WO1987003141A1 - Semiconductor switch for high inverse voltages - Google Patents

Semiconductor switch for high inverse voltages Download PDF

Info

Publication number
WO1987003141A1
WO1987003141A1 PCT/DE1986/000414 DE8600414W WO8703141A1 WO 1987003141 A1 WO1987003141 A1 WO 1987003141A1 DE 8600414 W DE8600414 W DE 8600414W WO 8703141 A1 WO8703141 A1 WO 8703141A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor switch
semiconductor
insulator
switch according
drain
Prior art date
Application number
PCT/DE1986/000414
Other languages
German (de)
French (fr)
Inventor
Helmut Sautter
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO1987003141A1 publication Critical patent/WO1987003141A1/en
Priority to KR870700597A priority Critical patent/KR880701022A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Definitions

  • the invention relates to a semiconductor switch according to the preamble of the main claim.
  • Known semiconductor switches which are designed as thyristors or transistors, achieve maximum reverse voltages of approximately 5 kV.
  • the distribution of the ignition voltage in the motor vehicle however, components are required that allow reverse voltages of over 10 kV.
  • semiconductor switches have hitherto been ruled out because such high blocking voltages could not be achieved in the known technology.
  • Thin-film transistors appear suitable for this purpose, since they work without a pn junction and, similarly to MOS transistors, can be regarded as resistors that can be changed by a control voltage.
  • the known thin-film transistors have electrodes applied to a substrate and a channel made of semiconducting material lying between them, over which an insulating layer and the substrate electrode are arranged.
  • the insulating layer is produced in one of the known thin-film technologies and is so thin that it cannot take on the supporting function of the substrate. It is also not possible to increase the thickness with the state-of-the-art technologies with economically justifiable effort. Because of the small insulator thickness, the
  • the semiconductor switch according to the invention with the M kma len has the advantage that the insulating layer arranged between the gate and the control electrode has such a thickness that this insulating layer formed as a substrate has both a supporting function and a high dielectric strength.
  • the insulating layer can consist of ceramic, barium titanate or a corresponding insulator.
  • the insulating layer is in the form of a disk or a ring, since this significantly reduces the risk of spark and spray discharges at the corners of the semiconductor channel and the electrodes. This also results in a compact design, the ceramic insulator being able to be produced in accordance with conventional manufacturing processes.
  • the semiconductor channel and the electrodes for drain and source adjacent to it can be applied in the form of concentric rings on one end face, while the control electrode is arranged on the opposite end face.
  • the semiconductor channel and the adjacent, annular electrodes for drain and source can be arranged on the outer lateral surface, while the inner lateral surface forms the control electrode.
  • the field strength generated by the gate voltage inside the gate insulator reaches its maximum value on the surface of the gate metallization, which is far less sensitive to undesired discharge effects than the semiconductor layer of the semiconductor channel between the drain and source which forms the counterelectrode.
  • FIG. 1 shows a first embodiment of a semiconductor switch constructed according to the invention
  • FIG. 2 shows a further embodiment
  • FIG. 3 shows an embodiment with an annular insulator, in which the electrodes are attached to the end faces
  • FIG. 4 shows the semiconductor switch shown in FIG. 3 in cross section
  • FIG. 5 shows an annular semiconductor switch
  • Electrodes are applied to the lateral surfaces, and
  • FIG 6 shows the semiconductor switch shown in Figure 5 in cross section.
  • the electrodes drain 2 and source 3 and a semiconductor channel 4 forming the gate are located on the substrate 1. Above this there is an insulator plate 5 as an insulator, which is glued to the semiconductor channel 4 and the electrodes 2, 3 . The resulting joints 6 are filled with putty or glue. The gate electrode 7 applied on top of the insulator plate 5 is also glued to the insulator plate 5, which has a supporting function.
  • the supporting function is performed exclusively by the substrate 1 serving as an insulator. Drain, source, the semiconductor channel and the gate electrode are speaking reference numerals of Figure 1 provided.
  • drain 2, source 3 and gate 7 are located on the two end faces 8 and 9, the semiconductor channel 4 being arranged between drain 2 and source 3 on the end face 8.
  • Lines 10 show the course of the field strength.
  • FIG. 4 illustrates the structure of the semiconductor switch shown in FIG. 3.
  • the electrodes 2, 3, 7 are located on the outer lateral surface 11 and the inner lateral surface 12.
  • the lines 13, 14 illustrate the density of the field strength distribution in the region of the outer lateral surface 11 and the inner lateral surface 12.
  • FIG. 6 shows the cross section of the semiconductor switch shown in FIG. 5.
  • the semiconductor channel 4 runs on the outer circumferential surface 11.
  • the substrate 1 can consist of a sintered ceramic body, for example of 8arium titanate.
  • the substrate can have a thickness of 0.2 to 12 mm, for example, so that the disk-shaped or ring-shaped semiconductor switches are given high mechanical stability.
  • an ignition circuit for motor vehicles can be implemented which does not require any mechanically rotating parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electronic Switches (AREA)

