMINING THE DISTANCE AND SHAPE OF AN OBJECT
L'invention concerne un dispositif opto-électronique permettant, de façon générale, de déterminer la présence, la distance, l'orientation et la forme d'un objet.The invention relates to an opto-electronic device making it possible, in general, to determine the presence, the distance, the orientation and the shape of an object.
Un tel dispositif trouve des applications très nombreuses dans tous les types d'industries et peut par exemple être associé à l'organe terminal d'un robot pour le piloter en boucle fermée et le guider durant au moins la phase finale de son mouvement, notamment pour reconnaître un objet et indiquer sa distance et sa position par rapport à un moyen préhenseur ou un outil équipant l'organe terminal du robot. On connaît déjà des dispositifs opto-électroniques susceptibles d'être utilisés dans ce but, qui comprennent des sources de lumière, telles que des diodes électro-luminescentes activées séquentiellement et émettant des faisceaux lumineux focalisés sur une cible, un capteur photosensible bidimensionnel destiné à recevoir sur sa surface un faisceau lumineux réfléchi ou rétro- dif usé par la cible, et des moyens de calcul par triangulation de la distance de la cible, à partir de la position sur la surface sensible du capteur du point d'impact du faisceau lumineux réfléchi ou rétro-diffusé par la cible. Les diodes électroluminescentes associées à des optiques de focalisation sont agencées en cercle autour du capteur photosensible et orientées vers un même point de l'axe optique du capteur, de façon à ce que leurs faisceaux lumineux déterminent un cône, dont le sommet se trouve à quelques centimètres du capteur.Such a device finds very numerous applications in all types of industries and can for example be associated with the terminal member of a robot to control it in a closed loop and guide it during at least the final phase of its movement, in particular to recognize an object and indicate its distance and position relative to a gripping means or a tool equipping the terminal member of the robot. There are already known opto-electronic devices capable of being used for this purpose, which include light sources, such as light-emitting diodes activated sequentially and emitting light beams focused on a target, a two-dimensional photosensitive sensor intended to receive on its surface a reflected or retroactive light beam worn by the target, and means of calculation by triangulation of the distance from the target, starting from the position on the sensitive surface of the sensor of the point of impact of the reflected light beam or backscattered by the target. The light-emitting diodes associated with focusing optics are arranged in a circle around the photosensitive sensor and oriented towards the same point on the optical axis of the sensor, so that their light beams determine a cone, the apex of which is located a few centimeters from the sensor.
Un tel dispositif permet de déterminer l'orientation ainsi que la distance d'une cible avec une erreur annoncée inférieure à 0,1 mm, mais n'a qu'une profondeur de champ (ou plage de mesure) extrêmement réduite, de l'ordre du centimètre.Such a device makes it possible to determine the orientation as well as the distance of a target with an announced error of less than 0.1 mm, but has only an extremely reduced depth of field (or range of measurement), centimeter order.
Pour augmenter la profondeur de champ ou plage d'utilisation possible d'un tel dispositif, il a été proposé de multiplier le nombre de sources lumineuses pour former plusieurs cônes lumineux convergeant sur l'axe optique du capteur en des points espacés les uns des autres. On est ainsi parvenu à augmenter la profondeur de champ jusqu'à 10 cm environ, en utilisant dix- huit sources lumineuses agencées pour former cinq faisceaux lumineux coniques convergeant sur l'axe optique du capteur, ce qui se traduit notamment par de plus gandes difficultés d'intégration des signaux du capteur en raison de l'espacement important des sources lumineuses et par une augmentation de l'encombrement du dispositif, interdisant d'augmenter davantage la profondeur de champ par ce moyen.To increase the depth of field or possible range of use of such a device, it has been proposed to multiply the number of light sources to form several light cones converging on the optical axis of the sensor at points spaced from each other . We have thus managed to increase the depth of field to about 10 cm, using eighteen light sources arranged to form five light beams conical converging on the optical axis of the sensor, which results in particular in greater difficulties of integration of the sensor signals due to the large spacing of the light sources and by an increase in the size of the device, preventing d '' further increase the depth of field by this means.
L'invention a pour but d'apporter une solution simple et efficace au problème de l'augmentation de la profondeur de champ ou plage d'utilisation d'un tel dispositif, tout en limitant son encombrement de façon à ce qu'il puisse être associé sans difficultés à l'organe terminal d'un robot, tout en conservant une bonne précision sur la mesure de la distance et de l'orienta¬ tion de la surface d'un objet visé. .The invention aims to provide a simple and effective solution to the problem of increasing the depth of field or range of use of such a device, while limiting its size so that it can be easily associated with the terminal organ of a robot, while retaining good accuracy in measuring the distance and the orientation of the surface of a target object. .
L'invention propose à cet effet, un dispositif opto-électronique pour la détermination de la distance et de la forme d'un objet, comprenant plusieurs sources de lumière émettant chacune un faisceau lumineux en direction de l'objet, des moyens d'activation séquentielle des sources de lumière, un récepteur recevant sur sa surface un faisceau lumineux réfléchi ou rétrodif- fusé par l'objet, des moyens de détermination de la position du point d'impact de ce faisceau sur la surface du récepteur, et des moyens de calcul par triangulation de la distance, de l'orientation et de la forme de l'objet, caractérisé en que, pour réduire l'encombrement et augmenter la profondeur de champ, il comprend des moyens associés aux sources de lumière pour transformer les faisceaux lumineux qu'elles émettent en faisceaux de préférence sensiblement cylindriques voisins les uns des autres et qui sont sensiblement parallèles ou à divergence de préférence faible, l'axe optique du récepteur étant orienté en oblique sur l'axe optique de l'ensemble des faisceaux lumineux cylindriques voisins.To this end, the invention provides an opto-electronic device for determining the distance and the shape of an object, comprising several light sources each emitting a light beam towards the object, activation means. sequential light sources, a receiver receiving on its surface a light beam reflected or backscattered by the object, means for determining the position of the point of impact of this beam on the surface of the receiver, and means for calculation by triangulation of the distance, the orientation and the shape of the object, characterized in that, to reduce the bulk and increase the depth of field, it includes means associated with the light sources for transforming the light beams that they emit in preferably substantially cylindrical beams which are close to each other and which are substantially parallel or preferably slightly diverging, the optical axis of the recept eur being oriented obliquely on the optical axis of all of the neighboring cylindrical light beams.
