WO1987007602A2 - N-(5-substituted methylene) phenyl herbicides - Google Patents

N-(5-substituted methylene) phenyl herbicides Download PDF

Info

Publication number
WO1987007602A2
WO1987007602A2 PCT/EP1987/000279 EP8700279W WO8707602A2 WO 1987007602 A2 WO1987007602 A2 WO 1987007602A2 EP 8700279 W EP8700279 W EP 8700279W WO 8707602 A2 WO8707602 A2 WO 8707602A2
Authority
WO
WIPO (PCT)
Prior art keywords
sep
phenyl
alkyl
substituted
compound according
Prior art date
Application number
PCT/EP1987/000279
Other languages
French (fr)
Other versions
WO1987007602A3 (en
Inventor
Thomas Neil Wheeler
Robert Benton Morland
Todd Alexander Craig
Original Assignee
Rhone-Poulenc Agrochimie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone-Poulenc Agrochimie filed Critical Rhone-Poulenc Agrochimie
Publication of WO1987007602A2 publication Critical patent/WO1987007602A2/en
Publication of WO1987007602A3 publication Critical patent/WO1987007602A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/48Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/46Iso-indoles; Hydrogenated iso-indoles with an oxygen atom in position 1
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/16Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
    • C07D295/18Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms by radicals derived from carboxylic acids, or sulfur or nitrogen analogues thereof
    • C07D295/182Radicals derived from carboxylic acids
    • C07D295/185Radicals derived from carboxylic acids from aliphatic carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/12Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains three hetero rings
    • C07D493/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/5537Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom the heteroring containing the structure -C(=O)-N-C(=O)- (both carbon atoms belong to the heteroring)

Abstract

Aniline herbicides of formula (I), wherein R1 and R2 are hydrogen, halogen, alkyl, alkoxy or trifluoromethyl, phenoxy or benzyloxy, R3 and R4 are hydrogen, alkyl, alkenyl, alkynyl or halogen, Y represents hydrogen, halogen, cyano, nitrate, alkyl, alkenyl, alkynyl and various other substituents and Z is a heterocyclic group attached to the phenyl ring via a nitrogen atom which forms part of the ring system, or a carbocyclic or heterocyclic group attached via a nitrogen atom which does not form part of the ring system, exhibit excellent pre-emergent control of broadleaf weeds and grasses at rates as low as 0.25 lb/A with good safety to soybeans, cotton, corn and wheat. In post-emergent treatments these compounds show excellent and rapid control of broadleaf weeds with low (0-20 %) injury to soybeans, corn, wheat, and rice at rates as low as 0.015 lb/A. The compounds of this invention afford improved crop safety and control of grassy weeds. Novel aniline intermediates are used to make the anilides.

Description


  
 



   N-(5-SUBSTITUTED METHYLENE) PHENYL HERBICIDES
FIELD OF THE INVENTION
 This invention relates to novel
N-(5-substituted methylene) phenyl anilide compounds which exhibit herbicidal activity, and in particular exhibit excellent broadleaf weed and grass control.



     BACKGROUND    OF THE INVENTION
   N-aryl-3,4,5,6-tetrahydrophthalimides    are known to be useful as herbicides. See, for example,
U.S. Patent 4,001,272 and Japanese published patent application J54019-965, published July 12, 1977.



  Herbicidal tetrahydrophthalimides substituted at the
C5 position on the aryl ring is substituted by, among others, alkoxy, amino, carboxyl, or thio functions   iare    disclosed, for example, in European published patent applications 061741 published
October 6, 1982 (Sumitomo), 049508 published April 14, 1982 (Mitsubishi), 077938 published May 4, 1983 (Mitsubishi), 083055 published July 6, 1983 (Sumitomo), 126419 published November 28, 1984 (Sumitomo), and Japanese application J9155358 published September 4, 1984 (Sumitomo).



   European published patent application 0068822 discloses the following compound:
EMI1.1     
     SUMMARY    OF THE INVENTION
 In its broad aspect the invention relates to novel anilide compounds, herbicidal compositions containing the same, and processes for their preparation and use. The compounds of this invention can be represented by the following generic formula:
EMI2.1     
 wherein the various substituents are defined hereinafter.



  DETAILED DISCUSSION OF THE INVENTION
 This invention relates to novel
N-(5-substituted methylene) phenyl herbicides of the formula
EMI2.2     
  wherein:
 R1 and R2 are independently:
 hydrogen   halogen, (C1-C3)    alkyl, (C1-C3) alkoxy, trifluoromethyl,
   ghenoxy    or benzyloxy wherein the phenyl ring of either may be substituted by halogen, (C1-C3) alkyl, lower (C1-C3) alkoxy, cyano1 nitro, alkylthio, or haloalkyl groups:
 R3 and R4 are independently hydrogen,
C1-C8 alkyl, alkenyl, or alkynyl, or halogen;
 Y contains not more than 10 aliphatic carbon atoms and is:

  :
 hydrogen, halogen, cyano, nitrate,
   c1-C8    alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, cycloalkyl alkyl, cycloalkenyl alkyl1
 hydroxy, alkoxy, alkenyloxy, alkynyloxy, cycloalkyloxy, cycloalkyl alkoxy, cycloalkenyloxy, hydroxyalkyl, alkoxyalkyl, alkenyloxyalkyl, alkynyloxyalkyl, cycloalkyloxyalkyl,
 C1-C8 alkylthio, alkenylthio, alkynylthio, cycloalkylthio, cycloalkenylthio, alkylthioalkyl, alkenylthioalkyl, alkynylthioalkyl,
 phenyl, phenoxy, or phenylthio, wherein the phenyl ring of each may be substituted by one or more halogen, lower alkyl, lower alkoxy, cyano, nitro, alkythio, or haloalkyl groups,
 alkoxycarbonyl, cycloalkyloxycarbonyl,   alkenyloxycarbonyl,    alkynyloxycarbonyl, alkoxycarbonylalkoxy, cycloalkyloxycarbonylalkoxy alkenyloxycarbonylalkoxy, alkynyloxycarbonylalkoxy,  alkoxycarbonyloxy, cycloalkyloxycarbonyloxy,

   alkenyloxycarbonyloxy, alkynyloxycarbonyloxy, alkylcarbonyl, cycloalkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, alkylcarbonyloxy, cycloalkylcarbonyloxy, alkenylcarbonyloxy, alkynylcarbonyloxy, alkylcarbonylalkoxy, cycloalkylcarbonylalkoxy, alkenylcarbonylalkoxy, alkynylcarbonylalkoxy, alkylcarbonylalkyl, alkenylcarbonylalkyl, alkynylcarbonylalkyl, cycloalkylcarbonylalkyl, alkoxycarbonylalkyl,   alkenyloxycarbonylalkyl,    alkynyloxycarbonylalkyl, cycloalkyloxycarbonylalkyl, alkylcarbonyloxyalkyl, alkenylcarbonyloxyalkyl, alkynylcarbonyloxyalkyl, cycloalkylcarbonyloxyalkyl, alkoxycarbonyloxyalkyl, alkenyloxycarbonyloxyalkyl, alkynyloxycarbonyloxyalkyl, cycloalkyloxycarbonyloxyalkyl, alkoxycarbonylalkylcarbonyloxy,
 haloalkylcarbonyloxy,
 haloalkoxy, alkoxyalkoxy, cyanoalkoxy,
 phenylcarbonyloxy, phenoxycarbonyloxy,   phenylcarbonyalkoxy,

   phenoxy carbonylalkoxy    phenylcarbonylalkylthio, phenoxycarbonylalkylthio wherein the phenyl ring of each may be substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro, alkylthio, or haloalkyl groups,
 -alkoxycarbonylalkylthio,   alkenyloxycarbonylalkylthio,    alkynyloxycarbonylalkylthio,   cycloalkyloxycarbonylalkylthio,    alkylcarbonylalkylthio, alkenylcarbonylalkylthio, alkynylcarbonylalkylthio, cycloalkylcarbonylalkylthio,  
 alkylthioalkoxy,
 alkoxyalkylthio,
 alkylthioalkylthio,
 haloalkylthio,
 alkylsulfinyl, alkenylsulfinyl, alkynylsulfinyl,   cycloalkylsulfiny;

  ;    phenylsulfinyl, phenylsulfinyl substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro, alkylthio, or haloalkyl groups,
 alkylsulfonyl, alkenylsulfonyl, alkynylsulfonyl, cycloalkylsulfonyl, phenylsulfonyl, phenylsulfonyl substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro, alkylthio or haloalkyl groups,
 alkoxycarbonylalkylsulfinyl, alkenyloxycarbonylalkylsulfinyl, alkynyloxycarbonylalkylsulfinyl,   cycloalkyloxycarbonylalkylsulfinyl,    alkylcarbonylalkylsulfinyl, alkenylcarbonylalkylsulfinyl, alkynylcarbonylalkylsulfinyl,   cycloalkylcarbonyldlkylsulfinyl,   
 alkoxycarbonylalkylsulfonyl, alkenyloxycarbonylalkylsulfonyl,   alkynyloxycarbonylalkylsulfonyl,    cycloalkyloxycarbonylalkylsulfonyl, alkylcarbonylalkylsulfonyl, alkenylcarbonylalkylsulfonyl,

   alkynylcarbonylalkylsulfonyl,   cycloalkylcarbonylalkylsulfonyl,    alkylthiocarbonyl
EMI5.1     
 alkenylthiocarbonyl, alkynylthiocarbonyl,  cycloalkylthiocarbonyl,   phenylthiocarbonyl,      phenylthiocarbonyl    substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro, alkylthio, or haloalkyl groups3 alkylthiocarbonyloxy
EMI6.1     
 alkenylthiocarbonyloxy, alkynylthiocarbonyloxy, cycloalkylthiocarbonyloxy,   phenylthiocarbonyloxy,      phenyltiliocarbonyloxy    substituted by halogen, lower alkyl, lower alkoxy,cyano, nitro, alkylthio, or haloalkyl groups, alkylthiocarbonyloxyalkyl
EMI6.2     
 alkenylthiocarbonyloxyalkyl, alkynylthiocarbonyloxyalkyl,   cycloalkylthiocarbonyloxyalkyl,    phenylthiocarbonyloxyalkyl,

   phenylthiocarbonyloxyalkyl wherein the phenyl ring is substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro, alkylthio, or haloalkyl groups,
 amino, aminocarbonyl, aminocarbonyloxy, aminothiocarbonyloxy, aminocarbonylalkoxy, aminocarbonyloxyalkyl, aminothiocarbonyloxyalkyl or aminocarbonylalkylthio wherein:

  :
 (a) the amino group of each may be substituted by up to 2 substituents independently selected from alkyl, haloalkyl, alkenyl3 alkynyl, cycloalkyl, cycloalkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkenyloxyalkyl, alkynyloxyalkyl, phenyl, or phenyl substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro, alkylthio3 or haloalkyl groups, or  
 (b) the amino group has two substituents which, together with the amino nitrogen, form a 5 or 6 membered heterocyclic ring containing from 0-3 additional heteroatoms selected in any combination from the group consisting of oxygen, nitrogen, and sulfur,
 aminocarbonylalkylamino wherein the amino groups may be independently substituted by 0-2 alkyl, alkenyl3 alkynyl, cycloalkyl, alkoxyalkyl, phenyl or phenyl substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro,

   alkylthio or haloalkyl groups,
 aminocarbonylalkylamino wherein the terminal amino group has two substituents which, together with the terminal amino nitrogen, jointly form a 5 or 6 membered ring containing from 0-3 additional heteroatoms selected in any combination from the group consisting of oxygen, nitrogen and sulfur.

 

   alkylcarbonylalkylamino, alkoxycarbonylalkylamino, phenylcarbonylalkylamino, and   phenoxycarbonylalkylamino    wherein the amino group of each may be substituted by an alkyl, alkenyl, alkynyl, cycloalkyl, alkoxyalkyl, phenyl or phenyl substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro, alkylthio, or haloalkyl groups,
 phenoxycarbonylalkylamino wherein the amino group is substituted by 0-1 alkyl, alkenyl, alkynyl, cycloalkyl, alkoxyalkyl, phenyl, or phenyl substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro, alkylthio3 or haloalkyl groups, and the phenoxy group is substituted by halogen, lower  alkyl, lower alkoxy, cyano3 nitro, alkylthio or haloalkyl groups3
   alkoxycarbonylalkylaminocarbonyl    wherein the amino group may be substituted by an alkyl, alkenyl, alkynyl, cycloalkyl, alkoxyalkyl,

   phenyl or phenyl substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro, alkylthio or haloalkyl groups3
 oximino,
 alkoxycarbonyloximino,    alkoxycarbonyloximinocarbonyl,   
 any five or six-membered heterocycle containing from one to three oxygen, nitrogen, or sulfur atoms,
 any of the following functional groups:
EMI8.1     
  
EMI9.1     
  
EMI10.1     

 or - 0 - glycoside wherein:

  :
 R5 is C1-C6 alkyl, cycloalkyl, alkenyl, alkynyl, or cycloalkenyl;
   R 6    and R7 are independently hydrogen,
C1-C6 alkyl, cycloalkyl, alkenyl, alkynyl, cycloalkenyl, phenyl or phenyl substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro, alkylthio, or haloalkyl groups ;
 R8 and   Rg    are hydrogen, C1-C6 alkyl, cycloalkyl, alkenyl, alkynyl, or cycloalkenyl;
 n is an integer from 1-4;
   O    is an alkali metal or alkaline earth metal cation (e.g. Na+, K+, Ca+2 or a cation derived from an inorganic or organic base, e.g.



  NH+4, Et3NH, or pyridinium;
 X is an anion preferably derived from a strong acid, e.g. halogen, sulfate3 or hydroxide;
   R10    is   C1-C6    alkyl, cycloalkyl, alkenyl, or cycloalkenyl;
   -o-glycoside    is any sugar moiety bonded to the   C5    methylene through a glycosidic linkage wherein the sugar is in the free hydroxyl form,  
EMI11.1     
 or wherein the sugar has free hydroxyls which are bonded to protecting groups such as isopropylidene moieties, e.g.
EMI11.2     




   Z is a heterocyclic ring system attached to the phenyl ring through a nitrogen atom which also forms part of the ring system, or a carbocyclic or heterocyclic ring system attached to the phenyl ring through a nitrogen atom which does not form a part of the ring system.



   In the above formula, when R1 and/or R2 are halogen, fluorine, chlorine, and bromine are preferred.



   In the present specification, unless otherwise specified, aliphatic and cycloaliphatic groups preferably contain less than 10 carbon atoms.



   In the above formula, Z can, for example,
 be a heterocyclic ring system which contains only
 one ring heteroatom, the nitrogen atom which  attaches the ring system to the phenyl ring.



  Examples include the following:
EMI12.1     

 Z can also contain two ring heteroatoms which are the same, such as
EMI12.2     
  
EMI13.1     
 three ring heteroatoms which are the same, such as
EMI13.2     
  
EMI14.1     
 or two or more ring heteroatoms which differ, such as
EMI14.2     

 Z can also be a carbocyclic ring system which is attached to the phenyl ring through an amide or thioamide nitrogen atom (which does not form part of the ring system) such as
EMI14.3     
  or a heterocyclic ring which is attached to the phenyl ring through a nitrogen atom which does not form part of the ring, such as
EMI15.1     

 In the above examples for Z:
 A and A' are independently oxygen, sulfur, or NR.



   B and D are independently oxygen, sulfur or -NR wherein R is as hereinafter defined;
 E is halogen, hydroxy, alkylcarbonyloxy,   alkoxycarb,onyloxy,    alkylcarbonylthio, alkoxycarbonylthio, alkoxy, alkenyloxy, alkynyloxy, amino, alkylamino, dialkylamino, mercapto,   alkylthio, -alkenylthio,    alkylsulfinyl, or alkylsulfonyl with the proviso that E may contain no more than 10 carbon atoms;
 G is oxygen, nitrogen, or sulfur in any of its oxidation states;
 J is:
 hydroxy or salts derived therefrom (e.g.



  salts with alkali and alkaline earth counterions such as Na+,   K+,    or Ca+2 and salts with organio counterions such as (C2H5)3NH, pyridinium, NH4, etc.);
 alkoxy, alkenyloxy, alkynyloxy, cycloalkyloxy, cycloalkenyloxy,  
 phenoxy, phenoxy substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro, alkylthio, or haloalkyl groups,
 amino, alkylamino, dialkylamino, alkenylamino, dialkenylamino, alkynylamino morpholino, pyrrolidino, hydrazino, alkylhydrazino, unsymmetrical   dialkylhydrazino,    phenylhydrazino, phenylhydrazino wherein the phenyl ring is substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro, alkylthio, or haloalkyl groups3
 cycloalkylamino, benzylamino, benzylamino wherein the phenyl ring is substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro, alkylthio, or haloalkyl groups;

  ;
 with the proviso that J may not contain more than 10 aliphatic carbon atoms;
 R,   R11-R163      R18      R191    and R21   -    R29 are independently hydrogen, alkyl, alkylcarbonyl alkenyl, or alkynyl;
 phenyl which may be substituted by one or more alkyl3 cyano, halogen, nitro, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, or dialkylamino substituents,
 with the proviso that R,   R11    -   R163   
R18,   R193    and R21 - R29 contain not more than 10 aliphatic carbon atoms;
 and wherein:

  :
 R28 may also be   C1-C10    alkylthio, alkoxy or mono- or dialkylamino;
 R17 is   C1-C10    alkyl, alkenyl, alkynyl, or cycloalkyl;
 R20 is   -CO2R1    where R1 is lower (C1-C3) alkyl;and  
 n is an integer from 0 to 2.

 

   In the above generic formula, when R1 is hydrogen, R2 is chlorine, and   R3    and R4 are hydrogen, then Y cannot be cyanomethyl.



   The invention also relates to the following novel intermediates used in the synthesis of these herbicides:
EMI17.1     
 wherein R1, R2,   Rz,    R4 and Y are as defined above.



   The invention further relates to novel syntheses of the above intermediates.



   In post-emergent applications the compounds of this invention have shown excellent broadleaf weed control at very low rates (as low as 0.015   lb/A)    with good selectivity on important crops, e.g.



  soybeans, corn, wheat, and rice. In post-emergent treatments the compounds of this invention require considerably higher rates ( > 1.0 lb/A) for effective control of grassy weeds. At these higher  rates (1.0 lb/A and above) the compounds of this invention may be used as non-selective total vegetation herbicides
 The compounds of this invention also exhibit excellent pre-emergent control of broadleaf and grassy weeds, albeit at higher application rates (0.25-1.0 lb/A) than the rates required for post-emergent broadleaf weed control. When these compounds are applied by pre-emergent treatment, they are relatively safe to soybeans, cotton, corn, wheat, and other crops. A significant advantage of the compounds of this invention is that they provide control of both broadleaf and grassy weeds.

  Thus by using the compounds of this invention, the farmer can avoid the use of expensive tank mixes of two or more herbicides.



   The C5-substituted methylene anilide herbicides of this invention are illustrated by the following examples shown in Charts A-F, which examples are not to be taken as limiting.  



  Chart A
EMI19.1     


<tb>  <SEP> A <SEP> Rr
<tb>  <SEP> A' <SEP> R <SEP> F? <SEP> R <SEP> R4 <SEP> Y
<tb>  <SEP> 1 <SEP> 2, <SEP> 3 <SEP> 4
<tb>  <SEP> CjH3
<tb> O <SEP> O <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> KCHCH2CH3
<tb> O <SEP> O <SEP> F <SEP> C <SEP> 1 <SEP> H <SEP> H
<tb> o <SEP> o <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> zOCH2C(CH3)3
<tb>  <SEP> CH3
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH2C--CH2
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> ZCH2CH(CH3)2
<tb>  <SEP> C}i3
<tb> 0 <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH-CCH
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> 3 <SEP> 2 <SEP> C=CH
<tb>  <SEP> 32
<tb> 0 <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH2CH=CH < :

  :H=CH2
<tb>   
Chart A (continued)
EMI20.1     


<tb> A <SEP> A' <SEP> R1 <SEP> R2 <SEP> R3 <SEP> 4
<tb>  <SEP> 3 <SEP> 2 <SEP> 3 <SEP> 4
<tb> O <SEP> O <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> OCH
<tb>  <SEP> L
<tb> o <SEP> o <SEP> F <SEP> Cl <SEP> H <SEP> H
<tb> o <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> tCI
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> H3
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> CH2CH=CH2
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -CH <SEP> CH
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> tThi
<tb>   
Chart A (continued)
EMI21.1     


<tb> A <SEP> A' <SEP> R1 <SEP> R2 <SEP> R3- <SEP> ¯ <SEP> ¯
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> F3
<tb> o <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> SC(CH3)3
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> 

   SCH2CCH
<tb> o <SEP> o <SEP> F <SEP> C1 <SEP> H <SEP> H
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> (CH(CH3 <SEP> ) <SEP> 212
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -N(CH3 <SEP> )2
<tb>  <SEP> CH
<tb> 0 <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -N-CH2CH3
<tb>   
Chart A (continued)
EMI22.1     


<tb> A <SEP> R <SEP> l <SEP> R2 <SEP> R3 <SEP> 4
<tb>  <SEP> 1 <SEP> 2 <SEP> 3 <SEP> 4
<tb>  <SEP> ,CH3
<tb> 0 <SEP> O <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> --CH2CH
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> çHOcI
<tb> O <SEP> o <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> OCH2COCH(CH3 <SEP> 52
<tb>  <SEP> C,H3
<tb> 0 <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> OCH8-OCH3
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> OC(CH3 <SEP> )2Ce
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -SCH20C"
<tb> 

   O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -S(CH2)3-OCH3
<tb>  <SEP> 9'
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH2C-N(CHJ)2
<tb>  <SEP> 0
<tb> 0 <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH2C-NHoCI
<tb>   
Chart A (continued)
EMI23.1     


<tb>  <SEP> A <SEP> R, <SEP> R1 <SEP> R2 <SEP> R3 <SEP> R4 <SEP> Y
<tb>  <SEP> ¯¯ <SEP> C,H3
<tb>  <SEP> to <SEP> ,CH <SEP> 3
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -SCH2C-N-CH2CH3
<tb>  <SEP> H3
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> II <SEP> H <SEP> -ON3C-CH3
<tb>  <SEP> 1
<tb> O <SEP> O <SEP> F <SEP> Cl <SEP> Ii <SEP> H <SEP> -0H-CCH2CH3
<tb>  <SEP> CH3
<tb> 0 <SEP> O <SEP> F <SEP> Cl <SEP> 1 <SEP> H <SEP> H <SEP> 4;HCH2C <SEP> 1
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -SCH2CH2Cl
<tb> 0 <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> .

  <SEP> CH2C?i2OCH3
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OcH2OCH2CH3
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> N2SCH3
<tb>  <SEP> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH2SCH(CH3 <SEP> )2
<tb>   
Chart A (continued)
EMI24.1     


<tb> A <SEP> A <SEP> ' <SEP> R <SEP> R2 <SEP> R3 <SEP> V
<tb>  <SEP> 1 <SEP> 2 <SEP> 3 <SEP> 4
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -SCH2CH20CH3
<tb> O <SEP> O <SEP> F <SEP> Ci <SEP> H <SEP> H <SEP> -SCH2CH2SCH3
<tb> 0 <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> ZCH2CH2CH2CN
<tb>  <SEP> C
<tb> O <SEP> O <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCHZ-CH(CHJ)
<tb>  <SEP> CI
<tb> 0 <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> OCH2CtCI
<tb> 0 <SEP> O <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> H2C
<tb> O <SEP> o <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -SCH2CH2-CH3
<tb> C <SEP> C <SEP> F <SEP> Cl <SEP> H <SEP> 

   H <SEP> SCH2CH2tt3CI
<tb>  <SEP> ct
<tb> o <SEP> o <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> SCH2CA3°1
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> HCH2COCH2CH3
<tb>   
Chart A (continued)
EMI25.1     


<tb> A <SEP> A' <SEP> R1 <SEP> R2 <SEP> R3 <SEP> t <SEP> Rq <SEP> V
<tb>  <SEP> 1 <SEP> 2 <SEP> 3 <SEP> 4
<tb>  <SEP> ÇH <SEP> 9
<tb> 0 <SEP> O <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -NCH2COCH2CH3
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -8CH2CH3
<tb> O <SEP> O <SEP> F <SEP> , 

   <SEP> C1 <SEP> H <SEP> H <SEP> -S-C?f(C3)2
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -S02CH(CH3)2
<tb>  <SEP> Cl
<tb>  <SEP> C
<tb>  <SEP> II
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H
<tb> O <SEP> O <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -S02
<tb>  <SEP> 0
<tb>  <SEP> S" < H2-oCH2CH3
<tb> O <SEP> O <SEP> F <SEP> Cl <SEP> H <SEP> H
<tb>  <SEP> o
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> ¯502CH2C-OCH2CHa
<tb>  <SEP> o
<tb> 0 <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -NHCx2CH2CH3
<tb>   
Chart A (continued)
EMI26.1     


<tb> A <SEP> r <SEP> A' <SEP> R1 <SEP> R2 <SEP> ¯ <SEP> 4 <SEP> Y¯ <SEP> V
<tb>  <SEP> 1 <SEP> 4
<tb>  <SEP> o
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -N(CH3)CH2C-CH(CH3)2
<tb> o <SEP> o <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -N(CH3)CH2C- <SEP> b
<tb>  <SEP> o
<tb> O <SEP> o <SEP> F <SEP> ,

   <SEP> C1 <SEP> H <SEP> H <SEP> N(CH3)CH2C-N(CH3)2
<tb>  <SEP> ? <SEP> CH3/\
<tb> O <SEP> O <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -N(CH3)CH2C-N- <SEP> 9 <SEP> 1
<tb>  <SEP> o
<tb> 0 <SEP> O <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -CH(OCH3)2
<tb>  <SEP> 0
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> (e CH2cH3)2
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -CH(CN)(CO2CH2CH3)
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -CH(COCH3)(C02CH2CH3)
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -,C(CoCH3)(Co2CH2CH3)
<tb>  <SEP> CH2C=CH
<tb>   
Chart A (continued)
EMI27.1     


<tb> A' <SEP> R1 <SEP> 2 <SEP> 3 <SEP> R <SEP> Y
<tb>  <SEP> L
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -CH(CN)2
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -CC) <SEP> )(CN)2
<tb>  <SEP> 9
<tb> O <SEP> O <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -CH(C-'I)i2)2
<tb>  

   <SEP> 0
<tb> O <SEP> O <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -CHC-(CH3)2J2
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -C(CH3)tC- tCH3)2]2
<tb>  <SEP> e <SEP> 
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -o(CH2)4C02 <SEP> NH4
<tb> O <SEP> O <SEP> F <SEP> Cl <SEP> H <SEP> H
<tb>  <SEP> o <SEP> e
<tb> o <SEP> o <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -N(CH3)3C1
<tb> o <SEP> o <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH2CHCH2
<tb>   
Chart A (continued)
EMI28.1     


<tb> A <SEP> " <SEP> g <SEP> RZ <SEP> R2 <SEP> R3 <SEP> V
<tb>  <SEP> 2 <SEP> 3 <SEP> 4
<tb>  <SEP> 0 <SEP> gCIB
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OtCH2)4N(CH3)3
<tb> O <SEP> O <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> H2CH-CH2
<tb>  <SEP> 6x6
<tb>  <SEP> c2 <SEP> CE43
<tb>  <SEP> QH <SEP> QIJ
<tb> 0 <SEP> O <SEP> Ft <SEP> C1 <SEP> H <SEP> H <SEP> -OCHCH-CHZ
<tb>  <SEP> o <SEP> /on
<tb> 

   o <SEP> o <SEP> F <SEP> C1 <SEP> 11 <SEP> H <SEP> -OCH <SEP> H
<tb>  <SEP> 0
<tb>  <SEP> o;1/CH,
<tb> o <SEP> O <SEP> r <SEP> Cl <SEP> H <SEP> H <SEP> II
<tb>  <SEP> \ <SEP> OtsC}t,
<tb> 9 <SEP> O <SEP> F <SEP> C1
<tb> \oCH <SEP> Lgl <SEP> ZN(CH <SEP> j <SEP> ) <SEP> 
<tb> O <SEP> O <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> 9
<tb>  <SEP> 0e
<tb> o <SEP> o <SEP> f <SEP> CH3 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> O <SEP> O <SEP> F <SEP> ' <SEP> OCH3 <SEP> H <SEP> H <SEP> ¯OCH(CH3)2
<tb>   
Chart A (continued)
EMI29.1     


<tb> A <SEP> R1 <SEP> F?1 <SEP> R2 <SEP> R3 <SEP> R <SEP> Y
<tb> O <SEP> O <SEP> F <SEP> -O- <SEP> O <SEP> CI <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> O <SEP> O <SEP> F <SEP> -C}}2 <SEP> o <SEP> 1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> O <SEP> o <SEP> H <SEP> - <SEP> CH20- <SEP> eI <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> F <SEP> H <SEP> 

   -OCH(CH3)2
<tb> O <SEP> O <SEP> F <SEP> C1 <SEP> F <SEP> F <SEP> -OCH(CH3)2
<tb> o <SEP> o <SEP> F <SEP> Cl <SEP> CH3 <SEP> H <SEP> -OCH(CH3)2
<tb> 0 <SEP> O <SEP> F <SEP> C1 <SEP> CH3 <SEP> CH3 <SEP> - H(CH3)2
<tb> 0 <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> C112C3CH <SEP> - CH(cH3)2
<tb> 0 <SEP> C <SEP> Ii <SEP> C1 <SEP> H <SEP> H
<tb> 0 <SEP> O <SEP> H <SEP> Cl <SEP> H <SEP> H <SEP> -SCH(CH3)2
<tb> O <SEP> O <SEP> H <SEP> C1 <SEP> H <SEP> H <SEP> H2CsCH
<tb> O <SEP> O <SEP> H <SEP> C1 <SEP> H <SEP> H
<tb> O <SEP> O <SEP> H <SEP> C1 <SEP> H <SEP> H <SEP> -oCH23oCH(CH3)2
<tb>   
Chart A (continued)
EMI30.1     


<tb> A <SEP> ' <SEP> R1 <SEP> R2 <SEP> R3 <SEP> V
<tb> S <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb>  <SEP> C
<tb> S <SEP> O <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH22-0 <SEP> 4
<tb> S <SEP> O <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -SCH(CH3)2
<tb> S <SEP> O 

   <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH2CECH
<tb> S <SEP> O <SEP> F <SEP> C1 <SEP> 11 <SEP> H
<tb>  <SEP> CH,
<tb> b <SEP> O <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -CH-C=-CH
<tb> S <SEP> S <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(Ci43)2
<tb> S <SEP> S <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH2I
<tb>  <SEP> S <SEP> S <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -oCH2C-CH
<tb>  <SEP> S <SEP> S <SEP> H <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb>  <SEP> g
<tb>  <SEP> S <SEP> S <SEP> H <SEP> Cl <SEP> H <SEP> H
<tb>   
Chart A (continued)
EMI31.1     


<tb> A <SEP> A' <SEP> F?! <SEP> R2 <SEP> F3 <SEP> V
<tb> S <SEP> S <SEP> H <SEP> C1 <SEP> H <SEP> H <SEP> KCH2CH3
<tb> S <SEP> S <SEP> F <SEP> C1 <SEP> CH3 <SEP> CH3 <SEP> -0CH(CH3)2
<tb> S <SEP> S <SEP> F <SEP> C1 <SEP> F <SEP> F <SEP> -oCH(C113)2
<tb> S <SEP> O <SEP> H <SEP> Itci <SEP> H <SEP> H <SEP> 4:

  :H(CH3)2
<tb> S <SEP> O <SEP> H <SEP> -CH20-CI <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> II <SEP> v <SEP> 11 <SEP> -O <SEP> 5I <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> S <SEP> S <SEP> 1 <SEP> It <SEP> -CH,O-C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb>   
Chart B
EMI32.1     

EMI32.2     


<tb>  <SEP> Z <SEP> Oi <SEP> R2- <SEP> F? <SEP> Rq- <SEP> r
<tb>  <SEP> -3- <SEP> -4
<tb> '· <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> HXH(CH3)2
<tb>  <SEP> 0
<tb>  <SEP> CH, <SEP> O
<tb> OitF <SEP> C1 <SEP> H <SEP> ,,,EO
<tb>  <SEP> ò <SEP> t
<tb>  <SEP> 0
<tb> ÇH,

   <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> H2C=-CH
<tb>  <SEP> t <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> KCH2C¯CH
<tb>  <SEP> o
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH)Z
<tb>  <SEP> J
<tb>  <SEP> o
<tb>  <SEP> C1 <SEP> H <SEP> F <SEP> Cl <SEP> H <SEP> H
<tb>  <SEP> o
<tb>  <SEP> 0
<tb>  <SEP> W?
<tb>  <SEP> X <SEP> ¯ <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb>  <SEP> 0
<tb>   
Chart B (continued)
EMI33.1     


<tb>  <SEP> Z <SEP> R1- <SEP> -R2- <SEP> R3 <SEP> R4¯ <SEP> Y
<tb> CL <SEP> F <SEP> ci <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb>  <SEP> 0
<tb>  <SEP> 0
<tb> F <SEP> F <SEP> Cl <SEP> H <SEP> H
<tb>  <SEP> I'
<tb>  <SEP> 0
<tb>  <SEP> X <SEP> H <SEP> CH20 <SEP> t <SEP> -C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb>  <SEP> 0
<tb>  <SEP> S
<tb>  <SEP> F <SEP> r <SEP> Ci <SEP> H <SEP> H <SEP> H(CH3)2
<tb>  <SEP> C1 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> - CH(CH3)2
<tb>  

   <SEP> X <SEP> F <SEP> Cl <SEP> H <SEP> H
<tb>  <SEP> 0
<tb>  <SEP> S
<tb>  <SEP> O <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCHtCH3)2
<tb>  <SEP> S
<tb>  <SEP> IA- <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> }i(CH3)2
<tb>   
Chart B (continued)
EMI34.1     


<tb>  <SEP> Z <SEP> 2i <SEP> '?2- <SEP> F?3 <SEP> R4 <SEP> Y
<tb>  <SEP> S
<tb>  <SEP> F <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> OCH2CMCH
<tb>  <SEP> J
<tb>  <SEP> S
<tb> Chi
<tb>  <SEP> F <SEP> F <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> cH-t
<tb>  <SEP> 0
<tb>  <SEP> 0
<tb>  <SEP> I- <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH2!
<tb>  <SEP> CH3
<tb>  <SEP> 0
<tb>  <SEP> o
<tb>  <SEP> F <SEP> - <SEP> t <SEP> f <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb>  <SEP> ..
<tb>

 

   <SEP> O
<tb>  <SEP> o
<tb>  <SEP> Cl <SEP> H <SEP> H
<tb>  <SEP> I <SEP> ,e,0
<tb>  <SEP> 0
<tb>  <SEP> 9
<tb>  <SEP> F <SEP> F <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb>  <SEP> S.
<tb>



   <SEP> S'
<tb>  <SEP> t <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb>  <SEP> ll
<tb>  <SEP> S
<tb>  <SEP>  <  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -oCHtCH3)2
<tb>  <SEP> l <SEP> 11 <SEP> t
<tb>  <SEP> CH,
<tb>   
Chart B (continued)
EMI35.1     


<tb>  <SEP> z <SEP> R1- <SEP> R2, <SEP> R3- <SEP> R*¯ <SEP> V
<tb>  <SEP> S
<tb>  <SEP> C <SEP> ¯ <SEP> F <SEP> C1 <SEP> H <SEP> H
<tb>  <SEP> CI
<tb>  <SEP> F <SEP> F <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> OCH(CH3 <SEP> )2
<tb>  <SEP> CI
<tb>  <SEP> gp¯ <SEP> F <SEP> C1 <SEP> H <SEP> H
<tb>  <SEP> H,1
<tb>  <SEP> F <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> OCH(CH3)2
<tb>  <SEP> CHz <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH(C}i3)2
<tb>  <SEP> tS <SEP> k- <SEP> F <SEP> C <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> CH30-C
<tb>  <SEP> ;

  ;5
<tb>  <SEP> CH <SEP>   <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> ZCH220-o
<tb>  <SEP> CH30-C
<tb>  <SEP> 011
<tb>  <SEP> CH, <SEP> 9
<tb>  <SEP> F <SEP> F <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3 <SEP> )2
<tb>  <SEP> CH,O <SEP> Ó
<tb>  <SEP> CHs <SEP> ., 
<tb>  <SEP> F <SEP> cl <SEP> H <SEP> H <SEP> -OCHZ0
<tb>  <SEP> CHFH <SEP> 'ò
<tb>   
Chart B (continued)
EMI36.1     


<tb>  <SEP> Z <SEP> Z <SEP> 1 <SEP> 2 <SEP> 3¯
<tb>  <SEP> CH3 <SEP> 9
<tb>  <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> ZcH(CH3)2
<tb> CHNl <SEP> '6
<tb>  <SEP> CH:

  :
<tb>  <SEP> C <SEP> Hz <SEP> O
<tb>  <SEP> CH, <SEP> cPe- <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> ZCH(CH3)2
<tb>  <SEP> CH3
<tb>  <SEP> C <SEP> Cl <SEP> H <SEP> , ,
<tb>  <SEP> 0
<tb>  <SEP> CH3
<tb>  <SEP> 0
<tb>  <SEP> A'
<tb>  <SEP> CHrN <SEP> N- <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> KCH(CH3 <SEP> )2
<tb>  <SEP> o
<tb>  <SEP> 0
<tb>  <SEP> CIHlA9
<tb>  <SEP> CHr <SEP> C1 <SEP> -N <SEP> N- <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> CH(CH3)2
<tb>  <SEP> CH3 <SEP> c
<tb>  <SEP> o
<tb>  <SEP> CH3
<tb>  <SEP> F <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -CCH(CH3)2
<tb>  <SEP> CH <SEP>  
<tb>  <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> H(CH3)2
<tb>  <SEP> o <SEP> "
<tb>  <SEP> 0
<tb>  <SEP> CH,9
<tb>  <SEP> D <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> ZOCH(CH3)2
<tb>   
Chart B (continued)
EMI37.1     