Abstract

A semiconductor switch for high inverse voltages, in which the substrate (1) carries on one side the drain (2), the source (3) and their interconnecting semiconductor channel (4), whereas on the other side is arranged the gate electrode (7). With this semiconductor switch very high inverse voltages can be obtained. A ring-shaped or disk-shaped design has also the advantage of avoiding to a large extent the spray or spark discharges which are otherwise produced at the corners of other designs.

Description

Halbleiterschalter für hohe SperrspannungenSemiconductor switch for high reverse voltages
Stand der Technik Die Erfindung betrifft einen Halbleiterschalter gemäß Oberbegriff des Hauptanspruchs. Bekannte Halbleiterschalter, die als Thyristoren oder Transistoren ausgebildet sind, erreichen maximale Sperrspannungen von ungefähr 5 kV. Für manche Anwendungen, wie z. B. die Verteilung der Zündspannung im Kraftfahrzeug, sind jedoch Bauelemente erforderlich, die Sperrspannungen von über 10 kV zulassen. Für derartige Anwendungen schieden Halbleiterschalter bisher aus, weil in der bekannten Technologie derart hohe Sperrspannungen nicht realisiert werden konnten. Dünnschicht-Transistoren erscheinen für diesen Zweck geeignet, da sie ohne pn-Übergang arbeiten und ähnlieh wie MOS-Transistoren als durch eine Steuerspannung veränderbare Widerstände betrachtet werden können. Oie bekannten Dünnschicht-Transistoren besitzen auf einem Substrat aufgebrachte Elektroden und eine zwischen diesen liegenden Kanal aus halbleitendem Material, über dem eine Isolierschicht und darüber die Substratelektrode angeordnet sind. Die Isolierschicht wird in einer der bekannten Dünnschicht-Technologien hergestellt und ist so dünn, daß sie die tragende Funktion des Substrats nicht übernehmen kann. Es ist auch nicht möglich, die Dicke mit den dem Stand der Technik entsprechenden Technologien mit wirtschaftlich vertretbarem Aufwand zu erhöhen. Wegen der geringen Isolatordicke ist auch diePRIOR ART The invention relates to a semiconductor switch according to the preamble of the main claim. Known semiconductor switches, which are designed as thyristors or transistors, achieve maximum reverse voltages of approximately 5 kV. For some applications, such as B. the distribution of the ignition voltage in the motor vehicle, however, components are required that allow reverse voltages of over 10 kV. For such applications, semiconductor switches have hitherto been ruled out because such high blocking voltages could not be achieved in the known technology. Thin-film transistors appear suitable for this purpose, since they work without a pn junction and, similarly to MOS transistors, can be regarded as resistors that can be changed by a control voltage. The known thin-film transistors have electrodes applied to a substrate and a channel made of semiconducting material lying between them, over which an insulating layer and the substrate electrode are arranged. The insulating layer is produced in one of the known thin-film technologies and is so thin that it cannot take on the supporting function of the substrate. It is also not possible to increase the thickness with the state-of-the-art technologies with economically justifiable effort. Because of the small insulator thickness, the
Durchschlagsfestigkeit zwischen Steuerelektrode und Halbleiterkanal für die vorliegende Anwendung zu gering (« 1 kV).Dielectric strength between control electrode and semiconductor channel too low for the present application («1 kV).
Vorteile der ErfindungAdvantages of the invention
Der erfindungsgemäße Halbleiterschalter mit den M er kma l e n des Hauptanspruchs hat demgegenüber den Vorteil, daß die zwischen Gate und der Steuerelektrode angeordnete Isolierschicht eine derartige Dicke aufweist, daß diese als Substrat ausgebildete Isolierschicht sowohl tragende Funktion als auch eine hohe Durchschlagfestigkeit hat.The semiconductor switch according to the invention with the M kma len The main claim has the advantage that the insulating layer arranged between the gate and the control electrode has such a thickness that this insulating layer formed as a substrate has both a supporting function and a high dielectric strength.