Comme l'objet, dont il faut déterminer la distance, l'orientation et de la forme reçoit séquentiellement des faisceaux cylindriques qui sont voisins et parallèles ou qui divergent faiblement, le dispositif selon l'inventon peut être utilisé avec une profondeur de champ" plusieurs fois supérieure à celle des dispositifs antérieurs connus, dans lesquels la profondeur de champ était nécessairement limitée par le fait que les faisceaux lumineux émis par les sources convergeaient sur l'axe optique du récepteur en un ou plusieurs points prédéterminés qui constituaient le ou les points de mesure optimale. Les moyens prévus par l'invention pour produire ces faisceaux lumineux cylindriques voisins et sensiblement parallèles sont avantageusement des fibres optiques, dont les extrémités d'entrée sont associées chacune à une source de lumière et dont les extrémités de sortie sont assemblées selon une disposition prédéterminée, par exemple matricielle en rangées et colonnes. Grâce à l'utilisation des fibres optiques, les sources de lumière peuvent être placées en un point fixe relativement éloigné des extrémités de sortie des fibres, tandis que ces dernières, avec leurs moyens d'assemblage, peuvent être montées avec un encombrement faibie .sur un élément mobile tel que l'organe terminal d'un robot. Par ailleurs, les faisceaux lumineux cylindri¬ ques sortant des fibres optiques conservent un diamètre sensiblement constant sur une distance relativement grande. Selon une autre caractéristique de l'invention, une optique de focalisation est associée aux extrémités de sortie des fibres optiques et agit sur la cylindricité de chaque faisceau et sur la divergence de l'ensemble des faisceaux lumineux sortant de ces fibres. Avantageusement, les sources de lumière sont des diodes électroluminescen- tes, de préférence des diodes laser qui émettent des faisceaux de lumière impulsionnels et puissants.As the object, the distance, orientation and shape of which must be determined sequentially receives cylindrical beams which are neighboring and parallel or which diverge slightly, the device according to the invention can be used with a depth of field "several times greater than that of prior known devices, in which the depth of field was necessarily limited by the fact that the light beams emitted by the sources converged on the optical axis of the receiver at one or more predetermined points which constituted the point or points of The means provided by the invention for producing these neighboring and substantially parallel cylindrical light beams are advantageously optical fibers, the input ends of which are each associated with a light source and the outlet ends of which are assembled in a predetermined arrangement, for example matrix in rows and columns. Thanks to the use of optical fibers, the light sources can be placed at a fixed point relatively distant from the exit ends of the fibers, while the latter, with their assembly means, can be mounted with a small footprint. a mobile element such as the terminal member of a robot. Furthermore, the cylindrical light beams leaving the optical fibers maintain a substantially constant diameter over a relatively large distance. According to another characteristic of the invention, a focusing optic is associated with the output ends of the optical fibers and acts on the cylindricity of each beam and on the divergence of the set of light beams leaving these fibers. Advantageously, the light sources are light-emitting diodes, preferably laser diodes which emit pulsed and powerful beams of light.
Pour éviter la saturation du récepteur, la puissance d'émisβion des diodes laser est asservie à l'intensité d'un signal de sortie du récepteur. On peut ainsi faire fonctionner le récepteur avec une dynamique optimale. Ce récepteur peut être un capteur photosensible analogique, tel qu'une diode PIN de grande dimension, et de préférence monodirectionnelle pour amé¬ liorer le rapport signal sur bruit.To avoid saturation of the receiver, the emitting power of the laser diodes is controlled by the intensity of an output signal from the receiver. We can thus operate the receiver with optimal dynamics. This receiver can be an analog photosensitive sensor, such as a large PIN diode, and preferably monodirectional to improve the signal to noise ratio.
Selon une autre caractéristique de l'invention, les extrémités de sortie des fibres optiques sont maintenues assemblées entre elles par une virole, dont la périphérie présente une fente traversée par une vis micrométrique permettant son expansion pour le montage et l'assemblage des extrémités des fibres et son resserrement pour le maintien des fibres dans une configuration déterminée, par exemple matricielle. Cette virole permet donc d'assembler les extrémités de sortie des fibres optiques avec une configuration matricielle voulue, tout en évitant les risques de rupture des fibres lors de leur montage dans la virole. D'autres caractéristiques, détails et avantages de l'invention apparaîtront plus clairement à la lecture de la descripton qui va suivre, faite à titre d'exemple en référence aux dessins annexés et dans lesquels : - la figure 1 représente schématiquement un dispositif selon l'invention ;According to another characteristic of the invention, the outlet ends of the optical fibers are kept assembled together by a ferrule, the periphery of which has a slot crossed by a micrometric screw allowing its expansion for mounting and assembling the ends of the fibers and its tightening to maintain the fibers in a determined configuration, for example matrix. This ferrule therefore makes it possible to assemble the outlet ends of the optical fibers with a desired matrix configuration, while avoiding the risks of breaking the fibers during their mounting in the ferrule. Other characteristics, details and advantages of the invention will appear more clearly on reading the description which follows, made by way of example with reference to the appended drawings and in which: - Figure 1 schematically shows a device according to the invention;
- la figure 2 représente de façon plus détaillée la structure de ce dispositif ;- Figure 2 shows in more detail the structure of this device;
- la figure 3 est une vue schématique des moyens d'assemblage des extrémi¬ tés des fibres optiques avec une configuration matricielle. Dans ce qui suit, le terme "circuit" désigne un moyen assurant une fonction par l'intermédiaire de circuits électroniques et/ou d'un logiciel en associa¬ tion avec un microprocesseur ou autre moyen de traitement de l'informa¬ tion. On se réfère d'abord à la figure 1 représentant schématiquement un mode de réalisation préféré d'un dispositif selon l'invention.- Figure 3 is a schematic view of the means for assembling the extremi¬ tees of the optical fibers with a matrix configuration. In what follows, the term "circuit" designates a means ensuring a function by means of electronic circuits and / or software in association with a microprocessor or other means for processing information. Reference is first made to FIG. 1 schematically showing a preferred embodiment of a device according to the invention.
Ce dispositif comprend un certain nombre de sources de lumière 10, qui sont ici constituées par des diodes laser reliées à un circuit 12 d'alimentation et de commande d'allumage. Chaque diode laser 10 est éventuellement associée à une optique de focalisation 14, constituée par exemple par un tronçon de fibre optique à gradient d'indice, dont une extrémité est collée sur l'extré¬ mité correspondante de la diode laser 10. Le tronçon de fibre optique 14 est relié par un connecteur réglable 16 à une extrémité d'une fibre optique 18 pouvant avoir une longueur de plusieurs mètres, par exemple lorsque les diodes laser et leur circuit d'alimentation et d'allumage sont montés à poste fixe, tandis que les autres extrémités des fibres optiques 18 sont montées sur un élément mobile.This device comprises a certain number of light sources 10, which are here constituted by laser diodes connected to a circuit 12 for supply and ignition control. Each laser diode 10 is optionally associated with a focusing optic 14, constituted for example by a section of optical fiber with an index gradient, one end of which is bonded to the corresponding end of the laser diode 10. The section of optical fiber 14 is connected by an adjustable connector 16 to one end of an optical fiber 18 which may have a length of several meters, for example when the laser diodes and their supply and ignition circuits are mounted at a fixed station, while that the other ends of the optical fibers 18 are mounted on a mobile element.
Ces autres extrémités des fibres optiques sont assemblées entre elles avec une configuration déterminée, par exemple matricielle en rangées et colon- nés au moyen d'un boîtier ou virole 20 représenté plus en détail en figure 3.These other ends of the optical fibers are assembled together with a determined configuration, for example matrix in rows and colonized by means of a box or ferrule 20 shown in more detail in FIG. 3.
Les extrémités de sortie des fibres optiques 18 sont ainsi maintenues parallèles et au voisinage les unes des autres de façon à émettre, lorsque les diodes laser 10 sont allumées séquentiellement, des faisceaux lumineux 22 qui sont sensiblement cylindriques et parallèles ou qui ont une divergence faible, avec un entreaxe déterminé. Ces faisceaux lumineux cylindriques 22 sont orientés vers la surface de l'objet 24 dont il faut déterminer la présence, la distance, l'orientation et/ou la forme, et sont de préférence alignés dans l'axe du déplacement de l'organe mobile sur lequel est monté le boîtier 20.The output ends of the optical fibers 18 are thus kept parallel and in the vicinity of one another so as to emit, when the laser diodes 10 are lit sequentially, light beams 22 which are substantially cylindrical and parallel or which have a slight divergence, with a determined spacing. These cylindrical light beams 22 are oriented towards the surface of the object 24 whose presence, distance, orientation and / or shape must be determined, and are preferably aligned in the axis of movement of the movable member on which the housing 20 is mounted.
Une optique de focalisation 26 montée à la sortie du boîtier 20 permet d'obtenir que les faisceaux lumineux 22 soient sensiblement cylindriques et parallèles ou avec une divergence faible.A focusing optic 26 mounted at the outlet of the housing 20 makes it possible to obtain that the light beams 22 are substantially cylindrical and parallel or with a slight divergence.
Les faisceaux lumineux 22 atteignant la surface de l'objet 24 sont d'une part réfléchis et d'autre part rétro-diffusés par cette surface. Un capteur photosensible analogique 28, associé à une optique de focalisa¬ tion 30, est placé au voisinage du boîtier 20 et est orienté de telle sorte que son axe optique 32 et l'axe optique de l'ensemble des faisceaux lumineux cylindriques 22 soient disposés obliquement par rapport à l'autre, et à une distance faible l'un de l'autre. Le capteur 28 est de pré érence constitué par une diode PIN monodimensionnelle comprenant une électrode à chacune de ses extrémités longitudinales pour délivrer un courant il, 12 respectivement dont l'intensité est fonction de la position par rapport au centre O de la diode du point d'impact I d'un rayon ou faisceau lumineux 34 diffusé par la surface de l'objet 24.The light beams 22 reaching the surface of the object 24 are reflected on the one hand and on the other hand back-scattered by this surface. An analog photosensitive sensor 28, associated with a focusing optic 30, is placed in the vicinity of the housing 20 and is oriented so that its optical axis 32 and the optical axis of all the light beams cylindrical 22 are arranged obliquely to each other, and at a small distance from each other. The sensor 28 is preferably constituted by a one-dimensional PIN diode comprising an electrode at each of its longitudinal ends for delivering a current il, 12 respectively, the intensity of which is a function of the position relative to the center O of the diode of the point d impact I of a ray or light beam 34 diffused by the surface of the object 24.
Les électrodes de sortie du capteur 28 sont reliées à un circuit analogique 36 de traitement des deux signaux de sortie du capteur 28, comprenant des moyens d'amplification et d'intégration des signaux ainsi qu'un convertisseur analogique - numérique, dont les sorties sont reliées à des entrées d'un circuit 38, comprenant un microprocesseur, de calcul par triangulation de la distance entre les extrémités de sortie des diodes 18 et la surface de l'objet 24. De façon classique, la connaissance de la géométrie de l'ensemble boîtier 20 - capteur 28 permet de déterminer la distance de l'objet 24 à partir de la distance O I entre le centre du capteur 28 et le point d'impact du faisceau diffusé 34. La connaissance de la distance de l'objet 24 permet, par l'intermédiaire d'un circuit de commande 40 relié au circuit de calcul 38, de piloter en boucle fermée l'élément mobile sur lequel sont montés le boîtier 20 et le capteur 28, et de le guider, au moins pendant la phase finale de son mouvement, vers l'objet 24. En variante, il est possible de piloter également le mouvement de l'objet 24 lorsque celui-ci est mobile. On peut ainsi, de façon générale, effectuer des opérations de recherche de pièces, de détection et de cadrage d'un repère, d'approche et de saisie d'objets, de détermination et de suivie du déplacement d'un objet, de reconnaissance de la situation d'un objet connu, de reconnaissance de profil, de forme, de mesure de hauteur, etc.. Le circuit de calcul permet également d'asservir la puissance d'émission des diodes laser 10 à l'intensité d'un signal fourni par la capteur 28, afin d'éviter la saturation de ce capteur et de le faire fonctionner avec une dynamique optimale. On fera maintenant référence à la figure 2, qui représente plus en détail la constitution d'un dispositif selon l'invention.The output electrodes of the sensor 28 are connected to an analog circuit 36 for processing the two output signals from the sensor 28, comprising means for amplifying and integrating the signals as well as an analog-to-digital converter, the outputs of which are connected to inputs of a circuit 38, comprising a microprocessor, for calculation by triangulation of the distance between the output ends of the diodes 18 and the surface of the object 24. Conventionally, knowledge of the geometry of the housing 20 - sensor 28 assembly makes it possible to determine the distance of the object 24 from the distance OI between the center of the sensor 28 and the point of impact of the scattered beam 34. Knowledge of the distance from the object 24 allows , via a control circuit 40 connected to the calculation circuit 38, to control in a closed loop the mobile element on which the housing 20 and the sensor 28 are mounted, and to guide it, at least during the phasefinal movement, towards the object 24. As a variant, it is also possible to control the movement of the object 24 when the latter is mobile. It is thus generally possible to carry out parts search operations, detection and framing of a reference point, approach and entry of objects, determination and monitoring of the movement of an object, recognition the situation of a known object, recognition of profile, shape, height measurement, etc. The calculation circuit also makes it possible to control the emission power of the laser diodes 10 to the intensity of a signal supplied by the sensor 28, in order to avoid saturation of this sensor and to make it operate with optimal dynamics. Reference will now be made to FIG. 2, which shows in more detail the constitution of a device according to the invention.
.On utilise, dans cette figure, les mêmes références qu'en figure 1 pour désigner des éléments identiques. Chaque électrode de sortie du capteur photosensible 28 est reliée à l'entrée d'un circuit analogique 42 d'amplification et d'intégration, dont la sortie est reliée à l'entrée d'un circuit 44 de conversion analogique-numérique. Pour éviter la transmission d'informations analogiques sur de grandes distances, les circuits 42 et 44 peuvent être constitués par dés cartes électroniques associées directement au capteur 28 et formant un ensemble compact avec celui-ci. Les sorties des convertisseurs 44 sont reliées, d'une part aux entrées d'un circuit additionneur 46 et d'autre part, aux entrées d'un circuit soustracteur 48 effectuant respectivement le calcul de l'addition et de la soustraction des signaux de sortie des deux circuits 44. La sortie du circuit additionneur 46 est reliée à l'entrée d'un circuit 50 de test de dépassement de seuil d'énergie, dont une sortie est reliée à une entrée d'un circuit 52 de réglage de la puissance d'émission des diodes laser 10 et dont une autre sortie est reliée, avec la sortie du circuit soustracteur 48, aux entrées d'un circuit 54 de calcul du rapport entre la différence et la somme des signaux de sortie des circuits 44. Ce rapport est proportionnel à la distance entre le centre du capteur 28 et le point d'impact d'un faisceau lumineux diffusé par l'objet et permet ensuite de déterminer la distance de l'objet 24, soit par calcul, soit par comparaison à des tables de valeurs préalablement enregis- trées dans une mémoire 56. L'information ainsi obtenue est rangée dans un registre 58, où sont rangées successivement les informations correspondant chacune à l'allumage d'une diode laser 10 différente.We use, in this figure, the same references as in Figure 1 to designate identical elements. Each output electrode of the photosensitive sensor 28 is connected to the input of an analog amplification and integration circuit 42, the output of which is connected to the input of an analog-digital conversion circuit 44. To avoid the transmission of analog information over long distances, the circuits 42 and 44 can be formed by electronic cards directly associated with the sensor 28 and forming a compact assembly with the latter. The outputs of the converters 44 are connected, on the one hand to the inputs of an adder circuit 46 and on the other hand, to the inputs of a subtractor circuit 48 performing respectively the calculation of the addition and the subtraction of the output signals of the two circuits 44. The output of the adder circuit 46 is connected to the input of a circuit 50 for exceeding the energy threshold test, one output of which is connected to an input of a circuit 52 for adjusting the power emission of the laser diodes 10 and of which another output is connected, with the output of the subtractor circuit 48, to the inputs of a circuit 54 for calculating the ratio between the difference and the sum of the output signals of the circuits 44. This ratio is proportional to the distance between the center of the sensor 28 and the point of impact of a light beam scattered by the object and then makes it possible to determine the distance from the object 24, either by calculation or by comparison with tables of values previously e stored in a memory 56. The information thus obtained is stored in a register 58, where the information corresponding each to the lighting of a different laser diode 10 is successively stored.
La sortie du circuit comprenant le registre 58 est reliée à une entrée d'un circuit d'incrémentation 60, dont une autre entrée est raccordée à un moyen d'initialisation 62 et dont la sortie est reliée, avec la sortie du circuit de réglage 52, aux entrées d'un circuit 64 de commande d'allumage séquentiel des diodes 10.The output of the circuit comprising the register 58 is connected to an input of an incrementing circuit 60, another input of which is connected to an initialization means 62 and the output of which is connected, with the output of the adjustment circuit 52 , at the inputs of a circuit 64 for controlling the sequential ignition of the diodes 10.
Les informations contenues dans le registre du circuit 58 sont transmises à un circuit 66 élaborant une stratégie de commande, dont la sortie est reliée au circuit 40 de commande de l'élément mobile sur lequel sont montés le capteur 28 et les extrémités de sortie des diodes 18 (et/ou éventuellement à un circuit de commande de déplacement de l'objet 24).The information contained in the register of circuit 58 is transmitted to a circuit 66 developing a control strategy, the output of which is connected to the circuit 40 for controlling the mobile element on which the sensor 28 and the diode output ends are mounted. 18 (and / or possibly to a circuit for controlling the movement of the object 24).
En figure 2, la ligne tiretée 68 indique une séparation entre les constituants qui sont montés sur un élément mobile et ceux qui sont montés à poste fixe. Pour fixer les idées, on indiquera, à titre d'exemple, que le dispositif selon l'invention peut comprendre neuf diodes laser et donc neuf fibres optiques 18, dont les extrémités de sortie sont assemblées en une matrice carrée 3x3. L'entreaxe des faisceaux lumineux sortant des fibres optiques 18 peut varier entre 5 et 10 mm suivant les réaiisaton, chaque faisceau ayant un diamètre d'environ 2 mm dans la plage d'utilisation possible 50-250 mm. L'erreur sur une mesure de distance est inférieure à 0,3 mm à une distance de 50 mm et inférieure à 1 mm à une distance de 250 mm. la durée d'acquisition et de calcul d'une information correspondant à l'allumage d'une diode laser est inférieure à une milliseconde, ce qui permet de commander par exemple un robot en temps réel.In FIG. 2, the dashed line 68 indicates a separation between the components which are mounted on a mobile element and those which are mounted on a fixed station. To fix the ideas, it will be indicated, by way of example, that the device according to the invention may comprise nine laser diodes and therefore nine optical fibers 18, the output ends of which are assembled in a 3 × 3 square matrix. The spacing of the light beams leaving the optical fibers 18 can vary between 5 and 10 mm depending on the reaiisaton, each beam having a diameter of about 2 mm in the possible range of 50-250 mm. The error on a distance measurement is less than 0.3 mm at a distance of 50 mm and less than 1 mm at a distance of 250 mm. the duration of acquisition and calculation of information corresponding to the lighting of a laser diode is less than a millisecond, which makes it possible, for example, to control a robot in real time.
L'étalonnage du dispositif selon l'invention est réalisé simplement, de la façon suivante.The calibration of the device according to the invention is carried out simply, in the following manner.
A partir d'une position de référence, un opérateur déplace une cible et effectue des mesures de distance avec le dispositif selon l'invention. La comparaison entre les distances réelles et les distances mesurées correspon¬ dantes définit les caractéristiques d'étalonnage. Les circuits de calcul permettent, à partir de quelques unes de ces caractéristiques, d'effectuer un lissage pour obtenir la courbe d'étalonnage.From a reference position, an operator moves a target and performs distance measurements with the device according to the invention. The comparison between the actual distances and the corresponding measured distances defines the calibration characteristics. The calculation circuits make it possible, from a few of these characteristics, to carry out a smoothing in order to obtain the calibration curve.
Cette courbe inclut tous les paramètres géométriques du dispositif et permet de prendre en compte la non linéarité de la réponse du capteur. Elle définit ainsi la réponse du capteur de son champ de vision vers toute sa surface photosensible et permet donc d'optimiser sa dynamique.This curve includes all the geometrical parameters of the device and makes it possible to take into account the non-linearity of the response of the sensor. It thus defines the response of the sensor from its field of vision to its entire photosensitive surface and therefore makes it possible to optimize its dynamics.
On se réfère maintenant à la figure 3 représentant schématiquement un boîtier ou une virole 20 d'assemblage des extrémités de neuf fibres optiques 18 en une matrice carrée 3 x 3. Connaissant le diamètre extérieur moyen des différentes fibres optiques, on réalise une virole mécanique qui est reprise par électroérosion ou étincelage numérique à fil, et dont les dimensions et la forme sont adaptées à l'agencement recherché. Elle comprend en outre, à sa périphérie, une fente 70, par exemple d'une largeur de 100 microns environ, qui est traversée par une vis micrométrique 72. Par élargissement de la fente 70 au moyen de la vis micrαmé trique 72, on obtient une augmentation du périmètre encerclé par la virole 20, ce qui permet d'y introduire les différentes fibres optiques. Ces dernières sont ensuite encollées, puis la fente 70 est resserrée au moyen de la vis micromé¬ trique 72 et la virole est bloquée en position de rétrεint. On réalise ensuite un polissage collectif de l'ensemble optique ainsi obtenu. Referring now to FIG. 3 schematically representing a housing or a ferrule 20 for assembling the ends of nine optical fibers 18 into a 3 × 3 square matrix. Knowing the mean outside diameter of the various optical fibers, a mechanical ferrule is produced which is taken up by EDM or digital wire sparking, the dimensions and shape of which are adapted to the desired arrangement. It further comprises, at its periphery, a slot 70, for example with a width of approximately 100 microns, which is crossed by a micrometric screw 72. By enlarging the slot 70 by means of the micrometric screw 72, one obtains an increase in the perimeter surrounded by the ferrule 20, which makes it possible to introduce the various optical fibers into it. The latter are then glued, then the slot 70 is tightened by means of the micrometric screw 72 and the ferrule is locked in the retracted position. A collective polishing of the optical assembly thus obtained is then carried out.

Claims

REVENDICATIONS
1. Dispositif opto-électronique pour la détermination de la distance et de la forme d'un objet, comprenant plusieurs sources de lumières (10) émettant chacune des faisceaux lumineux en direction de l'objet (24), des moyens (38, 12) d'activation séquentielle des sources de lumières (10), un récepteur (28) recevant sur sa surface un faisceau lumineux (34) réfléchi ou diffusé par l'objet (24), des moyens (36, 38) de détermination de la position du point d'impact I de ce faisceau sur la surface du récepteur (28), et des moyens (38) de calcul par triangulation de la distance, de l'orientation et de la forme de l'objet (24), caractérisé en ce que, pour diminuer l'encombrement et augmenter la profondeur de champ, il comprend des moyens (18) associés aux sources de lumière (10) pour transformer les faisceaux lumineux qu'elles émettent en faisceaux (22) voisins les uns des autres et qui sont parallèles ou faiblement divergents, l'axe optique (32) du récepteur (28) étant orienté en oblique sur l'axe optique de l'ensemble des faisceaux lumineux cylindriques voisins (22).1. Opto-electronic device for determining the distance and the shape of an object, comprising several light sources (10) each emitting light beams towards the object (24), means (38, 12 ) sequential activation of the light sources (10), a receiver (28) receiving on its surface a light beam (34) reflected or scattered by the object (24), means (36, 38) for determining the position of the point of impact I of this beam on the surface of the receiver (28), and means (38) of calculation by triangulation of the distance, the orientation and the shape of the object (24), characterized in that, in order to reduce the bulk and increase the depth of field, it comprises means (18) associated with the light sources (10) for transforming the light beams which they emit into beams (22) which are close to each other and which are parallel or slightly divergent, the optical axis (32) of the receiver (28) being oriented inclined obliquely on the optical axis of all of the neighboring cylindrical light beams (22).
2. Dispositif selon la revendication 1, caractérisé en ce que les faisceaux (22) sont sensiblement cylindriques.2. Device according to claim 1, characterized in that the beams (22) are substantially cylindrical.
3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que les moyens (18) précités comprennent un faisceau de fibres optiques, dont les extrémités d'entrée sont associées chacune à une source de lumière (10) et dont les extrémités de sortie sont rassemblées selon une disposition prédé¬ terminée, par exemple matricielle en rangées et colonnes.3. Device according to claim 1 or 2, characterized in that the above-mentioned means (18) comprise a bundle of optical fibers, the inlet ends of which are each associated with a light source (10) and the outlet ends of which are gathered according to a predefined arrangement, for example matrix in rows and columns.
4. Dispositif selon la revendication 3, caractérisé en ce qu'une optique de focalisation (26), agissant sur la cylindricité de chaque faisceau et sur la divergence de l'ensemble des faisceaux lumineux cylindriques (22) est associée aux extrémités de sortie des fibres-optiques (18).4. Device according to claim 3, characterized in that a focusing optic (26), acting on the cylindricity of each beam and on the divergence of all of the cylindrical light beams (22) is associated with the output ends of the fiber optics (18).
5. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les sources de lumière (10) sont des diodes électroluminescentes.5. Device according to one of the preceding claims, characterized in that the light sources (10) are light emitting diodes.
6. Dispositif selon la revendication 5, caractérisé en ce que les diodes électroluminescente sont des diodes lasers (10).6. Device according to claim 5, characterized in that the light-emitting diodes are laser diodes (10).
7. Dispositif selon la revendication 6, caractérisé en ce qu'un moyen optique de focalisation (14), tel qu'un tronçon de fibre optique à gradient d'indice, est interposé entre chaque diode laser (10) et l'extrémité d'entrée de la fibre optique (13) correspondante.7. Device according to claim 6, characterized in that an optical focusing means (14), such as a section of optical fiber with index gradient, is interposed between each laser diode (10) and the end d 'Entrance of the corresponding optical fiber (13).
8. Dispositif selon la revendication 7, caractérisé en ce que le moyen optique de focalisation (14) est fixé, par exemple par collage, sur la diode laser correspondante (10) et est relié à l'extrémité de la fibre optique (18) correspondante par un connecteur réglable (16).8. Device according to claim 7, characterized in that the optical focusing means (14) is fixed, for example by gluing, on the corresponding laser diode (10) and is connected to the end of the optical fiber (18) corresponding by an adjustable connector (16).
9. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le récepteur précité est un capteur photosensible analogique (28), tel par exemple qu'une diode PIN.9. Device according to one of the preceding claims, characterized in that the aforementioned receiver is an analog photosensitive sensor (28), such as for example a PIN diode.
10. Dispositif selon la revendication 9, caractérisé en ce que le capteur (28) est du type monodimensionnel.10. Device according to claim 9, characterized in that the sensor (28) is of the one-dimensional type.
11. Dispositif selon l'une des revendications 6 à 10, caractérisé en ce que la puissance d'émission des diodes laser (10) est asservie à l'intensité d'un signal de sortie du capteur (28), pour éviter la saturation de ce capteur.11. Device according to one of claims 6 to 10, characterized in that the emission power of the laser diodes (10) is controlled by the intensity of an output signal from the sensor (28), to avoid saturation of this sensor.
12. Dispositif selon la revendication 3, caractérisé en ce que les extrémités de sortie des fibres optiques (18) sont maintenues assemblées entre elles par une virole (20), dont la périphérie présente une fente (70) traversée par une vis micrométrique (72) permettant son expansion pour le montage et l'assemblage des extrémités des fibres, et son resserrement pour le maintien des fibres dans une configuration déterminée. 12. Device according to claim 3, characterized in that the outlet ends of the optical fibers (18) are held assembled together by a ferrule (20), the periphery of which has a slot (70) through which a micrometric screw (72) ) allowing its expansion for mounting and assembling the ends of the fibers, and its tightening for maintaining the fibers in a given configuration.
13. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il est associé à un élément mobile, par exemple l'organe terminal d'un robot, pour son guidage vers un objet par commande en boucle fermée.13. Device according to one of the preceding claims, characterized in that it is associated with a mobile element, for example the terminal member of a robot, for its guidance towards an object by closed-loop control.
14. Dispositif selon la revendication 13, caractérisé en ce que les extrémités de sortie des fibres optiques (18), le récepteur (28) et leurs moyens optiques de focalisation (26, 30) sont montés sur cet élément mobile, tandis que les sources de lumière (10), leur circuit de commande et d'alimentation (12) et les moyens de calcul (38) sont disposés en des points fixes. 14. Device according to claim 13, characterized in that the output ends of the optical fibers (18), the receiver (28) and their optical focusing means (26, 30) are mounted on this mobile element, while the sources light (10), their control and supply circuit (12) and the calculation means (38) are arranged at fixed points.
PCT/FR1987/000225 1986-06-18 1987-06-17 Opto-electronic device for determining the distance and the shape of an object WO1987007942A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8608816A FR2600412A1 (en) 1986-06-18 1986-06-18 OPTO-ELECTRONIC DEVICE FOR DETERMINING THE DISTANCE AND SHAPE OF AN OBJECT
FR86/08816 1986-06-18

Publications (1)

Publication Number Publication Date
WO1987007942A1 true WO1987007942A1 (en) 1987-12-30

Family

ID=9336463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1987/000225 WO1987007942A1 (en) 1986-06-18 1987-06-17 Opto-electronic device for determining the distance and the shape of an object

Country Status (3)

Country Link
EP (1) EP0270627A1 (en)
FR (1) FR2600412A1 (en)
WO (1) WO1987007942A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019196135A1 (en) * 2018-04-11 2019-10-17 无锡流深光电科技有限公司 Laser radar system and laser ranging method
WO2022140096A1 (en) * 2020-12-22 2022-06-30 Nottingham-Spirk Design Associates, Inc. Anti-backlash bait cast fishing reel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2399000A1 (en) * 1977-07-27 1979-02-23 Sagem Opto-electronic scanning system - uses dielectric light guides to analyse scanned surface in visible IR or UV ranges
DE3151800A1 (en) * 1981-02-23 1982-09-09 Hitachi, Ltd. ARRANGEMENT FOR DETERMINING THE LOCATION OF A WORKPIECE
FR2508160A1 (en) * 1981-06-23 1982-12-24 Cilas DEVICE FOR DETERMINING THE POSITION OF AN OBJECT
EP0163347A1 (en) * 1984-05-23 1985-12-04 N.V. Optische Industrie "De Oude Delft" Measuring system for contactless measuring the distance between a predetermined point of an object surface and a reference level

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104803A (en) * 1980-12-20 1982-06-30 Anritsu Corp Displacement measuring apparatus
JPS5973712A (en) * 1982-10-20 1984-04-26 Canon Inc Flatness measuring device
JPS60222705A (en) * 1984-04-19 1985-11-07 Matsushita Electric Ind Co Ltd Optical type distance measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2399000A1 (en) * 1977-07-27 1979-02-23 Sagem Opto-electronic scanning system - uses dielectric light guides to analyse scanned surface in visible IR or UV ranges
DE3151800A1 (en) * 1981-02-23 1982-09-09 Hitachi, Ltd. ARRANGEMENT FOR DETERMINING THE LOCATION OF A WORKPIECE
FR2508160A1 (en) * 1981-06-23 1982-12-24 Cilas DEVICE FOR DETERMINING THE POSITION OF AN OBJECT
EP0163347A1 (en) * 1984-05-23 1985-12-04 N.V. Optische Industrie "De Oude Delft" Measuring system for contactless measuring the distance between a predetermined point of an object surface and a reference level

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Volume 10, No. 86 (P-443)(2143), 4 Avril 1986, voir le document en entier; & JP,A,60 222 705 (Matsushita Denki Sangyo K.K.) 7 Novembre 1985 *
PATENT ABSTRACTS OF JAPAN, Volume 6, No. 195 (P-146)(1073) 5 Octobre 1982 voir le document en entier; & JP,A,57 104 803 (Anritsu Denki K.K.) 30 Juin 1982. *
PATENT ABSTRACTS OF JAPAN, Volume 8, No. 183, (P-296)(1620) 23 Aout 1984, voir le document en entier; & JP,A,59 073 712 (Canon K.K.) 26 Avril 1984. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019196135A1 (en) * 2018-04-11 2019-10-17 无锡流深光电科技有限公司 Laser radar system and laser ranging method
WO2022140096A1 (en) * 2020-12-22 2022-06-30 Nottingham-Spirk Design Associates, Inc. Anti-backlash bait cast fishing reel

Also Published As

Publication number Publication date
FR2600412A1 (en) 1987-12-24
EP0270627A1 (en) 1988-06-15

Similar Documents

Publication Publication Date Title
EP1209441B1 (en) Three-dimensional shape-measuring instrument with laser scanner
FR2508160A1 (en) DEVICE FOR DETERMINING THE POSITION OF AN OBJECT
FR2878337A1 (en) LASER DISTANCE MEASURING DEVICE
FR2763699A1 (en) OPTOELECTRONIC DETECTOR
EP0159210A1 (en) Optical device for surface proximity detection and its application to the retrieval of a surface profile
WO2002095475A1 (en) Method and device for measurement by extended chromatism confocal imaging
EP0419320A1 (en) Automatic harmonizing device for an opto-electronic system
WO2012089957A1 (en) Device for detecting an angular direction in which an object is located
EP0034772B1 (en) Device for determining the angular position of a target illuminated by light pulses
EP0702246B1 (en) Portable device for measuring the backscattering of light
CA2220940C (en) Device for determining phase faults in electromagnetic waves
WO1987007942A1 (en) Opto-electronic device for determining the distance and the shape of an object
FR2505505A1 (en) Laser detecting and neutralising enemy tank optical system - uses optical system with aligning mirror to control beam elevation and bearing
EP1763684B1 (en) Optical device for measuring displacement velocity of a first movable element with respect to a second element
FR2548796A1 (en) OPTICAL DEVICE FOR DETERMINING THE POSITION AND SHAPE OF THE SURFACE OF AN OBJECT
FR2554244A1 (en) Back-scattered radiation proximity detector for use especially in remote handling or robotics and associated processing system
EP0669525A2 (en) Interferometrical system for detecting and localising reflective defects of light guide structures
FR2606522A1 (en) OPTICAL PHOTOELECTRIC FOCUSING DEVICE AND METHOD, PARTICULARLY FOR MICROSCOPES OF SURGICAL OPERATIONS
WO1986000697A1 (en) Method and device for determining the position of a movable member by means of elements having variable optical properties
EP0562924B1 (en) Device for measuring the speed of a moving object
EP0528702B1 (en) Imaging system with integrated wear measurement of his optical elements working in transmission and optronic imaging equipment comprising such an imaging system
CH629299A5 (en) DEVICE FOR DETERMINING THE QUALITY OF THE POLISH OF OPTICAL SURFACES.
FR3065082B1 (en) DEVICE FOR ACQUIRING DATA ON A TARGET, PLATFORM AND METHOD THEREOF
FR2525339A1 (en) Laser missile acquisition system for guidance control - uses computer to calculate laser beam pointing direction from missile and target position datA
EP0591911B1 (en) Interferometer comprising an integrated arrangement and a reflecting part which are separated from each other by a measurement zone

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1987903888

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1987903888

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1987903888

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1987903888

Country of ref document: EP