<tb>  <SEP> Z <SEP> 1 <SEP> 2 <SEP> 3¯ <SEP> 4 <SEP> Y
<tb>  <SEP> 0
<tb>  <SEP> F <SEP> F <SEP> C1 

   <SEP> H <SEP> H <SEP> -OCH(CH3 <SEP> )2
<tb>  <SEP> 0
<tb> CH3 <SEP> C
<tb>  <SEP> I,
<tb>  <SEP> F <SEP> Hs <SEP>   <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -oCH2C+O
<tb>  <SEP> o
<tb> CH, <SEP> S
<tb>  <SEP> F <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> ¯OCH(CH3)2
<tb>  <SEP> S
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)Z
<tb>  <SEP> o
<tb>  <SEP> P9
<tb>  <SEP> ¯ <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> .-CcH(CN3)2
<tb>  <SEP> 00
<tb>  <SEP> 0t¯ <SEP> F <SEP> Cl <SEP> H <SEP> H
<tb>  <SEP> CH, <SEP> 
<tb>  <SEP> Cl <SEP> N-- <SEP> 1:

  :l <SEP> C1 <SEP> H <SEP> H <SEP> CH(CH3)2
<tb>   
Chart B (continued)
EMI38.1     


<tb>  <SEP> z <SEP> -1- <SEP> -F?2- <SEP> -3- <SEP> -4 <SEP> V
<tb>  <  <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> CH,
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> CH(CH)Z
<tb>  <SEP> tt
<tb>  <SEP> 0
<tb>  <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> SCH,
<tb>  <SEP> J- <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> CH(CH3)2
<tb>  <SEP> ll
<tb>  <SEP> o
<tb>  <SEP> N(CH,)2
<tb>  <SEP> 'kl <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH)Z
<tb>  <SEP> 0
<tb>  <SEP> H <SEP> SUCH3
<tb>  <SEP> Cf <SEP> H,
<tb>  <SEP> Cl
<tb>  <SEP> H <SEP> ¯ <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb>  <SEP> 0
<tb>  <SEP> F <SEP> , <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> 4 <SEP> CH(CH3)2
<tb>  <SEP> H
<tb>  <SEP> ,OCH,

   <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH)Z
<tb>  <SEP> o
<tb>   
Chart B (continued)
EMI39.1     


<tb>  <SEP> z <SEP> R1- <SEP> ¯ <SEP> 2- <SEP> ¯ <SEP> 3- <SEP> Rj- <SEP> ¯ <SEP> Y
<tb>   <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> OCH(CH3)2
<tb>  <SEP> CI
<tb> Cff <SEP> O
<tb>  <SEP> F <SEP> F <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb>  <SEP> 0
<tb>  <SEP> 9
<tb>  <SEP> F <SEP> - <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb>  <SEP> SCH,
<tb>  <SEP> SCH3
<tb>  <SEP> ICl <SEP> H <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb>  <SEP> 0
<tb>  <SEP> C <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH)Z
<tb>  <SEP> Ey¯
<tb>  <SEP> tt
<tb>  <SEP> 0
<tb>   
Chart C
EMI40.1     

EMI40.2     


<tb> A <SEP> A <SEP> J <SEP> R1 <SEP> 22 <SEP> R3 <SEP> R4 <SEP> V
<tb>  <SEP> 1 <SEP> -2 <SEP> -3 <SEP> -4
<tb> O <SEP> O <SEP> OCH3 <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> 

   -OCH(CH3)2
<tb> O <SEP> O <SEP> OCH3 <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OC(CH3)3
<tb>  <SEP> 0
<tb> O <SEP> O <SEP> OCH3 <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH22
<tb> 0 <SEP> O <SEP> OCH3 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCHECCH
<tb> O <SEP> O <SEP> -OCH2C-=CH <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb>  <SEP> Cl
<tb> O <SEP> O <SEP> 4 <SEP> Ct <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> 0 <SEP> O <SEP> NH2 <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> o <SEP> o <SEP> -N(CH3)2 <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> O <SEP> O <SEP> -NHCH2C--CH <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> O <SEP> O <SEP> -N <SEP> 9 <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH32
<tb> o <SEP> o <SEP> - <SEP> C <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb>   
Chart C
EMI41.1     


<tb> A <SEP> A' <SEP> J <SEP> R1 <SEP> -2 

   <SEP> RZ <SEP> -4 <SEP> Y
<tb> O <SEP> O <SEP> -NHN(CH3)2 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> O <SEP> o <SEP> -NHNH <SEP> 9 <SEP> Cl <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> o <SEP> o <SEP> -O <SEP> Na <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> O <SEP> O <SEP> OCH3 <SEP> t <SEP> H <SEP> -OCH <SEP> o| <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> O <SEP> O <SEP> OCH3 <SEP> * <SEP> H <SEP> -OCH <SEP> -CCHffCI <SEP> H <SEP> H <SEP> -OCH2C
<tb> S <SEP> S <SEP> OCH3 <SEP> H <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> S <SEP> S <SEP> OCH3 <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> o <SEP> o <SEP> OCH(CH)2 <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -SCH(CH3)2
<tb> o <SEP> o <SEP> OC(CH3)3 <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> o <SEP> o <SEP> -NHCH(CH3)2 <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> O <SEP> O <SEP>  <   

   <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH2C
<tb>   
Chart D
EMI42.1     

EMI42.2     


<tb> 2 <SEP> R2 <SEP> - <SEP> 3 <SEP> - <SEP> V
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> CCH(CH3)2
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> OCH2C--CH
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OC(CH3)3
<tb>  <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -SCH(CH3)2
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -SCH2CH2OCH3
<tb>  <SEP> H <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb>  <SEP> H <SEP> Ci- <SEP> H <SEP> H
<tb>  <SEP> H <SEP> C1 <SEP> H <SEP> H <SEP> -SCH(CH3)2
<tb>  <SEP> H <SEP> -OCH2 <SEP> e <SEP> Ct <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb>   
Chart D (continued)
EMI43.1     


<tb> R1 <SEP> R2-- <SEP> R3 <SEP> F? <SEP> Y
<tb>  <SEP> H <SEP> OCH2 <SEP> o <SEP> H <SEP> H <SEP> H <SEP> -SCH(CH3)2
<tb>  <SEP> F <SEP> Cl <SEP> F <SEP> H <SEP> 

   -OCH(CH3)2
<tb>  <SEP> F <SEP> C1 <SEP> F <SEP> F <SEP> -OCH(CH3)2
<tb>  <SEP> F <SEP> C1 <SEP> F <SEP> F <SEP> -oCH2co2
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH2CO2CH2C--CH
<tb>  <SEP> CI
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H
<tb>  <SEP> f <SEP> C1 <SEP> H <SEP> H <SEP> -oN=CH-CC2CH2CH3
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -SO2CH(CH3)2
<tb>  <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH2CH2N(CH3)3C
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -ocH2CH2CH2CO2CH3
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H
<tb>  <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH2CH(CH3)2
<tb>   
Chart E
EMI44.1     

EMI44.2     


<tb> F? <SEP> F? <SEP> F? <SEP> F? <SEP> Y
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -scH(cH3)2
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> oCH2CtJ
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> (CH3)3
<tb>  <SEP> F 

   <SEP> C1 <SEP> H <SEP> H <SEP> H2C=CH
<tb>  <SEP> CH,
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> OCHCH2CH3
<tb>  <SEP> F <SEP> C <SEP> H <SEP> H <SEP> H
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> vH2C(CH3)3
<tb>  <SEP> CH3
<tb>  <SEP> F <SEP> CI <SEP> H <SEP> H <SEP> -OCH2C=CH2
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH2CH(CH3)2
<tb>   
Chart E (continued)
EMI45.1     


<tb> Ri <SEP> R2 <SEP> R3 <SEP> R4 <SEP> V
<tb>  <SEP> C,H3
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OC(CH3)2C-H
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> SOCH2 0
<tb>  <SEP> F <SEP> - <SEP> C <SEP> cr <SEP> H <SEP> H
<tb>  <SEP> F <SEP> Ci <SEP> H <SEP> H
<tb>  <SEP> F <SEP> Cl <SEP> H <SEP> H
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> ¸cl
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> oFX
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -SC(CH3)3
<tb>  <SEP> F 

   <SEP> C1 <SEP> H <SEP> H <SEP> -SCH2C=CH
<tb>   
Chart E (continued)
EMI46.1     


<tb> 1- <SEP> -2- <SEP> ¯ <SEP> 3 <SEP> ¯ <SEP> R4¯ <SEP> Y
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H
<tb>  <SEP> F <SEP> Ci <SEP> H <SEP> H <SEP> -N(CH(CH3)2)2
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -N(CH3)2
<tb>  <SEP> FH
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> HH2CH3
<tb>  <SEP> t
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> --CH2C=-CH
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H
<tb>  <SEP> C,H3
<tb>  <SEP> F <SEP> Ci <SEP> H <SEP> H <SEP> OCHC02CH3
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OC(CH3)2CO2 <SEP> t
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -SCH2 <SEP> CO2
<tb>  <SEP> 0
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH28-N(CH3)2
<tb>   
Chart E (continued)
EMI47.1     


<tb> -Ri <SEP> -2- <SEP> -F?3 <SEP> F? <SEP> V
<tb>  <SEP> F <SEP> Ci <SEP> H <SEP> H <SEP> H2-HCI
<tb>  <SEP> 

   9 <SEP> C,H3
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -SCH2-N-CH2CH3
<tb>  <SEP> CH3
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> - <SEP> ON=C-CH3
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -oN=cH-CC2CH2CH3
<tb>  <SEP> ¯ocH3
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> HCH2C1
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -SCH2CH2C1
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH2CH20CH3
<tb>  <SEP> F <SEP> Ci <SEP> H <SEP> H <SEP> -OCH20CH2CH3
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> CH2SC3
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH2SCH(CH3)2
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -SCH2CH2OCH3
<tb>   
Chart E (continued)
EMI48.1     


<tb> ---R <SEP> - <SEP> F? <SEP> -3- <SEP> - <SEP> 4- <SEP> V
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -SCH2CH2SCH3
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> OCH2CH2CH2CN
<tb>  <SEP> o
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H 

   <SEP> -oCH2C-CH(CH3)2
<tb>  <SEP> CI
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> - CH2c 2 < Cl
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -SCH2CH2C-CH3
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -NHCH2CC2CH2CH3
<tb>  <SEP> 9Ha
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -NCH2COZCH2CH3
<tb>  <SEP> 0
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -b'CH2CH3
<tb>  <SEP> o
<tb>  <SEP> cc
<tb>  <SEP> f <SEP> C1 <SEP> H <SEP> H <SEP> -SCH(CH3)2
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -SC2CH(CH3)2
<tb>   
Chart E (continued)
EMI49.1     


<tb> 1- <SEP> -R2 <SEP> - <SEP> R <SEP> ¯ <SEP> -R4 <SEP> V
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -SO2CH(CH3)2
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -SO-CI
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -SO2CH2CH3
<tb>  <SEP> F <SEP> C1 <SEP> ' <SEP> H <SEP> H <SEP> -CH2OC2CH3
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> 

   -SO2CN2CO2CH2CH3
<tb>  <SEP> O
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -NHCH2CH2e-CH3
<tb>  <SEP> 9
<tb>  <SEP> F <SEP> Ci. <SEP> H <SEP> H <SEP> -N(CH3)CH2e-CH(CH3)2
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -N(CH3)CH2C <SEP> b <SEP> I
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -N(CH3)CH2t-N(CH3)2
<tb>   
Chart E (continued)
EMI50.1     


<tb> -Ri <SEP> - <SEP> 2- <SEP> - <SEP> 3 <SEP> - <SEP> V
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -N(CH3)CH2C-heCt
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -CH(COCH3)2
<tb>  <SEP> Y
<tb>  <SEP> F <SEP> Ct <SEP> H <SEP> H <SEP> -C(CO2CH2CH3)2
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -CH(CN)(Co2CH2CH3)
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> CHOChI)(CC2CH2CH3)
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -,C(COCH3)(CO2CH2CH3)
<tb>  <SEP> CH2c=Cx
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> CH(CN)2
<tb>  <SEP> F <SEP> C1 

   <SEP> H <SEP> H <SEP> -C( <SEP> t <SEP> ) <SEP> (CN)2
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -CH(CONH2)2
<tb>  <SEP> o
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -CHCC-H(CH3)2 <SEP> ]2
<tb>   
Chart E (continued)
EMI51.1     


<tb> 1- <SEP> R <SEP> F? <SEP> - <SEP> 3- <SEP> - <SEP> 4- <SEP> --- <SEP> Y
<tb>  <SEP> 1 <SEP> 2- <SEP> -3- <SEP> -4 <SEP> V
<tb>  <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> 0 <SEP> -O(CH2)qCO; 

  ;0
<tb>  <SEP> (CH2)4CCz <SEP> H4
<tb>  <SEP> e <SEP> C1 <SEP> e
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -S(CH2)4CO2 <SEP> Na
<tb>  <SEP> 0 <SEP> e
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -N(CH3)3cl
<tb>  <SEP> H2CHH2
<tb>  <SEP> F <SEP> Ci <SEP> H <SEP> H
<tb>  <SEP> Q
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -O(CH2)4N(CH3)3C1
<tb>  <SEP> F <SEP> Ci <SEP> H <SEP> H <SEP> -OCH2,CH-CH2
<tb>  <SEP> 0290
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> OCH2CH(OH)CH2OH
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H
<tb>  <SEP> F <SEP> f <SEP> Cl <SEP> H <SEP> Pe <SEP> H
<tb>  <SEP> HX
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> dOCH2CH2N(CH3)3
<tb>  <SEP> H2CH2N(CH3)3
<tb>   
Chart E (continued)
EMI52.1     


<tb> - <SEP> 1- <SEP> R2 <SEP> -R3 <SEP> ¯ <SEP> R4 <SEP> r
<tb>  <SEP> aH2
<tb>  <SEP> f <SEP> C1 <SEP> H <SEP> H <SEP>  > 
<tb>  <SEP> At
<tb>  <SEP> F <SEP> CH3 <SEP> H 

   <SEP> H <SEP> -OCH(CH3)2
<tb>  <SEP> F <SEP> OCH3 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb>  <SEP> F <SEP> zCl <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb>  <SEP> F <SEP> -CH20 <SEP> o <SEP> Cl <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb>  <SEP> .
<tb>



   <SEP> F <SEP> C1 <SEP> F <SEP> H <SEP> -OCH(CH3)2
<tb>  <SEP> F <SEP> C1 <SEP> F <SEP> F <SEP> -OCH(CH3)2
<tb>  <SEP> F <SEP> C1 <SEP> ' <SEP> CH3 <SEP> H <SEP> -OCH(CH3)2
<tb>  <SEP> F <SEP> C1 <SEP> CH3 <SEP> CH3 <SEP> -OCH(CH3)2
<tb>  <SEP> F <SEP> C1 <SEP> H <SEP> -CHzC--CH <SEP> -oCH(CH3)2
<tb>  <SEP> H <SEP> C1 <SEP> H <SEP> H <SEP> OCH2CO2
<tb>   
Chart E (continued)
EMI53.1     


<tb> R1-- <SEP> R,¯ <SEP> Razz <SEP> Rq-- <SEP> V
<tb>  <SEP> H <SEP> C1 <SEP> H <SEP> H <SEP> -SCH(CH3)2
<tb>  <SEP> H <SEP> C1 <SEP> H <SEP> H <SEP> OCH2CiCH
<tb>  <SEP> H <SEP> C1 <SEP> H <SEP> H
<tb>  <SEP> H <SEP> ci <SEP> H <SEP> H <SEP> -OCH2CO2CH(CH3)2
<tb>   
Chart F
EMI54.1     

EMI54.2     


<tb> P <SEP> A' <SEP> E <SEP> - <SEP> 1- <SEP> - <SEP> 2- <SEP> F? <SEP> Rq- <SEP> Y
<tb> O <SEP> O <SEP> C1 <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> O <SEP> O <SEP> C1 <SEP> F <SEP> C1 

   <SEP> H <SEP> H <SEP> 2 <SEP> 2 <SEP> t
<tb> O <SEP> O <SEP> C1 <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -SCH(CH3
<tb> O <SEP> O <SEP> C1 <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> - CH2 <SEP> C¯C-H
<tb> O <SEP> O <SEP> C1 <SEP> H <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> O <SEP> O <SEP> C1 <SEP> H <SEP> CI <SEP> H <SEP> H <SEP> H2CO2
<tb> O <SEP> O <SEP> C1 <SEP> H <SEP> Ci <SEP> H <SEP> H <SEP> -SCH(CH3)2
<tb> S <SEP> S <SEP> C1 <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3
<tb>  <SEP> 32
<tb> S <SEP> S <SEP> C1 <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> - CH2C 2 <SEP> 4 <SEP> CO <SEP> 0
<tb> S <SEP> S <SEP> C1 <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -SCH(CH3)2
<tb> S <SEP> S <SEP> C1 <SEP> H <SEP> C1 <SEP> H <SEP> H <SEP> -CCH(CH3)2
<tb>   
Chart F (continued)
EMI55.1     


<tb> A <SEP> E <SEP>  &  <SEP> - <SEP> 2- <SEP> ¯ <SEP> 3¯ <SEP> R4 <SEP> Y
<tb> S <SEP> S <SEP> C1 <SEP> H <SEP> 

   C1 <SEP> H <SEP> H <SEP> 2 <SEP> 2 <SEP> CO <SEP> 0
<tb>  <SEP> o
<tb>  <SEP> 'I
<tb> O <SEP> O <SEP> -OCCH3 <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb>  <SEP> 0
<tb>  <SEP> 'I
<tb> O <SEP> O <SEP> -OCOCH3 <SEP> , <SEP> , <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> O <SEP> O <SEP> -OCH <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb>  <SEP> 3 <SEP> 32
<tb> 2 <SEP> 2 <SEP> -OCH2CH=CH2 <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> 0 <SEP> O <SEP> OCH2C=CH <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> O <SEP>   <SEP> -NH2 <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH,)2
<tb>  <SEP> 32
<tb> o <SEP> o <SEP> -N(CH3) <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb>  <SEP> 32 <SEP> 32
<tb> O <SEP> O <SEP> -SCH3 <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb>  <SEP> 32
<tb> O <SEP> O <SEP> -SCH3 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> 

   -OCH2COZ0
<tb> O <SEP> O <SEP> -SCH3 <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -SCH(CH3)2
<tb>   
Chart F (continued)
EMI56.1     


<tb> A <SEP> E <SEP>  &  <SEP> - <SEP> 2- <SEP> R3' <SEP> Rq'
<tb> O <SEP> O <SEP> -SH <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> O <SEP> O <SEP> -OH <SEP> F <SEP> Ci <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> O <SEP> O <SEP> -SC2CH3 <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb> O <SEP> O <SEP> -SOCH3 <SEP> F <SEP> C1 <SEP> H <SEP> H
<tb>  <SEP> 32
<tb> O <SEP> S <SEP> C1 <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -OCH(CH3)2
<tb>  <SEP> 32
<tb> O <SEP> S <SEP> C1 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> H2CC2
<tb> S <SEP> S <SEP> -SCH3 <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> CCH(CH3)2
<tb> S <SEP> S <SEP> -SCH3 <SEP> F <SEP> Ci <SEP> H <SEP> H <SEP> -OCH2CO0
<tb> S <SEP> S <SEP> -SCH3 <SEP> F <SEP> C1 <SEP> H <SEP> H <SEP> -SCH(CH <SEP> 
<tb>  <SEP> 

   32
<tb> O <SEP> O <SEP> Ci <SEP> F <SEP> C1 <SEP> CH3 <SEP> H <SEP> -OCH(CH3)2
<tb> O <SEP> O <SEP> C1 <SEP> F <SEP> C1 <SEP> CH3 <SEP> CH3 <SEP> -OCH(CH3)2
<tb> O <SEP> O <SEP> C1 <SEP> F <SEP> C1 <SEP> F <SEP> H <SEP> -OCH(CH3)2
<tb> O <SEP> O <SEP> C1 <SEP> F <SEP> C1 <SEP> F <SEP> F <SEP> -OCH(CH3)2
<tb>   
Synthesis
 The compounds of this invention may be prepared by any of several routes depending on the particular heterocycle desired as Z. The following processes illustrate synthetic routes to the compounds of this invention.



   The materials containing a 3,4,5,6-tetrahydrophthalimide ring system as Z are prepared by condensing an appropriately substituted aniline (herein also referred to simply as "the aniline") with a substituted or unsubstituted cyclohexene-1,2-dicarboxylic acid anhydride, as follows:
EMI57.1     

The above reaction is carried out in the absence of any solvent or in a solvent such as acetic acid, methanol, toluene, or dioxane at a temperature from   60-200"C.    When neutral solvents are used in the above reaction, it is advantageous to use a catalytic amount of a strong acid such as p-toluenesulfonic acid and to remove the water as it is formed by azeotropic distillation.



   An alternative route to the
N-phenyltetrahydrophthalimides of this invention is shown by the following reaction scheme:  
EMI58.1     

In the above scheme an aminobenzyl alcohol can be reacted with a   cyclohexene-1,2-dicarboxylic    acid anhydride, as described above. The resulting product can be reacted with trifluoromethane sulfonic anhydride in the presence of a non-nucleophilic proton acceptor (such as pyridine, 2,6-lutidine, or 2,6-di-tert-butylpyridine) to give a highly reactive benzyl triflate. The preferred solvent for the formation of the triflate is methylene chloride or chloroform, and the reaction should be conducted at ice bath temperatures. The triflate should not be isolated, but rather should be reacted while still in solution with a nucleophile, Y:. This latter reaction can be conducted in an ice bath, then allowed to warm to room temperature. 

  The base used in this step can be the same as that used in the triflate forming reaction. In the last step of the above scheme it is important-that the benzyl triflate solution be added dropwise to the nucleophilic reactant, HY, in  solution. Reverse addition results in a very low yield of the desired product.



   The alternative route described above to the N-phenyl tetrahydrophthalimides is particularly useful for the synthesis of compounds containing Y moieties which would not survive the acidic conditions required for condensation with a   cyclohexene-1,2-dicarboxylic    acid anhydride.



   The imidazolidinediones can be prepared by reacting an isocyanate with ethyl pipecolinate followed, if necessary to promote cyclization, by treatment with an aqueous or alcoholic base solution as follows:
EMI59.1     

The reaction with the isocyanate can be conducted in any inert organic solvent, e.g. dichloromethane, ethyl ether1 toluene, or the like and can be run at a temperature from   20-125"C.    Bases which can be employed for the cyclization include both inorganic bases, such as sodium hydride or sodium hydroxide, and organic bases such as triethylamine. The cyclization can be run in a variety of organic solvents, such as ethanol, dichloromethane, or toluene at a temperature of   20-1004C.     



   Compounds in which Z is a urazole ring can be synthesized by the following reaction scheme:
EMI60.1     

The   carboxylimidazole    can be prepared by reacting the aniline with carbonyl bisimidazole in an inert organic solvent such as dichloromethane, ethyl ether, or toluene at 20-1000C. Bases which can be employed for cyclizing the reaction product of the carboxylimidazole with ethyl carbamate include sodium hydride and sodium alkoxides in alcoholic or hydrocarbon solvents at   20-150"C.    Bases used for the conversion of the cyclized product to the urazole include alkali metal carbonates, sodium hydride, or sodium alkoxides in solvents such as  acetone1 toluene, dimethylformamide, and the like at a temperature of   20-150"C.   



   The quinazolinones can be synthesized as follows:
EMI61.1     

Condensation of a nitro benzoyl chloride with the aniline can be carried out in an inert organic solvent such as carbon tetrachloride, dichloromethane, or toluene in the presence of a proton acceptor such as triethylamine, potassium carbonate, or the like at a temperature of   -10"    to   +75"C.    Reduction of the intermediate nitroamide can be effected by typical catalytic hydrogenation methods, e.g. 5% Pt/C in an inert solvent such as ethanol, dichloromethane, or acetic acid, or by chemical reduction methods such as refluxing the nitroamide in ethanol with an equivalent of tin   (IT)    chloride.

  Cyclization to the quinazolinone can be  effected by heating the amido aniline with an ortho ester such as triethylorthoformate and distilling off the alcohol as it is formed. The temperature for the latter reaction is in the range   l00-2000C.   



   The imidazolidinediones were synthesized by the following reaction scheme:
EMI62.1     

The urea can be prepared by reacting either the isocyanate or the imidazoyl derivative shown with methylaminoacetonitrile in an inert solvent (methylene chloride, toluene, chloroform, and so forth) at ambient temperature. The cyclization of the urea to the imidazolidinedione can be effected by heating the urea in an aqueous acid solution in the presence of an inert organic solvent such as aqueous hydrochloric acid and toluene. The  imidazolidinedione can be halogenated at C4 by refluxing in an inert organic solvent, such as carbon tetrachloride, with N-bromosuccinimide. The halogen can be readily displaced with a variety of nucleophiles including alcohols, thiols, and amines to give the desired product.

  The displacement reaction can be run in a variety of inert organic solvents including acetone, dichloromethane, toluene, and the like at a temperature from   O-lOO0C.    Higher yields in the displacement reaction can be obtained by adding silica gel to the reaction mixture.



   The   1,2,4-thiadiazolidine-1,1,3-triones    can be synthesized as follows:
EMI63.1     

The urea can be synthesized by reacting either the isocyanate or the imidazoyl derivative of the  aniline with N-methylchloromethyl sulfonamide. This reaction is carried out at   0-100 C    in an inert solvent such as dichloromethane, toluene, or chloroform. The chloromethylsulfonyl urea which results can then be cyclized to the desired product by treating the urea with a base in an inert solvent. Suitable bases include organic bases such as pyridine or triethylamine, or inorganic bases such as potassium carbonate. Suitable solvents for the cyclization include dichloromethane, toluene, ether, and the like.



   The   -tetrahydroisophthalimides    may be prepared as follows:
EMI64.1     

The tetrahydrophthalamic acid can be prepared by reacting the aniline in an inert solvent (benzene, toluene, dichloromethane, or the like) with     3,4,5,6-tetrahydrophthalic    anhydride at a temperature in the range   25-1000C.    The tetrahydrophthalamic acid which results can be converted to the tetrahydrophthalimide by treatment with a dehydrating agent such as dicyclohexylcarbodiimide at a temperature from    t    25-75 C and in an inert solvent such as benzene, toluene, dichloromethane, or the like.



   The   o-chlorophthalimide    ketals and   2 chlorohexahydrophthalimides    can be synthesized by the following reaction scheme:
EMI65.1     

The hexahydrophthalimide can be prepared by heating a mixture of the aniline and 1,2-cyclohexane dicarboxylic acid anhydride in a solvent such as acetic or propionic acid. The -chlorckatal amide can be prepared by heating the hexahydrophthalimide  wit-h phosphorous pentachloride containing a catalytic amount of phosphorous   oxychloride    followed by quenching the reaction mixture with an ice cold solution of pyridine in an alcohol, ROH. The   -chlorohexahydrophthalimide    can be prepared by heating the ketal amide   intglacial    acetic acid.

  The latter reaction must be carefully monitored by TLC since prolonged heating results in loss of hydrogen chloride to give the tetrahydrophthalimide.



   The anilines used in this invention are themselves novel. A general route to anilines in which R3 = R4   =    H is by the following reaction scheme:
EMI66.1     
  
The benzoic acids can be prepared by treating the corresponding toluenes in glacial acetic acid containing a catalytic amount of cobalt acetate, manganese acetate, t-butyl peroxide, and 48% hydrobromic acid with oxygen gas at 300 psi and   130-1500C    in a pressure vessel. The benzoic acids can be nitrated meta to the carboxyl group by adding them to a 1:1 mixture of nitric and sulfuric acids over the temperature range of   0-50"C.    The resulting nitrobenzoic acids can be selectively reduced by treatment at   OOC    in tetrahydrofuran with diborane.



  This gives excellent yields of the nitro benzyl alcohols. The trifluoromethanesulfonate esters can be prepared by adding a solution of a benzyl alcohol and a non-nucleophilic proton acceptor (pyridine, 216-lutidine, or 2,6-di-tert-butyl pyridine) to an ice cold solution of trifluoromethane sulfonic anhydride in a non-nucleophilic solvent (methylene chloride1 chloroform, carbon tetrachloride, or the like). The trifluoromethane sulfonate esters are exceedingly reactive compounds. Accordingly, they should not be isolated or stored, but rather should be reacted immediately in solution with any of a wide variety of nucleophilic reactants HY as previously defined, to yield Y-substituted nitro compounds. The latter materials can be reduced under catalytic or chemical reduction procedures to the desired aniline product. 

  In the case of especially labile Y-substituted nitro compounds, a particularly mild and effective means of reduction to the aniline is to reflux the nitro compound in an ethanolic tin   (IT)    chloride solution.  



   The trifluoromethane sulfonate esters used in the above synthetic scheme to make anilines according to the invention react poorly or not at all with carbon nucleophiles. Accordingly, the anilines used in this invention wherein Y is attached to the C5 methylene via a carbon-carbon bond were synthesized by the following reaction scheme:
EMI68.1     
 where   =    halogen and R1 and R2 are as previously defined.



   Halogenation of the side-chain methyl group may be carried out by a wide variety of free radical halogenating agents well known to those skilled in the art. An example of a reagent useful for this purpose is N-bromosuccinimide with a catalytic amount of a radical initiator such as dibenzoyl peroxide. Solvents for this process include a variety of halogenated hydrocarbons,   e.g.,    carbon tetrachloride, and the reaction is run under autogenous conditions in the termperature range of     50-150"C.    The second step in the above sequence, substitution of cyanide for halogen at.the benzylic position, may be effected by heating the benzylic halide with alkali metal cyanides such as potassium cyanide in any of a variety of inert solvents such as ethanol, benzene, toluene or the like.

  A particularly preferred method of preparing the benzyl cyanide is by refluxing an aqueous solution of sodium cyanide containing a phase-transfer agent, e.g., tricaprylmethylammonium   chloride,    with a toluene solution of the benzyl halide. The resulting benzyl cyanide may be nitrated by treatment with excess fuming nitric acid. The nitration is carried out in the temperature range of   15     - 750C. The nitro benzyl cyanides are reduced to the desired anilines using catalytic procedures or chemical reduction methods.



   The intermediate benzyl cyanides produced in the second step of the above sequence are themselves useful intermediates to other compounds of this invention, as shown below:
EMI69.1     

Thus, one or both of the benzylic hydrogens may be replaced by treatment of the benzyl cyanide with a strong base followed by an alkylating agent, R3-X where X is bromine, chlorine, a sulfonate ester, or the like. This procedure may be repeated by adding  a second equivalent of strong base and the alkylating agent   R4-X.    Examples of strong bases which may be used for this reaction include alkali metal hydrides, e.g. sodium hydride, and alkali metal salts of amines, e.g. lithium diisopropylamide. The alkylated benzyl cyanides may be nitrated in exactly the same fashion as described above for the benzyl cyanides.

  Treatment of the resulting   nitrober.zyl    cyanides with aqueous mineral acids effects hydrolysis of the cyano moiety to a carboxylic acid functional group which may be further derivatized in a variety of ways known to those skilled in the art. These transformations are   outlined    below:
EMI70.1     
 where Q = alkoxy, amine, substituted amine, etc.



   A preferred class of anilines can be synthesized using 2-chloro-4-fluoro toluene, a compound which is commercially obtainable, the preferred class having the generic formula:  
EMI71.1     
 wherein Y is as previously defined. The synthesis can be specifically illustrated for 2-fluoro-4   chloro-5-isopropoxymethylene    aniline, as follows;
EMI71.2     
  
Chlorination of 2-chloro-4-fluorotoluene was effected under reaction conditions which generated a chlorine radical to yield 2-chloro-4-fluorobenzyl chloride. Selective nitration at the 5-position to yield 2-chloro-4-fluoro-5-nitrobenzylchloride was effected using an aqueous nitrating mixtue comprised of nitric acid and sulfuric acid.

  The conversion of 2-chloro-4-fluoro-5-nitrobenzyl chloride to isopropyl 2-chloro-4-fluoro-5-nitrobenzyl ether was effected by heating, under pressure, the benzyl chloride in the presence of isopropyl alcohol. It will be appreciated by those skilled in the art that transformation of the nitrobenzyl chloride to the nitrobenzyl ether can also be accomplished under a wide variety of acid catalyzed conditions including, but not limited to, the use of zinc chloride, p-toluenesulfonic acid, aluminum trichloride and silver salts. Subsequent hydrogenation of the nitrobenzyl ether utilizing Pt/C or Raney nickel as catalysts yielded 2-fluoro-4-chloro-5-isopropoxymethyleneaniline.



   The aniline, without isolation, was condensed with 3,4,5,6-tetrahydrophthalic anhydride. This condensation reaction was effected in the absence of any solvent or in a solvent such as acetic acid, methanol, toluene or dioxane at a temperature from 60-2000C. If desired, a catalytic amount of acid, e.g. p-toluenesulfonic acid, can be added to promote condensation.



   Although the above class of anilines and corresponding 5-substituted methylene   anilides    has been illustrated in the case when Y is an isopropoxy  substituent corresponding to the use of isopropyl alcohol, HY, as a reactant, the reaction scheme is generally applicable to nucleophilic reactants HY including amines, alcohols, mercaptans, and so forth.



   Further. several of the steps used to make intermediates enroute to making the above anilines are novel and general in scope. The nitration of 2-chloro-4-fluorobenzyl'chloride is an example of a specific nitration, i.e. specific for nitration at
C5, which can be employed generally to make 2,4-dihalo-5-nitrobenzyl chlorides. The reaction is conducted by reacting, at a temperature between about   -15 C    and about   100"C,    a 2,4-dihalobenzyl chloride with an aqueous nitrating solution having a concentration of about 10% to about 50% by weight of nitric acid and a concentration between about 20% to about 85% by weight of sulfuric acid.

  An amount of nitrating solution is used which supplies at least a stoichiometric amount of nitric acid, that is, such that the reaction is conducted with at least a 1:1 molar ratio of nitric acid   to 2,4-dihalobenzyl    chloride.



   Also, the process of reacting a 2,4-dihalo-5-nitrobenzyl chloride with, as nucleophile, an alcohol to form a 2,4-dihalo-5-nitrobenzyl ether, as exemplified by the reaction of 2-chloro-4-fluoro-5-nitrobenzyl chloride with isopropanol, is also novel in that it can be conducted in the absence of an added catalyst and yet give good yields. The alcohol is reacted in at least a stoichiometric amount   with-the    benzyl chloride at a temperature of   50"C-250"C    and a  pressure of atmospheric-300 psi. A special case of this reaction arises when the nucleophile employed is water, thus allowing an economic method of making 2,4-dihalo-5-nitrobenzyl alcohols in good yield.

 

  Inert solvents such as dioxane, toluene and the like can be employed as a reaction medium, although their use is optional.



   In addition, the preparation of 2-chloro-4-fluoro-5-nitrobenzyl amines may be accomplished by a novel reaction as exemplified by the preparation of 2-chloro-4-fluoro-5-nitrobenzyl morpholine illustrated below.
EMI74.1     




   The nitration of 2-chloro-4-fluorobenzyl morpholine is an example of a specific nitration, i.e. specific for nitration at C5, which can be employed generally to make 2,4-dihalo-5-nitrobenzyl  amines. The reaction is conducted by reacting, at a temperature between about   -1SOC    and about   1000C,    a 2,4-dihalobenzyl amine with an aqueous nitrating solution having a concentration of about   105    to   505    by weight of nitric acid and a concentration between about   20X    to about   851    by weight of sulfuric acid.



  An amount of nitrating solution is used which supplies at least a stoichiometric amount of nitric acid and sulfuric acid, that is, such that the reaction is conducted with at least a 1:1 molar ratio of both nitric acid and sulfuric acid to the 2,4-dihalobenzyl amine. The initially formed 2,4-dihalo-5-nitrobenzyl amine sulfate can either be isolated or treated directly with a base such as sodium hydroxide, potassium hydroxide or the like to give the free   2,4-dihalo-5-nitrobenzylamine.   



  Subsequent hydrogenation and coupling with 3,4,5,6-tetrahydrophthalic anhydride following methods already described affords the desired 5-substituted methylene anilides.



   Many of the methylene anilide compounds of this invention can be very conveniently prepared from a corresponding tetrahydrophthalimido benzyl alcohol as follows.
EMI75.1     
  
EMI76.1     




  The above reaction steps can be conducted as previously described. The tetrahydrophthalimido benzyl alcohol can be easily oxidized to the corresponding aldehyde which is itself a useful intermediate to several of the compounds of this invention, especially those in which R3 and are other than hydrogen. For example, the following illustrates how compounds in which R3   =    R4 = F have been synthesized.
EMI76.2     




  The conversion of the starting benzyl alcohol to the intermediate benzaldehyde was effected by adding trifluoroacetic anhydride to dimethyl sulfoxide in methylene chloride at dry ice-acetone bath temperature (about   -76 C)    followed by addition of the benzyl alcohol, then triethylamine. The resulting aldehyde was converted to the desired fluorinated product by treatment in methylene chloride at room temperature with diethyl aminosulfur trifluoride.



   The examples presented below further illustrate specific procedures useful in preparing the compounds of this invention. Numbers in parentheses following the title compound in each example are to correlate that compound with Table  
 III which indicates physical properties and elemental analyses.



  Example I:   N-(2-fluoro-4-chloro-5-acetoxymethylene       phenyl)-3,4,5,6-tetrahydrophthalimide(l)   
 A 3 liter round bottom flask was equipped with a mechanical stirrer, thermometer, and reflux condenser with N2 inlet. The flask was charged with   130g    (0.82 mol) of potassium permanganate in 1500 ml of water and 50g (0.346 mol) of 2-chloro-4-fluorotoluene. The mixture was slowly heated to reflux and held at reflux for 5 hr.   Th    reflux condenser was replaced with a Liebig's condenser, and approximately 300 ml of distillate collected. The hot residue was filtered through celite, concentrated in vacuo, and acidified with 60 ml of concentrated HC1. The solution was chilled in an ice bath, the precipitate removed by suction filtration and washed with water.

  The solid was taken up in ether, dried (MgSO4), and the solvent removed to give 22.3g (37% yield) of 2-chloro-4-fluorobenzoic acid as a white solid. NMR
 (d6-acetone):   s    7.00-7.55 (m, 2H); 7.88-8.21 (d pair, 1H); 9.30 (s broad,   1H).   



   A 500 ml round bottom flask was equipped with a mechanical stirrer, thermometer, reflux condenser with N2 inlet, and an addition funnel.



  The flask was charged with 100 ml of concentrated sulfuric acid and cooled in an ice bath. The 2-chloro-4-fluorobenzoic acid (19.3g, 0.111 mol) was added in portions. A nitrating acid mixture of 20 ml of fuming nitric acid and 20 ml of concentrated sulfuric acid was added dropwise below the surface  while holding the temperature at   0-5"C.    When addition was complete1 the reaction mixture was stirred 1 hr at   5"C    and then allowed to come to room temperature. The mixture was then heated to 500C for 1 1/2 hours. The reaction mixture was poured onto ice whereupon a white solid precipitate formed.

  This solid was removed by suction filtration, taken up in ethyl acetate, dried (MgSO4), and the solvent removed to give 20.3 g (83%) of 2-chloro-4-fluoro-5-nitrobenzoic acid as a pale yellow solid, mp   183-185"C.    NMR   (d6-acetone):    67.72 (d,   1H);    8.68 (d,   1H),    10.15   (s broad, 1H).   



   A I liter round bottom flask was equipped with a magnetic stirrer, reflux condenser with nitrogen inlet, thermometer, and an addition funnel. The flask was charged with 185 ml (0.90 mol) of 1 M diborane in tetrahydrofuran. This was cooled to   0 C    by means of an ice bath, and a solution of the above 2-chloro-4-fluoro-5nitrobenzoic acid in 200 ml of tetrahydrofuran was added dropwise. When addition was complete, the reaction was heated to reflux for 1 1/2 hours. The mixture was then cooled in an ice bath and 50 ml of 3N HC1 was added dropwise. The reaction mixture was concentrated in vacuo and the residue triturated three times with ether. The ether was washed twice with water, once with saturated   NaRCO3,    and once with water, then dried (MgSO4), and the solvent removed to give a yellow solid.

  This was washed with hexane to give 17.2g (93%) of 2-chloro-4-fluoro-5-nitrobenzyl alcohol. NMR     (CDC13):      s    3.10 (s broad,   lH);    4.80 (s, 2H); 7.30 (d,   1H);    8.23 (d, 1H).



   A 250 ml round bottom flask was equipped with a magnetic stirrer, reflux condenser with N2 inlet and charged with 5.0 g (0.0243 mol) of the above 2-chloro-4-fluoro-5-nitrobenzyl alcohol, 27.4 g (0.122 mol) of tin   (II)    chloride dihydrate and 75 ml of absolute ethanol. The reaction mixture was heated to 700C for 2 hours. The reaction mixture was concentrated under reduced vacuum and poured onto ice. The pH of the mixture was adjusted to about 7.5 with solid sodium bicarbonate and extracted with ethyl acetate. The ethyl acetate was washed twice with brine, dried (MgSO4), and the solvent removed to leave 2.9g (68%) of 2-chloro-4-fluoro-5-aminobenzyl alcohol as a white solid. NMR (acetone-d6):   6    4.35 (s broad, 2H); 4.51 (s, 2H); 6.95 (d,   1H);    7.12 (d,   1H).   

 

   A 100 ml round bottom flask was equipped with a magnetic stirring bar and reflux condenser with nitrogen inlet. The flask was charged with 2.9g (0.0165 mol) of 2-chloro-4-fluoro-5-aminobenzyl alcohol, 2.5g (0.0165 mol) of 3,4,5,6-tetrahydrophthalic anhydride, and 25 ml of glacial acetic acid. This reaction mixture was heated to reflux for 12 hours, then poured onto ice and extracted into toluene. The toluene extract was washed twice with water, once with saturated sodium bicarbonate, and with water again. The solution was dried (MgSO4), and the solvent removed to leave an orange oil. This was purified by flash chromatography on silica gel to give 2.9g (50%) of  
N-(2-fluoro-4-chloro-5-acetoxymethylenephenyl)3,4,5,6-tetrahydrophthalimide as a clear glass.



   Anal. % C   % H    % N
 Calc. 58.04 4.30 ' 3.98
 Found 57.54 4.57 3.80
Example   II:    N-(2-fluoro-4-chloro-5-isopropoxy    methylenephenyl)-3,4,5,6-tetrahydro-   
 phthalimide(2).



   A 100 ml round bottom flask was equipped with a magnetic stirring bar and addition funnel with nitrogen inlet. The flask was charged with 25 ml of methylene chloride containing 4.12g (0.0146 mol) of trifluoromethanesulfonic anhydride and cooled in an ice bath. A solution of   3.0g    (0.0146 mol) of 2-chloro-4-fluoro-5-nitrobenzyl alcohol (prepared as described in Example I) and 1.15g (0.0146 mol) of pyridine in 10 ml of   CH2Cl2    was added dropwise and the reaction stirred for one hour in the ice bath. This mixture was filtered through anhydrous sodium sulfate and used immediately as follows.



   A 100 ml round bottom flask was equipped with a magnetic stirrer and an addition funnel with
N2 inlet. This flask was charged with 25 ml of
CH2C12, 1.32g (0.0220 mol) of isopropanol, and log of anhydrous potassium carbonate. The trifluoromethanesulfonate ester prepared above was added dropwise and the reaction stirred 4 hours at room temperature. The reaction mixture was poured into ice water and extracted into CH2C12. The
CH2C12 was washed three times with water, dried (MgSO4), and the solvent removed to leave a  viscous orange oil. This oil was purified by flash chromatography on silica gel using 90:10 hexane-ethyl acetate to give 2.4g   (668)    of isopropyl 2-chloro-4-fluoro-5-nitrobenzyl ether as a yellow oil.

  NOUR   (CDC13):      s    1.23 (d. 6H); 3.48-4.00 (m,   1H);    4.52 (s, 2H); 7.28 (d,   1H);    8.25 (d,   1H).   



   A pressure bottle was charged with 2.4g (0.0097 mol) of the above 2-chloro-4-fluoro-5nitrobenzyl ether,   30ml    of glacial acetic acid, and 0.25g of   5%    Pt/C and placed on a hydrogenator at 40 psi of hydrogen for 30 minutes. Thin layer chromatographic analysis indicated complete disappearance of the nitro compound. The hydrogenated mixture was filtered through Celite to remove the catalyst, and the filtrate containing 2-fluoro-4-chloro-5-isopropoxymethylene aniline placed in a 100 ml round bottom flask equipped with a magnetic stirring bar and reflux condenser with
N2 inlet. To the filtrate was added 1.77g (0.0116 mol) of 3,4,5,6-tetrahydrophthalimide, and the mixture refluxed overnight. The reaction mixture was poured onto ice and extracted into toluene.

  The toluene was washed twice with water, twice with saturated NaHCO3, and once again with water.



  After drying the toluene over anhydrous MgSO4, the solvent was removed to leave an orange oil. This was purified by flash chromatography through silica gel using 90:10 hexane-ethyl acetate to give 1.90g (56%) of   
N-( 2-fluoro-4-chloro-5-isopropoxymethylenephenyl ) -    3,4,5,6-tetrahydrophthalimide as a white solid, m. p. 10C-103 C.  



   Anal. % C   % H      % N   
 Calc. 61.45 5.44 3.98
 Found 61.89 5.67 3.75
Example III: N-(2-fluoro-4-chloro-5-carbomethoxy   
 methylthiomethylphenyl)-3,4,5,6-tetra-
 hydrophthal imide (4)   
 The trifluoromethanesulfonate ester of 2-chloro-4-fluoro-5-nitrobenzyl alcohol was prepared as a solution in methylene chloride using 3.5g (0.0175 mol) of the alcohol and the identical procedure described in example   II.    A 100 ml round bottom flask was equipped with a magnetic stirring bar and addition funnel with N2 inlet. This flask was charged with 10   ml    of   CX2Cl2    containing l.99g (0.0187 mol) of methylthioglycolate and   10g    of anhydrous K2CO3.

  The CH2C12 solution of the trifluoromethanesulfonate ester was added dropwise to the flask and the reaction mixture was stirred one hour at room temperature, then poured onto ice and extracted into   CH2Cl2.    The CH2C12 was washed three times with water, dried (MgSO4), and the solvent removed to leave an amber liquid. This was purified by flash chromatography on silica gel to give 2.4g (48%) of methyl 2-chloro-4-fluoro-5nitrobenzylthioglycolate as a yellow solid. NMR (CDCI3): $3.20 (s, 1H); 3.80 (s. 6H); 4.02 (s.



  2H); 7.41 (d,   1H);    8.25 (d,   1H).   



   The methyl thioglycolate product was taken up in acetic acid and catalytically reduced using 5%
Pt/C as described in Example II. The resulting acetic acid solution of methyl 2-chloro-4-fluoro5-aminobenzylthioglycolate was refluxed 12 hours  with 1.50g (0.0098 mol) of 3,4,5,6-tetrahydrophthalimide and worked up as described in Example   II    to give an orange oil. This oil was purified by flash chromotography through silica gel using 70:30 hexane-ethyl-acetate to give 1.45g (44%) of   N-(2-fluoro-4-chloro-5-carbomethoxymethylthio-      methylphenyl)-3,4,5,6-tetrahydrophthalimide    as a yellow oil.



   Anal.   ¯ %      H 8    N
 Calc. 54.34 4.31 3.52
 Found 53.81 4.43 3.45
Example IV. N-(4-chloro-5-isopropoxymethylphenyl)
 3,4,5,6-tetrahydrophthalimide(17)
 A pressure bottle was charged with 140 ml of glacial acetic acid, 20.og (0.107 mol) of 2-chloro-5-nitrobenzyl alcohol, and   2.0g    of 5%
Pt/C. This mixture was shaken for 4 hrs under 40 psi of hydrogen on a hydrogenator. Thin layer chromatography showed reduction to the aniline was complete. The catalyst was removed by filtration through celite, and the acetic acid was removed in vacuo to give a yellow solid. This solid was washed thoroughly with ethyl ether to give 14.6g   (86%)    of 2-chloro-5-aminobenzyl alcohol as a white solid.

 

   A 500 ml round bottom flask was equipped with a magnetic stirring bar, a Dean-Stark trap with reflux condenser, and a N2 inlet. The flask was charged with 14.5 g (0.092 mol) of 2-chloro-5-aminobenzyl alcohol, 15.4g (0.101 mol) of 3,4,5,6-tetrahydrophthalic anhydride, and 50 mg of p-toluenesulfonic acid. To this mixture 150 ml of toluene was added and heated to reflux with  azeotropic removal of the water produced through the
Dean-Stark trap. After six hours of reflux, the reaction mixture was cooled to room temperature, washed twice with water, dried (MgSO4), and the solvent removed to leave an orange solid.

  This was washed thoroughly with ethyl ether to give   21.6g    (80%) of N-(4-chloro-5-hydroxymethylphenyl)3,4,5,6-tetrahydrophthalimide as a light yellow solid, mp   121-124 C.    NMR   (CDCl3):      6    1.50-2.10 (m, 4H); 2.10-2.68 (m, 4H); 3.00 (s, broad,   1H);    4.78 (s, 2H); 7.05-7.70 (m, 3H).



   A 250 ml round bottom flask was equipped with a magnetic stirrer and an addition funnel with
N2 inlet. The flask was charged with 25 ml of
CH2C12 and 4.84g (0.0171 mol) of trifluoromethanesulfonic anhydride and cooled in an ice bath. A mixture of   5.0g    (0.0171 mol) of
N-(4-chloro-5-hydroxymethylphenyl)-3,4,5,6-tetrahydrophthalimide and 1.36g (0.0171 mol) of pyridine in 25 ml of   CX2Cl2    was added dropwise to the trifluoromethanesulfonic anhydride solution. After stirring for one hour at   0 C,    the reaction mixture was filtered through anhydrous sodium sulfate and used immediately as follows.



   A 250 ml round bottom flask equipped for magnetic stirring and fitted with an addition funnel with N2 inlet was charged with   log    of anhydrous   K2C03,    20 ml of CH2C12, and 1.5g (0.0257 mol) of 2-propanol. The CH2C12 solution of the trifluoromethylsulfonate ester of   N-(4-chloro-5-hydroxymethylphenyl)-3,4,5,6-    tetrahydrophthalimide prepared above was added  dropwise to the isopropanol-K2CO3 mixture.



  After stirring overnight at room temperature, the reaction mixture was washed three times with water, dried (MgSO4), and the solvent removed to leave a yellow solid. This solid was purified by flash chromatography through silica gel using 90:10 hexane-ethyl acetate to give 2.5g (44%) of
N-(4-chloro-5-isopropoxymethylphenyl)-3,4,5,6tetrahydrophthalimide as a white solid, m.p.



  12C-121 C.



   Anal.   ¯      % H      8 N   
 Calc. 64.77 6.04 4.19
 Found 64.89 6.03 4.06
Example V: N-(2-fluoro-4-chloro-5-glycidoxymethyl    phenyl)-3,4,5,6-tetrahydrophthal-   
 imide(47)
 A 1 liter round bottom flask equipped with a magnetic stirrer, Dean-Stark trap, and reflux condenser with N2 inlet was charged with 18.7g (0.107 mol) of 2-chloro-4-fluoro-5-aminobenzyl alcohol (see Example I for synthesis of this intermediate),   17.8g    (0.117 mol) of 3,4,5,6-tetrahydrophthalic anhydride, and 200 mg of p-toluenesulfonic acid in 300 ml of toluene. The mixture was reflexed overnight with azeotropic removal of the water formed in the reaction. Upon removal of the solvent an amber oil resulted.

  This oil was purified by flash chromatography through silica gel using 60:40 hexane-ethyl acetate to give 22.lg (67%) of N-(2-fluoro-4-chloro-5-hydroxy   methylphenyl)-3,4,556-tetrahydrophthalimide    as a white solid. NMR   (CDCl3):    6 1.48-2.02 (m, 4H);  2.02-2.60 (m, 4H); 2.98 (s, broad,   1H);    4.65 (s, 2H); 7.05-7.50 (m, 2H).



   A 100 ml round bottom flask equipped with a magnetic stirrer and addition funnel with N2 inlet was charged with 10 ml of   CH2C12    and   2.73g    (0.0097 mol) of trifluoromethanesulfonic anhydride and cooled in an ice bath. A solution of   3.0g    (0.0097 mol) of N-(2-fluoro-4-chloro-5-hydro   xymethylphenyl)-3,4,556-    tetrahydrophthalimide and 1.04g (0.0097 mol) of 2,6-lutidine in 15 ml of
CH2C12 was added dropwise. The reaction was stirred at   0 C    for one hour, then filtered through anhydrous sodium sulfate and used immediately in the next step as follows.



   A 100 ml flask was equipped with a magnetic stirrer and addition funnel with N2 inlet. The flask was charged with 10 ml of CH2C12, 2.87g (0.0387 mol) of glycidol, and 4.0 ml of 2,6-lutidine. The trifluoromethylsulfonate ester prepared as described above was added dropwise to the glycidol solution in an ice bath. The reaction mixture was stirred two hours at room temperature, then washed with water, with 5% HC1, and again with water. The solution was dried (MgSO4) and the solvent removed in vacuo to give an orange oil.



  This oil was purified by flash chromatography through silica gel using 60:40 hexane-ethyl acetate to give 1.40g (39%) of N-(2-fluoro-4-chloro-5glycidoxymethylphenyl)-3,4,5,6-tetrahydrophthalimide as a viscous oil.



   Anal. % C   sH    % N
 Calc. 59.10 4.68 3.83
 Found 58.78 5.01 3.79  
Example VI: N-[2-fluoro-4-chloro-5-(2,2-dimethyl
 1,3-dioxolane-4-methoxymethyl)phenyl]    3,4,5,6-tetrahydrophthalimide(65)   
 Using the procedure described in Example V above, the trifluoromethylsulfonate ester was prepared from   3.0g    (0.0097 mol) of N-(2-fluoro-4chloro-5-hydroxymethylphenyl)-3,4,5,6-tetrahydrophthalimide in 30 ml of   CH2C12.    A 100 ml round bottom flask equipped with a magnetic stirrer and reflux condenser with N2 inlet was charged with 10 ml of CH2CI2 containing 1.56g (0.0145 mol) of 2,6-lutidine and 1.28g (0.0097 mol) of 2,2-dimethyl-1,3-dioxolane-4-methanol and cooled in an ice bath. To this solution was added the trifluoromethanesulfonate ester prepared above.

  The reaction mixture was stirred overnight at room temperature, then washed with 5% HC1, twice with water and dried (MgSO4). Removal of the solvent left an orange oil which was purified by flash column chromatography using 60:40 hexane-ethyl acetate to give 1.55g (38%) of   
N-[2-fluoro-4-chloro-5-(2,2,dimethyl-1,3-dioxOlane- 4-methoxymethyl)phenyl]-3,4,5,6-tetrahydroph-    thalimide as a light yellow oil.



   Anal. % C %   H      8 N   
 Calc. 57.50 5.47 3.30
 Found 57.26 5.28 3.45  
Example VII:   N-f2-fluoro-4-chloro-5-(1,2,5,6-di-      
 i sopropyl idene-D-glucose-O-methyl ) -
 phenyl 1-3,4,5, 6-tetrahydrophthal-   
 imide(63)
 A 100 ml round bottom flask was equipped with a magnetic stirrer and an addition funnel with
N2 inlet. The flask was charged with 3.19g (0.0113 mol) of trifluoromethylsulfonic anhydride and 15 ml of CH2C12 and cooled in an ice bath.



  A solution of   3.5g. (0.0113    mol) of   N-(2-fluoro-4-chloro-5-    hydroxymethylphenyl)-3,4,5,6-tetrahydrophthalimide and 2.16g (0.0113 mol) of 2,6-di-tert-butylpyridine in 40 ml of CH2C12 was added dropwise. The mixture was stirred at   0 C    for one hour, filtered through anhydrous sodium sulfate and used immediately in the step described below.

 

   A 100 ml round bottom flask was equipped with a magnetic stirrer and an addition funnel with
N2 inlet. The flask was charged with 4.41 g (0.0170 mol) of   1,2,5,6-diisopropylidene-D-glucose    and 2.39g (0.0124 mol) of 2,6-di-tert-butylpyridine in 10 ml of   CH2Cl2.    The trifluoromethylsulfonate ester prepared above was added dropwise, and the reaction stirred overnight at room temperature. The reaction mixture was washed twice with water, dried (MgSO4), and the solvent removed to leave an orange oil. This oil was purified by flash column chromatography through silica gel using 80:20 hexane-ethyl acetate to give 4.4g   (71%)      
N-t2-fluoro-4-chloro-5-(1,2,5,6-diisopropylidene-D-    glucose-0-methyl)phenyl)-3,4,5,6-tetrahydrophthal
 imide, m.p.   68-72"C.     



   Anal. % C   % H      ¯¯   
 Calc. 58.75 5.66 2.54
 Found 58.76 5.53 3.92
Example   VIII:    N-[2-fluoro-4-chloro-5-(cyclopentyloxy
 carbonylmethyloxymethyl)phenyl]    3,4,5,6-tetrahydrophthalimide(39)   
 A 100 ml round bottom flask equipped with a magnetic stirrer and addition funnel with N2 inlet was charged with 20 ml of CH2C12 and 1.96g (0.00694 mol) of trifluoromethylsulfonic anhydride.



  The mixture was cooled to   0 C,    and a solution of   2.15g    (0.00694 mol) of
N-(2-fluoro-4-chloro-5-hydroxymethylphenyl)-3,4,5,6-tetrahydrophthalimide and 0.74g (0.00694 mol) of 2,6-dimethylpyridine in 15 ml of   CN2Cl2    was added dropwise. The reaction was stirred at   0 C    for one hour, filtered through anhydrous sodium sulfate and used immediately as follows.



   A 100 ml round bottom flask fitted with magnetic stirrer and addition funnel with N2 inlet was charged with 4.81g of anhydrous   K2CO3    and 20 ml of CH2C12 containing   l.50g    (0.104 mol) of cyclopentyl glycolate. The   CH2C12    solution of the trifluoromethylsulfonate ester prepared above was added dropwise and the mixture stirred 12 hrs at room temperature. The mixture was washed three times with water, dried (MgSO4). and the solvent removed to leave an oil. This oil was purified by flash chromatography through silica gel using 75:25 hexane-ethyl acetate to give 1.37g (45%) of   
N-t2-fluoro-4-chloro-5-(cyclopentyloxycarbonylmethyl-        oxymethyl)phenyl]-3,4,5,6-tetrahydrophthalimide    as a white solid, m.p. 84-866 C.



   Anal.   8 C      % H    % N
 Calc. 60.62 5.32 3.23
 Found 60.70 5.36 3.32
Example IX: N-[2-fluoro-4-chloro-5-(N-methylamino    carbonyloxymethyl)phenyl)-3,4,5,6-   
 tetrahydrophthalimide(34)
 A 250 ml pressure bottle equipped with a magnetic stirrer was charged with   l.9g    (0.00613 mol) of   N-(2-fluoro-4-chloro-5-hydroxymethyl)phenyl-    3,4,5,6-tetrahydrophthalimide (see Example V), 50 ml of CH2C12, 0.42g (0.00736 mol) of methyl isocyanate, and 0.93g (0.00920 mol) of triethylamine. The bottle was sealed and stirred two days at room temperature.

  The solvent was removed under reduced pressure and the residue purified by flash chromatography through silica gel using 50:50 hexane-ethyl acetate to give 1.25g (56%) of N-[2-fluoro-4-chloro-5-(N-methylaminocarbonyloxy   methyl)phenyl-3 54,5, 6-tetrahydrophthalimide    as a white solid, m.p. 34-41 C.



   Anal. % C   % H    % N
 Calc. 55.67 4.40 7.64
 Found 54.81 4.48 7.40
Example X: N-(2-fluoro-4-chloro-5-cyclopentyloxy
 carbonyloxmethyl)phenyl-3,4,5,6
 tetrahydrophthalimide(35)
 A 50 ml round bottom flask equipped with a magnetic stirrer and addition funnel with N2 inlet was charged with 1.22g (0.00394 mol) of  
N-(2-fluoro-4-chloro-5-hydroxymethyl)phenyl-3,4,5,6   tetrahydrophthalimide    (see Example V) and 20 ml of
CH2C12 containing 0.60g (0.0059 mol) of triethylamine. The mixture was cooled in an ice bath and 0.58g (0.00394 mol) of cyclopentyloxycarbonyl chloride (prepared from phosgene and cyclopentanol) in 5 ml of   CH2C12    was added dropwise. The reaction was stirred two days at room temperature.

  Solvent was removed under reduced pressure, and the residue was purified by flash chromatography through silica gel using 75:25 hexane-ethyl acetate to give 0.67g (40%) of N    (2-fluoro-4-chloro-5-cyclopentyloxycarbonyloxymethyl)    phenyl-3,4,5,6-tetrahydrophthalimide as an oil.



   Anal.   ¯    % H   % N¯   
 Calc. 59.79 5.02 3.32
 Found 58.87 5.08 3.56
Example   XA:    N-(2-fluoro-4-chloro-5-tetrahydropyran-2    -oxymethyl)phenyl-3,4,5,6-tetra-   
 hydrophthalimide(7)
 A 100 ml round bottom flask equipped with a magnetic stirrer and a N2 inlet was charged with 1.5g (0.00484 mol) of N-(2-fluoro-4-chloro-5hydroxymethyl)phenyl-3,4,5,6-tetrahydrophthalimide
 (see example V), 0.60g (0.005 mol) of dihydropyran,
 100 mg of p-toluenesulfonic acid, and 20 ml of toluene. The reaction mixture was stirred two days at room temperature. The solvent was removed in vacuo to leave   2.0g    of a viscous tan oil.

  This oil was purified by low pressure liquid chromatography through silica gel to give 1.3g (71%) of  
N-(2-fluoro-4-chloro-5-tetrahydropyran   2-oxymethyl)phenyl-3,4, 5, 6-tetrahydrophthalimide    as a colorless glass.



   Anal. % C   % H %    N
 Calc. 60.99 5.37 3.56
 Found 60.40 5.53 3.52
Example XII: N-(2-fluoro-4-chloro-5    difluoromethyl)-3,4,5,6-tetrahydrophtha-   
 limide(52)
 A 100 ml round bottom flask equipped with a magnetic stirrer, N2 inlet, and septum inlet was charged with   l.0g    (0.00325 mol) of 2-chloro-4-fluoro-5 (3,4,5,6-tetrahydrophthalimidio) benzaldehyde and 50 ml of   CH2Cl2.    The mixture was cooled in an ice bath and 0.80 ml   (1,06g,    0.0065 mol) of diethylaminosulfur trifluoride added via a syringe.

 

  The reaction mixture was slowly allowed to come to room temperature and stirred for 20 hours. Thin layer chromatography of the reaction mixture indicated no aldehyde was present. The mixture was washed once with brine, dried   (MgS04),    and the solvent removed to leave a thick brown oil. This oil was chromatographed through silica gel with
CH2C12 to give   1.Og    (93%) of N-(2-fluoro-4   chloro-5-difluoromethyl)phenyl-3,4,5,6-tetrahydro-    phthalimide as a pale yellow solid, m.p. 84-89 C.



   Anal. % C % H % N % F
 Calc. 54.65   -3.37    4.25 17.29
 Found 54.47 3.50 -- 16.56  
Example XXII:   N-[2-fluoro-4-chloro-5-(2,5-dimethyl       benzyl)-phenyl]-3,4,5,6-tetra-   
 hydrophthalimide(57)
 A 100 ml round bottom flask fitted with a magnetic stirrer and addition funnel with N2 inlet was charged with 0.8 ml (1.3g, 0.00484 mol) of trifluoromethylsulfonic anhydride, 1.5g (0.00484 mol) of N-(2-fluoro-4-chloro-5-hydroxymethyl)phenyl-3,4,5,6-tetrahydrophthalimide, and 20 ml of p-xylene. The mixture was cooled in an ice bath, and 0.52g (0.00484 mol) of 2,6-lutidine was added in 2 ml of p-xylene via the addition funnel. The reaction mixture was allowed to come to room temperature. Thin layer chromatography indicated that none of the starting benzyl alcohol was present.

  The reaction was poured into ice water and extracted into   CH2Cl2.    The CH2C12 extracts were washed with water, dried   (MgS04),    and the solvent removed under reduced pressure. The residue was taken up in hot hexane. Upon cooling an oil precipitated, and the hexane was decanted away from this oil. The residual oil was purified by low pressure liquid chromatography on silica gel using dichloromethane to give 0.64g (33%) of N-[2   fluoro-4-chloro-5-(2, 5-dimethylbenzyl)phenyl)-    3,4,5,6-tetrahydrophthalimide as a viscous oil.



  Example XIV:   N-t2-fluoro-4-chloro-5-       (n-butylthiomethyl)phenyl]-3,4,5,6-   
 tetrahydrophthalimide(31)
 A 100 ml round bottom flask equipped with a magnetic stirrer and addition funnel with N2 inlet was charged with 10 ml of CH2C12 containing   4.0g      (0.0145 mol) of trifluoromethylsulfonic anhydride and cooled in an ice bath. A solution of 1.56g (0.0145 mol) of 2,6-lutidine and   4.3g (0.0139    mol) of   N-( 2-f luoro-4-chloro-5-hydroxymethyl )phenyl-    3,4,5,6-tetrahydrophthalimide in 30 ml of CH2C12 was added dropwise to the trifluoromethylsulfonic anhydride solution.

  When addition was complete, the mixture was stirred in an ice bath for 1.5 hours, then filtered through anhydrous sodium sulfate into a flask containing 5.lg (0.0556 mol) of butanethiol, 100 ml of   CN2Cl2,    and 9.7g (0.070 mol) of anhydrous K2C03. The mixture was stirred overnight at room temperature, then poured into ice water, the organic layer separated and washed with saturated   NaHC03,    water, 10% HC1, and water again. The CH2C12 solution was dried   (MgSO4),    and the solvent removed under reduced pressure to leave 5.6g of a viscous oil. This oil was purified by flash chromatography through silica gel using
CH2C12 to give 3.7g (70%) of   N-(2-fluoro-      4-chloro-5-(n-butylthiomethyl)phenyl]-3,4,5,6-    tetrahydrophthalimide as a viscous oil.



   Anal.   ¯ 8    % H % N
 Calc. 59.75 5.54 3.67
 Found 59.46 5.55 3.38
Example XV : N-[2-fluoro-4-chloro-5-(n-butylsulfinyl    methyl)phenyl]-3,4,5,6-tetrahydroph-   
 thalimide(32)
 A 100 ml round bottom flask equipped with a magnetic stirrer and N2 inlet was charged with 1.4g (0.0037 mol) of     N-C 2-fluoro-4-chloro-5-(n-butylthio-      methyl)phenyll-3,4,556-tetrahydrophthalimide    (see example XIV), 0.55g (0.0037 mol) of sodium perborate tetrahydrate, and 25 ml of glacial acetic acid. The mixture was stirred 2 hours at room temperature.



  Thin layer chromatography indicated complete consumption of starting thio compound. The mixture was poured onto ice and extracted into   CH2Cl2.   



  The   CH2C 12    extracts were washed with water and with brine, then dried   (MgSO4),and    the solvent removed to give 1.7g of oil. This residue product was purified by flash chromatography through silica gel using ethyl acetate to give   l.lg      (75%)    of   
N-C2-fluoro-4-chloro-5-(n-butylsulfinylmethyl)phenyl-    3,4,5,6-tetrahydrophthalimide as a colorless glass.



   Anal. % C % H % N
 Calc. 57.35 5.32 3.52
 Found 54.26 5.69 3.40
Example XVI:   N-[2-fluoro-4-chloro-5-(n-butylsulfonyl-       methyl)phenyl-3,4,5,6-tetrahydrophthal-   
 imide(33)
 A 100 ml round bottom flask equipped with magnetic stirrer and N2 inlet was charged with   l.4g    (0.0037 mol) of   N-[2-fluoro-4-chloro-5-    (n-butylthiomethyl)phenyl-3,4,5,6-tetrahydrophthalimid e (see example XIV), 1.7g (0.0111 mol) of sodium perborate tetrahydrate, and 25 ml of glacial acetic acid. This mixture was stirred at room temperature for three days. Thin layer chromatography (1:1 hexane-ethyl acetate) indicated complete conversion of the starting material to the sulfone. The  reaction mixture was poured into ice water.

  The resulting white precipitate was collected by suction filtration, washed with water, and dried in a vacuum oven to give 1.4g (91%) of
N-[2-fluoro-4-chloro-5-(n-butylsulfonylmethyl)phenyl-3,4,5,6-tetrahydrophthalimide.



  m.p.   132-135"C.   



   Anal.   ¯    % H   % N¯   
 Calc. 55.14 5.11 3.38
 Found 54.68 4.95 3.11
Example XVII: N-morpholino-N'-(2-fluoro-4-chloro-5    isopropoxymethylphenyl)-3 ,4,5,6-   
 tetrahydrophthalamide(129)
 A 50 ml round bottom flask was equipped with a magnetic stirrer and N2 inlet. The flask was charged with l.lg (0.0031 mol) of N-(2-fluoro-4   chloro-5-isopropoxymethylene)phenyl-3 ,4,5,6-      tetrahydrophtalimide    (see Example II), 20 ml of acetonitrile, and 0.27g (0.0031 mol) of morpholine.

 

  This mixture was stirred overnight at room temperature. Thin layer chromatography indicated some starting material was still present so an additional 0.27g of morpholine was added and the reaction stirred 12 more hours at room temperature.



  The mixture was concentrated to a tan oil in vacuo, and the residue recrystallized from 5:1 hexane-ether to give 940 mg (69%) of N-morpholino-N'(2-fluoro-4    chloro-5-isopropoxymethylenephenyl)-3 '4,5, 6-tetra-    hydrophthalamide as a white solid, m.p. 92.C-94.5 C.



   Anal. % C % H % N
 Calc. 60.20 6.43 6.38
 Found 60.65 6.44 6.23  
Example XVIII:   N-(2-fluoro-4-chloro-5-isopropoxy-      
 methylenephenyl)-3,4,5,6-tetrahydro-2-
 thionophthalimide(131)   
 A 50 ml round bottom flask equipped with magnetic stirrer, reflux condenser with N2 inlet.



  and heating mantle was charged with 2.0g (0.0057 mol) of
N-(2-fluoro-4-chloro-5-isopropoxymethylenephenyl)3,4,5,6-tetrahydrophthalimide,   1.15g    (0.0028 mol) of
Lawesson's Reagent (2,4-bis(4-methoxyphenyl)-1,3dithia-2,4-diphosphetane-2,4-disulfide), and 25 ml of toluene. The reaction mixture was heated to reflux for 1 1/2 hours then stirred at room temperature for two days. Solvent was removed under reduced pressure, and the residue purified by flash chromatography through silica gel using 95:5 hexane-ethyl acetate to give 0.52g (25%) of   N-( 2-fluoro-4-chloro-5-isopropoxymethylenephenyl ) -      3,4,5,6-tetrahydro-2-thionophthalimide    as a red oil.



   Anal.   8 C      8 H    % N
 Calc. 58.77 5.21 3.81
 Found 57.23 5.26 3.95
Example XIX: N-(2-fluoro-4-chloro-5-isopropoxy
 methylenephenyl)-3,4,5,6-tatrahydro
 2,4-dithionophthalimide(134)
 A A 100 ml round bottom flask equipped with magnetic stirrer and reflux condenser with N2 inlet was charged with 2.0g (0.0057 mol) of
N-(2-fluoro-4-chloro-5-isopropoxymethylenephenyl)3,4,5,6-tetrahydrophthalimide (see Example   IT),    5.74g (0.0142 mol) of Lawesson's Reagent, and 50 ml of toluene. This mixture was heated to reflux for  
 12 hours. The solvent was removed under reduced pressure, and the residue purified by flash chromatography through silica gel using 95:5 hexane-ether to give 1.3g of a yellow solid.

  This solid was recrystallized from hexane-ether to give 670 mg (31%) of N-(2-fluoro-4-chloro-5-isopropoxymethylenephenyl)-3,4,5,6-tetrahydro-2,4-dithionophthalimide as a yellow crystalline solid, m.p.



     97-101     dec.



      Anal. SC H % N   
 Calc. 56.31 4.99 3.65
 Found 56.20 4.95 3.50
Example XX: N-(2-fluoro-4-chloro-5-isopropoxy   
 methylene)phenyl-3,4,5,6-tetrahydro-2-
 hydroxyphthalamide(132)   
 A 200 ml round bottom flask was equipped with magnetic stirrer, thermometer, N2 inlet, and stopper. The flask was charged with   lOOg    (0.0284 mol) of N-(2-fluoro-4-chloro-5-isopropoxymethylene)   phenyl-3,45556-tetrahydrophthalimide    (see example
II) and 40 ml of methanol. Sodium borohydride (1.61g, 0.0426 mol) was added in portions. Upon the addition of each portion of   NaBH4,    the temperature rose to about 40 C and then immediately subsided to   ambient    temperature.

  The reaction foamed vigorously upon adding the NaBH4 The mixture was stirred overnight at room temperature. Thin layer chromatography showed starting material was still present. An additional 0.54g of NaBH4 was added to the reaction which was stirred overnight. Thin layer chromatography again indicated the presence of starting material, so an additional l.lg of NaBH4  was added and the reaction stirred overnight. The reaction mixture was poured into 125 ml of cold water. A solid formed and was collected by suction filtration and the solid was rinsed with methanol to give 310 mg of the desired product as a white solid. The aqueous layer was concentrated under reduced pressure and then extracted with ether, dried   (MgS04),    and the solvent removed to give 4.5g of a light-brown semi-solid.

  Thin layer chromatography indicated this solid was about 50/50 product and starting material. The solid was taken up in isopropanol and treated, in portions, with 2.14g of   NaBH4.    The reaction mixture was poured onto ice and formed a light brown solid which was collected by filtration and washed with cold methanol to yield a white solid. This material was combined with the 310 mg recovered earlier and recrystallized from hexane-ethyl acetate to give 440 mg of   N-(2-fluoro-4-chloro-5-isopropoxymethylene)-      phenyl-3,4,5,6-tetrahydro-2-hydroxyphthalamide5    m.p.



     145.0-146.5"C.   



   Anal.   8 C    % H % N
 Calc. 61.10 5.98 3.96
 Found 61.26 5.99 3.91
Example XXI:   2-fluoro-4-chloro5-isopropoxymethyl   
 aniline
 A 500 ml round bottom flask was equipped with a magnetic stir bar and a reflux condenser with nitrogen inlet. The flask was charged with 50 ml of carbon tetrachloride, 51.0 g (0.353 mol) of 2-chloro-4-fluorotoluene, 47.6 g (0.353 mol) of sulfuryl chloride and 0.5 g (0.002 mol) of benzoyl  peroxide. The resulting mixture was refluxed and followed by GC until it had run to about 70% completion. At this point (reaction time about two hours) the carbon tetrachloride was removed to leave an amber oil. This oil was purified by vacuum distillation to give 44.1 g (70%) of 2-chloro-4-fluorobenzyl chloride as a colorless oil. NMR   (CDCl3):      84.60    (s,2H); 6.77-7.60 (m,3H).

  In addition, 11.6 g (23%) of unreacted 2-chloro-4-fluorotoluene was recovered.



   A 200 ml 3-necked round bottom flask equipped with a magnetic stir bar, thermometer, stopper, and an addition funnel with N2 inlet was charged with 26.0 g (0.145 mol) of 2-chloro-4fluorobenzyl chloride, prepared as above. The reaction was cooled to   0     via an ice-salt water bath before carefully adding 26 ml of concentrated sulfuric acid. The resulting mixture was stirred at   04    for 5 minutes before adding, dropwise, a nitrating mixture composed of 26 ml of   708      HNO3    and 26 ml of concentrated sulfuric acid. 

  The rate of addition was such that the internal temperature of the reaction did not rise above   20"C.    Once the addition was complete, the resulting orange reaction mixture was allowed to warm to room temperature over thirty minutes and then poured over an ice water mixture and extracted into   CH2Cl2.    The
CH2C12 was washed three times with water, dried   (MgSO4),    and the solvent removed to leave a yellow-orange oil. This oil was purified by flash chromatography on silica gel using 85:10 hexane-ethyl acetate to give 28.35 g   (87%)    of  2-chloro-4-fluoro-5-nitrobenzyl chloride as a yellow oil. NMR   (CDCl3):    64.70 (s,2H), 7.44 (d,   J310   
Hz,lH), 8.26 (d, J=lOHz,lH).



   A 0.5 L HASTALOY B (registered trademark of the Cabot Corporation) reactor equipped with a pressure guage, 5,000 lb. rupture disk, heating jacket, grounding strap, thermocouple and glass insert was charged with 5.0 g (0.022 mol) of 2-chloro-4-fluoro-5-nitrobenzyl chloride prepared as above and 60 ml (0.784 mol) of isopropyl alcohol.



  The reactor was sealed and heated to   1600    for 48 hours after which it was cooled, vented and the contents transferred to a flask. The resulting dark brown solution was stripped down on a rotary evaporator to yield a dark oil which was purified by flash chromatography on silica gel using 93:7 hexane-ethyl acetate, yielding 4.57 g   (83%)    of isopropyl-2-chloro-4-fluoro-5-nitrobenzyl ether as a light yellow oil.