Die Isolierschicht kann aus Keramik, Bariumtitanat oder einem entsprechenden Isolator bestehen.The insulating layer can consist of ceramic, barium titanate or a corresponding insulator.
Besonders vorteilhaft ist es, wenn die Isolierschicht die Form einer Scheibe oder eines Ringes hat, da dadurch die Gefahr von Funken- und Sprühentladungen an den Ecken des Halbleiterkanals und der Elektroden wesentlich verringert wird. Man erhält dadurch auch eine kompakte Bauform, wobei der Keramikisolator entsprechend herkömmlichen Herstellungsverfahren gefertigt werden kann. Ist die Isolierschicht in Form einer Scheibe oder eines Ringes ausgebildet, kann auf deren einer Stirnseite der Halbleiterkanal und die an diesen angrenzenden Elektroden für Drain und Source in Form konzentrischer Ringe aufgebracht sein, während auf der gegenüberliegenden Stirnseite die Steuerelektrode angeordnet ist. Bei der ringförmigen Isolierschicht kann der Halbleiterkanal und die benachbarten, ringförmigen Elektroden für Drain und Source auf der äußeren Mantelfläche angeordnet sein, während die innere Mantelfläche die Steuerelektrode bildet. Bei der letztgenannten, ringförmigen Anordnung erreicht die durch die Gate-Spannung im Innern des Gate-Isolators erzeugte Feldstärke ihren Maximalwert an der Oberfläche der Gatemetallisierung, die bezüglich unerwünschter Entladungseffekte weit weniger empfindlich ist als die die Gegenelektrode bildende Halbleiterschicht des Halbleiterkanals zwischen Drain und Source.It is particularly advantageous if the insulating layer is in the form of a disk or a ring, since this significantly reduces the risk of spark and spray discharges at the corners of the semiconductor channel and the electrodes. This also results in a compact design, the ceramic insulator being able to be produced in accordance with conventional manufacturing processes. If the insulating layer is in the form of a disk or a ring, the semiconductor channel and the electrodes for drain and source adjacent to it can be applied in the form of concentric rings on one end face, while the control electrode is arranged on the opposite end face. In the case of the annular insulating layer, the semiconductor channel and the adjacent, annular electrodes for drain and source can be arranged on the outer lateral surface, while the inner lateral surface forms the control electrode. In the latter, ring-shaped arrangement, the field strength generated by the gate voltage inside the gate insulator reaches its maximum value on the surface of the gate metallization, which is far less sensitive to undesired discharge effects than the semiconductor layer of the semiconductor channel between the drain and source which forms the counterelectrode.
Zeichnungdrawing
Die Erfindung wird nachfolgend anhand der Zeichnungen näher erläutert. Es zeigen:The invention is described below with reference to the drawings explained in more detail. Show it:
Figur 1 eine erste Ausführungsform eines erfindungsgemäß aufgebauten Halbleiterschalters,FIG. 1 shows a first embodiment of a semiconductor switch constructed according to the invention,
Figur 2 eine weitere Ausführungsform,FIG. 2 shows a further embodiment,
Figur 3 eine Ausführung mit ringförmigem Isolator, bei dem die Elektroden auf den Stirnseiten angebracht sind,FIG. 3 shows an embodiment with an annular insulator, in which the electrodes are attached to the end faces,
Figur 4 den in Figur 3 dargestellten Halbleiterschalter im Querschnitt,FIG. 4 shows the semiconductor switch shown in FIG. 3 in cross section,
Figur 5 einen ringförmigen Halbleiterschalter, dessenFigure 5 shows an annular semiconductor switch, the
Elektroden auf den Mantelflächen aufgebracht sind, undElectrodes are applied to the lateral surfaces, and
Figur 6 den in Figur 5 dargestellten Halbleiterschalter im Querschnitt.6 shows the semiconductor switch shown in Figure 5 in cross section.
Bei dem in Figur 1 dargestellten Halbleiterschalter befinden sich auf dem Substrat 1 die Elektroden Drain 2 und Source 3 sowie ein das Gate bildender Halbleiterkanal 4. Darüber befindet sich als Isolator eine Isolatorplatte 5, die mit dem Halbleiterkanal 4 und den Elektroden 2, 3 verklebt ist. Die dabei entstehenden Fugen 6 sind mit Kitt oder Kleber ausgefüllt. Auch die oben auf der Isolatorplatte 5 aufgebrachte Gate-Elektrode 7 ist mit der Isolatorplatte 5 verklebt, die tragende Funktion hat.In the semiconductor switch shown in FIG. 1, the electrodes drain 2 and source 3 and a semiconductor channel 4 forming the gate are located on the substrate 1. Above this there is an insulator plate 5 as an insulator, which is glued to the semiconductor channel 4 and the electrodes 2, 3 . The resulting joints 6 are filled with putty or glue. The gate electrode 7 applied on top of the insulator plate 5 is also glued to the insulator plate 5, which has a supporting function.
8ei dem in Figur 2 dargestellten Halbleiterscnaltar wird die tragende Funktion ausschließlich von dem als Isolator dienenden Substrat 1 übernommen. Drain, Source, der Halbleiterkanal und die Gate-Elektrode sind mit den ent- sprechenden Bezugszahlen von Figur 1 versehen.In the semiconductor cervix shown in FIG. 2, the supporting function is performed exclusively by the substrate 1 serving as an insulator. Drain, source, the semiconductor channel and the gate electrode are speaking reference numerals of Figure 1 provided.
Bei der in Figur 3 dargestellten ringförmigen Ausführungsform befinden sich Drain 2, Source 3 und das Gate 7 auf den beiden Stirnseiten 8 und 9, wobei der Halbleiterkanal 4 zwischen Drain 2 und Source 3 auf der Stirnseite 8 angeordnet ist. Die Linien 10 zeigen den Verlauf der Feldstärke.In the ring-shaped embodiment shown in FIG. 3, the drain 2, source 3 and gate 7 are located on the two end faces 8 and 9, the semiconductor channel 4 being arranged between drain 2 and source 3 on the end face 8. Lines 10 show the course of the field strength.
Der in Figur 4 dargestellte Querschnitt verdeutlicht den Aufbau des in Figur 3 dargestellten Halbleiterschalters.The cross section shown in FIG. 4 illustrates the structure of the semiconductor switch shown in FIG. 3.
Bei dem in Figur 5 dargestellten Halbleiterschalter, der ebenfalls ringförmig ausgebildet ist, befinden sich die Elektroden 2, 3, 7 auf der äußeren Mantelfläche 11 und der inneren Mantelfläche 12. Die Linien 13, 14 veranschaulichen die Dichte der Feldstärkeverteilung im Bereich der äußeren Mantelfläche 11 und der inneren Mantelfläche 12.In the semiconductor switch shown in FIG. 5, which is also ring-shaped, the electrodes 2, 3, 7 are located on the outer lateral surface 11 and the inner lateral surface 12. The lines 13, 14 illustrate the density of the field strength distribution in the region of the outer lateral surface 11 and the inner lateral surface 12.
In Figur 6 ist der Querschnitt des in Figur 5 dargestellten Halbleiterschalters dargestellt. Der Halbleiterkanal 4 verläuft auf der äußeren Mantelfläche 11. Als tragendes und isolierendes Element kann das Substrat 1 aus einem gesinterten Keramikkörper, beispielsweise aus 8ariumtitanat, bestehen. Das Substrat kann beispielsweise eine Dicke von 0,2 bis 12 mm haben, so daß die scheibenoder ringförmigen Halbleiterschalter eine hohe mechanische Stabilität erhalten. Zur Realisierung einer mehrere Halbleiterschalter aufweisenden Schaltung können beispielsweise mehrere ringförmige Halbleiterschalter übereinander röhrenförmig angeordnet werden. Soweit erforderlich können die aneinandergrenzenden Elektroden gegeneinander isoliert sein.FIG. 6 shows the cross section of the semiconductor switch shown in FIG. 5. The semiconductor channel 4 runs on the outer circumferential surface 11. As a load-bearing and insulating element, the substrate 1 can consist of a sintered ceramic body, for example of 8arium titanate. The substrate can have a thickness of 0.2 to 12 mm, for example, so that the disk-shaped or ring-shaped semiconductor switches are given high mechanical stability. In order to implement a circuit having a plurality of semiconductor switches, it is possible, for example, to arrange a plurality of ring-shaped semiconductor switches one above the other in a tube shape. If necessary, the adjoining electrodes can be insulated from one another.
Mit dem erfindungsgemäßen Halbleiterschalter kann insbesondere eine Zündschaltung für Kraftfahrzeuge realisiert werden, die keine mechanisch rotierenden Teile benötigt. With the semiconductor switch according to the invention, in particular an ignition circuit for motor vehicles can be implemented which does not require any mechanically rotating parts.