   The   nitrobenzyleher    prepared as above was used to make 2-fluoro-4-chloro-5-isopropoxymethyl aniline by two procedures, designated Method A and
Method B, as follows.



  Method A:
 A pressure bottle was charged with 2.5 g (0.01 mol) of isopropyl 2-chloro-4-fluoro-5nitrobenzyl ether, 25 ml of toluene and 0.25 g of 5%
Pt/C and placed on a hydrogenator at 44 psi of hydrogen. After uptake of hydrogen was complete (approximately 30 minutes), the hydrogenated mixture was filtered through celite to remove the catalyst,  yielding a filtrate containing 2-fluoro-4-chloro-5isopropoxymethyl aniline.



  Method B:
 A 300 ml stainless steel autoclave equipped with a mechanical stirrer, thermocouple, 1000 psi rupture disk, pressure guage and internal heating coil (heated by tempered water) was charged with 2.0 g (0.0081 mol) of isopropyl-2-chloro-4-fluoro5-nitrobenzyl ether, 100 ml of toluene and 1.0 g of
Raney Nickel. The reactor was sealed, purged with
N2 (3 x 100 psi), purged with   H2    (3 x 60 psi) and then charged with   Q    pressure of 100 psi H2.



  The reactor was heated to   100"    using tempered water and then the H2 pressure was increased to 150 psi. After uptake of hydrogen was complete (approximately thirty minutes), the hydrogenated mixture was filtered through celite to remove the catalyst, yielding a filtrate containing 2-fluoro4-chloro-5-isopropoxymethyl aniline.



  Example XXII: N-(2-fluoro-4-chloro-5-isopro    poxymethylenephenyl)-3,4,5,6-tetrahydro-   
 phthalimide(2)
 The filtrate containing 2-fluoro-4-chloro5-isopropoxymethyl aniline generated in Example
XXII, Method A, was placed in a 100 ml round bottom flask equipped with a magnetic stir bar and a
Dean-Starke trap with reflux condenser and N2 inlet. To the filtrate was added 1.9 g (0.0125 mol) of 3,4,5,6-tetrahydrophthalic anhydride and a catalytic amount of p-toluenesulfonic acid. The mixture was refluxed for forty-eight hours, and then  the solvents were removed to give a dark amber oil.



  This oil was purified by flash chromatography on silica gel using 95:5 toluene-ethyl acetate to give a clear oil which solidified under vacuum. A total of 2.65 g   (758)    of N-(2-fluoro-4-chloro-5   isopropoxymethylenephenyl)-3,4,5,6-tetrahydro-    phthalimide was obtained as a white solid.



   Anal:   8 C    % H % N
   Calc. :    61.45 5.44 3.98
 Found: 61.81 5.44 3.53
Example XXIII: N-(2-fluoro-4-chloro-5-isopropoxy
 methylenephenyl)-3,4,5,6-tetra    hydrophthalimide (2)   
 The filtrate containing 2-fluoro-4chloro-5-isopropoxymethyl aniline generated in
Example XXII, Method B, was reduced reduced in volume on a rotary evaporator to about 25 ml and then placed in a   50uml    round bottom flask equipped with a magnetic stir bar and a Dean-Starke trap with reflux condenser and N2 inlet. To the filtrate was added 1.23 g (0.0081 moles) of 3,4,5,6-tetrahydrophthalic anhydride and a catalytic amount of p-toluenesulfonic acid. The mixture was refluxed for 24 hours and then the solvents were removed on a rotary evaporator to afford a brown oil.

  This was purified by flash chromatography on silica gel using 75:25 hexane-ethyl acetate to give 1.81 g (64%) of N-(2-fluoro-4-chloro-5-isopropoxy   methylenephenyl)-3,4,5, 6-tetrahydrophthalimide    as a light yellow solid.  



  Example XXIV : N-[2-fluoro-4-chloro-5-(N-butylamino    carbonyloxymethyl)phenyl-3,4,5,6-   
 tetrahydrophthalimide(78)
 A 150 ml pressure cylinder was equipped with a magnetic stir bar, 100 psi rupture valve and a pressure guage was charged with 1.0 g (0.0045 mol) of 2-chloro-4-fluoro-5-nitrobenzyl chloride, 2.5 ml dioxane and 2.5 ml water. The cylinder was sealed and heated to 1600 for 72 hours after which it was cooled, vented and the contents poured into methylene chloride. The   CH2C12    layer was separated, dried   (MgSO4),    and the solvent removed to leave a yellow oil.

  This oil was purified by flash chromatography on silica gel using 75:25 hexane-ethyl acetate to give a yellow solid which was rinsed with hexane and filtered to yield 0.74 g   (818)    of   2-chloro-4-fluoro-5-nitrobenzyl    alcohol.



  NMR   (CDC13):    62.29 (t,J=6Hz,lH), 4.83   (d,J=6Hz,2H),    7.35   (d,J=lOHz,lH),    8.30   (d,J=8Hz,lH).   



   A 250 ml pressure bottle was equipped with a magnetic stir bar and charged with 10.0 g (0.0486 mol) of 2-chloro-4-fluoro-5-nitrobenzyl alcohol,   100    ml CH2C12, 5.3 g (0.0535 mol) n-butylisocyanate and 5.4 g (0.0535 mol) triethylamine. Upon the addition of triethylamine, the reaction changed from orange to a deep brownish-red color. The reaction bottle was stoppered and then stirred at room temperature for sixteen hours. The volatiles were removed on a rotary evaporator to yield a dark oil. This oil was purified by flash chromatography on silica gel using 75:25 hexane-ethyl acetate to give a yellow oil  which solidified upon standing. The solid was rinsed with hexane and filtered to yield 9.78 g (66%) of   2-chloro-4-fluoro-5-nitrobenzyl-N-butyl    carbamate.

  NMR   (CDCl3)      60.70-1.67    (m,7H), 3.06-3.43   (m,2H),    4.76-5.34 (br,lH), 5.20   (s,2H),    7.36   (d,J=lOHz,lH),    8.15   (d,J=8Hz,lH).   



   A pressure bottle was charged with 6.98 g (0.023 mol) of 2-chloro-4-fluoro-5nitrobenzyl-N-butyl carbamate, 100 ml of toluene and 0.5 g of 5% Pt/C and placed on a hydrogenator at 44 psi of hydrogen. After uptake of hydrogen was complete (required repressurizing at 40 psi, total time approximately one hour), the hydrogenated mixture was filtered through celite to remove the catalyst, and the filtrate containing 2-chloro-4fluoro-5-aminobenzyl-N-butyl carbamate was placed in a 250 ml round bottom flask equipped with a magnetic stir bar and a Dean-Starke trap with reflux condenser and N2 inlet. To the filtrate was added 3.49 g (0.023 mol) of 3,4,5,6-tetrahydrophthalic anhydride and a catalytic amount of p-toluenesulfonic acid. The mixture was refluxed for 48 hours and then the solvents were removed on a rotary evaporator to give a dark golden oil. 

  This oil was purified by flash chromatography on silica gel using 90:10 toluene-ethyl acetate to yield a yellow oil which slowly solidified upon standing.



  The solid was rinsed with hexane and filtered to yield 5.96 g (64%) of   N-[2-fluoro-4-chloro-5-(N-      butylaminocarbonyloxymethyl)phenyl 1-3,4,5,6-    tetrahydrophthalimide.  



   Analysis: % C   8 H    % N
 Calc:   58.75    5.42 6.85
 Found: 59.23 5.47 6.80
Example XXV:   N-(2-fluoro-4-chloro-5-morpholino-   
 methylenephenyl)-3,4,5,6-tetrahydro
 phthalimide(67)
 A 100 ml 3-necked round bottom flask equipped with a thermometer, magnetic stir bar and an addition funnel with N2 inlet was charged with 10.4 g (0.0453 mol) of 2-chloro-4-fluoro-benzylmorpholine. The flask was cooled to   0 C    via an ice-salt water bath before carefully adding 10 ml of concentrated sulfuric acid which resulted in a very viscous mixture which was difficult to stir. The reaction was allowed to warm up to about   10 C    before adding, dropwise, a nitrating mixture composed of 10 ml of 70%   HN03    and 10 ml of concentrated sulfuric acid.

  During the addition the reaction had to be stirred manually due to the viscosity of the reaction mixture. By the end of the addition, the reaction was more fluid and could be stirred effectively by the stir bar. Once addition was complete, the ice bath was removed and the reaction was stirred at room temperature for four hours, then poured over ice water and treated with a 15% sodium hydroxide solution until the aqueous layer was basic, thereby freeing up the initially formed 2-chloro-4-fluoro-5-nitrobenzylmorpholine sulfate.



  The mixture was extracted with   CH2C12,    dried   (MgSO4),    and the solvent removed to yield 11.6 g
 (93%) of 2-chloro-4-fluoro-5-nitrobenzylmorpholine as a light yellow solid. NMR   (CDCl3)     62.37-2.76 (m,2H),   3.53-3.87(m,2H),    7.35   (d,J-lOHz,      1H),    8.26   (d,J-BHz,lH).   



   This material was determined to be 98.7% pure by gas chromatography. Further purification was obtained by flash chromatography on silica gel using 75:25 hexane-ethyl acetate to give 10.56 g (85%) of the morpholine product as a light yellow solid, mp   91-93"C.   



   Analysis: % C   8 H    % N
 Calc: 48.10 4.41 10.2
 Found: 48.14 4.45 10.05
 A pressure bottle was charged with 2.0 g (0.0073 mol) of 2-chloro-4-fluoro-5-nitrobenzylmorpholine, 30 ml toluene and 0.2 g of 5% Pt/C and placed on a hydrogenator at 44 psi of hydrogen.



  After uptake of hydrogen was complete (approximately thirty minutes), the hydrogenated mixture was filtered through celite to remove the catalyst, and the filtrate containing 2-chloro-4-fluoro-5-aminobenzylmorpholine was placed in a   100    ml round bottom flask equipped with a magnetic stir bar and a Dean-Starke trap with   reflux    condenser and N2 inlet. To the filtrate was added 1.11 g (0.0073 mol) of 3,4,5,6-tetrahydrophthalic anhydride and a catalytic amount of p-toluenesulfonic acid. The mixture was reflexed for 48 hours and then the solvents were removed to give a light brown oil. This oil was purified by flash chromatography on silica gel using 70:30 hexane-ethyl acetate to give 0.56 g (20%) of
N-(2-fluoro-4-chloro-5-morpholinomethylenephenyl)  3,4,5,6-tetrahydrophthalimide as a white solid, mp 108-111.



   Analysis:   8    C % H % N
   Calc. :    60.24 5.32 7.40
 Found: 60.83 5.41 7.13
Example XXVI N-(2-fluoro-4-chloro-5-cyanomethyl)    phenyl-3,4,5,6-tetrahydrophthal-   
 imide(96)
 A 1000 ml round bottom flask equipped with an air stirrer, a reflux condenser with N2 inlet, and an addition funnel was charged with a solution of 99.9 g (0.691 mol) of 2-chloro-4-fluorotoluene in 400 ml of carbon tetrachloride which had been passed through a 6 inch column of netural alumina, 135.3 g (0.760 mol) of N-bromosuccinimide, and 0.50 g of dibenzoyl peroxide. The mixture was stirred under reflux overnight. The succinimide was removed by filtration and the solvent removed to give 155 g of a light orange solid. NMR   (CDCl3),    64.52 (s, 2H); 6.68-7.60 (m,3H).

  This crude product, which contained about 12% of the starting material, was used in the next step without purification.



   A 1,000 ml round bottom flask was equipped with a magnetic stirring bar and a reflux condenser with N2 inlet. The flask was charged with the crude benzyl bromide prepared above in 250 ml of toluene, 8.0 g of Aliquat 336 in 50 ml of toluene, and 32.0 g (0.653 mmol) of sodium cyanide. The mixture was stirred overnight at room temperature, then washed with water (3x), dried   (MgS04),    and the solvent removed to give an orange oil. This oil was taken up in hexane-ethyl acetate and  crystallized to give the desired benzyl cyanide'as a white solid, 71.4 g (61% based on starting toluene). NMR   (CDC13):      63.80      (S,2H);    6.80-7.73   (m,3H).   



   A 250 ml round bottom flask equipped   with    a magnetic stirring bar, reflux condenser with N2 inlet, thermometer, and a solids addition funnel was charged with 40 ml of fuming nitric acid and cooled to   15"C.    The benzyl cyanide was added in portions as a solid while maintaining the temperature at   15"C.    When addition of the benzyl cyanide was complete, the reaction mixture was warmed to   33"C    for 3 1/2 hrs, then poured onto ice. The desired nitro compound formed a solid. This solid was washed thoroughly with water, taken up in 250 ml of
CH2C12, dried   (MgSO4),    and the solvent removed to give a light yellow solid.

  This solid was triturated with hexane and filtered to give 9.5 g (75%) of the desired 2-chloro-4-fluoro-5-nitrobenzyl cyanide, mp 62 C, as a pale yellow solid. NMR   (CDC13);    63.95   (s,2H);    7.52 (d,lH); 8.33 (d,lH).

 

   A 250 ml round bottom flask equipped with a magnetic stirring bar and reflux condenser with N2 inlet was charged with 3.2 g (0.0149 mol) of the 2-chloro- 4-fluoro-5-nitrobenzyl cyanide, 16.8 g (0.075 mmol) of   tin(If)    chloride dihydrate and 60 ml of ethanol. This mixture was heated to   70"C    for 5 hr, then stirred overnight   dt    room temperature.



  About two-thirds of the ethanol was removed under reduced pressure, and the residue poured into ice water. The residue was made basic with 1N NaOH and extracted into ethyl acetate. The ethyl acetate  extract was washed with water (2x), dried   (MgSO4),    and the solvent removed to leave 2.5 g   (91%)    of the desired 2-chloro-4-fluoro-5-aminobenzyl cyanide as a yellow solid. NMR   (CDC13):      63.50-4.05    (s broad, 2H); 6.85 (d,lH); 7.06 (d,lH).



   A 100 ml round bottom flask equipped with a magnetic stirring bar, Dean-Stark trap, and reflux condenser with N2 inlet was charged with 2.5 g (0.0135 mol) of the 2-chloro-4-fluoro-5-aminobenzyl cyanide prepared above, 2.06 g (0.0135 mol) of 3,4,5,6- tetrahydrophthalic anhydride, 40 ml of toluene, and a catalytic amount of p-toluenesulfonic acid. This mixture was refluxed overnight. The mixture was washed with water, 5% HC1, water, saturated NaHCO3, and water again, then dried   (MgSO4)    and the solvent removed to give an amber oil. This oil was purified by column chromotography (3:1 hexane-ethyl acetate) to give a pale yellow solid, mp 144-147 C. 2.20 g (51%).



   Anal: % C % H % N
 Calc. 60.29 3.80 8.79
 Found 60.33 4.09 8.84   
Example XXVII: Methyl   methyl
 [2-chloro-4-fluoro-5-(3,4,5,6-   
   tetrahydrophthalmidoyl))    phenyl    acetate(117)   
 A 2L round bottom flask was equipped with a stirring bar, reflux condenser with N2 inlet, thermometer, and addition funnel. The flask was charged with 200 ml of dry tetrahydrofuran containing 32.8 g (0.324 mol) of dry diisopropyl amine, cooled to   0 C.,    and 203 ml (20.8 g, 0.324  mol) of 1.6M n-butyllithium in hexane was added dropwise. When this addition was complete, the reaction was stirred 10 minutes at   0 C    then cooled to   -76 C    with a dry ice-acetone bath.

  A solution of 50.0 g (0.295 mol) of 2-chloro-4- fluorobenzyl cyanide in 125 ml of dry tetrahydrofuran was added dropwise. The reaction mixture turned dark green and then orange. The mixture was stirred for 1 hr and then 125.6 g (0.885 mol) of methyl iodide added dropwise. The reaction mixture turned yellow and was stirred at   -78 C    for 30 minutes then concentrated under reduced pressure. About 350 ml of ice water was added to the residue which was then extracted twice with 250 ml portions of dichloromethane. The organic extract was washed with water, dried   (MgS04),    and the solvent removed to leave = methyl 2-chloro-4- fluorobenzyl cyanide as a dark orange liquid which was used in the next step without purification.

  NMR   (CDCl3):      61.60    (d, 3H); 4.31   (q,lH);'6.82-7.88    (m,3H).



   A 250 ml round bottom flask equipped with a thermometer, reflux condenser, and magnetic stirrer was charged with 75 ml of fuming nitric acid and cooled to   5"C.    To this mixture was added dropwise 23.0 g (0.125 mol) of   methyl    2-chloro-4fluorobenzyl cyanide over a 30 minute period while maintaining the termperature below   +10 C.    When addition was complete, the mixture was heated to   33"C    for 4 hrs. The mixture was cooled to room temperature, poured onto ice, and extracted with dichloromethane. The combined organic phase was washed thoroughly with water, dried   (MgS04),    and  the solvent removed to leave 23.3 g of a dark brown oil.

  This material was purified by flash chromatography on silica gel eluting with 80:20 hexane-ethylacetate to give 19.6 g (68%) of   o-methyl-2-chloro-4-fluoro-5-nitrobenzyl    cyanide as a yellow oil. NMR   (CDC13):61.6    (d,3H); 4.3   (q,lH);    7.3   (d,lH);    8.2   (d,lH).   



   A 500 ml round bottom flask equipped with magnetic stirrer and reflux condenser with   N2    inlet was charged with 15.0 g (0.0656 mol) of   a-methyl-    2-chloro-4-fluoro-5-nitrobenzyl cyanide and a solution of 100 ml of concentrated sulfuric acid in 145 ml of water. The mixture was heated to reflux for 12 hrs, then cooled to room temperature and poured into ice water. The resulting solid was collected by suction filtration, washed thoroughly with water, taken up in ethyl acetate, dried.



     (MgS04),    and the solvent removed to leave a tan solid. This solid was triturated with hexane and filtered to give 15.6 g (96%) of   methyl      2-chloro-4-fluoro-5-nitrophenyl    acetic acid as a white solid. NMR   (CDCl3):      61.0    (d,3H); 3.5-4.0 (q,lH); 6.11 (s broad,   1H);    7.0-8.0 (pair of d,   2H)-.   



   A pressure bottle was charged with 14.3g (0.0578 mol) of   t methyl    2-chloro-4-fluoro-5nitrophenylacetic acid, 250 ml of ethyl acetate, and 1.4 g of 5% Pt/C. The bottle was placed on a hydrogenator and subjected to a pressure of 40 psi of hydrogen for 1 1/2 hrs. The mixture was filtered through celite, and the solvent removed to give 11.4 g (91%) of   methyl    2-chloro-4-fluoro-5aminophenylacetic acid as a white solid.  



   A 500 ml round bottom flask equipped with a magnetic stirrer and reflux condenser with N2 inlet was charged with 11.4 g (0.0526 mol) of   methyl    2-chloro-4-fluoro-5-aminophenylacetic acid, 8.8 g (0.0578 mol) of 3,4,5,6-tetrahydrophthalic anhydride, 200 mg of p-toluenesulfonic acid, and 300 ml of toluene. The reaction mixture was refluxed, with removal of the water formed, for 12 hrs. After cooling to room temperature, the mixture was washed with water, dried (MgSO4), and the toluene removed to leave 17.1 g of an orange oil. This oil was triturated with hexane to leave a pale orange solid (16.0 g, 86%) which was used in the next step without further purification.

 

   The   methyl      t2-chloro-4-fluoro-5-      (3,4,5,6-tetrahydrophthalimidoyl)lphenyl    acetic acid (16.0 g, 0.0456 mol) prepared above was taken up in 200 ml of carbon tetrachloride and charged to a 500 ml round bottom flask equipped with a magnetic stirrer, reflux condenser with N2 inlet, and addition funnel. A solution of 21.6g (0.182 mol) of thionyl chloride in 50 ml of   CC14    was added dropwise. The mixture was then heated at reflux for 2 hrs. IR spectra of the mixture indicated complete conversion to the acid chloride. The solvent and excess thionyl chloride were removed under reduced pressure.



   A solution of 4.5 g (0.0122 mol) of the acid chloride prepared above in 20 ml of methylene chloride was charged to a 100 ml round bottom flask and stirred under N2. This solution was cooled to     OOC,    and a solution of 1.9 g (0.0678 mol) of dry methanol and 1.86 ml (0.0134 mol) of triethylamine in 10 ml of methylene chloride was added dropwise.



  The mixture was stirred 12 hrs at room temperature, washed with water, dried (MgSO4), and the solvent removed to give 2.85 g of an oil. This oil was purified by flash chromatography on silica gel to give 1.4 g (32%) of the desired methyl   methyl      [2-chloro-4-fluoro-5-( 3, 4, 5, 6-tetrahydrophthal-      imidoyl)Iphenyl    acetate as a viscous oil. NMR (CDC13): 61.5-2.3 (2m and 2s, llH); 3.6 (s,3H); 4.2 (q, 1H); 7.3 (pair of doublets, 2H).



   Anal: % C % H % N
   Calc. :    59.11 4.69 3.83
 Found 58.87 5.05 3.80
Herbicide Activity
 The biological efficacy and selectivity of compounds representative of this invention as terrestrial herbicides were evaluated as preemergence herbicides and as postemergence herbicides. The post-emergence test plants were morningglory, mustard, pigweed, nightshade, cocklebur, velvetleaf, and teaweed. The pre-emergence test plants were the same except that mustard and nightshade were replaced by coffeeweed, foxtail,. broadleaf signalgrass, and large crabgrass. For the preemergence test, seeds of the type of plants as shown in Table   II    were sown in fresh soil about 1 inch below the soil surface. In the preemergence test, the soil was sprayed with a solution of the test compound immediately after the seeds were planted.

  The solution was about a 1% by  weight solution of the test compound in 1:1 water-acetone. The compounds were applied at a rate as indicated in Table   IT.   



   Approximately three weeks after spray applications, the herbicidal activity of the compound was determined by visual observation of the treated areas in comparison with untreated controls. These observations are reported on a scale of   0    to 100% control of plant growth.



   In the postemergence test the soil and developing plants were sprayed about two weeks after the seeds were sown. The compounds were applied at a rate as indicated in Table I for each test compound from about a 1% by weight solution of the test compound in acetone. The postemergence herbicidal activity was measured in the same way as the preemergence activity at three weeks following treatment.



   The results of both the preemergence and postemergence test are set forth in Tables I and   II    below wherein a dash (-) indicates that the compound was not tested against that particular plant. In each of Tables I and II a number has been placed below each structure shown to correlate each structure with Table III which indicates physical properties and elemental analyses for compounds according to the invention. The following abbreviations for test crops have been used: soybeans (SB), corn (CN), wheat   (WH),    and rice (RI). Abbreviations for test weeds are as follows: morningglory (MG), mustard (MU), pigweed (PW), nightshade   (NS),    cocklebur   (COC),    velvetleaf (VE),  teaweed (TW), coffeeweed (CW), foxtail (FT), broadleaf signalgrass (BS), and large crabgrass (LC).



   Table I shows herbicidal data for various preferred compounds of this invention which have exhibited excellent broadleaf weed control and good crop selectivity at low application rates in postemergent treatments.  



   Table I: Post-Emergent Herbicidal Activity/Crop Selectivity of Novel
Cs-Methylene Anilines
EMI117.1     


<tb>  <SEP> Structwo <SEP> Ratc <SEP> CroDX <SEP> W4odS
<tb>  <SEP> ( <SEP> ) <SEP> SB <SEP> CN <SEP> PtOtt <SEP> MC <SEP> PW <SEP> Pw <SEP> s <SEP> NS <SEP> COC <SEP> vr <SEP> TW
<tb>  <SEP> t <SEP> Injury <SEP> 1, <SEP> Control
<tb>  <SEP> F <SEP> 0.015 <SEP> 10 <SEP> 10 <SEP> 10 <SEP> 11 <SEP> JOO <SEP> 100 <SEP> 91 <SEP> 100 <SEP> 11 <SEP> 100 <SEP> 
<tb>  <SEP> CI
<tb> j <SEP> :

  <SEP> 0015 <SEP> 10 <SEP> 10 <SEP> 10 <SEP> Ii <SEP> 100 <SEP> 100 <SEP> 91 <SEP> 100 <SEP> ii <SEP> 100 <SEP> 
<tb>  <SEP> O <SEP> CHC'C?i,
<tb>  <SEP> 1
<tb>  <SEP> C <SEP>   <SEP> 015 <SEP> 22 <SEP> 10 <SEP> 14 <SEP> ii <SEP> 100 <SEP> 52 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 
<tb>  <SEP>   <SEP> CH2OCHgH,)t
<tb>  <SEP> 2
<tb>  <SEP> 3? <SEP> 3CX <SEP> 0.06 <SEP> 10 <SEP> 14 <SEP> 32 <SEP> 11 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> - <SEP> 100 <SEP> 100
<tb>  <SEP> 3
<tb>  <SEP> 9 <SEP> f
<tb>  <SEP> Di)' <SEP> w2sc1c0 <SEP> 22 <SEP> 10 <SEP> 14 <SEP> li <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> - <SEP> L00 <SEP> 100
<tb>  <SEP> 4
<tb>   
Table I (continued)
EMI118.1     


<tb>  <SEP> Structure <SEP> Rate <SEP> Croons <SEP> Weeds
<tb>  <SEP> ( <SEP> lb/A) <SEP> SH <SEP> CN <SEP> WS <SEP> RI <SEP> MG <SEP> Mu <SEP> PW <SEP> NS <SEP> COC <SEP> VE <SEP> TW
<tb>  <SEP> 

   S <SEP> Injury <SEP> t <SEP> Contra
<tb>  <SEP> g <SEP> F
<tb>   <SEP> CH C%CO <SEP> C <SEP> 0 <SEP> 0 <SEP> - <SEP> LOO <SEP> 10 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 
<tb>  <SEP> 0
<tb>  <SEP> 39
<tb>  <SEP> P <SEP> F
<tb>  <SEP> 0.015 <SEP> 0.015 <SEP> 26 <SEP> 14 <SEP> 100 <SEP> 0 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 5s <SEP> so <SEP> 
<tb>  <SEP> 7
<tb>  <SEP> 19 <SEP> F
<tb>  <SEP> X <SEP> X <SEP> cl <SEP> 0.06 <SEP> 21 <SEP> 10 <SEP> 10 <SEP> 10 <SEP> 26 <SEP> 11 <SEP> 100 <SEP> 100 <SEP> 45 <SEP> 85 <SEP> 
<tb>  <SEP>   <SEP> CH2Br
<tb>  <SEP> o
<tb> (¸ <SEP> I <SEP> 0.015 <SEP> 11 <SEP> 10 <SEP> 14 <SEP> 11 <SEP> 82 <SEP> 98 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 
<tb>  <SEP> O <SEP> CH20 <SEP> 4
<tb>  <SEP> 9
<tb>   
Table I (continued)
EMI119.1     


<tb>  <SEP> Structure <SEP> Rate <SEP> Croons <SEP> Weeds
<tb>  <SEP> (Ib/A) <SEP> SS <SEP> CN <SEP> 

   W <SEP> RZ <SEP> EG <SEP> Mu <SEP> PW <SEP> NS <SEP> COC <SEP> ve <SEP> Tw
<tb>  <SEP> % <SEP> Injury <SEP> S <SEP> Control
<tb> (··i <SEP> 0.015 <SEP> 21 <SEP> 33 <SEP> 22 <SEP> 20 <SEP> 100 <SEP> 45 <SEP> 100 <SEP> 100 <SEP> 32 <SEP> 8s <SEP> 
<tb>  <SEP>   <SEP> CH2OCH2CH <SEP> =CH2
<tb>  <SEP> 10
<tb>  <SEP> Q <SEP> F
<tb>  <SEP> C <SEP> Ct <SEP> 0.015 <SEP> 38 <SEP> 22 <SEP> 6 <SEP> 0 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 99 <SEP> 
<tb>  <SEP> o <SEP> CH20CH2CH,
<tb>  <SEP> 11
<tb>  <SEP> 0
<tb>  <SEP> J <SEP> 0.25 <SEP> rl <SEP> 10 <SEP> 26 <SEP> 21 <SEP> 100 <SEP> 50 <SEP> 100 <SEP> LOO <SEP> 95 <SEP> 100 <SEP> 
<tb>  <SEP> CH,OH
<tb>  <SEP> 13
<tb> ly <SEP> -C <SEP> So, 

   <SEP> 0.015 <SEP> 19 <SEP> 10 <SEP> 11 <SEP> 10 <SEP> 19 <SEP> 11 <SEP> 100 <SEP> 100 <SEP> - <SEP> 50 <SEP> 
<tb>  <SEP> O <SEP> C2OCCW1CH,
<tb>  <SEP> 14
<tb>  <SEP> C <SEP> \ <SEP> 0.25 <SEP> 20 <SEP> 10 <SEP> 14 <SEP> 10 <SEP> 76 <SEP> 22 <SEP> 100 <SEP> 100 <SEP> - <SEP> 1Q0 <SEP> 
<tb>  <SEP>   <SEP> C <SEP> H20H
<tb>  <SEP> L5
<tb>   
Table I (continued)
EMI120.1     


<tb>  <SEP> Structure <SEP> Rate <SEP> Crops <SEP> Weeds
<tb>  <SEP> (lb/A) <SEP> SS <SEP> CII <SEP> WH <SEP> RI <SEP> m;

  <SEP> flu <SEP> Pw <SEP> NS <SEP> coc <SEP> VE <SEP> TW
<tb>  <SEP> S <SEP> Injury <SEP> S <SEP> Control
<tb> q <SEP> $1 <SEP> 0.06 <SEP> 11 <SEP> 0 <SEP> 11 <SEP> 0 <SEP> 11 <SEP> ii <SEP> 100 <SEP> 100 <SEP> - <SEP> 100 <SEP> 
<tb>  <SEP> O <SEP> CH20CH(C ,)2
<tb>  <SEP> 16
<tb>  <SEP> (· <SEP> I <SEP> 0.015 <SEP> 19 <SEP> 20 <SEP> 21 <SEP> 0 <SEP> 32 <SEP> 10 <SEP> 100 <SEP> 100 <SEP> - <SEP> 100 <SEP> 
<tb>  <SEP> o <SEP> CH2OCH(CH3)2
<tb>  <SEP> 17
<tb> X <SEP> XCa <SEP> 0.015 <SEP> 11 <SEP> 11 <SEP> 10 <SEP> 10 <SEP> 11 <SEP> 10 <SEP> 100 <SEP> 100 <SEP> - <SEP> 100 <SEP> 
 <SEP> O <SEP> C <SEP> H2OC 2C9(CHX <SEP> ) <SEP> 2
<tb>  <SEP> 18
<tb> jy <SEP>  > | <SEP> 0.015 <SEP> 22 <SEP> 10 <SEP> 11 <SEP> 0 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> - <SEP> 
<tb>  <SEP> o <SEP> CH,OC
<tb>  <SEP> 19
<tb> C4 <SEP> 4CJ <SEP> 0.015 <SEP> 11 <SEP> 0 <SEP> 21 <SEP> 0 <SEP> 10 <SEP> 0 

   <SEP> 100 <SEP> 100 <SEP> 0 <SEP> 100 <SEP> 
<tb>  <SEP> o <SEP> CH2F
<tb>  <SEP> 21
<tb>   
Table I (continued)
EMI121.1     


<tb>  <SEP> Structure <SEP> Rate <SEP> Croon <SEP> Weeds
<tb>  <SEP> lob/) <SEP> SB <SEP> CtI <SEP> WH <SEP> RT <SEP> m; <SEP> u <SEP> pw <SEP> Ns <SEP> CCC <SEP> VE <SEP> rW
<tb>  <SEP> S <SEP> Injury <SEP> 2 <SEP> Control
<tb>  <SEP> O <SEP> F
<tb>  <SEP> X <SEP> 0.015 <SEP> Li <SEP> ii <SEP> Li <SEP> io <SEP> 35 <SEP> 10 <SEP> 11 <SEP> 100 <SEP> 14 <SEP> 100 <SEP> 
<tb>  <SEP> CHPCCF,
<tb>  <SEP> 22
<tb> X <SEP> X <SEP> -0.25 <SEP> 2 <SEP> 11 <SEP> 21 <SEP> 10 <SEP> 35 <SEP> 20 <SEP> 100 <SEP> 100 <SEP> 10 <SEP> 100 <SEP> 
<tb>  <SEP> O <SEP> cH2OCH <SEP> (C <SEP> H2)2
<tb>  <SEP> 23
<tb>  <SEP> O <SEP> F
<tb>  <SEP> C <SEP> F <SEP> 0.25 <SEP> 11 <SEP> 11 <SEP> 11 <SEP> 10 <SEP> 95 <SEP> 11 <SEP> 11 <SEP> 100 <SEP> 10 <SEP> 100 <SEP> 
<tb>  <SEP> O <SEP> 

   CH20H
<tb>  <SEP> 24
<tb>  <SEP> S <SEP> j' <SEP> 0.015 <SEP> 19 <SEP> 10 <SEP> 26 <SEP> 10 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 
<tb>  <SEP> O <SEP> CH1OCMe,
<tb>  <SEP> 25
<tb>  <SEP> Q <SEP> bc <SEP> 0.015 <SEP> 11 <SEP> 20 <SEP> 21 <SEP> 10 <SEP> id <SEP> 14 <SEP> 76 <SEP> 100 <SEP> 10 <SEP> 100 <SEP> 
<tb>  <SEP> O <SEP> CH2NHCH2C <SEP> x <SEP> CH
<tb>  <SEP> 26
<tb>   
Table I (continued)
EMI122.1     


<tb>  <SEP> Structure <SEP> Rate <SEP> Crows <SEP> Weeds
<tb>  <SEP> ( <SEP> lb/A) <SEP> SB <SEP> CN <SEP> WH <SEP> RI <SEP> m;

  <SEP> rm <SEP> PW <SEP> NS <SEP> COC <SEP> VE <SEP> 1W
<tb>  <SEP> S <SEP> Injury <SEP> S <SEP> Control
<tb>  <SEP> O <SEP> F
<tb>  <SEP> X <SEP> Xcl <SEP> 0.015 <SEP> 11 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 10 <SEP> 14 <SEP> 100 <SEP> 100 <SEP> - <SEP> 100 <SEP> 
<tb>  <SEP> O <SEP> CH,N3
<tb>  <SEP> 27
<tb>  <SEP> X <SEP> 0.015 <SEP> 10 <SEP> 0 <SEP> 11 <SEP> 14 <SEP> 100 <SEP> 10 <SEP> 100 <SEP> 95 <SEP> - <SEP> 100 <SEP> e
<tb>  <SEP> o <SEP> CH20CH2CaCH
<tb>  <SEP> 28
<tb>  <SEP> 9
<tb> (D¸ <SEP> Q <SEP> 1.0 <SEP> 10 <SEP> 10 <SEP> 22 <SEP> 10 <SEP> 22 <SEP> 10 <SEP> 100 <SEP> 100 <SEP> 14 <SEP> 100 <SEP> 
<tb>  <SEP>   <SEP> CHtOCH(CH,)2
<tb>  <SEP> 29
<tb> X <SEP> 0.06 <SEP> 10 <SEP> 10 <SEP> 20 <SEP> 10 <SEP> 31 <SEP> 14 <SEP> 100 <SEP> tOO <SEP> 26 <SEP> 100
<tb>  <SEP> CH2oCHH,)2
<tb>  <SEP> 30
<tb> X <SEP> I <SEP> 0.015 <SEP> 10 <SEP> 10 <SEP> 11 <SEP> 10 <SEP> 11 <SEP> 44 <SEP> 100 

   <SEP> 100 <SEP> 26 <SEP> 100 <SEP> 
<tb>  <SEP>   <SEP> CH2S(CH2),CH,
<tb>  <SEP> 31
<tb>   
Table I (continued)
EMI123.1     


<tb>  <SEP> Structure <SEP> Rate <SEP> Crop2 <SEP> Weeds
<tb>  <SEP> (lb/A) <SEP> si3 <SEP> CII <SEP> WH <SEP> RI <SEP> K; <SEP> MU <SEP> Pw <SEP> NS <SEP> COC <SEP> VE <SEP> Tw
<tb>  <SEP> S <SEP> Injury <SEP> S <SEP> Control
<tb>  <SEP> P
<tb>  <SEP> 1
<tb>  <SEP> 9 <SEP> 9cl <SEP> 0.015 <SEP> 11 <SEP> 10 <SEP> 0 <SEP> 0 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 32 <SEP> 100
<tb>  <SEP> O <SEP> CH25(CHt)3C
<tb>  <SEP> 0
<tb>  <SEP> 32
<tb> OJP <SEP> f
<tb> D4 <SEP> CH,S4(CHCy <SEP> 10 <SEP> 10 <SEP> C <SEP> 0 <SEP> 0 <SEP> 10 <SEP> 100 <SEP> 100 <SEP> 22 <SEP> OO
<tb>  <SEP> 0
<tb>  <SEP> 33
<tb>  <SEP> O <SEP> F
<tb> X <SEP> XCo <SEP> 0.015 <SEP> 39 <SEP> 10 <SEP> 20 <SEP> 20 <SEP> 95 <SEP> 50 <SEP> 100 <SEP> 100 <SEP> 32 <SEP> 100
<tb>  <SEP> O <SEP> 

   CH2C-NHC
<tb>  <SEP> 34
<tb>  <SEP> 8 <SEP> F
<tb> X <SEP> 1 <SEP> 0 <SEP> 0.015 <SEP> 10 <SEP> 0 <SEP> 10 <SEP> 10 <SEP> 14 <SEP> 32 <SEP> 100 <SEP> 100 <SEP> 10 <SEP> 100
<tb>  <SEP> 9 <SEP> 0.0i5 <SEP> 10 <SEP> 0 <SEP> 10 <SEP> CHOCOwO
<tb>  <SEP> 0 <SEP> cx2OC'
<tb> C <SEP>  > J <SEP> 0.015 <SEP> 10 <SEP> 10 <SEP> 20 <SEP> 10 <SEP> 82 <SEP> 38 <SEP> 100 <SEP> 100 <SEP> 53 <SEP> 100
<tb>  <SEP> O <SEP> CH:0CCH(CHi):

  :
<tb>  <SEP> 36
<tb>   
Table I (continued)
EMI124.1     


<tb>  <SEP> Structure <SEP> Rate <SEP> Crops <SEP> Woods
<tb>  <SEP> (lb/A) <SEP> SB <SEP> CN <SEP> WH <SEP> RI <SEP> MG <SEP> MU <SEP> PW <SEP> NS <SEP> COC <SEP> VE <SEP> ml
<tb>  <SEP> S <SEP> Injury <SEP> S <SEP> Control
<tb>  <SEP> X <SEP> cl <SEP> 0.015 <SEP> ii <SEP> 10 <SEP> 20 <SEP> 10 <SEP> 22 <SEP> 50 <SEP> 100 <SEP> 100 <SEP> 22 <SEP> 100
<tb>  <SEP> Ql <SEP> - <SEP> 015 <SEP> ri <SEP> io <SEP> 0
<tb>  <SEP> o <SEP> cH1oc(cH,)3
<tb>  <SEP> 37
<tb>  <SEP> X <SEP>  > 1 <SEP> 0.06 <SEP> 10 <SEP> 10 <SEP> LO <SEP> 10 <SEP> 10 <SEP> 44 <SEP> 100 <SEP> 100 <SEP> 10fl <SEP> 100
<tb>  <SEP> 38 <SEP> CH2 -;

  ;-S <SEP> (CH2)2cHx
<tb>  <SEP> OCH2CH,
<tb> t <SEP> NH <SEP> b
<tb> I
<tb>  <SEP> o <SEP> 0.015 <SEP> 10 <SEP> 10 <SEP> 20 <SEP> 0 <SEP> 45 <SEP> 26 <SEP> 100 <SEP> 26 <SEP> 44 <SEP> 100
<tb>  <SEP> 129
<tb>  <  <SEP> CHtOCH(CH, > 
<tb>  <SEP> a <SEP> 0.015 <SEP> 21 <SEP> 20 <SEP> ii <SEP> 11 <SEP> 100 <SEP> 99 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100
<tb>  <SEP> 130
<tb>  <SEP> 11 <SEP> 0.015 <SEP> 40 <SEP> 20 <SEP> ii <SEP> 20 <SEP> 22 <SEP> 10 <SEP> 100 <SEP> 26 <SEP> 22 <SEP> 100
<tb>  <SEP> O <SEP> CH1OCH(CM,)2
<tb>  <SEP> 40
<tb>   
Table I (continued)
EMI125.1     


<tb>  <SEP> Structure <SEP> Rate <SEP> Crows <SEP> Weeds
<tb>  <SEP> (lb/A) <SEP> S3 <SEP> CN <SEP> w <SEP> RI <SEP> MG <SEP> MU <SEP> PW <SEP> NS <SEP> CCC <SEP> VE <SEP> 1W
<tb>  <SEP> S <SEP> Injurv <SEP> S <SEP> Control
<tb>  <SEP> c
<tb>  <SEP> S <SEP> F
<tb>  <SEP> O <SEP> CH,OCH(CYX <SEP> 10 <SEP> 10 <SEP> 2i  

   <SEP> 10 <SEP> 100 <SEP> 26 <SEP> 100 <SEP> 94 <SEP> 10 <SEP> 100 <SEP> 
<tb>  <SEP> 131
<tb>  <SEP> C <SEP> 06015 <SEP> 10 <SEP> 10 <SEP> 11 <SEP> 10 <SEP> 45 <SEP> 20 <SEP> 100 <SEP> 100 <SEP> 45 <SEP> 100 <SEP> 
<tb>  <SEP> O <SEP> CH20
<tb>  <SEP> 41
<tb>  <SEP> P <SEP> F
<tb> Q <SEP> 0.015 <SEP> 21 <SEP> 10 <SEP> 11 <SEP> 10 <SEP> 100 <SEP> 0 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 
<tb>  <SEP> o <SEP> CH20CH2COCH2CH,
<tb>  <SEP> 42
<tb>  <SEP> F
<tb>  <SEP> C <SEP> CJ <SEP> 0.015 <SEP> 21 <SEP> 20 <SEP> 10 <SEP> 10 <SEP> 100 <SEP> 33 <SEP> 100 <SEP> 100 <SEP> 40 <SEP> 100 <SEP> 
<tb>  <SEP> o <SEP> CH25CH(CH,;

  ;
<tb>  <SEP> 44
<tb>  <SEP> 3 <SEP>  >  <SEP> 0.015 <SEP> 10 <SEP> 0 <SEP> 10 <SEP> 10 <SEP> 99 <SEP> 10 <SEP> 100 <SEP> 100 <SEP> 19 <SEP> 100 <SEP> 
<tb>  <SEP> o <SEP> CH2N <SEP> n
<tb>  <SEP> 45
<tb>   
Table I (continued)
EMI126.1     


<tb>  <SEP> Structure <SEP> Rate <SEP> Crops <SEP> Weeds
<tb>  <SEP> ( <SEP> lob/) <SEP> S13 <SEP> CN <SEP> WH <SEP> RI <SEP> s <SEP> ?Iu <SEP> PW <SEP> NS <SEP> COC <SEP> VE <SEP> ml
<tb>  <SEP> S <SEP> Injury <SEP> S <SEP> Control
<tb> (· <SEP> l <SEP> 0.015 <SEP> 20 <SEP> io <SEP> 20 <SEP> 31 <SEP> 100 <SEP> 22 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 
<tb>  <SEP> o <SEP> CH:

  :CCHzC9O
<tb>  <SEP> 46
<tb>  <SEP> (· <SEP> I <SEP> 0.015 <SEP> 14 <SEP> 10 <SEP> 20 <SEP> 10 <SEP> 71 <SEP> 10 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> iCO <SEP> 
 <SEP> C <SEP> CI <SEP> 0.015 <SEP> 14 <SEP> 10 <SEP> 20 <SEP> 10 <SEP> 71 <SEP> 10 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 
<tb>  <SEP> o <SEP> CH2OC <SEP> H1
<tb>  <SEP> 47
<tb>  <SEP> 9'
<tb>  <SEP> (¸ <SEP> I <SEP> O.O1S <SEP> 20 <SEP> 11 <SEP> 10 <SEP> 10 <SEP> 32 <SEP> 20 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 
<tb>  <SEP> 48 <SEP> CH2OCH2CF,
<tb> S <SEP> 0.015 <SEP> 26 <SEP> 10 <SEP> 35 <SEP> 2i <SEP> 78 <SEP> 19 <SEP> 100 <SEP> 100 <SEP> 55 <SEP> 100 <SEP> 
<tb>  <SEP>   <SEP> CH20CH,CHta
<tb>  <SEP> 49
<tb> C <SEP> I <SEP> 0.015 <SEP> 21 <SEP> 10 <SEP> 10 <SEP> 0 <SEP> 33 <SEP> 85 <SEP> 100 <SEP> 22 <SEP> 21 <SEP> 100 <SEP> 
<tb>  <SEP> 0 <SEP> CH
<tb>  <SEP> 51
<tb>   
Table I (continued)
EMI127.1     

   


<tb>  <SEP> Structure <SEP> Rite <SEP> Crops <SEP> Woods
<tb>  <SEP> (lb/s) <SEP> SB <SEP> CN <SEP> WH <SEP> RI <SEP> m; <SEP> mV <SEP> PW <SEP> rvs <SEP> COC <SEP> VE <SEP> TW
<tb>  <SEP> S <SEP> Injury <SEP> t <SEP> Control
<tb>  <SEP> X <SEP> 0.015 <SEP> 32 <SEP> 10 <SEP> 22 <SEP> 10 <SEP> 14 <SEP> 11 <SEP> 100 <SEP> 100 <SEP> 22 <SEP> 100
<tb>  <SEP> o <SEP> CHF,
<tb>  <SEP> 52
<tb>  <SEP> X <SEP> :

  <SEP> 0.015 <SEP> 20 <SEP> 10 <SEP> 21 <SEP> 10 <SEP> 33 <SEP> 22 <SEP> 100 <SEP> lOO <SEP> 33 <SEP> 100
<tb>  <SEP> o <SEP> I]d <SEP> CH1scH,tCO,
<tb>  <SEP> 53
<tb>  <SEP> F
<tb>  <SEP> X <SEP> CI <SEP> O.O1S <SEP> 10 <SEP> 10 <SEP> 11 <SEP> 10 <SEP> 69 <SEP> il <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 93
<tb>  <SEP> o <SEP> C <SEP> H2OCH2CO,C <SEP> H2CH <SEP> = <SEP> CH2
<tb>  <SEP> 54
<tb> o.ois <SEP> 0.015 <SEP> 20 <SEP> 10 <SEP> 10 <SEP> 10 <SEP> 100 <SEP> 10 <SEP> 100 <SEP> 100 <SEP> 32 <SEP> 100
<tb>  <SEP> o <SEP> CH2oCHxCO2CH2C <SEP> sCH
<tb>  <SEP> 55
<tb>   
Table I (continued)
EMI128.1     


<tb> Structure <SEP> Rate <SEP> Croon <SEP> Weeds
<tb>  <SEP> (ibIs) <SEP> SB <SEP> CII <SEP> WH <SEP> RI <SEP> neo <SEP> MU <SEP> PW <SEP> NS <SEP> CCC <SEP> VE <SEP> TW
<tb>  <SEP> S <SEP> Injury <SEP> t <SEP> Control
<tb> X <SEP> 0.015 <SEP> 20 <SEP> 10 <SEP> 20 <SEP> 21 <SEP> 98 <SEP> 

   10 <SEP> 100 <SEP> 82 <SEP> 100 <SEP> 100 <SEP> 
<tb>  <SEP> O <SEP> HrOCH:CO1CH(CX)
<tb>  <SEP> 56
<tb>  <SEP> H <SEP> F
<tb>  <SEP> 0 <SEP> o <SEP>  > X <SEP> 0.06 <SEP> 10 <SEP> 10 <SEP> 21 <SEP> 10 <SEP> 2 <SEP> 11 <SEP> 100 <SEP> 64 <SEP> 14 <SEP> 100 <SEP> 
<tb>  <SEP> o <SEP> CH2OCH(CH,
<tb>  <SEP> 132
<tb>  <SEP> 8 <SEP> F
<tb> 0.06 <SEP> 12 <SEP> 0 <SEP> 22 <SEP> 22 <SEP> 1l <SEP> 33 <SEP> 100 <SEP> 100 <SEP> 19 <SEP> 100 <SEP> 
<tb>  <SEP> 0 <SEP> CK
<tb>  <SEP> 57
<tb>   
Table I (continued)
EMI129.1     


<tb>  <SEP> Structure <SEP> Rate <SEP> Crops <SEP> Weeds
<tb>  <SEP> (lib/) <SEP> SB <SEP> CN <SEP> WH <SEP> RI <SEP> MG <SEP> MU <SEP> PW <SEP> AIS <SEP> Coc <SEP> VE <SEP> TW
<tb>  <SEP> t <SEP> Injurv <SEP> S <SEP> Control
<tb> X <SEP> CI <SEP> 0.owe <SEP> 31 <SEP> 20 <SEP> 10 <SEP> 10 <SEP> 40 <SEP> 22 <SEP> 100 <SEP> 100 <SEP> 19 <SEP> 100
<tb>  <SEP>   <SEP> CH2 

   <SEP> tFCH
<tb>  <SEP> 58
<tb>  <SEP> 9 <SEP> F
<tb>  <SEP> 0.015 <SEP> 22 <SEP> 10 <SEP> ii <SEP> 20 <SEP> as <SEP> 35 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100
<tb>  <SEP> O <SEP> CH2NCH2CO2CH2CHs
<tb>  <SEP> 59
<tb>   
Table I (continued)
EMI130.1     


<tb> Crops <SEP> Weeds
<tb>  <SEP> Rate <SEP> sa <SEP> CN <SEP> WH <SEP> RI <SEP> MG <SEP> MU <SEP> PV <SEP> NS <SEP> COC <SEP> VE <SEP> TW
<tb>  <SEP> Structure <SEP> (Ib/A) <SEP> S <SEP> Injury <SEP> S <SEP> Control
<tb>  <SEP> d <SEP> 0.015 <SEP> 40 <SEP> 10 <SEP> 21 <SEP> 10 <SEP> tOO <SEP> 22 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100
<tb>  <SEP> XCI
<tb>  <SEP> \C1Ha <SEP> O
<tb>  <SEP> OCH <SEP> CH,OCHCOCH,CH,
<tb>  <SEP> a <SEP> a <SEP> a
<tb>  <SEP> 60
<tb>  <SEP> XC1 <SEP> 0.015 <SEP> 26 <SEP> 10 <SEP> 10 <SEP> 10 <SEP> 100 <SEP> 21 <SEP> 100 <SEP> 100 <SEP> - <SEP> 99
<tb>  <SEP> CH,

   <SEP> 0
<tb>  <SEP> - <SEP> I
<tb>  <SEP> 0CH30C <SEP> - <SEP> COCH <SEP> 2CH
<tb>  <SEP> CH,
<tb>  <SEP> 61
<tb>  <SEP> 0 <SEP> F
<tb>  <SEP> 1 <SEP> 0.015 <SEP> 21 <SEP> 10 <SEP> 10 <SEP> 10 <SEP> 19 <SEP> 22 <SEP> 100 <SEP> 100 <SEP> 33 <SEP> 88
<tb>  <SEP> Cl
<tb>  <SEP> O <SEP> CH <SEP> ,0 <SEP> CH3
<tb>  <SEP> IL/ <SEP> 3
<tb>  <SEP> 62
<tb>  <SEP> CX <SEP> 0.015 <SEP> 31 <SEP> 0 <SEP> 10 <SEP> 10 <SEP> 40 <SEP> 14 <SEP> 100 <SEP> 100 <SEP> 14 <SEP> 82
<tb>  <SEP> CH
<tb>  <SEP> Xt 
<tb>  <SEP> 63
<tb>   
Table I (cont'd)
EMI131.1     


<tb>  <SEP> Cropt' <SEP> Weeds
<tb>  <SEP> Rate <SEP> - <SEP> SB <SEP> CN <SEP> WH <SEP> RI <SEP> MG <SEP> MU <SEP> PW <SEP> NS <SEP> COC <SEP> VE <SEP> ml
<tb>  <SEP> Structure <SEP> (Ib/A) <SEP> s <SEP> Injury <SEP> S <SEP> Control
<tb>  <SEP> O <SEP> F <SEP> 0.015 <SEP> 10 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 22 <SEP> 26 <SEP> 100 <SEP> 100 <SEP> 22 

   <SEP> 32 <SEP> 
<tb> 1
<tb>  <SEP> O <SEP> CH,O9wO;
<tb>  <SEP> 0
<tb>  <SEP> 64 <SEP>  X 
<tb>  <SEP> IP <SEP> F <SEP> 0.015 <SEP> 11 <SEP> 10 <SEP> 10 <SEP> 20 <SEP> 14 <SEP> 32 <SEP> 0 <SEP> 100 <SEP> 100 <SEP> 97 <SEP> 
<tb> W <SEP> t <SEP> C
<tb>  <SEP> o <SEP> CH <SEP> ,OCH,CH
<tb>  <SEP> 65
<tb>  <SEP> 0.015 <SEP> 50 <SEP> 10 <SEP> 20 <SEP> 20 <SEP> 33 <SEP> 10 <SEP> 100 <SEP> 100 <SEP> 38 <SEP> 100 <SEP> 
<tb>  <SEP> 1 <SEP> --C1
<tb>  <SEP> O <SEP> CH,

   <SEP> C1
<tb>  <SEP> 66
<tb>  <SEP> F
<tb> CX <SEP> 0.015 <SEP> 26 <SEP> 10 <SEP> 10 <SEP> 20 <SEP> 80 <SEP> 40 <SEP> 100 <SEP> 100 <SEP> 40 <SEP> 100 <SEP> 
<tb>  <SEP> CHO
<tb>  <SEP> 67
<tb>   
Table I (cont'd)
EMI132.1     


<tb>  <SEP> Crops <SEP> Weeds <SEP> r
<tb>  <SEP> Rate <SEP> SB <SEP> CN <SEP> wH <SEP> R1 <SEP> MG <SEP> MU <SEP> PW <SEP> NS <SEP> COC <SEP> VE <SEP> 1W
<tb>  <SEP> Structure <SEP> (lb/A) <SEP> S <SEP> Injury <SEP> S <SEP> Control
<tb>  <SEP> O <SEP> 0.015 <SEP> 22 <SEP> 10 <SEP> 21 <SEP> 10 <SEP> 100 <SEP> 55 <SEP> 100 <SEP> - <SEP> - <SEP> 100 <SEP> 
<tb> g <SEP> 0.015 <SEP> 22 <SEP> 10 <SEP> 21 <SEP> 10 <SEP> 100 <SEP> 55 <SEP> 100 <SEP> rOO
<tb> IJ <SEP> -C'
<tb>  <SEP> o <SEP> CH20CHC"0
<tb>  <SEP> 68
<tb>  <SEP> lP <SEP> F
<tb>  <SEP> 0.015 <SEP> 26 <SEP> 10 <SEP> 10 <SEP> 26 <SEP> 14 <SEP> 10 <SEP> 95 <SEP> 100
<tb>  <SEP> zCI
<tb>  <SEP> 69
<tb>   

   <SEP> O <SEP> F
<tb> rt <SEP> u <SEP> 0.015 <SEP> 43 <SEP> - <SEP> 23 <SEP> 22 <SEP> 95 <SEP> 54 <SEP> 100 <SEP> - <SEP> - <SEP> 100 <SEP> 
<tb>  <SEP> " <SEP> CH, <SEP> O
<tb>  <SEP> O <SEP> CH <SEP> OC--CO
<tb>  <SEP> CH,
<tb>  <SEP> 70
<tb>  <SEP> /P <SEP> f
<tb>  <SEP> , <SEP> , <SEP> 0.015 <SEP> 45 <SEP> 20 <SEP> 11 <SEP> 14 <SEP> 38 <SEP> 100 <SEP> 100 <SEP> ' <SEP> - <SEP> 100 <SEP> 
<tb>  <SEP> CH,ONO,
<tb>  <SEP> 71
<tb>   
Table I (cont'd)
EMI133.1     


<tb>  <SEP> Crops <SEP> a <SEP> Weeds
<tb>  <SEP> Rate <SEP> 58 <SEP> Cfl <SEP> hili <SEP> RI <SEP> MG <SEP> MU <SEP> PW <SEP> NS <SEP> COC <SEP> VE <SEP> Tw
<tb>  <SEP> Structure <SEP> (Ib/A) <SEP> S <SEP> Injury <SEP> X <SEP> Control
<tb>  <SEP> o
<tb> nt,,C-NH(CH,

   <SEP> ) <SEP> 0 <SEP> 10 <SEP> 10 <SEP> 66 <SEP> ,CHs
<tb> CNH <SEP> 1 <SEP> 10 <SEP> 0 <SEP> 0 <SEP> 10 <SEP> 10 <SEP> 66 <SEP> '100 <SEP> VCI
<tb>  <SEP> o <SEP> HCH2OCH(CH,)3
<tb>  <SEP> 5
<tb> XCI <SEP> 0.015 <SEP> 10 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 11 <SEP> 11 <SEP> 100 <SEP> 100 <SEP> 14 <SEP> 100
<tb>  <SEP> - <SEP> 0
<tb>  <SEP>   <SEP> CH,OC-NH <SEP> t
<tb>  <SEP> 72
<tb> /I <SEP> 11  <SEP> 0.015 <SEP> 19 <SEP> 0 <SEP> 0 <SEP> - <SEP> 40 <SEP> 82 <SEP> - <SEP> - <SEP> - <SEP> 100 <SEP> 40
<tb>  <SEP> O <SEP> CH1OC01NH1
<tb>  <SEP> 73
<tb>  <SEP> F
<tb>  <SEP> 0.015 <SEP> 10 <SEP> 10 <SEP> 0 <SEP> O <SEP> 33 <SEP> 2 <SEP> 0 <SEP> 100 <SEP> 10 <SEP> 98
<tb>  <SEP> CH,OCNH
<tb>  <SEP> 74
<tb>   
Table I (cont'd)
EMI134.1     


<tb>  <SEP> Crops' <SEP> Weeds
<tb>  <SEP> Rate <SEP> SB <SEP> CN <SEP> WH <SEP> RI <SEP> MG <SEP> MU <SEP> PW <SEP> NS <SEP> COC <SEP> VE <SEP> 1W
<tb>  

   <SEP> Structure <SEP> (Ib/A) <SEP> X <SEP> Injury <SEP> Z <SEP> Control
<tb>  <SEP> F
<tb> (¹Ni <SEP> 0.015 <SEP> 6 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 38 <SEP> 14 <SEP> 88 <SEP> 100 <SEP> 0 <SEP> 62
<tb>  <SEP> O <SEP> CH,OCH,tHHI
<tb>  <SEP> OHOH
<tb>  <SEP> 75
<tb>  <SEP> ,P <SEP> F
<tb>  <SEP> 0.25 <SEP> 10 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 95 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 53 <SEP> 100
<tb> O <SEP> CH,O <SEP> 10 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 95 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 53 <SEP> 100
<tb>  <SEP> 1-66'
<tb>  <SEP> HO <SEP> OH
<tb>  <SEP> 76
<tb> C-NHCH,

   <SEP> 0.015 <SEP> 10 <SEP> 10 <SEP> 0 <SEP> 0 <SEP> 26 <SEP> 11 <SEP> 100 <SEP> 100 <SEP> - <SEP> 22
<tb>  <SEP> CNHXC <SEP> I
<tb>  <SEP> II <SEP> xc
<tb>  <SEP> O <SEP> H,OCH(CH,),
<tb>  <SEP> 136
<tb>  <SEP> 0.06 <SEP> 0.06 <SEP> 10 <SEP> 10 <SEP> 10 <SEP> 21 <SEP> 55 <SEP> 45 <SEP> 100 <SEP> 100 <SEP> - <SEP> 100
<tb>  <SEP> /P <SEP> F
<tb>  <SEP> CH,HHCH(CH,

   <SEP> ),
<tb>  <SEP> 77
<tb>   
Table I (cont'd)
EMI135.1     


<tb>  <SEP> Craps' <SEP> Weeds
<tb>  <SEP> Rate <SEP> SB <SEP> CN <SEP> WH <SEP> RI <SEP> MG <SEP> MU <SEP> PW <SEP> HS <SEP> COC <SEP> vE <SEP> Th
<tb>  <SEP> Structure <SEP> (Ib/A) <SEP> S <SEP> Injury <SEP> X <SEP> Control
<tb>  <SEP> F
<tb> S <SEP> 0.015 <SEP> 6 <SEP> 10 <SEP> 14 <SEP> 0 <SEP> 99 <SEP> 85 <SEP> 100 <SEP> 100 <SEP> - <SEP> 100
<tb>  <SEP> \ò <SEP> CH,OCNH(CH,) <SEP> ,CH,
<tb>  <SEP> 78
<tb> 0.015 <SEP> 0.015 <SEP> 10 <SEP> 0 <SEP> 0 <SEP> 10 <SEP> 0 <SEP> 10 <SEP> 100 <SEP> 100 <SEP> - <SEP> 100
<tb> t?Q < cl
<tb>  <SEP> O <SEP> ,

   <SEP> CH20CO(CH1),CH,
<tb>  <SEP> 79
<tb>  <SEP> O <SEP> F
<tb>  <SEP> 0.06 <SEP> 0.06 <SEP> 20 <SEP> 10 <SEP> 0 <SEP> 10 <SEP> 78 <SEP> 22 <SEP> 100 <SEP> 100 <SEP> - <SEP> 100
<tb>  <SEP> O <SEP> CH,OC <SEP> {D
<tb>  <SEP> 80
<tb>  <SEP> F
<tb>  <SEP> 0.015 <SEP> 21 <SEP> 20 <SEP> 21 <SEP> 10 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> - <SEP> 100
<tb> I <SEP> --C1
<tb>  <SEP> CH3O-N:

  :C-C0CH2CH,
<tb>  <SEP> 81
<tb>   
Table I (cont'd)
EMI136.1     


<tb>  <SEP> Crops <SEP> a <SEP> Weeds
<tb>  <SEP> Rate <SEP> 58 <SEP> CN <SEP> WH <SEP> RI <SEP> MG <SEP> nU <SEP> PW <SEP> NS <SEP> COC <SEP> VE <SEP> TW
<tb>  <SEP> Structure <SEP> (Ib/A) <SEP> %'Injury <SEP> S <SEP> Control
<tb>  <SEP> 0.25 <SEP> 20 <SEP> 10 <SEP> 10 <SEP> - <SEP> 10 <SEP> 12 <SEP> - <SEP> - <SEP> 14 <SEP> 100 <SEP> 86
<tb> OCH <SEP> 1
<tb>  <SEP> Ò <SEP> CH,OCH(CH,),
<tb>  <SEP> 82
<tb>  <SEP> 0 <SEP> 0.06 <SEP> 10 <SEP> 10 <SEP> 10 <SEP> 22 <SEP> 11 <SEP> 12 <SEP> 100 <SEP> 100 <SEP> 55 <SEP> 22 <SEP> - <SEP> 
<tb>  <SEP> C-NHCH:

  :-(/ <SEP> \)
<tb> a <SEP> C-NH4 <SEP> C1
<tb>  <SEP> CH20CH(CH, <SEP> ),
<tb>  <SEP> 137
<tb>  <SEP> 0
<tb>  <SEP> 0.015 <SEP> 20 <SEP> 0 <SEP> 0 <SEP> 21 <SEP> 0 <SEP> 10 <SEP> 96 <SEP> 100 <SEP> 26 <SEP> 12
<tb>  <SEP> 0
<tb>  <SEP> CH3 <SEP> OCH(CH3)2
<tb>  <SEP> 1X8
<tb>  <SEP> F
<tb> 0:by <SEP> 0.015 <SEP> 23 <SEP> 10 <SEP> 10 <SEP> 11 <SEP> 19 <SEP> 11 <SEP> 26 <SEP> 100 <SEP> 45 <SEP> 100
<tb>  <SEP> 2--C1
<tb>  <SEP> CH2NHC-COCH,
<tb>  <SEP> CH,
<tb>  <SEP> 83
<tb>   
Table I (cont'd)
EMI137.1     


<tb>  <SEP> Crops' <SEP> ¯ <SEP> weeds
<tb>  <SEP> Rate <SEP> SB <SEP> CN <SEP> WH <SEP> RI <SEP> MS <SEP> MU <SEP> PW <SEP> NS <SEP> COC <SEP> VE <SEP> Thi
<tb>  <SEP> Structure <SEP> (iblA) <SEP> t <SEP> Injury <SEP> S <SEP> Control
<tb>  <SEP> 0.06 <SEP> 21 <SEP> 10 <SEP> 10 <SEP> 20 <SEP> 19 <SEP> 10 <SEP> 32 <SEP> 100 <SEP> 20 <SEP> 55
<tb> SCI{9,
<tb>  <SEP> O <SEP> 

   CH,OH
<tb>  <SEP> 84
<tb>  <SEP> F
<tb>  <SEP> 0 <SEP> 0.015 <SEP> 20 <SEP> 0 <SEP> 11 <SEP> 10 <SEP> 100 <SEP> 10 <SEP> 14 <SEP> 51 <SEP> 100 <SEP> 26
<tb>  <SEP> CH1
<tb>  <SEP> O <SEP> CH,NHCHCH,OCH,
<tb>  <SEP> 85 <SEP> 
<tb>  <SEP> 0
<tb>  <SEP> JI <SEP> 0.015 <SEP> 22 <SEP> 0 <SEP> 0 <SEP> 10 <SEP> 98 <SEP> 20 <SEP> 21 <SEP> 100 <SEP> 100 <SEP> 99
<tb> GSHV <SEP> Br
<tb>  <SEP> 0
<tb>  <SEP> O <SEP> CH,OCH,CO
<tb>  <SEP> 86
<tb>  <SEP> 0
<tb>  <SEP> II
<tb>  <SEP> O-C-CH,
<tb> 0.015 <SEP> 0.015 <SEP> 0 <SEP> 0 <SEP> 10 <SEP> 0 <SEP> 26 <SEP> 33 <SEP> 53 <SEP> 100 <SEP> 100 <SEP> 100
<tb> +1
<tb> CH,OCH(CH,),
<tb>  <SEP> 1S9
<tb>   
Table I (cont'd)
EMI138.1     


<tb>  <SEP> Crops' <SEP> Weeds
<tb>  <SEP> Rate <SEP> SB <SEP> CN <SEP> WH <SEP> RI <SEP> MG <SEP> MU <SEP> PW <SEP> HS <SEP> COC <SEP> VE <SEP> Tw
<tb>  <SEP> Structure <SEP> (lb/A) <SEP> S <SEP> Injury <SEP> S <SEP> 

   Control
<tb>  <SEP> O <SEP> F <SEP> 0.015 <SEP> 2 <SEP> 10 <SEP> 0 <SEP> 20 <SEP> 40 <SEP> 26 <SEP> 100 <SEP> 100 <SEP> 12 <SEP> 100
<tb> L <SEP> 0.015 <SEP> 2 <SEP> 10 <SEP> 0' <SEP> 20 <SEP> 40 <SEP> 26 <SEP> 100 <SEP> 100 <SEP> 12 <SEP> 100
<tb>  <SEP> O <SEP> CH,OCSCH,CH,
<tb>  <SEP> 87
<tb>  <SEP> h <SEP> 0.015 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 35 <SEP> 45 <SEP> 100 <SEP> 100 <SEP> 0 <SEP> 100
<tb> (·Cis <SEP> 0.015 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> - <SEP> 35 <SEP> 45 <SEP> 100 <SEP> 100 <SEP> 0 <SEP> 100
<tb>  <SEP> O <SEP> CH,OC-NH(CH,),CH,
<tb>  <SEP> 88
<tb>  <SEP> 0
<tb> A/C-NHTO <SEP> 0.25 <SEP> 10 <SEP> 0 <SEP> 0 <SEP> 14 <SEP> 10 <SEP> 45 <SEP> 14 <SEP> 100 <SEP> 100 <SEP> 100
<tb>  <SEP> W\C-NH <SEP> ·Cl
<tb>  <SEP> I
<tb>  <SEP> CH <SEP> 2NH
<tb>  <SEP> 140
<tb>  <SEP> F
<tb> go <SEP> 0.06 <SEP> 14 <SEP> 10 <SEP> 10 <SEP> - <SEP> 95 <SEP> 45 <SEP> - <SEP> - <SEP> - <SEP> 100 

   <SEP> 99
<tb>  <SEP> CH, <SEP> OCH,CNH
<tb>  <SEP> 89
<tb>   
Table I (cont'd)
EMI139.1     


<tb>  <SEP> Crops <SEP> a <SEP> Weeds
<tb>  <SEP> Rate <SEP> S8 <SEP> CN <SEP> WH <SEP> RI <SEP> MG <SEP> MU <SEP> PW <SEP> NS <SEP> COC <SEP> VE <SEP> ml
<tb>  <SEP> Structure <SEP> (Ib/A) <SEP> S <SEP> Injury <SEP> Z <SEP> S <SEP> Control
<tb>  <SEP> O <SEP> F <SEP> 0.015 <SEP> 21 <SEP> 10 <SEP> 2 <SEP> 10 <SEP> 45 <SEP> 14 <SEP> 54 <SEP> 100 <SEP> 14 <SEP> 88
<tb> °CH+1 <SEP> 0.015 <SEP> 21 <SEP> 10 <SEP> 2 <SEP> 10 <SEP> 45 <SEP> 14 <SEP> 54 <SEP> 100 <SEP> 14 <SEP> 88
<tb>  <SEP> O <SEP> CH, <SEP> HHCH, <SEP> COCH <SEP> ,CH,
<tb>  <SEP> 90
<tb>  <SEP> 0
<tb> ,-OCH,F <SEP> F <SEP> 0.015 <SEP> 2 <SEP> 10 <SEP> 14 <SEP> 0 <SEP> 99 <SEP> 78 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100
<tb>  <SEP> NH <SEP> 1
<tb>  <SEP> I <SEP> 
<tb>  <SEP> 0
<tb>  <SEP> CH2OCH(CH, 

   <SEP> )a
<tb>  <SEP> 141
<tb>  <SEP> N(CH,CH,),
<tb>  <SEP> F <SEP> 0.25 <SEP> 0 <SEP> 10 <SEP> 10 <SEP> 0 <SEP> 11 <SEP> 10 <SEP> 99 <SEP> 100 <SEP> 100 <SEP> 11
<tb>  <SEP> IH--hLC1
<tb>  <SEP> O <SEP> CH,OCH(CH,),
<tb>  <SEP> 142
<tb>  <SEP> SCH, <SEP> F
<tb>  <SEP> 0.06 <SEP> 2 <SEP> 0 <SEP> 25 <SEP> 0 <SEP> 45 <SEP> 20 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 35
<tb> C,v1
<tb>  <SEP> CH,OCH(CH,),
<tb>  <SEP> 143
<tb>   
Table I (cont'd)
EMI140.1     


<tb>  <SEP> Crops' <SEP> weeds
<tb>  <SEP> Rate <SEP> SB <SEP> CN <SEP> WH <SEP> RI <SEP> MG <SEP> )(U <SEP> PW <SEP> NS <SEP> COC <SEP> VE <SEP> TW
<tb>  <SEP> Structure <SEP> (Ib/A) <SEP> % <SEP> Injury <SEP> S <SEP> Control
<tb> dry <SEP> 0.015 <SEP> 2 <SEP> 11 <SEP> 10 <SEP> 11 <SEP> 2 <SEP> 10 <SEP> 100 <SEP> 100 <SEP> 38 <SEP> 55 <SEP> 
<tb> tN+I
<tb>  <SEP> O <SEP> CH,SzO
<tb>  <SEP> 91
<tb>  <SEP> lP <SEP> F
<tb>  <SEP> 

   II
<tb>  <SEP> 0 <SEP> CH,OCNH
<tb>  <SEP> o <SEP> F
<tb> M <SEP> 0.06 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 6 <SEP> 12 <SEP> 100 <SEP> 100 <SEP> 2 <SEP> 100 <SEP> 
<tb>  <SEP> O <SEP> CH,NH
<tb>  <SEP> 93
<tb>  <SEP> F
<tb> 0.015 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 25 <SEP> 10 <SEP> 99 <SEP> 100 <SEP> 0 <SEP> 100 <SEP> 
<tb>  <SEP> 0 <SEP> 0
<tb>  <SEP> 11 <SEP> II
<tb>  <SEP> CH,OCCH,COCH,CH,
<tb>  <SEP> 94
<tb>   
Table I (cont'd)
EMI141.1     


<tb>  <SEP> Crops' <SEP> Weeds
<tb>  <SEP> Rate <SEP> S8 <SEP> C?I <SEP> WH <SEP> RI <SEP> MG <SEP> MU <SEP> PW <SEP> NS <SEP> COC <SEP> VE <SEP> TW
<tb>  <SEP> Structure <SEP> (Ib/A) <SEP> S <SEP> Injury <SEP> S <SEP> Control
<tb>  <SEP> F
<tb>  <SEP> F <SEP> v <SEP> 0.015 <SEP> 0 <SEP> 0 <SEP> 14 <SEP> 10 <SEP> 2 <SEP> 20 <SEP> 95 <SEP> 100 <SEP> 100 <SEP> 44
<tb>  <SEP> Y--h <SEP> o.015 <SEP> 0 <SEP> 0 <SEP> 14 <SEP> 10 <SEP> ' <SEP> 2 

   <SEP> 20 <SEP> 95 <SEP> 100 <SEP> 100 <SEP> 44
<tb>  <SEP> ò <SEP> CH,COzO
<tb>  <SEP> 95
<tb>  <SEP> lP <SEP> F <SEP> 0.015 <SEP> 0 <SEP> 10 <SEP> 11 <SEP> 0 <SEP> 40 <SEP> 20 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100
<tb>  <SEP> h,C1
<tb> O <SEP> CH,CN <SEP> 0 <SEP> 10 <SEP> 11 <SEP> 0 <SEP> 40 <SEP> 20 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100
<tb>  <SEP> O <SEP> CH1CN
<tb>  <SEP> 96
<tb>  <SEP> 0F
<tb> 1H, <SEP> 0.06 <SEP> 12 <SEP> 21 <SEP> 11 <SEP> " <SEP> 96 <SEP> 45 <SEP> - <SEP> - <SEP> - <SEP> 100 <SEP> 100
<tb>  <SEP> O <SEP> CH <SEP> 2Ns;

  ;O
<tb>  <SEP> CH,
<tb>  <SEP> 97
<tb>  <SEP> P
<tb>  <SEP> 0.06 <SEP> 45 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 78 <SEP> 32 <SEP> 40 <SEP> 100 <SEP> 30 <SEP> 100
<tb>  <SEP> 1
<tb>  <SEP> CH2COCH,C--CH
<tb>  <SEP> 98
<tb>   
Table I (cont'd)
EMI142.1     


<tb>  <SEP> Crops' <SEP> Weeds
<tb>  <SEP> Rate <SEP> SB <SEP> CN <SEP> WH <SEP> R1 <SEP> MG <SEP> MU <SEP> PW <SEP> NS <SEP> COC <SEP> VE <SEP> ml
<tb>  <SEP> Structure <SEP> (Ib/A) <SEP> X <SEP> Injury <SEP> S <SEP> Control
<tb>  <SEP> OF
<tb> 0.06 <SEP> 0.06 <SEP> 33 <SEP> 0 <SEP> 0 <SEP> 26 <SEP> 68 <SEP> 33 <SEP> 20 <SEP> 100 <SEP> 65 <SEP> 98
<tb>  <SEP> O <SEP> CH,CN(CHs),
<tb>  <SEP> 99
<tb>  <SEP> i?F
<tb> X <SEP> 0g <SEP> 0.015 <SEP> 22 <SEP> 10 <SEP> 10 <SEP> 10 <SEP> lQO <SEP> 11 <SEP> 6 <SEP> 100 <SEP> 100 <SEP> 100
<tb>  <SEP> O <SEP> CH2OCH <SEP> 1C(CX:

  :),CH,
<tb>  <SEP> 100
<tb>  <SEP> O <SEP> F
<tb> /I <SEP> 0.015 <SEP> 22 <SEP> 10 <SEP> 14 <SEP> 26 <SEP> 22 <SEP> 100 <SEP> 100 <SEP> 45 <SEP> 100
<tb> O <SEP> CH, <SEP> 0.015 <SEP> 22 <SEP> 10 <SEP> 14 <SEP> - <SEP> 26 <SEP> 22 <SEP> 100 <SEP> 100 <SEP> 45 <SEP> 100
<tb>  <SEP> 0 <SEP> CH1NJ
<tb>  <SEP> 101
<tb> 0.06 <SEP> 21 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 95 <SEP> 22 <SEP> 0 <SEP> 100 <SEP> 22 <SEP> 100
<tb>  <SEP> 102
<tb>   
Table I (cont'd)
EMI143.1     


<tb>  <SEP> Crops' <SEP> Weeds
<tb>  <SEP> Rate <SEP> SB <SEP> CN <SEP> wH <SEP> RI <SEP> c2 <SEP> MU <SEP> PW <SEP> NS <SEP> COC <SEP> VE <SEP> TW
<tb>  <SEP> Structure <SEP> (1b/A) <SEP> s <SEP> Injury <SEP> S <SEP> Control
<tb>  <SEP> OF <SEP> F <SEP> 0.06 <SEP> 20 <SEP> 10 <SEP> 10 <SEP> 21 <SEP> 10 <SEP> 21 <SEP> 45 <SEP> 54 <SEP> 40 <SEP> 54
<tb> Y'N¸Nl <SEP> Hs
<tb>  <SEP> O <SEP> CX <SEP> 2CON=CC,OCH <SEP> ,CH,
<tb>  

   <SEP> 0
<tb>  <SEP> 103
<tb> X <SEP> 0.015 <SEP> 2t <SEP> 0 <SEP> 10 <SEP> 10 <SEP> 100 <SEP> 14 <SEP> 53 <SEP> 100 <SEP> 100 <SEP> 55
<tb>  <SEP> O <SEP> CH2COCH(CH,),
<tb>  <SEP> 104
<tb>  <SEP> 0F
<tb> (¸1NC9l <SEP> 0.015 <SEP> 33 <SEP> 10 <SEP> 14 <SEP> 32 <SEP> 82 <SEP> 10 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 55
<tb>  <SEP> O <SEP> CH <SEP> 2COCH,
<tb>  <SEP> 105
<tb>  <SEP> 1 <SEP> 0.015 <SEP> 21 <SEP> 20 <SEP> 14 <SEP> 10 <SEP> 14 <SEP> 20 <SEP> 100 <SEP> 100 <SEP> 40 <SEP> 55
<tb> Ce1
<tb>  <SEP> CH,O(CNI),CH,
<tb>  <SEP> 106
<tb>   
Table I (cont'd)
EMI144.1     


<tb>  <SEP> Crops <SEP> a <SEP> Weeds
<tb>  <SEP> Rate <SEP> 58 <SEP> CH <SEP> WH <SEP> RI <SEP> MG <SEP> MU <SEP> Pi <SEP> NS <SEP> COC <SEP> VE <SEP> TW
<tb>  <SEP> Structure <SEP> (ibis) <SEP> X <SEP> Injury <SEP> S <SEP> Control
<tb>  <SEP> o <SEP> F
<tb> Gt <SEP>  >  <SEP> 0.0,5 <SEP> 45 <SEP> 2,

   <SEP> 22 <SEP> 11 <SEP> goo <SEP> 45 <SEP> loo <SEP> loo <SEP> loo <SEP> 100 <SEP> 
<tb>  <SEP> o <SEP> CHCO
<tb>  <SEP> CH,
<tb>  <SEP> 107
<tb>  <SEP> 1?F <SEP> 0.015 <SEP> 21 <SEP> 10 <SEP> 11 <SEP> 50 <SEP> 40 <SEP> 26 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 
<tb> G¸yTo{tl
<tb>  <SEP> 0 <SEP> CHC0CX2C:

  :CH
<tb>  <SEP> CH,
<tb>  <SEP> 108
<tb>  <SEP> F <SEP> F <SEP> 0.015 <SEP> 21 <SEP> 10 <SEP> 20 <SEP> 10 <SEP> 11 <SEP> 75 <SEP> 40 <SEP> 100 <SEP> - <SEP> 100 <SEP> 0cl
<tb>  <SEP> CH <SEP> 20CNHCH <SEP> ( <SEP> CH, <SEP> ),
<tb>  <SEP> 109
<tb>   
Table I (cont'd)
EMI145.1     


<tb>  <SEP> Crops <SEP> Weeds
<tb>  <SEP> Rate <SEP> SB <SEP> CN <SEP> WH <SEP> RI <SEP> 8 <SEP> MU <SEP> Pi <SEP> HS <SEP> COC <SEP> VE <SEP> Th
<tb>  <SEP> Structure <SEP> (IbIA) <SEP> Injury <SEP> % <SEP> Control
<tb> H >  <SEP> 0.015 <SEP> 10 <SEP>   <SEP>   <SEP> 10 <SEP> 22 <SEP> 100 <SEP> 21 <SEP> 100 <SEP> - <SEP> 100 <SEP> 
<tb>  <SEP> O <SEP> CH,CH,OH
<tb>  <SEP> 110
<tb>  <SEP> lP <SEP> F <SEP> 0.015 <SEP> 22 <SEP> 10 <SEP> 2 <SEP> 0 <SEP> 10 <SEP> 88 <SEP> 100 <SEP> 100 <SEP> - <SEP> 96 <SEP> 
<tb> X <SEP> C1
<tb>  <SEP> 0
<tb>  <SEP> CH,CH,OCSCH,CH,
<tb>  <SEP> 111
<tb>  <SEP> OF
<tb> 0.015 

   <SEP> 20 <SEP> 0 <SEP> 2 <SEP> 10 <SEP> 14 <SEP> 99 <SEP> 82 <SEP> 100 <SEP> - <SEP> 100 <SEP> 
<tb>  <SEP> 0
<tb>  <SEP> 0 <SEP> H2CH2oCo(CHa) <SEP> ,CH,
<tb>  <SEP> 112
<tb>  <SEP> 0.015 <SEP> 20 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 100 <SEP> 99 <SEP> 100 <SEP> 100 <SEP> - <SEP> 55 <SEP> 
<tb> )--Cf
<tb>  <SEP> CH,CH,OCNH(CH,),tH,
<tb>  <SEP> 113
<tb>   
Table I (cont'd)
EMI146.1     


<tb>  <SEP> Crops <SEP> Weeds
<tb>  <SEP> Rate <SEP> SB <SEP> C?i <SEP> WH <SEP> RI <SEP> MG <SEP> MU <SEP> Pi <SEP> NS <SEP> COC <SEP> VE <SEP> Ti
<tb>  <SEP> Structure <SEP> (ibis) <SEP> S <SEP> Injury <SEP> S <SEP> Control
<tb> 0: 

  :I <SEP> F
<tb> 0.015 <SEP> 20 <SEP> 0 <SEP> - <SEP> 10 <SEP> 22 <SEP> - <SEP> 98 <SEP> 100 <SEP> - <SEP> 100
<tb>  <SEP> O <SEP> CH2CH20CNH(CH,),CH,
<tb>  <SEP> 114
<tb>  <SEP> F
<tb>  <SEP> 0.015 <SEP> 21 <SEP> 10 <SEP> 19 <SEP> 11 <SEP> 19 <SEP> 98 <SEP> 100 <SEP> 38 <SEP> - <SEP> 100
<tb>  <SEP> rC1
<tb>  <SEP> o <SEP> CH-CN
<tb>  <SEP> CH,
<tb>  <SEP> 115
<tb>  <SEP> F
<tb>  <SEP> P <SEP> O <SEP> 0.015 <SEP> 14 <SEP> 10 <SEP> 6 <SEP> 0 <SEP> 100 <SEP> 6 <SEP> 100 <SEP> 100 <SEP> - <SEP> 100
<tb> G4h < Cs
<tb>  <SEP> O <SEP> CH,CH20CH(CH, <SEP> ),
<tb>  <SEP> 116
<tb>  <SEP> AP <SEP> F <SEP> 0.015 <SEP> 11 <SEP> 10 <SEP> 11 <SEP> 10 <SEP> 100 <SEP> 11 <SEP> 40 <SEP> 100 <SEP> - <SEP> 100
<tb> 1
<tb>  <SEP> CHCO,

   <SEP> CH,
<tb>  <SEP> CX
<tb>  <SEP> 117
<tb>   
Table I (cont'd)
EMI147.1     


<tb>  <SEP> Craps <SEP> Weeds
<tb>  <SEP> Rate <SEP> SB <SEP> CN <SEP> WH <SEP> RI <SEP> MG <SEP> MU <SEP> PW <SEP> NS <SEP> COC <SEP> VE <SEP> mi
<tb>  <SEP> Structure <SEP> (Ib/A) <SEP> S <SEP> Injury <SEP> S <SEP> Control
<tb>  <SEP> 0.015 <SEP> 10 <SEP> 0 <SEP> 10 <SEP> It <SEP> 35 <SEP> 11 <SEP> 0 <SEP> 85 <SEP> - <SEP> 100
<tb> 0 <SEP> 0
<tb>  <SEP> II <SEP> II
<tb>  <SEP> Ò <SEP> CH2 <SEP> CNHCH2 <SEP> COCH,
<tb>  <SEP> 118
<tb>  <SEP> F <SEP> 0.015 <SEP> 21 <SEP> 11 <SEP> 0 <SEP> 14 <SEP> 22 <SEP> 11 <SEP> 100 <SEP> tOO <SEP> - <SEP> 100
<tb> G < lotcl
<tb>  <SEP>   <SEP> CHCOCH(CH,

   <SEP> ),
<tb>  <SEP> CH
<tb>  <SEP> 119
<tb> F <SEP> CI <SEP> O <SEP> O <SEP> O <SEP> 10 <SEP> 10 <SEP> 74 <SEP> 32 <SEP> - <SEP> 100
<tb>  <SEP> /I <SEP> Cl
<tb>  <SEP> - <SEP> 0 <SEP> CM,
<tb>  <SEP> O <SEP> CHCONICCOICH,CH,
<tb>  <SEP> CH,
<tb>  <SEP> 120
<tb>  <SEP> P <SEP> 0.06 <SEP> 20 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 40 <SEP> 100 <SEP> - <SEP> 100
<tb>  <SEP> ?C'
<tb>  <SEP> CHCN(CH,)t
<tb>  <SEP> CM1
<tb>  <SEP> 121
<tb>   
Table I (cont'd)
EMI148.1     


<tb>  <SEP> Crops <SEP> a <SEP> weeds
<tb>  <SEP> Rate <SEP> SB <SEP> CN <SEP> WH <SEP> RI <SEP> MG <SEP> MU <SEP> PW <SEP> NS <SEP> COC <SEP> VE <SEP> 1W
<tb>  <SEP> Structure <SEP> (Ib/A) <SEP> S <SEP> Injury <SEP> Z <SEP> Control
<tb>  <SEP> u/  <SEP> 0.06 <SEP> 21 <SEP> 10 <SEP> 10 <SEP> 10 <SEP> 44 <SEP> 10 <SEP> 11 <SEP> 100 <SEP> - <SEP> 100 <SEP> 
<tb>  <SEP> 0.06 <SEP> 21 <SEP> 10 <SEP> 10 <SEP> 10 <SEP> 

   44 <SEP> 10 <SEP> 11 <SEP> 100 <SEP> - <SEP> 100
<tb>  <SEP> O <SEP> ,CCN
<tb>  <SEP> CH,
<tb>  <SEP> L22
<tb>  <SEP> F <SEP> F <SEP> 0.015 <SEP> 10 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 95 <SEP> 62 <SEP> 100 <SEP> 100 <SEP> - <SEP> 100
<tb>  <SEP> C1
<tb>  <SEP>   <SEP> CCOCH2C-CH
<tb>  <SEP> CH,
<tb>  <SEP> 123
<tb>  <SEP> o <SEP> F
<tb>  <SEP> O <SEP> F
<tb> /I <SEP> n-cl <SEP> 0.015 <SEP> 2 <SEP> 10 <SEP> 0 <SEP> 10 <SEP> 100 <SEP> 96 <SEP> 100 <SEP> 100 <SEP> - <SEP> 100
<tb>  <SEP> O <SEP> CCOCH,
<tb>  <SEP> CX,
<tb>  <SEP> 124
<tb>  <SEP> 0.06 <SEP> F <SEP> 0.06 <SEP> 20 <SEP> 0 <SEP> 0 <SEP> 10 <SEP> 10 <SEP> 26 <SEP> 45 <SEP> 100 <SEP> - <SEP> 
<tb> CX <SEP> N
<tb>  <SEP> CH <SEP> ,
<tb>  <SEP> CH,
<tb>  <SEP> 126
<tb>   
Table I (cont'd)
EMI149.1     


<tb>  <SEP> Crops5 <SEP> Weeds
<tb>  <SEP> Rate <SEP> SB <SEP> CN <SEP> WH <SEP> RI <SEP> MG <SEP> MU <SEP> PW <SEP> HS <SEP> COC 

   <SEP> VE <SEP> ml
<tb>  <SEP> Structure <SEP> (lb/l) <SEP> s <SEP> Injury <SEP> S <SEP> Control
<tb>  <SEP> zt <SEP> 0.06 <SEP> 10 <SEP> 0 <SEP> 0 <SEP> 20 <SEP> 0 <SEP> 14 <SEP> 32 <SEP> tOO <SEP> - <SEP> 65 <SEP> 
<tb>  <SEP> CH, <SEP> O
<tb>  <SEP> O <SEP> C <SEP> -C0CM(CM,)
<tb>  <SEP> CH,
<tb>  <SEP> 127
<tb> Ap <SEP> F <SEP> o <SEP> .06 <SEP> 22 <SEP> 0 <SEP> 11 <SEP> 10 <SEP> 45 <SEP> 32 <SEP> 100 <SEP> 100 <SEP> - <SEP> 100 <SEP> .
<tb>



  011HrCr
<tb>  <SEP> O <SEP> CH-CN
<tb>  <SEP> CH <SEP> CM,
<tb>  <SEP> 128
<tb>    1Croc    Species: SB =   soybeans    CN = corn   WN    =   wheat    RI = rice.



   Woed Species: MG = mornningglory MU = wild mustard
 PW = pigweed COC = cocklebur VE = velvetleaf TW = teaweed NS = nightshade.



  2Data represent visual evaluations of % injury/control 14 days following treatment.  



   Table IT shows the herbicidal activity of
 compounds according to the invention when applied
 pre-emergent to a variety of broadleaf weeds and
 grasses.



  Table II: Pre-emergence Weed Control/Crop Selectivity of Selected Cs-Methylene Anilide
 Herbicides
EMI150.1     


<tb>  <SEP> Structure <SEP> Rate1 <SEP> croon2 <SEP> Weeds
<tb>  <SEP> (Ib/R) <SEP> SB <SEP> CO <SEP> con <SEP> WI <SEP> rG <SEP> VE <SEP> OW <SEP> ¯ <SEP> TW <SEP> PW <SEP> COC <SEP> FT <SEP> Bs
<tb>  <SEP> S <SEP> Injury <SEP> Control
<tb>  <SEP> 0.50 <SEP> 2 <SEP> 6 <SEP> 0 <SEP> 11 <SEP> 100 <SEP> 100 <SEP> lOU <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 99 <SEP> 100 <SEP> 100
<tb>  <SEP> F
<tb>  <SEP> Ó <SEP> bJ
<tb>  <SEP>   <SEP> 'CHOCH(cH,),
<tb>  <SEP> 2
<tb>  <SEP> O.

  <SEP> SO <SEP> O <SEP> 0 <SEP> 20 <SEP> 11 <SEP> 0 <SEP> 100 <SEP> 0 <SEP> 100 <SEP> l00 <SEP> 0 <SEP> 40 <SEP> 0 <SEP> 86
<tb> /tJ? <SEP> F
<tb> C > ecl0
<tb> O <SEP> CtI,OCCit,
<tb>   
Table II (continued)
EMI151.1     


 <SEP> , <SEP> X <SEP> 2
<tb>  <SEP> Structure <SEP> Rate <SEP> Croon <SEP> Woeds
<tb>  <SEP> ( <SEP> lib/) <SEP> SB <SEP> CO <SEP> CN <SEP> LJH <SEP>  <  <SEP> VE <SEP> LW <SEP> TW <SEP> PW <SEP> COC <SEP> FT <SEP> BS <SEP> LC
<tb>  <SEP> S <SEP> Injury3 <SEP> :

  <SEP> Control
<tb>  <SEP> 0,to <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 92 <SEP> 100 <SEP> 20 <SEP> 100 <SEP> 100 <SEP> 0 <SEP> 6 <SEP> 55 <SEP> 99
<tb> Q4Y:
<tb>  <SEP>   <SEP> CH2SCH2CH,
<tb>  <SEP> 3
<tb>  <SEP> 0.50 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 100 <SEP> 40 <SEP> 100 <SEP> 76 <SEP> 100 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 0
<tb>  <SEP> I <SEP> F
<tb>  < C!
<tb> O <SEP> CHfOCH2COt O
<tb>  <SEP> 0
<tb>  <SEP> 39
<tb>  <SEP> 0.25 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 75 <SEP> 100 <SEP> 100 <SEP> 32 <SEP> 100 <SEP> 2 <SEP> 6 <SEP> so <SEP> 99
<tb>  <SEP> f
<tb>  <SEP> °Qu1
<tb>  <SEP> O <SEP> CH20CH2CH.,
<tb>  <SEP> 11
<tb>   
Table II (continued)
EMI152.1     


 <SEP> 2
<tb>  <SEP> Structure <SEP> Rate1 <SEP> Cros <SEP> Weeds
<tb>  <SEP> ( <SEP> lb/A) <SEP> Se <SEP> CO <SEP> C?I <SEP> WH <SEP> MG <SEP> VE <SEP> ccl <SEP> TW <SEP> PW <SEP> coc:

  <SEP> FT <SEP> BS <SEP> LC
<tb>  <SEP> S <SEP> Injury <SEP> S <SEP> Control
<tb>  <SEP> 0.50 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> O <SEP> 77 <SEP> 94 <SEP> 64 <SEP> 100 <SEP> 0 <SEP> 0 <SEP> 6 <SEP> 77
<tb> O$Rcl
<tb>  <SEP>   <SEP> X,OCH(CH)
<tb>  <SEP> 17
<tb>  <SEP> 0.50 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 30 <SEP> 94 <SEP> 100 <SEP> 93 <SEP> 100 <SEP> 2 <SEP> 75 <SEP> 50 <SEP> 99
<tb>  <SEP> 9 <SEP> F
<tb>  <SEP> 3
<tb>  <SEP> 9
<tb>  <SEP> 0.25 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 6 <SEP> 100 <SEP> 72 <SEP> 100 <SEP> 100 <SEP> 0 <SEP> 0 <SEP> 100 <SEP> 100
<tb>  <SEP> 8 <SEP> F
<tb>  <SEP> Q <SEP> -CI
<tb>  <SEP> O <SEP> CHOCH,
<tb>  <SEP> 19
<tb>   
Table II (continued)
EMI153.1     


<tb> StruEturr <SEP> Rate1 <SEP> Crows <SEP> Weeds
<tb>  <SEP> (16/8) <SEP> 58 <SEP> CO <SEP> CH <SEP> WH <SEP> 6 <SEP> VE <SEP> v <SEP> 1W <SEP> PW <SEP> COC <SEP> FT <SEP> 65 <SEP>  

   LC
<tb>  <SEP> S <SEP> Injury3 <SEP> S <SEP> Control
<tb>  <SEP> 0.25 <SEP> 0 <SEP> 6 <SEP> 0 <SEP> 0 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 0 <SEP> 86 <SEP> 100 <SEP> 100
<tb>  <SEP> 9 <SEP> F
<tb> O <SEP> H2OC <SEP> (CH, <SEP> j,
<tb>  <SEP> 25
<tb>  <SEP> 0.50 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 10 <SEP> 71 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 76 <SEP> 12 <SEP> 100 <SEP> 10
<tb>  <SEP> F
<tb>  <SEP> 3e
<tb>  <SEP> 28
<tb>   
Table II (continued)
EMI154.1     


<tb>  <SEP> Crops <SEP> Weeds
<tb>  <SEP> Rate' <SEP> SB <SEP> CO <SEP> CN <SEP> WH <SEP> MG <SEP> VE <SEP> CW <SEP> ni <SEP> Pi <SEP> COC <SEP> FT <SEP> BS <SEP> LC
<tb>  <SEP> Structure <SEP> (IbIA) <SEP> S <SEP> Injury' <SEP> S <SEP> Control
<tb>  <SEP> 0.5 <SEP> f <SEP> O.S <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 26 <SEP> 0 <SEP> 22 <SEP> 86 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 6
<tb> CH,SC1
<tb>  

   <SEP> a
<tb>  <SEP> ApF <SEP> 0.5 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 56100 <SEP> 90 <SEP> 100
<tb>  <SEP> I3ci
<tb>  <SEP> A
<tb>  <SEP> CH,0
<tb>  <SEP> 4L
<tb>   
Table II (cont'd)
EMI155.1     


<tb>  <SEP> Crops' <SEP> Weeds
<tb>  <SEP> Rate' <SEP> SB <SEP> CO <SEP> CN <SEP> WH <SEP> MG <SEP> YE <SEP> CW <SEP> TW <SEP> PW <SEP> COC <SEP> PT <SEP> 85 <SEP> LC
<tb>  <SEP> Structure <SEP> (Ib/A) <SEP> S <SEP> InJury' <SEP> :

  <SEP> ¯ <SEP> ¯ <SEP> I <SEP> Control
<tb>  <SEP> O <SEP> r <SEP> 0.5 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 100 <SEP> 6100 <SEP> 62100 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 2
<tb>  <SEP> -I(H <SEP> 0
<tb>  <SEP> O <SEP> CH,OCH,COCH,CH,
<tb>  <SEP> 42
<tb>  <SEP> F <SEP> F <SEP> 0.25 <SEP> - <SEP> 2 <SEP> 0 <SEP> 0 <SEP> 100 <SEP> 12 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 0 <SEP> 88 <SEP> 35 <SEP> 100
<tb> C <SEP> VCl
<tb>  <SEP> o <SEP> CH,SCH(CH,)I
<tb>  <SEP> 44
<tb>  <SEP> ,p <SEP> F <SEP> 0.25 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 97 <SEP> 6 <SEP> 100 <SEP> 66100 <SEP> 12 <SEP> 6 <SEP> 0 <SEP> 6
<tb> °4X < CI <SEP> o
<tb>  <SEP> O <SEP> CH <SEP> ,OCH <SEP> ,CO <SEP> 4
<tb>  <SEP> 46
<tb>  <SEP> p
<tb>  <SEP> 2 <SEP> 0.50 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 90 <SEP> 100 <SEP> 100 <SEP> 40 <SEP> 99 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 6
<tb>  <SEP> O
<tb>  <SEP> CH,OCH,C3CH,C--CH
<tb>   
Table II 

   (cont'd)
EMI156.1     


<tb>  <SEP> Crops <SEP> a <SEP> Weeds
<tb>  <SEP> Rate' <SEP> SB <SEP> CO <SEP> CN <SEP> WX <SEP> MG <SEP> YE <SEP> CW <SEP> rw <SEP> pw <SEP> COC <SEP> FT <SEP> 85 <SEP> LC
<tb>  <SEP> Structure <SEP> (Ib/A) <SEP> Z <SEP> Injury5 <SEP> S <SEP> I <SEP> Control
<tb> O <SEP> F <SEP> 0.50 <SEP> 0 <SEP> 20 <SEP> 0 <SEP> 0 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 86100 <SEP> 94 <SEP> 6 <SEP> 0 <SEP> 42
<tb>  <SEP> O <SEP> CX,OCH,COCX(CH,),
<tb>  <SEP> 56
<tb>  <SEP>  > ¯ <SEP> F <SEP> 50 <SEP> 6 <SEP> 2 <SEP> 0 <SEP> 0 <SEP> 12100 <SEP> 100 <SEP> 99100 <SEP> 0 <SEP> 56 <SEP> 0 <SEP> 99
<tb> 0
<tb>  <SEP> 0 <SEP> II
<tb>  <SEP> o <SEP> CH,NCH,COCH,CH,
<tb>  <SEP> CH,
<tb>  <SEP> 59
<tb>  <SEP> F <SEP> F <SEP> 0.50 <SEP> 12 <SEP> 100 <SEP> 0 <SEP> 0 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 62100 <SEP> 32 <SEP> 100
<tb> 9H, <SEP> 9
<tb> o <SEP> CX:

  :OC1COCXaCN,
<tb>  <SEP> û <SEP> CH, <SEP> OCCOCH,CH,
<tb>  <SEP> CH,
<tb>  <SEP> 61
<tb>  <SEP> F
<tb>  <SEP> 0.50 <SEP> 0 <SEP> 98 <SEP> 0 <SEP> 0 <SEP> 86 <SEP> 11 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> - <SEP> 26 <SEP> 0 <SEP> 55
<tb> CX,
<tb>  <SEP> CH,0 <SEP> t3 <SEP> OCHCO <SEP> ,CH <SEP> JH,
<tb>  <SEP> 62
<tb>   
Table II (cont'd)
EMI157.1     


<tb>  <SEP> Crops1 <SEP> Weeds
<tb>  <SEP> Rates <SEP> S8 <SEP> CO <SEP> CN <SEP> WH <SEP> MG <SEP> VE <SEP> CW <SEP> Thi <SEP> Pi <SEP> COC <SEP> FT <SEP> BS <SEP> LC
<tb>  <SEP> Structure <SEP> (Ib/A) <SEP> S <SEP> InJury' <SEP> S <SEP> Control
<tb>  <SEP> F <SEP> O.25 <SEP> 2 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 6 <SEP> 0 <SEP> 100 <SEP> 86 <SEP> 88 <SEP> 72 <SEP> 71 <SEP> 0 <SEP> 100
<tb>  <SEP> O <SEP> CH,OCH,
<tb>  <SEP> t7
<tb>  <SEP> 65
<tb>  <SEP> Q <SEP> F <SEP> 0.25 <SEP> - <SEP> 100 <SEP> 0 <SEP> 0 <SEP> 86 <SEP> 100 <SEP> 100 <SEP> 

   100 <SEP> 100 <SEP> - <SEP> 42 <SEP> 98 <SEP> 100
<tb> OI
<tb>  <SEP> CH,N
<tb>  <SEP> 67
<tb>  <SEP> 0.25 <SEP> 0 <SEP> 0 <SEP> 74 <SEP> 0 <SEP> 50 <SEP> 77 <SEP> 45100100 <SEP> 100 <SEP> 74 <SEP> 56100
<tb>  <SEP> Cl
<tb>  <SEP> C <SEP> CH, <SEP> O
<tb>  <SEP> O <SEP> CH,OC
<tb>  <SEP> 6B
<tb>  <SEP>  <  <SEP> 0.25 <SEP> 0 <SEP> 2 <SEP> 0 <SEP> 0 <SEP> 50 <SEP> 99 <SEP> 100 <SEP> 100 <SEP> 100 <SEP> 0 <SEP> 74 <SEP> 2 <SEP> 56
<tb>  <SEP> CHXûCNH( <SEP> CH,

   <SEP> ) <SEP> ,CH,
<tb>  <SEP> 78
<tb>   
Table II (cont'd)
EMI158.1     


<tb>  <SEP> Crops5 <SEP> Weds
<tb>  <SEP> Rate' <SEP> SB <SEP> CO <SEP> CN <SEP> WH <SEP> MG <SEP> VE <SEP> CW <SEP> 1W <SEP> PW <SEP> COC <SEP> FT <SEP> BS <SEP> LC
<tb>  <SEP> Structure <SEP> (Ib/A) <SEP> S <SEP> Injury' <SEP> ¯ <SEP> S <SEP> Control
<tb>  <SEP> .O <SEP> f <SEP> 0.25 <SEP> 0 <SEP> 56 <SEP> 0 <SEP> 0 <SEP> 71 <SEP> 100 <SEP> 20 <SEP> 100 <SEP> 100 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 98
<tb>  <SEP> I--tf
<tb>  <SEP> O <SEP> CH5OCO(Cfl2),CX,
<tb>  <SEP> 79
<tb>  <SEP> 2 <SEP> F <SEP> 0.50 <SEP> 0 <SEP> 20 <SEP> 0 <SEP> 54 <SEP> 30 <SEP> 100 <SEP> 51 <SEP> 100 <SEP> 98 <SEP> 100 <SEP> 76 <SEP> 0 <SEP> 100
<tb>  <SEP> H,02 <SEP> 
<tb>  <SEP> 80
<tb>  <SEP> lP <SEP> 0 <SEP> .25 <SEP> - <SEP> O <SEP> O <SEP> O <SEP> 1 <SEP> 00 <SEP> 78 <SEP> 1 <SEP> 00 <SEP> 1 <SEP> CO <SEP> 1 <SEP> 00 <SEP> 30 <SEP> 0 

   <SEP> 0 <SEP> 30
<tb> GCN4C <SEP> I
<tb>  <SEP> CX,
<tb>  <SEP> O <SEP> CH <SEP> ,O-N¯CCOCH <SEP> 1CH,
<tb>  <SEP> 0
<tb>  <SEP> 81
<tb>  <SEP> 0
<tb>  <SEP> II
<tb>  <SEP> OCCX
<tb>  <SEP> 0.25 <SEP> 0 <SEP> 25 <SEP> 0 <SEP> 56 <SEP> 0 <SEP> 0 <SEP> 42 <SEP> 0 <SEP> 12 <SEP> 88 <SEP> 100 <SEP> 0 <SEP> 0 <SEP> 30 <SEP> 50
<tb>  <SEP> CH,OCH(CH,),
<tb>  <SEP> 139
<tb>   
Table II (cont'd)
EMI159.1     


<tb>  <SEP> Crops' <SEP> Weeds
<tb>  <SEP> Rate' <SEP> SB <SEP> CO <SEP> CN <SEP> WH <SEP> MG <SEP> YE <SEP> CW <SEP> 1W <SEP> Pi <SEP> COC <SEP> FT <SEP> BS <SEP> LC
<tb>  <SEP> Structure <SEP> (Ib/A) <SEP> S <SEP> Injury' <SEP> S <SEP> Control
<tb>  <SEP> 0.25 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 72 <SEP> 86 <SEP> 61 <SEP> 100 <SEP> 100 <SEP> 35 <SEP> 56 <SEP> 6 <SEP> 100
<tb>  <SEP> .0 <SEP> F
<tb>  <SEP> I--C <SEP> 1
<tb> O <SEP> CH <SEP> ,OCSCH <SEP> aCH,
<tb>  <SEP> 87
<tb>  

   <SEP> 20 <SEP> F <SEP> 0.25 <SEP> 0 <SEP> 2 <SEP> 0 <SEP> 0 <SEP> 82 <SEP> 100 <SEP> 77 <SEP> lOû <SEP> 100 <SEP> '42 <SEP> 30 <SEP> 0 <SEP> 97
<tb>  <SEP> 0 <SEP> 2 <SEP> 0.25 <SEP> 0 <SEP> 0 <SEP> 82100 <SEP> 77100100 <SEP> '42 <SEP> 42 <SEP> 30 <SEP> 0 <SEP> 97
<tb>  <SEP> S
<tb>  <SEP> 88
<tb>  <SEP> 0 <SEP> F
<tb> c <SEP> - <SEP> 0.25 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 10 <SEP> 96 <SEP> 100 <SEP> 63 <SEP> 100 <SEP> 100 <SEP> 10 <SEP> 0 <SEP> 19 <SEP> 100
<tb>  <SEP> O <SEP> CH-,CN
<tb>  <SEP> 96
<tb>   
Table II (continued)
EMI160.1     


<tb> Structure <SEP> Rate1 <SEP> CrOP <SEP> Weeds
<tb>  <SEP> ( <SEP> lb/A) <SEP> SB <SEP> co <SEP> CN <SEP> WIt <SEP> ItG <SEP> VE <SEP> ccl <SEP> mi <SEP> N <SEP> COC <SEP> FT <SEP> 85 <SEP> LC
<tb>  <SEP> S <SEP> Injury <SEP> S <SEP> Control
<tb>  <SEP> 0.50 <SEP> 0 <SEP> 0 <SEP> 0 <SEP> 10 <SEP> 70 <SEP> 75 <SEP> 0 <SEP> 100 <SEP> 100 <SEP> 0 

   <SEP> 0 <SEP> 0 <SEP> 100
<tb>  <SEP> 8
<tb>  <SEP> Ic4 <SEP> -cl
<tb> O <SEP> CH20H
<tb> 
True pre-emergent. Test crops and weed seeds planted about 1 inch below soil surface.    Soil    surface sprayed with   a    1:1 acotone-water solution of the test   compounds.   



     2   
 Crop   Species:      S@    = soybean   co    = cotton   CN    = corn WH=wheat
 Weed Species : MG = morningglory VE = velvetleaf CW = coffeeweed TW = teaweed PW = pigweed
 COC = cocklebur FT = foxtail   as    = broadleaf signalgrass LC = large   crabgrass.   

 

  3Oata are visual evaluations of injury/control 21 days following   treatment.   



   It will be understood that the plant
 species employed in the above tests are merely
 representative of a wide variety of plants that can
 be controlled by the use of the compounds of this
 invention. The compounds contemplated in this
 invention may be applied as postemergent and
 preemergent herbicides according to methods known to
 those skilled in the art. Compositions containing  the compounds as the active ingredient will usually comprise a carrier and/or diluent, either liquid or solid.



   Suitable liquid diluents or carriers include water, petroleum distillates, or other liquid carriers with or without surface active agents. Liquid concentrates may be prepared by dissolving one of these compounds with a nonphytotoxic solvent such as acetone, xylene, or nitrobenzene and dispersing the toxicants in water with the aid of suitable surface active emulsifying and dispersing agent.



   The choice of dispersing and emulsifying agents and the amount employed is dictated by the nature of the composition and the ability. of the agent to facilitate the dispersion of the compound.



  Generally, it is desirable to use as little of the agent as is possible, consistent with the desired dispersion of the compound in the spray so that rain does not re-emulsify the compound after it is applied to the plant and wash if off the plant.



  Nonionic, anionic, amphoteric or cationic dispersing and emulsifying agents may be employed; for example, the condensation products of alkylene oxides with phenol and organic acids, alkyl aryl sulfonates, complex ether alchols, quaternary ammonium compounds, and the like.



   In the preparation of wettable powder or dust or granulated compositions, the active ingredient is dispersed in and on an appropriately divided solid carrier such as clay, talc, bentonite, diatomaceous earth, fullers earth, and the like. In  the formulation of the wettable powders the aforementioned dispersing agents as well as   iignosulfonates    can be included.



   The required amount of the compound contemplated herein may be applied per acre treated in from 1 to 200 gallons or more of liquid carrier and/or diluent or in from about 5 to 500 pounds of inert solid carrier and/or diluent. The concentration in the liquid concentrate will usually vary from about 10 to 95 percent by weight and in the solid formulations from about 0.5 to about   90    percent by weight. Satisfactory sprays, dusts, or granules for general use contain from about 1/16 to 15 pounds of active ingredient per acre.



   The herbicides contemplated herein have a high margin of safety in that when used in sufficient amount to control broadleaf weeds they do not burn or injure the crop and they resist weathering which includes wash-off caused by rain, decomposition by ultra-violet light, oxidation, or hydrolysis in the presence of moisture or, at least such decomposition, oxidation, and hydrolysis as would materially decrease the desirable characteristic of the compound or impart undesirable characteristic for instance, phytotoxicity, to the compound. It will be appreciated that the compounds of this invention can also be used in combination with other biologically active compounds.



     Table TIT    which follows indicates physical properties and elemental analyses of compounds according to the invention.  



     Table III: Physical Properties of N-[5-(substituted methylene)phenyl]lmide Herbicides   
EMI163.1     

EMI163.2     


Compound <SEP> Molecular <SEP> R1 <SEP> R2 <SEP> R3 <SEP> R4 <SEP> Y <SEP> M.P. <SEP> Calculated <SEP> Found
<tb> No. <SEP> Formula <SEP> ( C) <SEP> C <SEP> H <SEP> N <SEP> C <SEP> H <SEP> N
<tb> O
<tb> 1 <SEP> C1@H@@ClFNO4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCCH@ <SEP> oil <SEP> 58.04 <SEP> 4.30 <SEP> 3.98 <SEP> 57.54 <SEP> 4.57 <SEP> 3.80
<tb> 2 <SEP> C1@H@@ClFNO4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH(CH@)2 <SEP> 100-103 <SEP> 61.45 <SEP> 5.44 <SEP> 3.98 <SEP> 61.89 <SEP> 5.67 <SEP> 3.75
<tb> 3 <SEP> C17H1@ClFNO2S <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -SCH2CH@ <SEP> oil <SEP> 57.70 <SEP> 4.84 <SEP> 3.96 <SEP> 57.47 <SEP> 5.01 <SEP> 3.77
<tb> 4 <SEP> C1@H@@ClFNO4S <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -SCH2CO2CH3 <SEP> oil <SEP> 

   54.34 <SEP> 4.31 <SEP> 3.52 <SEP> 53.81 <SEP> 4.43 <SEP> 3.45
<tb> 5 <SEP> C1@H1@ClFNO2 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OH <SEP> 133-138 <SEP> 58.17 <SEP> 4.23 <SEP> 4.52 <SEP> 58.32 <SEP> 4.31 <SEP> 4.45
<tb> 6 <SEP> C21H14Cl2FNO2S <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -S-#-CL <SEP> oil <SEP> 58.08 <SEP> 3.25 <SEP> 3.23 <SEP> 57.14 <SEP> 3.74 <SEP> 3.06
<tb> 7 <SEP> C20H11ClFNO4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -O-# <SEP> oil <SEP> 60.99 <SEP> 5.37 <SEP> 3.56 <SEP> 60.40 <SEP> 5.53 <SEP> 3.52
<tb> 8 <SEP> C1@H12BrClFNO4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -Br <SEP> 116(d) <SEP> 48.35 <SEP> 3.25 <SEP> 3.76 <SEP> 47.73 <SEP> 3.43 <SEP> 3.60
<tb> 9 <SEP> C2@H21ClFNO@ <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -0-# <SEP> 86-88 <SEP> 63.57 <SEP> 5.60 <SEP> 3.71 <SEP> 63.40 <SEP> 5.66 <SEP> 4.07
<tb> 10 <SEP> C1@H1@ClFNO2 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH2CH=CH2 

   <SEP> oil <SEP> 61.80 <SEP> 4.90 <SEP> 4.00 <SEP> 61.48 <SEP> 4.92 <SEP> 4.67
<tb> 11 <SEP> C1@H1@ClFNO2 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH2CH@ <SEP> 94-96 <SEP> 60.45 <SEP> 5.07 <SEP> 4.15 <SEP> 59.96 <SEP> 5.17 <SEP> 3.83
<tb>      Table III (continued)   
EMI164.1     


Compound <SEP> Molecular <SEP> R1 <SEP> R2 <SEP> R3 <SEP> R4 <SEP> Y <SEP> M.P. <SEP> Calculated <SEP> Found
<tb> No.

  <SEP> Formula <SEP> ( C) <SEP> C <SEP> H <SEP> N <SEP> C <SEP> H <SEP> N
<tb> 12 <SEP> C12H1@NO@ <SEP> H <SEP> H <SEP> H <SEP> H <SEP> -OH <SEP> 110-115 <SEP> 70.02 <SEP> 5.88 <SEP> 5.44 <SEP> 69.59 <SEP> 5.84 <SEP> 5.21
<tb> 13 <SEP> C1@H14ClNO3 <SEP> H <SEP> Cl <SEP> H <SEP> H <SEP> -OH <SEP> 121-124 <SEP> 61.75 <SEP> 4.84 <SEP> 4.80 <SEP> 62.03 <SEP> 4.81 <SEP> 4.58
<tb> O
<tb> 14 <SEP> C1@H@@ClFNO4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -O-CCH2CH3 <SEP> oil <SEP> 59.10 <SEP> 4.68 <SEP> 3.83 <SEP> 58.43 <SEP> 4.31 <SEP> 3.73
<tb> 15 <SEP> C1@H1@Cl2NO2 <SEP> Cl <SEP> Cl <SEP> H <SEP> H <SEP> -OH <SEP> 138-140 <SEP> 55.23 <SEP> 4.02 <SEP> 4.29 <SEP> 55.34 <SEP> 3.93 <SEP> 4.01
<tb> 16 <SEP> C1@H1@Cl2NO3 <SEP> Cl <SEP> Cl <SEP> H <SEP> H <SEP> -OCH(CH3)2 <SEP> 120-123 <SEP> 58.71 <SEP> 5.20 <SEP> 3.80 <SEP> 57.95 <SEP> 5.00 <SEP> 3.73
<tb> 17 <SEP> C1@H2@ClNO3 <SEP> H <SEP> Cl <SEP> H 

   <SEP> H <SEP> -OCH(CH3)3 <SEP> 120-121 <SEP> 64.77 <SEP> 6.04 <SEP> 4.19 <SEP> 64.89 <SEP> 6.03 <SEP> 4.06
<tb> 18 <SEP> C1@H21ClFNO@ <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH2CH(CH3)2 <SEP> 29-33 <SEP> 62.37 <SEP> 5.79 <SEP> 3.83 <SEP> 62.12 <SEP> 5.82 <SEP> 3.73
<tb> 19 <SEP> C16H15ClFNO3 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH3 <SEP> 93-95 <SEP> 59.36 <SEP> 4.67 <SEP> 4.33 <SEP> 59.52 <SEP> 4.69 <SEP> 4.18
<tb> 20 <SEP> C21H1@ClF4N2O5S <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -N#OCF@OSO2 <SEP> 173-174 <SEP> 48.42 <SEP> 3.29 <SEP> 5.38 <SEP> 48.67 <SEP> 3.40 <SEP> 5.23
<tb> 21 <SEP> C1@H12ClF2NO2 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -F <SEP> 132-135 <SEP> 57.80 <SEP> 3.88 <SEP> 4.49 <SEP> 57.71 <SEP> 3.56 <SEP> 4.60
<tb> O
<tb> 22 <SEP> C1@H1@ClF4NO4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCCF3 <SEP> 88-89 <SEP> 50.33 <SEP> 2.98 <SEP> 3.45 <SEP> 50.65 <SEP> 2.97 <SEP> 

   3.29
<tb> 23 <SEP> C1@H@@FNO3 <SEP> F <SEP> H <SEP> H <SEP> H <SEP> -OCH(CH3)2 <SEP> 97-99 <SEP> 68.12 <SEP> 6.35 <SEP> 4.41 <SEP> 68.32 <SEP> 6.26 <SEP> 4.47
<tb> 24 <SEP> C10H1@F2NO3 <SEP> F <SEP> F <SEP> H <SEP> H <SEP> -OH <SEP> 119-120 <SEP> 61.43 <SEP> 4.47 <SEP> 4.77 <SEP> 60.96 <SEP> 4.58 <SEP> 4.80
<tb> 25 <SEP> C1@H21ClFNO3 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OC(CH3)@ <SEP> 131-134 <SEP> 62.28 <SEP> 5.79 <SEP> 3.83 <SEP> 62.73 <SEP> 5.83 <SEP> 3.80
<tb> 26 <SEP> C1@H1@ClFN2O2 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -NHCH2C#CH <SEP> 80-88 <SEP> 62.34 <SEP> 4.65 <SEP> 8.08 <SEP> 59.60 <SEP> 4.65 <SEP> 7.48
<tb> 27 <SEP> C1@H2@ClFN2O2 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -N# <SEP> 143-147 <SEP> 62.89 <SEP> 5.57 <SEP> 7.72 <SEP> 61.62 <SEP> 5.51 <SEP> 7.46
<tb> 28 <SEP> C1@H1@ClFNO@ <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH2C#CH <SEP> 94-97 <SEP> 62.16 <SEP> 4.36 <SEP>  

   4.03 <SEP> 61.99 <SEP> 4.41 <SEP> 3.90
<tb> 29 <SEP> C10H21NO3 <SEP> H <SEP> H <SEP> H <SEP> H <SEP> -OCH(CH3)2 <SEP> 70-71 <SEP> 12.22 <SEP> 7.07 <SEP> 4.68 <SEP> 71.77 <SEP> 7.18 <SEP> 4.51
<tb>      Table III (continued)   
EMI165.1     


Compound <SEP> Molecular <SEP> R1 <SEP> R2 <SEP> R3 <SEP> R4 <SEP> Y <SEP> M.P. <SEP> Calculated <SEP> Found
<tb> No.

  <SEP> Formula <SEP> ( C) <SEP> C <SEP> H <SEP> N <SEP> C <SEP> H <SEP> N
<tb> 30 <SEP> C1@H1@F2NO3 <SEP> F <SEP> F <SEP> H <SEP> H <SEP> -OCH(CH3)2 <SEP> 89-90 <SEP> 64.47 <SEP> 5.71 <SEP> 4.18 <SEP> 64.60 <SEP> 6.23 <SEP> 3.81
<tb> 31 <SEP> C1@H21ClFNO2S <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -S(CH2)2CH3 <SEP> oil <SEP> 59.75 <SEP> 5.54 <SEP> 3.67 <SEP> 59.46 <SEP> 5.55 <SEP> 3.38
<tb> O
<tb> 32 <SEP> C1@H21ClFNO2S <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -S(CH2)3CH3 <SEP> oil <SEP> 57.35 <SEP> 5.32 <SEP> 3.52 <SEP> 54.26 <SEP> 5.69 <SEP> 3.40
<tb> 33 <SEP> C1@H21ClFNO4S <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -SO2(CH2)3CH3 <SEP> 132-135 <SEP> 55.14 <SEP> 5.11 <SEP> 3.38 <SEP> 54.68 <SEP> 4.95 <SEP> 3.11
<tb> O
<tb> 34 <SEP> C17H1@ClFN2O4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -C-NHCH3 <SEP> 34-41 <SEP> 55.67 <SEP> 4.40 <SEP> 7.64 <SEP> 54.81 <SEP> 4.48 <SEP> 7.40
<tb> O
<tb> 35 <SEP> 

   C22H21ClFNO@ <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCO-# <SEP> oil <SEP> 59.79 <SEP> 5.02 <SEP> 3.32 <SEP> 58.87 <SEP> 5.08 <SEP> 3.56
<tb> O
<tb> 36 <SEP> C1@H@@ClFNO4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCCH(CH3)2 <SEP> oil <SEP> 60.08 <SEP> 5.04 <SEP> 3.69 <SEP> 60.05 <SEP> 5.10 <SEP> 3.72
<tb> O
<tb> 37 <SEP> C@@H21ClFNO4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCC(CH2)@ <SEP> 73-77 <SEP> 60.99 <SEP> 5.38 <SEP> 3.56 <SEP> 61.26 <SEP> 5.25 <SEP> 3.51
<tb> O
<tb> 38 <SEP> C@@H24ClFNO2PS <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OP# <SEP> S(CH2)@CH2
<tb> oil <SEP> 50.48 <SEP> 5.08 <SEP> 2.94 <SEP> 50.34 <SEP> 5.37 <SEP> 2.96
<tb> OCH2CH3
<tb> O
<tb> 39 <SEP> C22H22ClFNO2 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH@C-O-# <SEP> 84-86 <SEP> 60.62 <SEP> 5.32 <SEP> 3.21 <SEP> 60.70 <SEP> 5.36 <SEP> 3.32
<tb> 40 <SEP> C1@H2@BrNO@ <SEP> H <SEP> Br <SEP> H <SEP> H <SEP> -OCH(CH3)2 <SEP> 

   110-112 <SEP> 57.14 <SEP> 5.33 <SEP> 3.10 <SEP> 57.23 <SEP> 5.71 <SEP> 3.50
<tb> 41 <SEP> C@2H2@ClFNO@ <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -O-# <SEP> 105-107 <SEP> 64.36 <SEP> 5.92 <SEP> 3.57 <SEP> 64.54 <SEP> 6.05 <SEP> 3.46
<tb> 42 <SEP> C19H23ClFNO@ <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH2CO2CH2CH3 <SEP> 98-101 <SEP> 57.65 <SEP> 4.84 <SEP> 3.54 <SEP> 57.87 <SEP> 4.61 <SEP> 3.58
<tb> 43 <SEP> C1@H1@FNO3 <SEP> F <SEP> H <SEP> H <SEP> H <SEP> -OH <SEP> oil <SEP> 65.42 <SEP> 5.13 <SEP> 5.09 <SEP> 64.49 <SEP> 5.21 <SEP> 5.03
<tb> 44 <SEP> C1@H1@ClFNO2S <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -SCH(CH2)2 <SEP> 82.0-84.5 <SEP> 58.77 <SEP> 5.21 <SEP> 3.81 <SEP> 58.23 <SEP> 5.32 <SEP> 3.60
<tb> CH2
<tb> 45 <SEP> C2@H24ClFN2O2 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -N-# <SEP> oil <SEP> 65.26 <SEP> 6.47 <SEP> 6.92 <SEP> 63.80 <SEP> 6.40 <SEP> 6.32
<tb> O
<tb> 46 <SEP> C2@H2@ClFNO@ <SEP> F 

   <SEP> Cl <SEP> H <SEP> H <SEP> -OCH2CO-# <SEP> oil <SEP> 61.40 <SEP> 5.56 <SEP> 3.11 <SEP> 58.24 <SEP> 5.00 <SEP> 2.75
<tb>      Table III (continued)   
EMI166.1     


Compound <SEP> Molecular <SEP> R1 <SEP> R2 <SEP> R3 <SEP> R4 <SEP> Y <SEP> M.P. <SEP> Calculated <SEP> Found
<tb> No.

  <SEP> Formula <SEP> ( C) <SEP> C <SEP> H <SEP> N <SEP> C <SEP> H <SEP> N
<tb> 47 <SEP> C1@H1@ClFNO4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH2-# <SEP> oil <SEP> 59.10 <SEP> 5.02 <SEP> 3.83 <SEP> 58.78 <SEP> 5.01 <SEP> 3.79
<tb> 48 <SEP> C17H14ClF4NO3 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH2CF3 <SEP> 95-97 <SEP> 52.12 <SEP> 3.60 <SEP> 3.58 <SEP> 52.17 <SEP> 3.82 <SEP> 3.33
<tb> 49 <SEP> C17H14Cl2FNO3 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH@CH2Cl <SEP> 94-97 <SEP> 54.85 <SEP> 4.33 <SEP> 3.76 <SEP> 55.17 <SEP> 4.65 <SEP> 3.44
<tb> CH@
<tb> 50 <SEP> C23H21ClF4N2O4S <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -N#-CF2OSO2 <SEP> 229-233 <SEP> 51.83 <SEP> 3.97 <SEP> 2.63 <SEP> 49.31 <SEP> 4.21
<tb> CH3
<tb> 51 <SEP> C21H17ClFNO2S <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -S-# <SEP> oil <SEP> 62.76 <SEP> 4.26 <SEP> 3.48
<tb> 52 <SEP> C1@H1@ClF3NO2 <SEP> F <SEP> Cl <SEP> H <SEP> F <SEP> -F 

   <SEP> 84-89 <SEP> 54.65 <SEP> 3.36 <SEP> 4.25 <SEP> 54.47 <SEP> 3.50 <SEP> -53 <SEP> C21H23ClFNO4S <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -SCH2CO2-# <SEP> oil <SEP> 60.61 <SEP> 5.32 <SEP> 3.21
<tb> 54 <SEP> C1@H1@ClFNO3 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH2CO2CH2CH=CH2 <SEP> 51-54 <SEP> 58.90 <SEP> 4.70 <SEP> 3.43 <SEP> 58.13 <SEP> 4.90 <SEP> 3.32
<tb> 55 <SEP> C2@H17ClFNO3 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH2CO2CH2C#CH <SEP> 106-110 <SEP> 59.16 <SEP> 4.22 <SEP> 3.45 <SEP> 59.20 <SEP> 4.31 <SEP> 3.36
<tb> 56 <SEP> C20H2@ClFNO2 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH2CO2CH(CH3)2 <SEP> 102-104 <SEP> 58.61 <SEP> 5.17 <SEP> 3.42 <SEP> 58.13 <SEP> 4.90 <SEP> 3.32
<tb> CH3
<tb> 57 <SEP> C2@H2@ClFNO@ <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -# <SEP> oil <SEP> 69.43 <SEP> 5.32 <SEP> 3.52
<tb> CH3
<tb> 58 <SEP> C@@H1@ClFNO2 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -#-CH@ <SEP> 

   oil <SEP> 68.66 <SEP> 4.98 <SEP> 3.64 <SEP> 68.40 <SEP> 5.06 <SEP> 3.69
<tb> CH2
<tb> 59 <SEP> C2@H22ClFN2O4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -NCH2CO2CH2CH@ <SEP> oil <SEP> 58.75 <SEP> 5.42 <SEP> 6.85 <SEP> 58.82 <SEP> 5.44 <SEP> 6.43
<tb> CH3O
<tb> 60 <SEP> C2@H2@ClFNO@ <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH-COCH2CH3 <SEP> oil <SEP> 58.61 <SEP> 5.17 <SEP> 3.42 <SEP> 58.53 <SEP> 5.11 <SEP> 3.45
<tb> CH3 <SEP> O
<tb> 61 <SEP> C2@H23ClFNO@ <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OC---COCH2CH3 <SEP> oil <SEP> 59.50 <SEP> 5.47 <SEP> 3.30 <SEP> 59.10 <SEP> 5.47 <SEP> 3.72
<tb> CH2
<tb>      Table III (continued)   
EMI167.1     


Compound <SEP> Molecular <SEP> R1 <SEP> R2 <SEP> R3 <SEP> R4 <SEP> Y <SEP> M.P. <SEP> Calculated <SEP> Found
<tb> No.

  <SEP> Formula <SEP> ( C) <SEP> C <SEP> H <SEP> N <SEP> C <SEP> H <SEP> N
<tb> CH3
<tb> 62 <SEP> C@@H@@ClFNO4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -O-#OCHCO3CH2CH2 <SEP> 112-114 <SEP> 62.21 <SEP> 5.02 <SEP> 2.79 <SEP> 61.36 <SEP> 5.11 <SEP> 2.59
<tb> 63 <SEP> C@@H@@ClFNO@ <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> # <SEP> 68-72 <SEP> 58.75 <SEP> 5.66 <SEP> 2.54 <SEP> 58.76 <SEP> 5.53 <SEP> 3.92
<tb> 64 <SEP> C@@H@@ClFNO@ <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> # <SEP> 71-74 <SEP> 58.75 <SEP> 5.66 <SEP> 2.54 <SEP> 58.61 <SEP> 5.81 <SEP> 2.95
<tb> 65 <SEP> C@@H@@ClFNO4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH# <SEP> oil <SEP> 57.50 <SEP> 5.47 <SEP> 3.30 <SEP> 57.26 <SEP> 5.28 <SEP> 3.45
<tb> 66 <SEP> C1@H@@Cl@FNO@ <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -Cl <SEP> 119-123 <SEP> 54.90 <SEP> 3.69 <SEP> 4.27 <SEP> 55.35 <SEP> 3.87 <SEP> 4.20
<tb> 67 <SEP> C11H@@ClFN2O@ <SEP> F <SEP> Cl <SEP> H 

   <SEP> H <SEP> -# <SEP> 108-111 <SEP> 60.24 <SEP> 5.32 <SEP> 7.40 <SEP> 60.83 <SEP> 5.41 <SEP> 7.13
<tb> CH2O
<tb> 68 <SEP> C2@H@@ClFNO@ <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH-CO-# <SEP> 105-107 <SEP> 61.40 <SEP> 5.60 <SEP> 3.11 <SEP> 60.77 <SEP> 5.60 <SEP> 2.60
<tb> 69 <SEP> C1@H12ClFlNO2 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -I <SEP> 145.5-149.5 <SEP> 42.89 <SEP> 2.88 <SEP> 3.34
<tb> 70 <SEP> C14H21ClFNO3 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH(CH2)2CO4-# <SEP> 65-66 <SEP> 62.13 <SEP> 5.87 <SEP> 3.02 <SEP> 62.35 <SEP> 5.79 <SEP> 2.78
<tb> 71 <SEP> C13H12ClFN2O2 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -ONO@ <SEP> 119-121 <SEP> 50.79 <SEP> 3.41 <SEP> 7.89 <SEP> 51.22 <SEP> 3.75 <SEP> 8.35
<tb> O
<tb> 72 <SEP> C2@H24ClFN2O4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OC-NH-# <SEP> 145-148 <SEP> 60.76 <SEP> 5.56 <SEP> 6.44 <SEP> 60.78 <SEP> 5.71 <SEP> 6.29
<tb> O
<tb> 73 <SEP>  

   C@@H17ClFN@O4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCNH-#-Cl <SEP> 147-149 <SEP> 57.03 <SEP> 3.70 <SEP> 6.05 <SEP> 56.58 <SEP> 3.84 <SEP> 5.89
<tb> S
<tb> 74 <SEP> C@@H1@Cl2FN2O@S <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCNH-#-Cl <SEP> 178-180 <SEP> 55.12 <SEP> 3.58 <SEP> 5.84 <SEP> 54.99 <SEP> 3.68 <SEP> 5.38
<tb>      Table III (continued)   
EMI168.1     


Compound <SEP> Molecular <SEP> R1 <SEP> R2 <SEP> R3 <SEP> R4 <SEP> Y <SEP> M.P. <SEP> Calculated <SEP> Found
<tb> No.

  <SEP> Formula <SEP> ( C) <SEP> C <SEP> H <SEP> N <SEP> C <SEP> H <SEP> N
<tb> OH <SEP> OH
<tb> 75 <SEP> C1@H2@ClFNO@ <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH2CH-CH2 <SEP> oil <SEP> 56.33 <SEP> 4.99 <SEP> 3.65 <SEP> 52.83 <SEP> 4.87 <SEP> 3.47
<tb> 76 <SEP> C24H@@ClFNO@ <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -O# <SEP> oil <SEP> 56.31 <SEP> 5.32 <SEP> 2.73 <SEP> 55.01 <SEP> 5.67 <SEP> 4.25
<tb> OH <SEP> OH
<tb> 77 <SEP> C@@H@@ClFN@O@ <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -NHCH(CH2)2 <SEP> 87-90 <SEP> 61.62 <SEP> 5.75 <SEP> 7.99 <SEP> 61.38 <SEP> 5.76 <SEP> 8.02
<tb> O
<tb> 78 <SEP> C@@H@@ClFN2O4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCNH(CH2)2CH3 <SEP> oil <SEP> 58.75 <SEP> 5.42 <SEP> 6.85 <SEP> 59.23 <SEP> 5.47 <SEP> 6.80
<tb> O
<tb> 79 <SEP> C2@H@@ClFNO@ <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCO(CH2)2CH3 <SEP> oil <SEP> 58.61 <SEP> 5.17 <SEP> 3.42 <SEP> 58.70 <SEP> 5.13 <SEP> 

   3.48
<tb> O
<tb> 80 <SEP> C@@H@@ClFNO4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OC-# <SEP> oil <SEP> 62.93 <SEP> 5.52 <SEP> 3.34 <SEP> 61.49 <SEP> 5.59 <SEP> 3.53
<tb> CH@
<tb> 81 <SEP> C2@H2@ClFN2O@ <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -ON=CCO@CH@CH@ <SEP> 73-76 <SEP> 56.81 <SEP> 4.77 <SEP> 6.62 <SEP> 57.12 <SEP> 5.08 <SEP> 6.79
<tb> O
<tb> 82 <SEP> C2@H2@ClNO4 <SEP> H <SEP> CH2 <SEP> H <SEP> H <SEP> -OCH(CH3)@ <SEP> 114-116 <SEP> 68.25 <SEP> 5.96 <SEP> 3.18 <SEP> 68.26 <SEP> 6.20 <SEP> 4.61
<tb> #
<tb> Cl
<tb> 83 <SEP> C2@H22ClFN2O4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -NHC(CH2)2CO2CH3 <SEP> 91-93 <SEP> 58.75 <SEP> 5.42 <SEP> 6.85 <SEP> 58.55 <SEP> 5.77 <SEP> 6.59
<tb> 84 <SEP> C1@H14BrNO@ <SEP> H <SEP> Br <SEP> H <SEP> H <SEP> -OH <SEP> 108-110 <SEP> 53.59 <SEP> 4.20 <SEP> 4.17 <SEP> 53.66 <SEP> 4.41 <SEP> 4.21
<tb> CH@
<tb> 85 <SEP> C1@H22ClFN2O@ <SEP> F <SEP> Cl <SEP> H <SEP> H 

   <SEP> -NHCHCH@OCH3 <SEP> oil <SEP> 59.92 <SEP> 5.82 <SEP> 7.36 <SEP> 59.37 <SEP> 5.77 <SEP> 7.60
<tb> 86 <SEP> C@2H24BrNO3 <SEP> H <SEP> Br <SEP> H <SEP> H <SEP> -OCH@CO2-# <SEP> 78-80 <SEP> 57.15 <SEP> 5.23 <SEP> 3.03 <SEP> 56.84 <SEP> 5.60 <SEP> 3.13
<tb>      Table III (continued)   
EMI169.1     


Compound <SEP> Molecular <SEP> R1 <SEP> R2 <SEP> R3 <SEP> R4 <SEP> Y <SEP> M.P. <SEP> Calculated <SEP> Found
<tb> No.

  <SEP> Formula <SEP> ( C) <SEP> C <SEP> H <SEP> N <SEP> C <SEP> H <SEP> N
<tb> O
<tb> 87 <SEP> C1@H1@ClFNO4S <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCSCH2CH2 <SEP> oil <SEP> 54.34 <SEP> 4.31 <SEP> 3.52 <SEP> 53.95 <SEP> 4.34 <SEP> 4.02
<tb> S
<tb> 88 <SEP> C2@H22ClFN2O3S <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCNH(CH2)3CH3 <SEP> oil <SEP> 56.53 <SEP> 5.22 <SEP> 6.59 <SEP> 56.11 <SEP> 5.59 <SEP> 6.53
<tb> O
<tb> 89 <SEP> C@@H24ClFN2O4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH2CNH-# <SEP> oil <SEP> 60.76 <SEP> 5.56 <SEP> 6.44 <SEP> 60.20 <SEP> 5.71 <SEP> 5.87
<tb> 90 <SEP> C1@H@@ClFN2O4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -NHCH2CO2CH2CH3 <SEP> oil <SEP> 57.80 <SEP> 5.11 <SEP> 7.10 <SEP> 56.63 <SEP> 5.22 <SEP> 6.84
<tb> 91 <SEP> C2@H21ClFNO2S <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -S-# <SEP> oil <SEP> 60.96 <SEP> 5.37 <SEP> 3.56
<tb> S
<tb> 92 <SEP> C22H24ClFN2O@S <SEP> F <SEP> Cl 

   <SEP> H <SEP> H <SEP> -O-CNH-# <SEP> oil <SEP> 58.59 <SEP> 5.36 <SEP> 6.21
<tb> 93 <SEP> C@@H32ClFN2O2 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -NH-# <SEP> 68-70 <SEP> 63.74 <SEP> 5.89 <SEP> 7.43 <SEP> 63.46 <SEP> 5.73 <SEP> 7.26
<tb> O <SEP> O
<tb> 94 <SEP> C@@H1@ClFNO4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCCH2COCH2CH3 <SEP> oil <SEP> 56.68 <SEP> 4.52 <SEP> 3.31 <SEP> 57.12 <SEP> 4.60 <SEP> 3.58
<tb> O
<tb> 95 <SEP> C@@H21ClFNO4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -C-O-# <SEP> oil <SEP> 62.15 <SEP> 5.22 <SEP> 3.45 <SEP> 62.14 <SEP> 5.38 <SEP> 3.22
<tb> 96 <SEP> C16H12ClFN2O2 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -CN <SEP> 144-147 <SEP> 60.29 <SEP> 3.80 <SEP> 8.79 <SEP> 60.33 <SEP> 4.09 <SEP> 8.79
<tb> 97 <SEP> C21H24ClFN2O3 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> # <SEP> 100-103 <SEP> 61.99 <SEP> 5.95 <SEP> 6.89 <SEP> 61.08 <SEP> 5.82 <SEP> 6.49
<tb> O
<tb> 98 <SEP> C1@H1@ClFNO4 

   <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -COCH2C#CH <SEP> 98-100 <SEP> 60.73 <SEP> 4.02 <SEP> 3.73 <SEP> 60.53 <SEP> 4.33 <SEP> 3.60
<tb> O
<tb> 99 <SEP> C14H12ClFN2O3 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -CN(CH3)2 <SEP> 186-188 <SEP> 59.26 <SEP> 4.97 <SEP> 7.68 <SEP> 57.51 <SEP> 4.95 <SEP> 7.25
<tb> O
<tb> 100 <SEP> C21H23ClFNO4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCH2C(CH2)3CH3 <SEP> oil <SEP> 59.50 <SEP> 5.47 <SEP> 3.30 <SEP> 59.57 <SEP> 5.75 <SEP> 4.09
<tb>      Table III (continued)   
EMI170.1     


Compound <SEP> Molecular <SEP> R1 <SEP> R2 <SEP> R3 <SEP> R4 <SEP> Y <SEP> M.P. <SEP> Calculated <SEP> Found
<tb> No.

  <SEP> Formula <SEP> ( C) <SEP> C <SEP> H <SEP> N <SEP> C <SEP> H <SEP> N
<tb> 101 <SEP> C1@H2@ClFN2O3S <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> # <SEP> 114-116 <SEP> 57.79 <SEP> 5.11 <SEP> 7.09 <SEP> 57.51 <SEP> 5.12 <SEP> 6.98
<tb> 102 <SEP> C@@H2@ClFN2O4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> # <SEP> 172-174 <SEP> 59.04 <SEP> 4.96 <SEP> 6.88 <SEP> 59.32 <SEP> 5.42 <SEP> 6.80
<tb> O <SEP> CH3
<tb> 103 <SEP> C21H2@ClFN2O4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -CON=CCO2CH2CH3 <SEP> 42-45 <SEP> 55.94 <SEP> 4.47 <SEP> 6.21 <SEP> 56.05 <SEP> 4.89 <SEP> 5.88
<tb> O
<tb> 104 <SEP> C1@H1@ClFNO4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -COCH(CH2)2 <SEP> 81-82 <SEP> 60.08 <SEP> 5.04 <SEP> 3.69 <SEP> 60.53 <SEP> 5.21 <SEP> 3.52
<tb> O
<tb> 105 <SEP> C1@H13ClFNO4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -COCH3 <SEP> 113-115 <SEP> 58.04 <SEP> 4.30 <SEP> 3.89 <SEP> 58.06 <SEP> 4.51 <SEP> 3.49
<tb> 106 

   <SEP> C1@H21ClFNO3 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -O(CH2)3CH3 <SEP> oil <SEP> 62.38 <SEP> 5.79 <SEP> 3.83 <SEP> 62.48 <SEP> 5.94 <SEP> 3.75
<tb> O
<tb> 107 <SEP> C22H23ClFNO4 <SEP> F <SEP> Cl <SEP> H <SEP> CH3 <SEP> -C-O-# <SEP> oil <SEP> 62.93 <SEP> 5.52 <SEP> 3.33 <SEP> 62.88 <SEP> 5.89 <SEP> 3.18
<tb> O
<tb> 108 <SEP> C20H17ClFNO4 <SEP> F <SEP> Cl <SEP> H <SEP> CH3 <SEP> -COCH2C#CH <SEP> oil <SEP> 61.62 <SEP> 4.40 <SEP> 3.59 <SEP> 61.15 <SEP> 4.94 <SEP> 3.68
<tb> O
<tb> 109 <SEP> C1@H2@ClFN2O4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -OCNHCH(CH3)@ <SEP> 109-111 <SEP> 57.80 <SEP> 5.11 <SEP> 7.10 <SEP> 57.98 <SEP> 5.35 <SEP> 7.39
<tb> 110 <SEP> C14H15ClFNO3 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -CH2OH <SEP> oil <SEP> 59.36 <SEP> 4.67 <SEP> 4.32 <SEP> 59.45 <SEP> 5.17 <SEP> 4.06
<tb> O
<tb> 111 <SEP> C19H19ClFNO4S <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -CH2OCSCH2CH3 <SEP> oil  

   <SEP> 55.41 <SEP> 4.65 <SEP> 3.40 <SEP> 55.25 <SEP> 4.95 <SEP> 3.38
<tb> O
<tb> 112 <SEP> C2@H25ClFNO@ <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -CH2OCO(CH2)3CH3 <SEP> oil <SEP> 59.50 <SEP> 5.47 <SEP> 3.30 <SEP> 58.23 <SEP> 5.45 <SEP> 3.27
<tb> O
<tb> 113 <SEP> C22H24ClFN2O4 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -CH2OCNH(CH2)3CH3 <SEP> 95.0-96.5 <SEP> 59.64 <SEP> 5.72 <SEP> 6.62 <SEP> 59.85 <SEP> 5.90 <SEP> 6.70
<tb>      Table III (continued)   
EMI171.1     


Compound <SEP> Molecular <SEP> R1 <SEP> R2 <SEP> R3 <SEP> R4 <SEP> Y <SEP> M.P. <SEP> Calculated <SEP> Found
<tb> No.

  <SEP> Formula <SEP> ( C) <SEP> C <SEP> H <SEP> N <SEP> C <SEP> H <SEP> N
<tb> S
<tb> 114 <SEP> C22H24ClFN2O3S <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -CH2OCNH(CH2)3CH2 <SEP> oil <SEP> 57.47 <SEP> 5.51 <SEP> 6.38 <SEP> 57.65 <SEP> 5.59 <SEP> 6.28
<tb> 115 <SEP> C@@H24ClFN2O@ <SEP> F <SEP> Cl <SEP> H <SEP> CH2 <SEP> -CN <SEP> 57-60 <SEP> 61.36 <SEP> 4.24 <SEP> 8.42 <SEP> 61.73 <SEP> 4.69 <SEP> 7.95
<tb> 116 <SEP> C19H21ClFNO3 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -CH2OCH(CH3)2 <SEP> 46-48 <SEP> 62.38 <SEP> 5.79 <SEP> 3.83 <SEP> 61.34 <SEP> 5.80 <SEP> 3.85
<tb> 117 <SEP> C16H17ClFNO4 <SEP> F <SEP> Cl <SEP> H <SEP> CH3 <SEP> -CO2CH3 <SEP> oil <SEP> 59.11 <SEP> 4.69 <SEP> 3.83 <SEP> 58.87 <SEP> 5.05 <SEP> 3.80
<tb> O
<tb> 118 <SEP> C19H1@ClFN2O3 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> -CNHCH2CO2CH3 <SEP> 206-209 <SEP> 55.82 <SEP> 4.44 <SEP> 6.85 <SEP> 54.99 <SEP> 4.35 <SEP> 6.77
<tb> O
<tb> 

   119 <SEP> C20H21ClFNO4 <SEP> F <SEP> Cl <SEP> H <SEP> CH3 <SEP> -COCH(CH3)2 <SEP> 100-103 <SEP> 60.99 <SEP> 5.38 <SEP> 3.56 <SEP> 60.76 <SEP> 5.48 <SEP> 3.59
<tb> O <SEP> CH2
<tb> 120 <SEP> C22H22ClFN2O4 <SEP> F <SEP> Cl <SEP> H <SEP> CH2 <SEP> -CON=CCO2CH2CH3 <SEP> oil <SEP> 56.84 <SEP> 4.77 <SEP> 6.03 <SEP> 55.85 <SEP> 5.09 <SEP> 6.12
<tb> O
<tb> 121 <SEP> C19H2@ClFN2O2 <SEP> F <SEP> Cl <SEP> H <SEP> CH3 <SEP> -CN(CH3)2 <SEP> 54-57 <SEP> 60.24 <SEP> 5.32 <SEP> 7.39 <SEP> 59.93 <SEP> 5.44 <SEP> 7.31
<tb> 122 <SEP> C1@H14ClFN2O2 <SEP> F <SEP> Cl <SEP> CH2 <SEP> CH2 <SEP> -CN <SEP> 167-169 <SEP> 62.34 <SEP> 4.65 <SEP> 8.08 <SEP> 61.09 <SEP> 4.80 <SEP> 7.75
<tb> O
<tb> 123 <SEP> C22H19ClFNO4 <SEP> F <SEP> Cl <SEP> CH3 <SEP> CH3 <SEP> -COCH2C#CH <SEP> 97-100 <SEP> 62.46 <SEP> 4.74 <SEP> 3.47 <SEP> 60.58 <SEP> 4.57 <SEP> 3.15
<tb> O
<tb> 124 <SEP> C19H19ClFNO4 <SEP> F <SEP> Cl <SEP> CH3 

   <SEP> CH3 <SEP> -COCH2 <SEP> 71-74 <SEP> 60.08 <SEP> 5.04 <SEP> 3.69 <SEP> 59.68 <SEP> 5.19 <SEP> 3.63
<tb> O <SEP> CH3
<tb> 125 <SEP> C23H24ClFN2O4 <SEP> F <SEP> Cl <SEP> CH3 <SEP> CH3 <SEP> -CON=CCO2CH2CH3 <SEP> 70-73 <SEP> 57.68 <SEP> 5.05 <SEP> 5.85 <SEP> 57.77 <SEP> 5.18 <SEP> 5.78
<tb> 126 <SEP> C2@H2@ClFN2O2 <SEP> F <SEP> Cl <SEP> H <SEP> H <SEP> # <SEP> oil <SEP> 61.43 <SEP> 5.16 <SEP> 7.17
<tb>      Table III (continued)   
EMI172.1     


Compound <SEP> Molecular <SEP> R1 <SEP> R2 <SEP> R3 <SEP> R4 <SEP> Y <SEP> M.P. <SEP> Calculated <SEP> Found
<tb> No.

  <SEP> Formula <SEP> ( C) <SEP> C <SEP> H <SEP> N <SEP> C <SEP> H <SEP> N
<tb> O
<tb> 127 <SEP> C24H23ClFNO4 <SEP> F <SEP> Cl <SEP> CH3 <SEP> CH3 <SEP> -COCH(CH3)2 <SEP> 159-161 <SEP> 61.82 <SEP> 5.68 <SEP> 3.43
<tb> 128 <SEP> C1@H1@ClFN@O2 <SEP> F <SEP> Cl <SEP> H <SEP> CH2CH3 <SEP> -CN <SEP> oil <SEP> 62.30 <SEP> 4.65 <SEP> 8.07
<tb>      Table III: Physical Properties of Anilide Herbicides   
EMI173.1     


Compound <SEP> Molecular <SEP> Structure <SEP> M.P. <SEP> Calculated <SEP> Found
<tb> No.

  <SEP> Formula <SEP> ( C) <SEP> C <SEP> H <SEP> N <SEP> C <SEP> H <SEP> N
<tb> 129 <SEP> C22H2@ClFN2O4 <SEP> # <SEP> 92.0-94.5 <SEP> 60.20 <SEP> 6.43 <SEP> 6.38 <SEP> 60.65 <SEP> 6.44 <SEP> 6.23
<tb> 130 <SEP> C22H2@ClFN2O3 <SEP> # <SEP> 100-103 <SEP> 62.48 <SEP> 6.67 <SEP> 6.63 <SEP> 61.97 <SEP> 6.24 <SEP> 6.26
<tb> 131 <SEP> C1@H19ClFNO2S <SEP> # <SEP> oil <SEP> 58.77 <SEP> 5.21 <SEP> 3.81 <SEP> 57.23 <SEP> 5.26 <SEP> 3.95
<tb> 132 <SEP> C1@H21ClFNO3 <SEP> # <SEP> 145.0-146.5 <SEP> 61.10 <SEP> 5.98 <SEP> 3.96 <SEP> 61.26 <SEP> 5.99 <SEP> 3.91
<tb> 133 <SEP> C1@H21ClFNO4.Na <SEP> # <SEP> 335  <SEP> 55.03 <SEP> 5.39 <SEP> 3.57
<tb>      Table III (cont'd)   
EMI174.1     


Compound <SEP> Molecular <SEP> Structure <SEP> M.P. <SEP> Calculated <SEP> Found
<tb> No.

  <SEP> Formula <SEP> ( C) <SEP> C <SEP> H <SEP> N <SEP> C <SEP> H <SEP> N
<tb> 134 <SEP> C12H19ClFNOS1 <SEP> # <SEP> 97-101 <SEP> 56.31 <SEP> 4.99 <SEP> 3.65 <SEP> 56.20 <SEP> 4.95 <SEP> 3.50
<tb> 135 <SEP> C22H2@ClFN2O3 <SEP> # <SEP> 158-160 <SEP> 62.18 <SEP> 7.12 <SEP> 6.59 <SEP> 61.91 <SEP> 7.37 <SEP> 6.66
<tb> 136 <SEP> C19H24ClFN1O1 <SEP> # <SEP> 160.5-161.0 <SEP> 59.60 <SEP> 6.32 <SEP> 7.32 <SEP> 59.11 <SEP> 6.23 <SEP> 7.06
<tb> 137 <SEP> C23H2@ClFN2O3 <SEP> # <SEP> 151-152 <SEP> 65.42 <SEP> 6.15 <SEP> 6.11 <SEP> 65.36 <SEP> 6.51 <SEP> 5.84
<tb> 138 <SEP> C21H24ClFN2O2 <SEP> # <SEP> 174-175 <SEP> 61.68 <SEP> 6.41 <SEP> 6.85 <SEP> 61.13 <SEP> 6.91 <SEP> 6.65
<tb>      Table III (cont'd)   
EMI175.1     


Compound <SEP> Molecular <SEP> Structure <SEP> M.P. <SEP> Calculated <SEP> Found
<tb> No.

  <SEP> Formula <SEP> ( C) <SEP> C <SEP> H <SEP> N <SEP> C <SEP> H <SEP> N
<tb> 139 <SEP> C2@H23ClFNO4 <SEP> # <SEP> oil <SEP> 60.68 <SEP> 5.86 <SEP> 3.54 <SEP> 60.29 <SEP> 5.65 <SEP> 3.55
<tb> 140 <SEP> C23H23ClFN3O2 <SEP> # <SEP> 150-152 <SEP> 64.99 <SEP> 7.20 <SEP> 9.10 <SEP> 64.78 <SEP> 7.09 <SEP> 9.08
<tb> 141 <SEP> C19H23ClFNO4 <SEP> # <SEP> 85-115 <SEP> 59.45 <SEP> 6.04 <SEP> 3.65 <SEP> 59.46 <SEP> 6.09 <SEP> 3.44
<tb> 142 <SEP> C22H30ClFN2O2 <SEP> # <SEP> oil <SEP> 64.61 <SEP> 7.39 <SEP> 6.85 <SEP> 64.26 <SEP> 7.64 <SEP> 6.38
<tb> 143 <SEP> C19H23ClFNO2S <SEP> # <SEP> oil <SEP> 59.44 <SEP> 6.04 <SEP> 3.65 <SEP> 59.12 <SEP> 6.00 <SEP> 3.68
<tb>   
 Those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the teachings and advantages of this invention.  



   Preferred compounds defined by their preferred substituents are more precisely indicated hereafter as a completion of page 16
 n is an integer from 0 to 2.



   J preferably represents hydroxy or a salt derived therefrom, alkoxy, alkenyloxy, alkynyloxy,
 amino substituted by up to two alkyl, alkenyl or alkynyl substituents,
 morpholino or pyrrolidino.

 

  The group
EMI177.1     
 preferably represents ethylenedioxy.



   Preferred compounds of general formula I are those in which Z represents each of the groups of formulae depicted above and in which
 R1 is hydrogen, fluorine, chlorine or bromine,
 R2 is fluorine, chlorine, or bromine,
   R3    and R4 are independently hydrogen or C1-C3 alkyl, and
 Y is hydrogen,
 phenyl which may be substituted by (C1-C3) alkylthio or haloalkyl groups,
 hydroxy,   C1-C18    alkoxy, alkenyloxy, alkynyloxy or cycloalkoxy groups,
 phenoxy which may be substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro, alkylthio, or haloalkyl groups,
 C1-C8 alkylthio, phenylthio, phenylthio substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro, alkylthio, or haloalkyl groups,
 aikoxycarbonylalkoxy,  cycloalkoxycarbonylalkoxy,
 C1-C8 alkylsulfinyl or alkylsulfonyl,
 alkoxycarbonylalkylamino, 

   or
 a five or six membered heterocycle containing from one to three oxygen, nitrogen or sulfur atoms in any   combination.   



   Especially preferred compounds are those in   which:   
 z is
EMI178.1     
 wherein A and A' are as hereinbefore defined; z is
EMI178.2     
 wherein E is chlorine and A and A' are as hereinbefore defined;
 z is
EMI178.3     
 wherein A and A' are oxygen;
 z is
EMI178.4     
 wherein A and A' are oxygen; or z is
EMI178.5     
 wherein A and A' are oxygen, 

Claims

CLAIMS 1. Compounds of the formula EMI179.1 wherein: R1 and R2 are independently: hydrogen halogen, (C1-C3) alkyl, (C1-C3) alkoxy, trifluoromethyl, phenoxy or benzyloxy wherein the phenyl ring of either may be substituted by halogen, (C1-C3) alkyl, (C1-C3) alkoxy, cyano, nitro, alkylthio, or haloalkyl groups; 23 and R4 are independently hydrogen, C1-C8 alkyl, alkenyl1 or alkynyl, or halogen; Y contains not more than 10 aliphatic carbon atoms and is: hydrogen, halogen. cyano, nitrate, C1-C8 alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, cycloalkyl alkyl, cycloalkenyl alkyl1 hydroxy, alkoxy, alkenyloxy, alkynyloxy, cycloalkyloxy, cycloalkyl alkoxy, cycloalkenyloxy1 yhydroxyalkyl, alkoxyalkyl, alkenyloxyalkyl, alkynyloxyalkyl, cycloalkyloxyalkyl.
C1-Cs alkylthio, aikenylthio, alkynylthio, cycloalkylthio, cycloalkenylthio, alkylthicalkyl. alkenylthicalkyl, alkynylthioalkyl, phenyl, phenoxy, or phenylthio, wherein the phenyl ring of each may be substituted by one or more halogen, lower alkyl, lower alkoxy, cyano1 nitro, alkythio, or haloalkyl groups, alkoxycarbonyl, cycloalkyloxycarbonyl, alkenyloxycarbonyl, alk6ynyloxycarbonyl.
alkoxycarbonylalkoxy1 cycloalkyloxycarbonylalkoxy, alkenyloxycarbonylalkoxy, alkynyloxycarbonylalkoxy, alBoxycarbonyloxy, cycloalkyloxycarbonyloxy, alkenyloxycarbonyloxy, alkynyloxycarbonyloxy, alkylcarbonyl, cycloalkylcatbonyl, alkenylcarbonyl, alkynylcarbonyl, alkylcarbonyloxy, cycloalkylcarbonyloxy, alkenylcarbonyloxy, alkynylcarbonyloxy, alkylcarbonylalkoxy, cycloalkylcarbonylalkoxy, alkenylcarbonylalkoxy, alkynylcarbonylalkoxy, alkylcarbonylalkyl, alkenylcarbonylalkyl, alkynylcarbonylalkyl, cycloalkylcarbonylalkyl, alkoxycarbonylalkyl, alkenyloxycarbonylalkyl, alkynyloxycarbonylalkyl, cycloalkyloxycarbonylalkyl, alkylcarbonyloxyalkyl.
alkenylcarbonyloxyalkyl, alkynylcarbonyloxyalkyl, cycloalkylcarbonyloxyalkyl. alkoxycarbonyloxyalkyl.
alkenyloxycarbonyloxyalkyl1 alkynyloxycarbonyloxyalkyl.
cycloalkyloxycarbonyloxyalkyl, alkoxycarbonyl alkyicarbonyloxy, haloalkylcarbonyloxy, haloalkoxy, alkoxyalkoxy, cyanoalkoxy, phenylcarbonyloxy, phenoxycarbonyloxy, phenylcarbonyl alkoxy, phenoxycarbonylalkoxy, phenylcarbonylalkylthio. phenoxycarbonylalkylthio wherein the phenyl ring of each may be substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro, alkylthio, or haloalkyl groups, alkoxycarbonylalkylthio, alkenyloxycarbonylalkylthio, alkynyloxycarbonylalkylthio, cycloalkyloxycarbonylalkylthio, alkylcarbonylalkylthio, alkenylcarbonylalkylthio.
alkynylcarbonylalkylthio, cycloalkylcarbonylalkylthio, alkylthioalkoxy, alkoxyalkylthio, alkylthioalkylthio, haloalkylthio, alkylsulfinyl5 alkenylsulfinyl, alkynylsulfinyl, cycloalkylsulfinyl. phenylsulfinyl.
phenylsulfinyl substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro, alkylthio, or haloalkyl groups, alkylsulfonyl, alkenylsulfonyl, alkynylsulònyl, cycloalkylsulfonyl, phenylsulfonyl, phenylsulfonyl substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro, alkylthio or haloalkyl groups, alkoxycarbonylalkylsulfinyl, alkenyloxycarbonylalkylsuifinyl, alkynyloxycarbonylalkylsulfinyi, cycloalkyloxycarbonylalkylsulfinyl.
alkylcarbonylalkylsulfinyl.
alkenylcarbonylalkylsulfinyl, alkynylcarbonylalkylsulfinyl.
cycloalkylcarbonylalkylsulfinyl, alkoxycarbonylalkylsulfonyl.
alkenyloxycarbonylalkylsulfonyl, alkynyloxycarbonylalkylsulfonyl, cycloalkyloxycarbonylalkylsulfonyl.
alkylcArbonylalkylsulfonyl, alkenylcarbonylalkylsulfonyl5 alkynylcarbonylalkylsulfonyl, cycloalkylcarbonylalkylsulfonyl, alkylthiocarbonyl, alkenylthiocarbonyl.
alkynylthiocarbonyl, cycloalkylthiocarbonyl, phenylthiocarbonyl, phenylthiocarbonyl substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro, alkylthio, or haloalkyl groups, alkylthiocarbonyloxy, alkenylthiocarbonyloxy, alkynylthiocarbonyloxy, cycloalkylthiocarbonyloxy, phenylthiocarbonyloxy, phenylthiocarbonyloxy substituted by halogen, lower alkyl, lower alkoxy,cyano, nitro, alkylthio, or halcalkyl groups, alkylthiocarbonyloxyalkyl, alkenylthiocarbonyloxyalkyl, alkynylthiocarbonyloxyalkyl, cycloalkylthiocarbonyloxyalkyl, phenylthiocarbonyloxyalkyl.
phenylthiocarbonyloxyalkyl wherein the phenyl ring is substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro, alkylthio, or haloalkyl groups, amino, aminocarbonyl, aminocarbonyloxy, aminothiocarbonyloxy, aminocarbonylalkoxy, aminocarbonyloxyalkyl, aminothiocarbonyloxyalkyl or aninocarbonylalkylthio wherein : (a) the amino group of each may be substituted by up to 2 substituents independently selected from alkyl, halcalkyl, alkenyl. alkynyl.
cycloalkyl, cycloalkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkenyloxyalkyl.
alkynyloxyalZcyl. phenyl1 or phenyl substituted by halogen, lower alkyl, lower alkoxy. cyano, nitro, alkylthio, or haloalkyl groups, or (b) the amino group has two substituents which, together with the amino nitrogen, form a 5 or 6 membered heterocyclic ring containing from 0-3 additional heteroatoms selected in any combination from the group consisting of oxygen, nitrogen, and sulfur, aminocarbonylalkylamino wherein the amino groups may be independently substituted by 0-2 alkyl, alkenyl, alkynyl, cycloalkyl, alkoxyalkyl, phenyl or phenyl substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro, alkylthio or haloalkyl groups in any combination, aminocarbonylalkylamino wherein the terminal amino group has two substituents which, together with the terminal amino nitrogen.
jointly form a 5 or 6 membered ring containing from 0-3 additional heteroatoms selected in any combination from the group consisting of oxygen, nitrogen and sulfur, alkylcarbonylalkylamino.
alkoxycarbonylalkylamino, phenylcarbonylalkylamino, and phenoxycarbonylalkylamino wherein the amino
group of each may be substituted by an alkyl, alkenyl, alkynyl, cycloalkyl, alkoxyalkyl, phenyl or phenyl substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro, alkylthio, or haloalkyl groups, phenylcarbonylalkylamino or phenoxycarbonylalkylamino wherein the amino group of either may be substituted by an alkyl, alkenyl, alkynyl, cycloalkyl, alkoxyalkyl, phenyl, or phenyl substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro, alkylthio, or haloalkyl group, and the phenyl or phenoxy moiety of each may be substituted by halogen, lower alkyl, lower alkoxy1 cyano, nitro,
alkylthio or haloalkyl groups, alkoxycarbonylalkylaminocarbonyl wherein the amino group may be substituted by an alkyl, alkenyl, alkynyl, cycloalkyl, alkoxyalkyl, phenyl or phenyl substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro, alkylthio or haloalkyl groups, oximino, alkoxycarbonyloximino, alkoxycarbonyloximinocarbonyl, any five or six-membered heterocycle containing from one to three oxygen, nitrogen, or sulfur atoms, any of the following functional groups: EMI184.1 EMI185.1 EMI186.1 or - O - glycoside wherein:
: is is C1-C6 alkyl, cycloalkyl, alkenyl, alkynyl, or cycloalkenyl; R6 and R7 are independently hydrogen, C1-C6 alkyl, cycloalkyl. alkenyl, alkynyl, cycloalkenyl, phenyl or phenyl substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro, alkylthio, or haloalkyl groups; and R9 are hydrogen, C1-C6 alkyl, cycloalkyl, alkenyl, alkynyl, or cycloalkenyl; n is an integer from 1-4; Q is an alkali metal or alkaline earth metal cation or a cation derived from an inorganic or organic base; X is an anion derived from a strong acid or a hydroxide anion; R10 is C1-C6 alkyl, cycloalkyl, alkenyl, or cycloalkenyl;
; -O-glycoside is any sugar moiety bonded to the C5 methylene through a glycosidic linkage wherein the sugar is in the free hydroxy form, or wherein the sugar has free hydroxyls which are bonded to protecting groups; and Z is a heterocyclic ring system attached to the phenyl ring through a nitrogen atom which also forms part of the ring system, or a carbocyclic or heterocyclic ring system attached to' the phenyl ring through a nitrogen atom which does not form a part of the ring system, provided that when R1 is hydrogen, R2 is chlorine, and R3 and Rw are hydrogen, then Y cannot be cyanomethyl.
2. A compound according to claim 1 wherein Z is EMI187.1 EMI188.1 wherein: A and A' are independently oxygen, sulfur, or NR, B and D are independently oxygen, sulfur, or -NR, E is halogen, hydroxy, alkylcarbonyloxy, alkoxycarbonyloxy, alkylcarbonylthio, alkoxycarbonylthio, alkoxy, alkenyloxy, alkynyloxy, amino, alkylamino, dialkylamino, mercapto, alkylthio, allcenylthio, alkylsulfinyl, or alkylsulfonyl with the proviso that E contains not more than 10 carbon atoms, R1 is hydrogen, fluorine, chlorine, or bromine, is fluorine, chlorine, or bromine.
R3 and R are independently hydrogen or C1-C3 alkyl, and R, R11, R12, R25, and R26 are independently hydrogen, alkyl, alkylcarbonyl, alkenyl, or alkynyl and contain not more than 10 aliphatic carbon atoms; and Y is: hydrogen, phenyl which may be substituted by (C1-C3) alkylthio or haloalkyl groups.
hydroxy, C1-C18 alkoxy, alkenyloxy, alkynyloxy or cycloalkoxy groups1 phenoxy which may be substituted by halogen, lower alkyl, lower alkoxy. cyano, nitro, alkylthio, or haloalkyl groups, C1-C8 alkylthio, phenylthio, phenylthio substituted by halogen, lower alkyl, lower alkoxy, cyan, nitro, alkylthio. or haloalkyl groups,- alkoxycarbonylalkoxy, cycloalkxycarbonylalkoxy, C1-C8 alkylsulfinyl or alkylsulfonyl, alkoxycarbonylalkylamino, or a five or six membered heterocycle containing from one to three oxygen, nitrogen or sulfur atoms in any combination.
3, A compound according to claim 1 wherein Z is: EMI190.1 wherein: EMI190.2 A and A' are independently oxygen, sulfur, or NR, B is oxygen, sulfur, or -E, - E is halogen, hydroxy, alkylcarbonyloxy, alkoxycarbonyloxy, alkylcarbonylthio, alkoxycarbonylthio, alkoxy, alkenyloxy. alkynyloxy, amino, alkylamino, dialkylamino, mercapto, alkylthio. alkenylthio, alkylsulfinyl, or alkylsulfonyl with the proviso that E may contain no more than 10 carbon atoms, G is oxygen, nitrogen, or sulfur in any of its oxydation states, R, R13-R161 R23, R24 and R27 are independently hydrogen, alkyl, alkylcarbonyl, alkenyl, or alkynyl and contain not more than 10 aliphatic carbon atoms;
and Y, R1, R2, R3 and R4 are as defined in claim 2.
4. A compound according to claim 1 wherein Z is EMI191.1 wherein: A and A' are independently oxygen, sulfur, or NR, B and D are independently oxygen, sulfur, or -NR, R1 is hydrogen, fluorine, chlorine, or bromine, is fluorine, chlorine, or bromine, and R1 are independently hydrogen or C1-C3 alkyl, and R5 lR17-R20, R22. R28 and R29 are independently hydrogen, alkyl, alkylcarbonyl, alkenyl, or alkynyl and contain not more than 10 aliphatic carbon atoms; and Y, R1, R2, R3 and R4 are as defined in claim 2 5.
A compound according to claim 1 wherein Z is EMI192.1 wherein: A and A' are independently oxygen, sulfur, dr NR, R and R21 are independently hydrogen, alkyl, alkycarbonyl, alkenyl, or alkynyl, and contain not more than 10 aliphatic carbon atoms, n is an integer from 0 to 2; and Y, R1, R2, R3 and R4 are as defined in claim 2, 6, A compound according to claim 1, wherein Z is EMI193.1 wherein: A and A' are independently oxygen, sulfur, or NR, R is hydrogen, alkyl, alkylcarbonyl, alkenyl, or alkynyl and contains not more than 10 aliphatic carbon atoms, J is:
: hydroxy or a salt derived therefrom; alkoxy, alkenyloxy, alkynyloxy, cycloalkyloxy, cycloalkenyloxy, phenoxy, phenoxy substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro, alkylthio or haloalkyl groups, amino, alkylamino, dialkylamino, alkenylamino, dialkenylamino, alkynylamino, morphClino, pyrrolidino, hydrazino, alkylhydrazino, unsymmetrical dialkylhydrazino, phenylhydrazino, phenylhydrazino wherein the phenyl ring is substituted by halogen, lower alkyl, lower alkoxy, cyano, nitro, alkylthio, or haloalkyl groups, cycloalkylamino, benzylamino, benzylamino wherein the phenyl ring is substituted by halogen, lower alkyl,
lower alkoxy, cyano, nitro, alkylthio, or haloalkyl groups; with the proviso that J may not contain more than 10 aliphatic carbon atoms;
; and Y, R1, R21 R3 and R4 are as defined in claim 2.
7. A compound according to claim 6 wherein J is hydroxy or a salt derived therefrom, alkoxy, alkenyloxy, al kynyloxy, amino substituted by up to two alkyl, alkenyl or alkynyl substituents, morpholino or pyrrolidino.
8. A compound according to claim 1 wherein Z is EMI194.1 and Y, R1, R2, R3 and R4 are as defined in claim 2.
9. A compound according to claim 2 wherein Z is EMI194.2 wherein A and A' are as defined in claim 2.
10. A compound according to claim 2 wherein Z is EMI194.3 wherein E is chlorine and A and A' are as defined in claim 2.
11. A compound according to claim 3 wherein Z is EMI195.1 wherein A and'A' are oxygen.
12. A compound according to claim 4 wherein Z is EMI195.2 wherein: A and A' are oxygen.
13. A compound according to claim 6 or 7 wherein Z is EMI195.3 wherein: A and A' are both oxygen, 14. A compound according to claim 1, which is N-(2-fluoro-4-chloro-5-isopropoxymethylene)phenyl-3,4,5,6- tetrahydrophthalimide.
15. A compound according to claim 1, which is N [2-fluoro-4-chloro-5- (cyclopentyloxycarbonylmethylene oxymethylene)phenyl]-3,4,5,6-tetrahydrophthalimide.
15. A compound according to claim 1, which is N-(2-fluoro-4-chloro-5-cyanomethylene)-phenyl-3,4,5,6- tetrahydrophthalimide.
17. A compound according to claim 1, which is N-[2-fluoro-4-chloro-5-(ethylthiocarbonyloxymethyl,e,ne)- phenyl)-3,4,5,6-tetrahydrophthalimide.
18. A compound according to claim 1, which is N-[2-fluoro-4-chloro-5-(n-butylaminocarbonyloxymethylene) phenyl]-3,4,5,6-tetrahydrophthalimide.
19. A compound according to claim 1, which is N-[2-fluoro-4-chloro-5-(n-butylaminothiocarbonyloxy methylene)phenyl]-3,4,5,6-tetrahydrophthalimide.
20. A compound according to claim 1, which is N-[2-fluoro-4-chloro-5-(N-morpholinomethylene)phenyl]3,4,5, 6-tetrahydrophthalimide.
21. A process for the preparation of a compound according to claim 1 wherein Z represents an optionally substituted 3,4,5,6-tetrahydrophthalimide ring and the other symbols are as defined in claim 1 which comprises condensing a compound of the general formula: EMI196.1 wherein the various symbols are as defined in claim 1 with a substituted or unsubstituted cyclohexene-l,2-dicarboxylic acid anhydride.
22. A process according to claim 21 wherein R1, R21 R31 R4 and Y are as defined in claim 2.
23. A process for the preparation of a compound according to claim 1 wherein Z represents an optionally substituted 3,4,5,6-tetrahydrophthalimide ring and the other symbols are as defined in claim 1 which comprises the reaction of a compound of general formula I wherein Z represents an optionally substituted 3,4,5,6-tetrahydrophthalimide ring, Y represents hydroxy, and the other symbols are as defined in claim 1 with trifluoromethane sulphonic anhydride to replace the hydroxy by a triflate group and reacting the compound thus obtained with a nucleophilic reagent HY to replace the triflate group by a group Y as defined in claim 1.
24. A process for the preparation of a compound according to claim 1 wherein Z represents an imidazolidinedione and the other symbols are as defined in claim 1 which comprises the reaction of an isocyanate of the formula: EMI197.1 wherein the various symbols are as defined in claim 1 with ethyl pipecolinate followed by cyclisation to obtain a compound of general formula I wherein Z represents an imidazolidinedione and the other symbols are as defined in claim 1.
25. A process for the preparation of a compound according to claim 1 wherein Z represents a urazole ring and the other symbols are as defined.in claim 1 which comprises the reaction of a compound of the general formula: EMI198.1 wherein the various symbols are as defined in claim 1 with a compound of the formula: Br (CH2) 4Br in the presence of a base.
26. A process for the preparation of a compound according to claim 1 wherein Z represents a quinazolinone ring and the other symbols are as defined in claim 1 which comprises the cyclisation of an amido aniline of the general formula: EMI198.2 wherein the various symbols are as defined in claim 1 by heating with an orthoester and distilling off the alcohol formed.
27. A process for the preparation of a compound according to claim 1 wherein Z represents an imidazolidinedione ring and the other symbols are as defined in claim 1 which comprises the reaction of a compound of the general formula: EMI199.1 wherein the various symbols are as defined in claim 1 with a compound of the general formula R15 GH wherein R15 and G are as defined in claim 3 to obtain a compound of the general formula: EMI199.2 wherein the various symbols are as defined in claim 1.
28. A process for the preparation of a compound according to claim 1 wherein Z represents'an imidazolidinedione ring which comprises the cyclisation of a urea of the general formula: EMI200.1 wherein the various symbols are as defined in claim 1 by heating in an aqueous acid solution in the presence of an inert organic solvent.
29. A process for the preparation of a compound according to claim 1 wherein Z represents a l,2,4-thiadiazolidine-l,1,3-trione ring and the other symbols are as defined in claim 1 which comprises the cyclisation of a chloromethylsulphonyl urea of the general formula: EMI200.2 wherein the various symbols are as defined in claim 1 in the presence of a base in an inert solvent to obtain a compound of the general formula: EMI200.3 wherein the various symbols are as defined in claim 1.
30. A process for the preparation of a compound according to claim 1 wherein Z represents a Al-tetra- hydroisophthalimide ring and the other symbols are as defined in claim 1 which comprises the conversion by treatment with a dehydrating agent of a tetrahydrophthalamic acid of the general formula: EMI201.1 wherein the various symbols are as defined in claim 1 into a compound of the general formula: EMI201.2 wherein the various symbols are as defined in claim 1.
31. A process for the preparation of a compound according to claim 1 wherein Z represents an a -chlorophthalimide ketal a -chlorohexahydrophthal imide ring which comprises heating a hexahydrophthalimide compound of the general formula: EMI201.3 wherein the various symbols are as defined in claim 1 with phosphorous pentachloride in the presence of a catalytic
amount of phosphorous oxychloride and then quenching the reaction mixture with an ice cold solution of pyridine in an alcohol ROH, wherein R is as defined in claim 2, to obtain an -chloroketal amide of the general formula:
: EMI202.1 wherein the various symbols are as defined in claim 1 and, if desired, heating the a-chloroketal amide in glacial acetic acid to obtain a compound of the general formula: EMI202.2 wherein the various symbols are as hereinbefore defined.
32. A process according to any one of claims 21 to 31 followed by the conversion by known methods of a compound of general formula I thus obtained into another compound of general formula I.
33. A process for the preparation of a compound according to claim 1 substantially as hereinbefore described.
34. A process for the preparation of a compound according to claim 1 substantially as hereinbefore described in any one of Examples I to XXVII.
35. A compound according to claim 1 when prepared by a process according to any one of claims 21 to 34.
36. A herbicidal composition which comprises as active ingredient a compound according to claim 1 in association with a herbicidally acceptable diluent or carrier.
37. A herbicidal composition according to claim 36 which also comprises a surface active agent.
38. A herbicidal composition according to claim 36 substantially as hereinbefore described.
39. A method of controlling the growth of weeds at a locus which comprises applying to the locus a herbicidally effective amount of a compound according to claim 1.
40. A method according to claim 39 substantially as hereinbefore described.
41. Compounds having the formula: EMI203.1 wherein R11 R2, R3, R4 and Y are as defined in claim 1.
42. A compound according to claim 41 wherein R1, R2, R31 R4 and Y are as defined in claim 2.
43. A compound according to claim 42, wherein R1 is fluorine and 'R2 is chlorine.
44. A process for the preparation of aniline compounds of the formula: EMI204.1 wherein Y is as defined in claim 1 which comprises reacting a compound of the formula: EMI204.2 with a nucleophilic reactant, HY, to produce a compound of the formula: EMI204.3 wherein Y is as defined in claim 1 and reducing the nitro group to obtain the desired aniline compound.
45. A process for the preparation of 2,4-dihalo-5-nitrobenzyl chlorides, comprising reacting, at 205 a temperature between about -15 C and about 100 C, a 2,4-dihalobenzyl chloride with an aqueous nitrating solution having a concentration of about 10% to about 50% by weight of nitric acid, the solution being present in an amount such that the molar ratio of nitric acid to the 2,4-dihalobenzyl chloride is at least 1:1.
46. A process according to claim 45, wherein the 2,4-dihalobenzyl chloride is 2-chloro-4-fluorobenzyl chloride and, correspondingly, the 2,4-dihalo-5- nitrobenzyl chloride is 2-chloro-4-fluoro-5-nitrobenzyl chloride.
47. A process for the preparation of a 2,4-dihalo-5-nitrobenzyl ether comprising reacting, at a temperature of 50 C-250 C, a pressure of atmospheric-300 psi, and in the absence of an added catalyst, a 2,4-dihalo-5-nitrobenzyl chloride with an alcohol, the alcohol being present in a molar amount at least equal to the molar amount of the 2,4-dihalo-5-nitrobenzyl chloride.
48. A process according to claim 47, wherein the, alcohol is isopropanol, the 2,4-dihalo-5-nitrobenzyl chloride is 2-chloro-4-fluoro-5-nitrobenzyl chloride and, correspondingly, the ether is 2-chloro-4- fluoro-5-nitrobenzyl isopropyl ether.
49. A process for the preparation of a 2,4-dihalo-5-nitrobenzyl alcohol comprising reacting, at a temperature of 50OC-2506C, a pressure of atmospheric-300 psi, and in the absence of a catalyst, a 2,4-dihalo-5-nitrobenzyl chloride with water.
50. A process for the preparation of a 2,4-dihalo-5-nitrobenzyl alcohol, comprising reacting, at a temperature between about - 15 C and about 100 C, a 2,4-dihalobenzyl amine with an aqueous nitrating solution having a concentration of about 10% to about 50% by weight of nitric acid, the solution being present in an amount such that the molar ratio of nitric acid to the 2,4-dihalobenzyl amine is at least 1:1, followed by reaction with at least one equivalent of a base.
51. A process according to claim 50, wherein the 2,4-dihalobenzylamine is 2-chloro-4-fluorobenzyl morpholine and, correspondingly, the 2,4-dihalo-5-nitrobenzylamine is 2-chloro-4-fluoro-5-nitrobenzyl morpholine.
52. A process according to any one of claims 44 to 51 substantially as hereinbefore described.
53. A compound according to claim 41, 42 or 43 when prepared by a process according to claim 44 or 52.
54. A 2,4-dihalo-5-nitrobenzyl chloride when prepared by a process according to claim 45, 46 or 52.
55. A 2,4-dihalo-5-nitrobenzyl ether when prepared by a process according to claim 47, 48 or 52.
56. A 2,4-dihalo-5-nitrobenzyl alcohol when prepared by a process according to claim 49, 50, 51 or 52.
PCT/EP1987/000279 1986-06-03 1987-05-29 N-(5-substituted methylene) phenyl herbicides WO1987007602A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US86991486A 1986-06-03 1986-06-03
US869,914 1986-06-03

Publications (2)

Publication Number Publication Date
WO1987007602A2 true WO1987007602A2 (en) 1987-12-17
WO1987007602A3 WO1987007602A3 (en) 1988-03-24

Family

ID=25354450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1987/000279 WO1987007602A2 (en) 1986-06-03 1987-05-29 N-(5-substituted methylene) phenyl herbicides

Country Status (7)

Country Link
AU (1) AU7512587A (en)
DD (1) DD257573A5 (en)
GR (1) GR870854B (en)
IL (1) IL82657A0 (en)
MA (1) MA20993A1 (en)
WO (1) WO1987007602A2 (en)
ZA (1) ZA873933B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0323271A1 (en) * 1987-12-30 1989-07-05 Tosoh Corporation Tetrahydrophthalimide derivative and herbicide composition containing the same
EP0345637A1 (en) * 1988-06-08 1989-12-13 BASF Aktiengesellschaft N-substituted 3,4,5,6-tetrahydrophthalimide derivatives
US4888046A (en) * 1987-10-27 1989-12-19 Basf Aktiengesellschaft N-phenyltetrahydrophthalimide compounds
US4906287A (en) * 1984-06-12 1990-03-06 Fmc Corporation Herbicidal compounds
JPH0272159A (en) * 1988-05-04 1990-03-12 Basf Ag Production of 3-(3, 4, 5, 6- tetrahydrophthalimide)-benzaldehyde
US4925484A (en) * 1987-12-05 1990-05-15 Basf Aktiengesellschaft N-phenyltetrahydrophthalimides
US5013354A (en) * 1987-07-23 1991-05-07 Basf Aktiengesellschaft 3-phenylpropionic acid derivatives
EP0454182A2 (en) * 1987-03-10 1991-10-30 Kureha Kagaku Kogyo Kabushiki Kaisha Benzyl ether derivatives
US5089042A (en) * 1987-12-05 1992-02-18 Basf Aktiengesellschaft N-phenyltetrahydrophthalimide compounds
US5169428A (en) * 1987-12-30 1992-12-08 Tosoh Corporation Tetrahydrophthalimide derivative and herbicide composition containing same
FR2720743A1 (en) * 1994-06-03 1995-12-08 Basf Ag Novel 3- (tetrahydrophthalimido) cinnamic alcohol derivatives for use in agriculture.
US5698494A (en) * 1992-10-31 1997-12-16 Basf Aktiengesellschaft Substituted N-phenylglutarimides and N-phenylglutaramides, their preparation and use
US5817603A (en) * 1992-04-25 1998-10-06 Basf Aktiengesellschaft Substituted cyclohexene-1,2-dicarboxylic acid derivatives and intermediates for their preparation
WO2006090210A1 (en) * 2005-02-22 2006-08-31 Miteni S.P.A. Process for the preparation of benzoic acid derivatives via a new intermediate of synthesis
US7449481B2 (en) 2004-04-13 2008-11-11 Cephalon, Inc. Thio-substituted biaryl-methanesulfinyl derivatives

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804400A (en) * 1986-09-12 1989-02-14 Ciba-Geigy Corporation N-phenyl-maleimides and herbicidal and plant growth regulating methods of use thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4439229A (en) * 1981-06-29 1984-03-27 Rohm And Haas Company Substituted phthalimides herbicides
AU557324B2 (en) * 1981-12-25 1986-12-18 Sumitomo Chemical Company, Limited Tetrahydro phthalimide compounds
EP0095192B1 (en) * 1982-05-26 1988-08-10 Sumitomo Chemical Company, Limited Tetrahydrophthalimides, and their production and use
JPS59212472A (en) * 1983-05-16 1984-12-01 Sumitomo Chem Co Ltd 4,5,6,7-tetrahydro-2h-isoindole-1,3-dione derivative, its production and herbicide containing the same as active constituent

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906287A (en) * 1984-06-12 1990-03-06 Fmc Corporation Herbicidal compounds
US4906286A (en) * 1984-06-12 1990-03-06 Fmc Corporation Herbicidal 2-aryl-1,2,4-triazine-3,5(2H,4H)-diones and sulfur analogs thereof
EP0454182A3 (en) * 1987-03-10 1992-01-02 Kureha Kagaku Kogyo Kabushiki Kaisha Benzyl ether derivatives
EP0454182A2 (en) * 1987-03-10 1991-10-30 Kureha Kagaku Kogyo Kabushiki Kaisha Benzyl ether derivatives
US5013354A (en) * 1987-07-23 1991-05-07 Basf Aktiengesellschaft 3-phenylpropionic acid derivatives
US4888046A (en) * 1987-10-27 1989-12-19 Basf Aktiengesellschaft N-phenyltetrahydrophthalimide compounds
US4925484A (en) * 1987-12-05 1990-05-15 Basf Aktiengesellschaft N-phenyltetrahydrophthalimides
US5089042A (en) * 1987-12-05 1992-02-18 Basf Aktiengesellschaft N-phenyltetrahydrophthalimide compounds
US5169428A (en) * 1987-12-30 1992-12-08 Tosoh Corporation Tetrahydrophthalimide derivative and herbicide composition containing same
EP0323271A1 (en) * 1987-12-30 1989-07-05 Tosoh Corporation Tetrahydrophthalimide derivative and herbicide composition containing the same
JPH0272159A (en) * 1988-05-04 1990-03-12 Basf Ag Production of 3-(3, 4, 5, 6- tetrahydrophthalimide)-benzaldehyde
US4959098A (en) * 1988-06-08 1990-09-25 Basf Aktiengesellschaft N-substituted 3,4,5,6-tetrahydrophthalimide derivatives
EP0345637A1 (en) * 1988-06-08 1989-12-13 BASF Aktiengesellschaft N-substituted 3,4,5,6-tetrahydrophthalimide derivatives
US5817603A (en) * 1992-04-25 1998-10-06 Basf Aktiengesellschaft Substituted cyclohexene-1,2-dicarboxylic acid derivatives and intermediates for their preparation
US5698494A (en) * 1992-10-31 1997-12-16 Basf Aktiengesellschaft Substituted N-phenylglutarimides and N-phenylglutaramides, their preparation and use
FR2720743A1 (en) * 1994-06-03 1995-12-08 Basf Ag Novel 3- (tetrahydrophthalimido) cinnamic alcohol derivatives for use in agriculture.
US7449481B2 (en) 2004-04-13 2008-11-11 Cephalon, Inc. Thio-substituted biaryl-methanesulfinyl derivatives
US7981907B2 (en) 2004-04-13 2011-07-19 Cephalon, Inc. Thio-substituted biarylmethanesulfinyl derivatives
WO2006090210A1 (en) * 2005-02-22 2006-08-31 Miteni S.P.A. Process for the preparation of benzoic acid derivatives via a new intermediate of synthesis
CN101142168B (en) * 2005-02-22 2012-03-28 巴斯福股份公司 Process for the preparation of benzoic acid derivatives via a new intermediate of synthesis

Also Published As

Publication number Publication date
WO1987007602A3 (en) 1988-03-24
DD257573A5 (en) 1988-06-22
AU7512587A (en) 1988-01-11
IL82657A0 (en) 1987-11-30
GR870854B (en) 1987-10-02
MA20993A1 (en) 1987-12-31
ZA873933B (en) 1987-12-02

Similar Documents

Publication Publication Date Title
WO1987007602A2 (en) N-(5-substituted methylene) phenyl herbicides
JP3001620B2 (en) 5H-furan-2-one derivative
EP1031573B1 (en) Novel benzoylpyrazole compounds, intermediates, and herbicides
HU224045B1 (en) Phenylpyridazinone -derivatives, intermediates, preparation and use thereof and herbicide compositions containing these compounds
JP2839157B2 (en) N-aryl-substituted nitrogen-containing heterocycles, methods for their preparation and their use as herbicides
EP0659047A1 (en) Herbicidal benzene compounds
JPH03163063A (en) 3-substituted phenylpyrazole derivative or salts thereof, production thereof and herbicide
EP0358047A2 (en) Method of controlling phytopathogenic fungi
US4179276A (en) Novel imidazothiazine-1,3 (2H)-diones
EP0372586B1 (en) Cyclic amide compounds and herbicides
JPH02295905A (en) Heterocyclic dione as insecticide and plant growth regulator
US4540827A (en) Phenoxybenzene derivatives
CA2119673A1 (en) Substituted 1-aryltriazolinones
SI9300607A (en) Insecticidal n&#39;-substituted-n,n&#39;-diacylhydrazines
US5424277A (en) Benzene derivatives substituted with heterocyclic ring, and herbicides containing same as active ingredients
US4008067A (en) Oxacyclohexane derivatives
US5108483A (en) Herbicidal 6-heterocyclic group substituted benzoxazines
US5147445A (en) Herbicidal triazole compounds and herbicidal compositions containing the same
JP2810544B2 (en) N-acyl-N-phenyltetrahydrophthalamic acid derivative, method for producing the same, and herbicide containing the same as an active ingredient
KR100300219B1 (en) Benzene derivatives and herbicides substituted by heterocycles
Tamaru et al. Studies of the New Herbicide KIH‐6127. Part III. Synthesis and Structure–Activity Studies of Analogues of KIH‐6127 against Barnyard Grass (Echinochloa oryzicola)
US5254696A (en) N-acylpyrrolidine derivatives
US6200933B1 (en) 6-(Nonsubstituted or substituted) phenoxy picolinic acids, process of preparing the same, and agricultural/horticultural germicides containing the same
JP2728937B2 (en) 1- (3-Substituted benzyl) -3-halogen-4- (1-halogenoalkyl) -2-pyrrolidinone derivatives and herbicides containing these as active ingredients
US4402732A (en) Herbicidally active dihalogenated imidazolecarboxylic acid amides, compositions and use

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AU BG BR DK FI HU JP KR RO SD SU

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BJ CF CG CH CM DE FR GA GB IT LU ML MR NL SE SN TD TG

AK Designated states

Kind code of ref document: A3

Designated state(s): AU BG BR DK FI HU JP KR RO SD SU

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE BJ CF CG CH CM DE FR GA GB IT LU ML MR NL SE SN TD TG