Claims

Patentansprüche Claims
1. Halbleiterschalter für hohe Sperrspannungen mit einem Substrat und mit einem zwischen Drain und Source befindlichen Halbleiterkanal, über dem eine Isolierschicht angeordnet ist, die eine Steuerelektrode trägt, dadurch gekennzeichnet, daß die Isolierschicht ein Isolator (1, 5) mit einer Dicke von 0,2 bis 12 mm ist, der auch als Trägerelement dient.1. A semiconductor switch for high reverse voltages with a substrate and with a semiconductor channel located between drain and source, over which an insulating layer is arranged, which carries a control electrode, characterized in that the insulating layer is an insulator (1, 5) with a thickness of 0, 2 to 12 mm, which also serves as a carrier element.
2. Halbleiterschalter nach Anspruch 1, dadurch gekennzeichnet, daß das Substrat (1) den Isolator bildet.2. Semiconductor switch according to claim 1, characterized in that the substrate (1) forms the insulator.
3. Halbleiterschalter nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß der Isolator (1) die Form einer Scheibe oder eines Ringes hat, auf deren einer3. Semiconductor switch according to one of claims 1 or 2, characterized in that the insulator (1) has the shape of a disc or a ring, on one of which
Stirnseite (8) der Halbleiterkanal (4) und die an diesen ringförmig angrenzenden Elektroden für Drain (2) und Source (3) aufgebracht sind, und daß auf der gegenüberliegenden Stirnseite (9) die Steuerelektrode (7) angeordnet ist.Front side (8) of the semiconductor channel (4) and the electrodes for drain (2) and source (3) which are annularly adjacent thereto, and that the control electrode (7) is arranged on the opposite end side (9).
4. Halbleiterschalter nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß der Isolator (1) ringförmig ausgebildet ist, daß der Halbleiterkanal (4) und die benachbarten, ringförmigen Elektroden für Drain (2) und Source (3) auf der äußeren Mantelfläche (11) aufgebracht sind, und daß die innere Mantelfläche (12) die Steuerelektrode (7) trägt.4. Semiconductor switch according to one of claims 1 or 2, characterized in that the insulator (1) is annular, that the semiconductor channel (4) and the adjacent, annular electrodes for drain (2) and Source (3) on the outer surface (11) are applied, and that the inner surface (12) carries the control electrode (7).
5. Halbleiterschalter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Isolator (1) aus Bariumtitanat oder einem entsprechenden keramischen Isolator besteht.5. Semiconductor switch according to one of the preceding claims, characterized in that the insulator (1) consists of barium titanate or a corresponding ceramic insulator.
6. Halbleiterschalter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Isolator (1) mit den angrenzenden Elektroden (2, 3, 7) und dem Halbleiterkanal (4) verklebt ist.6. Semiconductor switch according to one of the preceding claims, characterized in that the insulator (1) with the adjacent electrodes (2, 3, 7) and the semiconductor channel (4) is glued.
7. Halbleiterschalter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mehrere Halbleiterschalter auf einem gemeinsamen Substrat angeordnet sind.7. Semiconductor switch according to one of the preceding claims, characterized in that a plurality of semiconductor switches are arranged on a common substrate.
8. Halbleiterschalter nach Anspruch 4, dadurch gekennzeichnet, daß mehrere ringförmige Halbleiterschalter übereinander, in Form einer Röhre angeordnet sind. 8. A semiconductor switch according to claim 4, characterized in that a plurality of annular semiconductor switches are arranged one above the other in the form of a tube.
PCT/DE1986/000414 1985-11-13 1986-10-15 Semiconductor switch for high inverse voltages WO1987003141A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR870700597A KR880701022A (en) 1985-11-13 1987-07-09 Semiconductor switch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853540250 DE3540250A1 (en) 1985-11-13 1985-11-13 SEMICONDUCTOR SWITCH FOR HIGH BLOCKING VOLTAGES
DEP3540250.4 1985-11-13

Publications (1)

Publication Number Publication Date
WO1987003141A1 true WO1987003141A1 (en) 1987-05-21

Family

ID=6285883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1986/000414 WO1987003141A1 (en) 1985-11-13 1986-10-15 Semiconductor switch for high inverse voltages

Country Status (4)

Country Link
JP (1) JPS63502787A (en)
KR (1) KR880701022A (en)
DE (1) DE3540250A1 (en)
WO (1) WO1987003141A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6854329B2 (en) 1996-01-31 2005-02-15 Hunter Engineering Company Wheel balancer with variation measurement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3007119A (en) * 1959-11-04 1961-10-31 Westinghouse Electric Corp Modulating circuit and field effect semiconductor structure for use therein
US3274462A (en) * 1963-11-13 1966-09-20 Jr Keats A Pullen Structural configuration for fieldeffect and junction transistors
FR1485222A (en) * 1965-07-01 1967-06-16 Siemens Ag Semiconductor device
DE2147071A1 (en) * 1971-09-21 1973-03-29 Mueser Horst Prof Dr Rer Nat ELECTRONIC MICROSWITCH

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3007119A (en) * 1959-11-04 1961-10-31 Westinghouse Electric Corp Modulating circuit and field effect semiconductor structure for use therein
US3274462A (en) * 1963-11-13 1966-09-20 Jr Keats A Pullen Structural configuration for fieldeffect and junction transistors
FR1485222A (en) * 1965-07-01 1967-06-16 Siemens Ag Semiconductor device
DE2147071A1 (en) * 1971-09-21 1973-03-29 Mueser Horst Prof Dr Rer Nat ELECTRONIC MICROSWITCH

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6854329B2 (en) 1996-01-31 2005-02-15 Hunter Engineering Company Wheel balancer with variation measurement

Also Published As

Publication number Publication date
KR880701022A (en) 1988-04-13
JPS63502787A (en) 1988-10-13
DE3540250A1 (en) 1987-05-14

Similar Documents

Publication Publication Date Title
DE10147666B4 (en) Piezoelectric element and method for producing a piezoelectric element
WO1995025920A1 (en) Piezoelectrically actuated fluid valve
EP0028798B1 (en) Thyristor having an amplifying gate structure and process for its operation
EP0014435B1 (en) Thyristor controlled by field effect transistor
EP0080740A2 (en) Circuit arrangement for switching power circuits by using high-voltage MOS transistors
DE10260853A1 (en) Piezo actuator and a method for its production
WO2005076366A2 (en) Soi semi-conductor component with increased dielectric strength
EP1579513B1 (en) Piezo actuator
DE1514008B2 (en) AREA TRANSISTOR
DE2834724A1 (en) MOS FIELD EFFECT TRANSISTORS FOR HIGHER VOLTAGES
WO1987003141A1 (en) Semiconductor switch for high inverse voltages
DE10252609A1 (en) Completion for a semiconductor device with MOS gate control with protective rings
DE2844878A1 (en) INTEGRATABLE INSULATION LAYER FIELD EFFECT TRANSISTOR
DE3640801C2 (en)
DE19736754A1 (en) Surge protection element
DE2601131A1 (en) SEMI-CONDUCTOR DEVICES OF THE PRESSURE CONTACT TYPE
DE2654532C3 (en) Disc-shaped semiconductor cell
DE1514228C3 (en) Field effect transistor
DE3024296A1 (en) Transistor for radio or audio equipment - has second gate electrode connected to source electrode for improved high frequency performance
DE2433803C3 (en) Field effect transistor with two insulated gate electrodes
EP0215034B1 (en) X-ray tube with a cylindrical metal component enclosing the anode and cathode
DE2154122A1 (en) Semiconductor arrangement with high voltage passivation and method for their production
DE1464226B2 (en) PROCESS FOR PRODUCING ELECTRICALLY UNSYMMETRICALLY CONDUCTIVE SEMICONDUCTOR ARRANGEMENTS
DE3721001C2 (en)
DE19951118A1 (en) Piezo actuator e.g. for valve, has multiple layer structure of piezo layers and internal electrodes and a number of external electrodes for each polarity of electrical voltage on outer sides of actuator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE