WO1987002756A1 - Radiant tube burner - Google Patents

Radiant tube burner Download PDF

Info

Publication number
WO1987002756A1
WO1987002756A1 PCT/JP1986/000550 JP8600550W WO8702756A1 WO 1987002756 A1 WO1987002756 A1 WO 1987002756A1 JP 8600550 W JP8600550 W JP 8600550W WO 8702756 A1 WO8702756 A1 WO 8702756A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
radiant tube
water
combustion
nozzle
Prior art date
Application number
PCT/JP1986/000550
Other languages
French (fr)
Japanese (ja)
Inventor
Yasushi Yoshida
Nobuyoshi Oomori
Kaneaki Hyodo
Kenji Atarashiya
Norihisa Shiraishi
Toshiyuki Hashime
Original Assignee
Nihon Nensho System Kabushiki Kaisha
Mitsubishi Jukogyo Kabushiki Kaisha
Kawasaki Seitetsu Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP23701686A external-priority patent/JPS62190311A/en
Priority claimed from JP23701786A external-priority patent/JPS62242711A/en
Application filed by Nihon Nensho System Kabushiki Kaisha, Mitsubishi Jukogyo Kabushiki Kaisha, Kawasaki Seitetsu Kabushiki Kaisha filed Critical Nihon Nensho System Kabushiki Kaisha
Priority to KR1019870700529A priority Critical patent/KR910001837B1/en
Priority to AT86906451T priority patent/ATE56520T1/en
Priority to US07/060,395 priority patent/US4813867A/en
Priority to DE8686906451T priority patent/DE3674198D1/en
Publication of WO1987002756A1 publication Critical patent/WO1987002756A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • F23D14/24Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other at least one of the fluids being submitted to a swirling motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • F23C7/004Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion using vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2203/00Flame cooling methods otherwise than by staging or recirculation
    • F23C2203/30Injection of tempering fluids

Definitions

  • a nozzle of a gas parner is concentrically directed to a combustion cylinder provided in a radiant tube, and fuel gas ejected from the gas parner is supplied through a rectangular space between the gas parner and the combustion cylinder.
  • the present invention relates to a radiant tube parner in which primary twisting is performed by primary air, and secondary combustion is performed by secondary air supplied through an annular space between the combustion tube and the radiant tube. It relates to a radiant tube parner to be used in heat treatment furnaces that can reduce the amount of NOx contained in the flue gas discharged from the tube.
  • a flame formed by burning a parner is provided by providing a steam pipe inside the fuel gas nozzle. It has been proposed to lower the flame temperature by blowing steam into it.
  • spraying water has a higher effect of lowering the flame temperature and a higher effect of reducing NOx.
  • spray particle size becomes large, so it is predicted that the radiant tube will be adversely affected and the flame will be unstable.
  • An object of the present invention is to achieve good and stable combustion by performing high-load combustion in a swirling flow of primary air, and to achieve a low NOx by performing a soft two-stage firing in a radiant tube.
  • a nozzle configured as a flame dispersion type nozzle is configured to be movable in the axial direction, and a swirl vane is provided on the outer periphery thereof. It is equipped with an air adjustment damper for adjusting the ratio of the secondary air.
  • Another object of the present invention is to perform good and stable twisting by performing high-load combustion in a swirling flow of the primary air, to perform soft two-stage combustion in a radiant tube, and to spray mist into the combustion flame.
  • An object of the present invention is to provide a radiant tube burner that can achieve low NOx by lowering the flame temperature by adding water.
  • the central port of a nozzle configured as a flame dispersion type nozzle is a water spray nozzle, and the nozzle is pressurized via an additive water transfer pipe provided inside a gas parner. It is connected to an atomizing water generator that can supply gas and additive water.
  • an atomizing water generator is provided with a cylinder having a conical hole to be connected to the additive water transfer pipe, a pressurized gas to be fitted into the cylinder, and additive water. It is composed of a concave disk having a blow groove, and a housing containing these cylinders and a disk.
  • Still another object of the present invention is to perform good and stable combustion by performing high-load combustion with a swirling flow of primary air, perform soft two-stage natural combustion in a radiant tube, and perform combustion in a combustion flame.
  • the purpose of the present invention is to provide a radiant tube parner that can achieve low NOx by adding flame atomization water to lower the flame temperature and blowing twisted exhaust gas as atomizing medium into the center of twisting gas.
  • the central port of a nozzle configured as a flame dispersion type nozzle is a water spray nozzle, and the nozzle is supplied via an additive water transfer pipe provided inside a gas parner. It is connected to an atomized water generator that can supply compressed gas, low-pressure gas and added water.
  • a water outflow nozzle is installed at the center of the flame dispersion type nozzle in order to spray water from the additive water transfer pipe by the injection energy of the low pressure fuel gas.
  • the exhaust gas introduction cylinder and the water outflow nozzle are provided with a flame dispersion type nozzle. Installed in the center.
  • FIG. 1 is an axial sectional view showing an embodiment of a radiant tube parner according to the present invention.
  • 2 and 3 are a front view and a cross-sectional view of a flame dispersion type nozzle in this burner.
  • 4 and 5 are a longitudinal sectional view and a front view of the same primary air swirling vane as before.
  • FIG. 6 is a diagram showing the NOx reduction effect of the radiant tube parner of the present invention in relation to the maximum temperature of the radiant tube and the amount of generated NOx.
  • FIG. 7 is an axial sectional view showing a second embodiment of the radiant tube parner according to the present invention.
  • Fig. 8 is a vertical cross-sectional view of the flame dispersion type nozzle in this wrench.
  • FIG. 9 and 10 are an exploded perspective view and an assembled sectional view of a main part of the same atomized water generator as before.
  • Figure 11 is an illustration of atomized water generation.
  • FIG. 12 is an axial sectional view showing a third embodiment of the radiant tube parner according to the present invention.
  • FIG. 13 is a longitudinal sectional view of a flame dispersion type nozzle in the present wrench.
  • Fig. 14 is a drawing showing only a main part of a fourth embodiment of a radiant tube parner according to the present invention, which employs a low pressure fuel gas conversion system, in a cross-sectional view.
  • FIG. 12 is an axial sectional view showing a third embodiment of the radiant tube parner according to the present invention.
  • FIG. 13 is a longitudinal sectional view of a flame dispersion type nozzle in the present wrench.
  • Fig. 14 is a drawing showing only a main part of a fourth embodiment of a radiant tube parner according to the present invention, which employs a low
  • FIG. 15 is a drawing showing a cross section of only a main part of a fifth embodiment of a radiant tube parner according to the present invention which employs an atomization method using low-pressure twisting flue gas.
  • FIG. 16 is a diagram showing the relationship between the amount of added water and the NOx reduction rate in the radiant tube burner of the present invention.
  • a gas parner 1 is provided with a flame-dispersing nozzle 3a (FIGS. 2 and 3) which protrudes into a firing tube 2 provided concentrically around the parner 1. 3), and a gas connection pipe 4 is connected to the rear end of the burner 1.
  • the rear of the combustion liner 2 the primary air supply tube concentrically surrounding the same manner the PANA 1 5: is continued: Iteori, that has four rectangular primary air inlet 6 over the circumference ⁇ Kono 'inlet 6
  • the flow cross-sectional area can be changed via the operating rod 8 and the nut 9 by the short cylindrical air adjusting damper 7 slidably fitted on the supply cylinder 5. As shown in FIGS.
  • a primary air swirling blade 10 having an angle of 15 to 60 ° is fixed on a tip end of the burner 1 via a holding cylinder 11.
  • a radiant tube 12 extends concentrically around the natural firing cylinder 2 and the primary air supply cylinder 5, and an air supply connection pipe 13 is connected to a rear area where the inflow port 6 is located.
  • the primary air supply tube 5 and the radiant tube 12 are closed at the rear end by an end wall 14, and the gas parner 1 extends 'backwardly' through the end wall 14,.
  • the reference numeral 15 denotes a pilot wrench, and the gas wrench 1 penetrates the end wall 14 so as to be movable in the axial direction within the combustion cylinder 2 together with the pit mouth wrench 15. It is supported in the combustion cylinder 2 via the swirl vanes 10 so that the position can be changed.
  • the setting position L of the flame dispersing nozzle 3a can be changed within a range of 100 to 500 mm, and the position setting is performed by a bolt 16 attached to the end wall 14.
  • the twist gas supplied to the gas parner 1 via the connection pipe 4 is supplied from the flame dispersion type nozzle 3a.
  • the jet is dispersed into the combustion cylinder 2 at an injection angle of up to 60 ° within an ejection speed of 10 to 100 m / sec.
  • Jetted fuel gas is stirred with primary air Ci is pivoted Runin vital swirl vane 10 through the inflow port 6, 500 X 10 4 kcal / m 3 1,000 from -h X 10 4 kcal / m 3 -
  • the primary reduction firing is performed under a high load in the range of h, and this primary firing gas is axially 10 m / sec to 30 m / sec
  • New paper It gushes at a flow rate in the range.
  • the secondary air C 2 (90 to 50%) distributed to the primary air d (10 to 50%) at a fixed ratio by the air conditioning damper 7 is supplied between the combustion tube 2 and the radiant tube 12.
  • the annular passage is jetted at a lower speed than the primary combustion gas while cooling the combustion cylinder.
  • the difference in kinetic energy secondary air C 2 and the primary combustion gas having respectively, two 'next air C 2 flows along the inner side of the radiant tube 12, gas is without localized heating at the interface of the primary combustion gas
  • the generation of NOx is controlled by the secondary twisting.
  • the difference between the maximum temperature and the minimum temperature in the circumferential direction can be uniformed within 10 ° C due to the turning of the flame.
  • the difference between the maximum temperature and the minimum temperature in the furnace can be kept within 150 ° C in the direction, and the maximum tube temperature is 1,050 ° C or less, so the radiant tube has a long service life. It became possible to make it a value.
  • the NOx reduction effect of the radiant tube parner according to the present invention described above is shown by the relationship between the radiant tube maximum temperature and the amount of NOx generated in FIG. As is clear from the above, the radiant tube parner according to the present invention has an NOx reduction effect of about 30% as compared with the conventional radiant tube parner.
  • the gas burner 1 has a flame dispersing nozzle 3a protruding into a combustion cylinder 2 provided concentrically around the burner 1, and a gas A connecting pipe 4 is connected, and a primary air supply pipe 5 for concentrically sealing the burner is continuously formed behind the combustion tube 2, and four primary air supply pipes are provided around the primary air supply pipe 5.
  • a primary air inlet 6 is drilled.
  • a primary air swirl vane 10 having an angle of 15 to 60 ° is fixed on a tip end of the gas parner 1 through a holding cylinder (not shown), and the combustion cylinder 2 and the primary air supply pipe 5
  • a radiant tube 12 is provided on the outer periphery, and the primary air supply pipe and the radiant tube are each closed at an end wall via a flange 14, and the gas panner 1 extends through the end wall.
  • a water spray nozzle 18 communicating with the additive water transfer pipe 17 in the parner and the surrounding area.
  • a plurality of gas outlets 19 communicating with the gas connection pipe 4 are provided at the bottom.
  • an air supply pipe 13 is connected to the rear of the radial tube 12, and supply pipes 20 and 21 for pressurized gas and added water are connected to the rear end of the added water transfer pipe.
  • a water generator 22 is attached.
  • the atomized water generator 22 has a disk 24 having a circular recess 23 and a conical hole 25 at the center which gradually decreases from a diameter corresponding to the recess.
  • the same cylinder 26 as the disk is coaxially fitted and integrally formed, and this is incorporated into a housing 27. In this case, the disk 24 is pressed by a plug 28.
  • the cylinder 26 is connected to the additive water transfer pipe 17, and an atomized water generation chamber 29 is formed by fitting the disk and the cylinder.
  • blowing grooves 30, 31 for introducing the pressurized gas and the hydration fluid tangential to the recess 23 in a direction perpendicular to the central axis. These grooves are connected to the pressurized gas supply pipe 20 and the added water supply pipe 21, respectively.
  • the fuel gas supplied to the gas parner 1 via the connection pipe 4 is supplied from the flame dispersion type nozzle 3a. ⁇
  • the gas flows in through the inlet 6, and is stirred with the primary air Ci swirled by the primary air swirling blades 10 to perform reduced primary combustion under high load.
  • the fuel is ejected from the combustion cylinder 2, which is exactly the same as the first embodiment described above.
  • the secondary air C 2 distributed at a constant ratio to the primary air Ci by the air adjusting damper 7 as shown in FIG. 1 forms the annular passage between the combustion tube 2 and the radiant tube 12 as described above. It flows along the inside of the tube while cooling the combustion tube, and sequentially burns secondary without heating locally at the boundary of the primary combustion gas.
  • the atomized water obtained by the atomized water generator 22 as shown in FIG. 10 and FIG. 11 is supplied to the water spray nozzle at the center of the flame dispersion type nozzle 3a in the flame of the secondary burning.
  • the NOx is suppressed by lowering the temperature of the flame by jetting it out of 18; in this case, the foam of the atomized water that is jetted out depends on the gas pressure in the foam and the twisting cylinder.
  • the thickness of the foam is extremely thin, for example, ⁇ . ⁇ or more, and the ruptured foam fragments become very fine.
  • the water particles deprive the flame of latent heat of vaporization and lower the flame temperature, thereby significantly reducing NOx emissions.
  • FIGS. 12 and 13 showing a third embodiment of the present invention
  • the same parts as those in FIGS. 7 and 8 are denoted by the same reference numerals.
  • the difference from the example is that the nozzle is configured as a flame-dispersed nozzle 3b.
  • atomized water is added to the combustion flame, whereas in the present embodiment, the atomized water is centered on the fuel gas.
  • the combustion exhaust gas is blown as a medium.
  • a modified embodiment of the third embodiment of the present invention relates to an atomization system using a fuel gas having a low pressure, and as shown in FIG. 14, a combustion cylinder provided concentrically around a gas burner 1.
  • a water outflow nozzle 32 is provided at the center of the flame dispersion type nozzle 3b protruding into 2, and a gas swirl vane 33 is provided in an annular space formed by the water outflow nozzle and the exhaust gas nozzle.
  • the angle of the gas swirl vane is set in the range of 15 to 40 °. '
  • a gas tube 4 is used to change the gas gun tube 4 from the gas gun tube 4, as shown in FIG.
  • the fuel gas G introduced into the tank 1 is picked up in the direction of the arrow, and is turned into a high-speed swirling flow by the gas swirling vanes 33.
  • the added water transfer pipe 17 (Fig. 13 and Fig. 13) The water introduced into the water is picked up in the direction of the arrow and flows out of the water outflow nozzle 32.
  • the fuel W is discharged from the water outflow nozzle by the injection energy of the fuel gas. Spray.
  • a modification of the third embodiment of the present invention relates to an atomization method using low-pressure exhaust gas.
  • water is discharged to the center of the flame-dispersed nozzle 3b.
  • Is equipped with exhaust gas swirl vanes 35, and the blade angle is set in the range of 15 to 40 °.
  • the exhaust gas G ′ is formed by exhaust gas swirling blades 35 as shown in FIG.
  • a high-speed swirling flow causes the water W flowing out of the water outflow nozzle 32 to be sprayed, and the sprayed water is mixed with the fuel gas G from the flame-dispersing nozzle 3b by the high-speed swirling flow of exhaust gas (WG), and is mixed with the exhaust gas.
  • WG exhaust gas
  • the atomizing method is used in the range of 2 to 6 kg / cm 2 under pressure (air, steam, inert gas). And low-pressure gas (twisting gas, flue gas, etc.) in the form of atomization in the range of 300 to l, 000 mmAq.
  • the NOx reduction rate (%) was monitored by gradually increasing the amount of water added.
  • the radiant tube burner according to the present invention is a furnace in which it is not appropriate to burn fuel gas in the furnace, that is, a non-oxidizing furnace, a heat treatment using an atmospheric gas, and an indirect heating of a material to be heated. It has a remarkable effect when used in heat treatment furnaces and the like, and can be used in furnaces of the above types in various technical fields such as metal industry, ceramic industry, glass industry, chemical industry, paper fiber industry, food industry, etc. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Abstract

A radiant tube burner generating only a reduced amount of NOx, composed of an axially movable gas burner element disposed in a combustion tube concentrically therewith and having a flame dispersing nozzle at the tip thereof, a primary air swirling vane fixed to said tip and adapted to form a swirling flame, and an air regulating damper fitted into a primary air supply tube connected to the combustion tube and adapted to regulate the ratio of the primary air to the secondary air, whereby mild two-step combustion can be carried out in the radiant tube.

Description

明 細 書 発明の名称  Description Name of Invention
ラジアン トチューブバ一ナ  Radiant tube tube
技術分野 Technical field
本発明は、 ラジアン トチューブ内に設けられた燃焼筒内へ、 ガスパーナのノ ズルを同心的に臨ませ、 ガスパーナから噴出される燃料ガスを前記ガスパーナ と燃焼筒との間の璟状空間を通して供給される一次空気により一次撚焼させ、 さ らに、 前記燃焼筒とラジアン トチューブとの間の環状空間を通して供給される 二次空気により二次燃焼させるラジアン トチューブパーナに関するものであ り、 殊にラジアントチューブから排出される燃焼排ガス中に含まれる NOx量 を低減せしめることができる熱処理炉等に使用されるべきラジアントチューブ パーナに係わるものである。  According to the present invention, a nozzle of a gas parner is concentrically directed to a combustion cylinder provided in a radiant tube, and fuel gas ejected from the gas parner is supplied through a rectangular space between the gas parner and the combustion cylinder. The present invention relates to a radiant tube parner in which primary twisting is performed by primary air, and secondary combustion is performed by secondary air supplied through an annular space between the combustion tube and the radiant tube. It relates to a radiant tube parner to be used in heat treatment furnaces that can reduce the amount of NOx contained in the flue gas discharged from the tube.
背景技術 Background art
従来、 前記種類:のラジアントチューブパーナにおいて、 NOxの発生を抑制 するために、 例えば燃焼筒内へ供給される一次空気との流入口にダンパを設け ることにより、 一次空気と二次空気との比を調整可能にしたものが提案されて いる。 (日本国実閲昭 52 - 21036号公報)  Conventionally, in a radiant tube parner of the type described above, in order to suppress the generation of NOx, for example, a damper is provided at an inlet of the primary air supplied into the combustion cylinder, thereby forming a primary air and a secondary air. An adjustable ratio has been proposed. (Japanese Journal Review 52-21036)
しかしながら、 一次空気と二次空気との比を調整するだけでは NOxの発生を 充分に低減できないことが判明した。  However, it was found that simply adjusting the ratio of primary air to secondary air did not sufficiently reduce the generation of NOx.
また、 公知の他のラジアン トチューブパーナにおいて NOxの発生を抑制す るために、 日本国特公昭 52 - 29007号公報によれば、 燃料ガスノズルの内部に 蒸気管を設けパーナ燃焼によって形成される火炎中に蒸気を吹き込むことによ り火炎温度を下げることが提案されている。  According to Japanese Patent Publication No. 52-29007, in order to suppress the generation of NOx in other known radiant tube parners, a flame formed by burning a parner is provided by providing a steam pipe inside the fuel gas nozzle. It has been proposed to lower the flame temperature by blowing steam into it.
しかして、 蒸気吹き込みの場合と水を噴霧する場合と比較した時、 水を噴霧 する場合の方が火炎温度の低下の効果が高く、 また NOx低減の効果も高い。 し かしながら、 噴霧粒径が大き くなる欠点があることから、 ラジアントチューブ への悪影響および火炎が不安定となることが予測されるために実用化は不可能 新たな用紙 と考えられていた。 Thus, compared to the case of steam injection and the case of spraying water, spraying water has a higher effect of lowering the flame temperature and a higher effect of reducing NOx. However, there is a drawback that the spray particle size becomes large, so it is predicted that the radiant tube will be adversely affected and the flame will be unstable. Was considered.
発明の開示 Disclosure of the invention
本発明の目的は、 一次空気の旋回流で高負荷燃焼させることにより良好で安定 した燃焼を行い、 ラジアントチューブ内でソフトな二段礤焼を行わせることに より低 NOxを達成できるラジアントチュ一ブパーナを提供することにあ!)。 この目的を達成するため、 本発明によれば、 火炎分散型ノズルとして構成さ れているノズルを軸線方向に移動可能に構成すると共に、 その外周上に旋回羽根 を設け、 さらに、 一次空気と二次空気の比を調整する空気調整ダンバを設けた ものである。  An object of the present invention is to achieve good and stable combustion by performing high-load combustion in a swirling flow of primary air, and to achieve a low NOx by performing a soft two-stage firing in a radiant tube. In providing bupanah! ). In order to achieve this object, according to the present invention, a nozzle configured as a flame dispersion type nozzle is configured to be movable in the axial direction, and a swirl vane is provided on the outer periphery thereof. It is equipped with an air adjustment damper for adjusting the ratio of the secondary air.
本発明の他の目的は、 一次空^の旋回流で高負荷燃焼させることにより良好で 安定した撚焼を行い、 ラジアン トチューブ内でソフトな二段燃焼を行わせると 共に、 燃焼火炎中へ霧化水を添加することによって火炎温度を低下させること により低 NOxを達成できるラジアン トチユーブバ一ナを提供するこ とにあ る。 、  Another object of the present invention is to perform good and stable twisting by performing high-load combustion in a swirling flow of the primary air, to perform soft two-stage combustion in a radiant tube, and to spray mist into the combustion flame. An object of the present invention is to provide a radiant tube burner that can achieve low NOx by lowering the flame temperature by adding water. ,
この目的を達成するため、 本発明によれば、 火炎分散型ノズルとして構成さ れているノズルの中心口を水噴霧ノズルとし、 該ノズルをガスパーナ内部に設 けた添加水移送管を介して加圧気体および添加水の供給が可能な霧化水生成器に 接続したものである。  In order to achieve this object, according to the present invention, the central port of a nozzle configured as a flame dispersion type nozzle is a water spray nozzle, and the nozzle is pressurized via an additive water transfer pipe provided inside a gas parner. It is connected to an atomizing water generator that can supply gas and additive water.
また、 本発明による他の有利な手段として、 霧化水生成器を、 添加水移送管に 接続されるべき円錐状穴を有する円筒と、 これに嵌合せしめられるべき加圧気 体および添加水の吹き込み溝を有する凹所円板と、 これらの円筒および'円板を 内蔵するハウジングとから構成してある。  Further, as another advantageous means according to the present invention, an atomizing water generator is provided with a cylinder having a conical hole to be connected to the additive water transfer pipe, a pressurized gas to be fitted into the cylinder, and additive water. It is composed of a concave disk having a blow groove, and a housing containing these cylinders and a disk.
本発明の更に他の目的は、 一次空気の旋回流で高負荷燃焼させることにより良 好で安定した燃焼を行い、 ラジアントチューブ内でソフトなニ段 ί然焼を行わせ ると共に、 燃焼火炎中へ霧化水を添加することによって火炎温度を低下させ、 かつ、 撚料ガス中心に撚焼排ガスを霧化媒体として吹き込むことによ り、 低 NOxを達成できるラジアントチューブパーナを提供することにある。 ごの目的を達成するため、 本発明によれば、 火炎分散型ノズルとして構成さ れているノズルの中心口を水噴霧ノズルとし、 該ノズルをガスパーナ内部に設 けた添加水移送管を介して加圧気体、 低圧ガス及び添加水の供給が可能な霧化水 生成器に接続したものである。 Still another object of the present invention is to perform good and stable combustion by performing high-load combustion with a swirling flow of primary air, perform soft two-stage natural combustion in a radiant tube, and perform combustion in a combustion flame. The purpose of the present invention is to provide a radiant tube parner that can achieve low NOx by adding flame atomization water to lower the flame temperature and blowing twisted exhaust gas as atomizing medium into the center of twisting gas. . To achieve the above object, according to the present invention, the central port of a nozzle configured as a flame dispersion type nozzle is a water spray nozzle, and the nozzle is supplied via an additive water transfer pipe provided inside a gas parner. It is connected to an atomized water generator that can supply compressed gas, low-pressure gas and added water.
また、 木発明による他の有利な手段として、 低圧燃料ガスの噴射エネルギー により添加水移送管からの水を噴霧させるために、 水流出ノズルを火炎分散型 ノズルの中心部に設置してある。  Further, as another advantageous means according to the invention, a water outflow nozzle is installed at the center of the flame dispersion type nozzle in order to spray water from the additive water transfer pipe by the injection energy of the low pressure fuel gas.
また、 本発明による更に他の有利な手段として、 低圧燃焼排ガスの噴射エネ ルギ一によリ添加水移送管からの水を噴霧させるために、 排ガス導入筒および 水流出ノズルを火炎分散型ノズルの中心部に設置してある。  Further, as still another advantageous means according to the present invention, in order to spray water from the re-supplying water transfer pipe by means of low-pressure combustion exhaust gas injection energy, the exhaust gas introduction cylinder and the water outflow nozzle are provided with a flame dispersion type nozzle. Installed in the center.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図は本 明に係わるラジアン 卜チューブパーナの 1実施例を示す軸方 向断面図。 第 2図および第 3図は本バ一ナにおける火炎分散型ノズルの正面図お よび断面'図。 第 4図および第 5図は前同様の一次空気旋回羽根の縦断面図および 正面図。 第 6図は本発明のラジアン トチューブパーナの NOx低減効果をラジァ ン トチューブ最高温度と NOx発生量の関係で示したダイアグラム。 第 7図は本 発明に係わるラジアン卜チューブパーナの第 2実施例を示す軸方向断面図。 第 8 図は本パーナにおける火炎分散型ノズルの縦断面図。 第 9図および第 10図は前 同様の霧化水生成器の要部分解斜視図および組立断面図。 第 11図は霧化水生成の 説明図。 第 12図は本発明に係わるラジアン トチューブパーナの第 3実施例を示 す軸方向断面図。 第 13図は本パーナにおける火炎分散型ノズルの縦断面図。 第 14図は低圧燃料ガスによる 化方式を採用した本発明に係わるラジアン ト チューブパーナの第 4実施例を要部のみ断面にて示す図面。 第 15図は低圧撚焼 排ガスによる霧化方式を採用した本発明に係わるラジアン トチューブパーナの 第 5実施例を要部のみ断面にて示す図面。 第 16図は本発明のラジアントチュー ブバ一ナにおける添加水量と NOx低減率の関係を示すダイアグラムである。 発明を実施するための最良の形態 FIG. 1 is an axial sectional view showing an embodiment of a radiant tube parner according to the present invention. 2 and 3 are a front view and a cross-sectional view of a flame dispersion type nozzle in this burner. 4 and 5 are a longitudinal sectional view and a front view of the same primary air swirling vane as before. FIG. 6 is a diagram showing the NOx reduction effect of the radiant tube parner of the present invention in relation to the maximum temperature of the radiant tube and the amount of generated NOx. FIG. 7 is an axial sectional view showing a second embodiment of the radiant tube parner according to the present invention. Fig. 8 is a vertical cross-sectional view of the flame dispersion type nozzle in this wrench. 9 and 10 are an exploded perspective view and an assembled sectional view of a main part of the same atomized water generator as before. Figure 11 is an illustration of atomized water generation. FIG. 12 is an axial sectional view showing a third embodiment of the radiant tube parner according to the present invention. FIG. 13 is a longitudinal sectional view of a flame dispersion type nozzle in the present wrench. Fig. 14 is a drawing showing only a main part of a fourth embodiment of a radiant tube parner according to the present invention, which employs a low pressure fuel gas conversion system, in a cross-sectional view. FIG. 15 is a drawing showing a cross section of only a main part of a fifth embodiment of a radiant tube parner according to the present invention which employs an atomization method using low-pressure twisting flue gas. FIG. 16 is a diagram showing the relationship between the amount of added water and the NOx reduction rate in the radiant tube burner of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の第 1実施例を示す第 1図において、 ガスパーナ 1は、 このパーナ 1 のまわりに同心的に設けられた嫘焼筒 2の中へ突出する火炎分散型ノズル 3a (第 2図および第 3図)を有し、 バ ナ 1の後端にはガス接続管 4が接続されて いる。 燃焼筒 2の後方には、 パーナ 1を同様に同心的に包囲する一次空気供給筒 5:が続:いており、 周囲にわたって 4つの長方形の一次空気流入口 6をもってい る σ この'流入口 6は、 供給筒 5上に摺動可能に嵌まる短円筒状空気調整ダンパ 7 により操作棒 8およびナッ ト 9を介して流通断面積を変化せしめられる。 バー ナ 1の先端上には、 第 4図および第 5図に示すように、 15 ~ 60°の角度を有す る一次空気旋回羽根 10が保持筒 11を介して固定されている。 ί然焼筒 2および一 次空気供給筒 5を同心的に包囲してラジアントチューブ 12が延び、 流入口 6の ある後方範囲には空気供給接続管 13が接続されている。 一次空気供給筒 5およ びラジアントチューブ 12は後端を端壁 14で閉じられ、 ガスパーナ 1はこの端 壁, 14を'貫通して後方へ延びてレ'、る。 なお、 15はパイロッ トパーナであり、 ガ スパーナ 1はパイ口ッ トパーナ 15と共に燃焼筒 2の範囲内で軸線方向へ移動可 能に端壁 14を貫通し、 従って、 火炎分散型ノズル 3aは、 その位置を変化可能に 旋回羽根 10を介して燃焼筒 2内に支持されている。 In FIG. 1 showing a first embodiment of the present invention, a gas parner 1 is provided with a flame-dispersing nozzle 3a (FIGS. 2 and 3) which protrudes into a firing tube 2 provided concentrically around the parner 1. 3), and a gas connection pipe 4 is connected to the rear end of the burner 1. The rear of the combustion liner 2, the primary air supply tube concentrically surrounding the same manner the PANA 1 5: is continued: Iteori, that has four rectangular primary air inlet 6 over the circumference σ Kono 'inlet 6 The flow cross-sectional area can be changed via the operating rod 8 and the nut 9 by the short cylindrical air adjusting damper 7 slidably fitted on the supply cylinder 5. As shown in FIGS. 4 and 5, a primary air swirling blade 10 having an angle of 15 to 60 ° is fixed on a tip end of the burner 1 via a holding cylinder 11. A radiant tube 12 extends concentrically around the natural firing cylinder 2 and the primary air supply cylinder 5, and an air supply connection pipe 13 is connected to a rear area where the inflow port 6 is located. The primary air supply tube 5 and the radiant tube 12 are closed at the rear end by an end wall 14, and the gas parner 1 extends 'backwardly' through the end wall 14,. The reference numeral 15 denotes a pilot wrench, and the gas wrench 1 penetrates the end wall 14 so as to be movable in the axial direction within the combustion cylinder 2 together with the pit mouth wrench 15. It is supported in the combustion cylinder 2 via the swirl vanes 10 so that the position can be changed.
この火炎分散型ノズル 3aはその設定位置 Lが 100 ~ 500 mmの範囲内で変化 可能であって、 位置設定は端壁 14に取付けてあるボルト 16にて行われるもの である。  The setting position L of the flame dispersing nozzle 3a can be changed within a range of 100 to 500 mm, and the position setting is performed by a bolt 16 attached to the end wall 14.
次に、 本発明の第 1実施例であるラジアントチューブパーナの作用について 説明すると、 第 1図において、 接続管 4を介してガスパーナ 1へ供給された撚 料ガスは、 火炎分散型ノズル 3aから、 噴出速度 10 ~ 100 m/sec の範囲で噴射 角最大 60°に分散されて燃焼筒 2内へ噴出される。 噴出された燃料ガスは、 流入 口 6を経て流人しかつ旋回羽根 10で旋回される一次空気 Ciと共に撹拌され、 500 X 104 kcal/m3-hから 1,000 X 104kcal/m3-hの範囲の高負荷で還元一次嫘焼 を行いこの一次嫘焼ガスは燃焼筒 2から軸線方向に 10 m/secから 30 m/sec Next, the operation of the radiant tube parner according to the first embodiment of the present invention will be described. In FIG. 1, the twist gas supplied to the gas parner 1 via the connection pipe 4 is supplied from the flame dispersion type nozzle 3a. The jet is dispersed into the combustion cylinder 2 at an injection angle of up to 60 ° within an ejection speed of 10 to 100 m / sec. Jetted fuel gas is stirred with primary air Ci is pivoted Runin vital swirl vane 10 through the inflow port 6, 500 X 10 4 kcal / m 3 1,000 from -h X 10 4 kcal / m 3 - The primary reduction firing is performed under a high load in the range of h, and this primary firing gas is axially 10 m / sec to 30 m / sec
新たな用紙 の範囲の流速で噴出する。 空気調整ダンバ 7により一次空気 d (10 ~ 50 %)に対 して一定の比に分配された二次空気 C2 (90 ~ 50 %)は、 燃焼筒 2とラジアン ト チューブ 12との間の環状通路を前記燃焼筒を冷却しながら一次燃焼ガスより遅 い速度で噴出する。 二次空気 C2と一次燃焼ガスがそれぞれもつ運動エネルギー の差によって、 二'次空気 C2はラジアントチューブ 12の内側に沿って流れ、 ガ スは一次燃焼ガスの境界面で局部加熱することなく、 順次二次撚焼することに より NOxの発生が制御される。 New paper It gushes at a flow rate in the range. The secondary air C 2 (90 to 50%) distributed to the primary air d (10 to 50%) at a fixed ratio by the air conditioning damper 7 is supplied between the combustion tube 2 and the radiant tube 12. The annular passage is jetted at a lower speed than the primary combustion gas while cooling the combustion cylinder. The difference in kinetic energy secondary air C 2 and the primary combustion gas having respectively, two 'next air C 2 flows along the inner side of the radiant tube 12, gas is without localized heating at the interface of the primary combustion gas The generation of NOx is controlled by the secondary twisting.
次に、 本発明の第 1実施例による実際の 7ィ ンチ(17.5 cm)のラジアン ト チューブパーナにおいて、 一般的には 110,000 kcal/hで燃焼されていたものを 145,000 kcal/hで燃焼することができ、 火炎分散型ノズル 3aの設定位置および —次空気と二次空気との比を変更することにより、 NOxを 80〜: I50 ppmまで 低減することができ、 排ガス中の残存 02 1%以下でも不完全撚焼することな く、 煤や一酸化炭素等の未燃物の発生の全くない良好な燃焼が行われ、 ターンダ ゥンも 1/10以下が可能となり、 燃焼用空気を 100 %とし、 燃料ガスを 10 %と した場合でも吹き消えなしに安定した撚焼が行われる。  Next, in the actual 7-inch (17.5 cm) radiant tube parner according to the first embodiment of the present invention, what was generally burned at 110,000 kcal / h was burned at 145,000 kcal / h. By changing the setting position of the flame dispersion type nozzle 3a and the ratio between the secondary air and the secondary air, the NOx can be reduced to 80 to 50 ppm, and the residual in the exhaust gas can be reduced. %, Good combustion without any unburned matter such as soot and carbon monoxide is performed without incomplete twisting, and turndown can be reduced to 1/10 or less. Even when the fuel gas is set to 100% and the fuel gas is set to 10%, stable twisting is performed without blowing out.
しかも、 ラジアン トチューブバーナの重要な条件であるチューブ温度につい ても、 火炎の旋回によつて周方向での最高温度と最低温度の差が 10 °C以内の均 一化が可能になり、 軸線方向においても炉内での最高温度と最低温度の差を 150 °C以内にすることができ、 また最高チューブ温度も 1,050 °C以下であることか らラジアン トチューブの寿命を長期使用に耐える値にすることが可能となった のである。  Moreover, even with respect to the tube temperature, which is an important condition of the radiant tube burner, the difference between the maximum temperature and the minimum temperature in the circumferential direction can be uniformed within 10 ° C due to the turning of the flame. The difference between the maximum temperature and the minimum temperature in the furnace can be kept within 150 ° C in the direction, and the maximum tube temperature is 1,050 ° C or less, so the radiant tube has a long service life. It became possible to make it a value.
なお、 前述した本発明に係わるラジアン トチューブパーナの NOx低減効果 を第 6図のラジアントチューブ最高温度と NOx発生量の関係で示してある。 こ れから明らかなように、 本発明に係わるラジアン トチューブパーナは、 従来の ラジアントチューブパーナに比べて約 30 %の NOx低減効果がある。  The NOx reduction effect of the radiant tube parner according to the present invention described above is shown by the relationship between the radiant tube maximum temperature and the amount of NOx generated in FIG. As is clear from the above, the radiant tube parner according to the present invention has an NOx reduction effect of about 30% as compared with the conventional radiant tube parner.
次に、 本発明の第 2実施例を示す第 7図において、 第 1図と同一部分には同一 符号がつけてある。 第 7図および第 8図において、 ガスバーナ 1は、 このバ一ナ 1のまわりに同 心的に設けられた燃焼筒 2の中へ突出する火炎分散型ノズル 3aを有し、 その後 端にはガス接続管 4が接続されており、 燃焼筒 2の後方には、 前記バーナを同 様に同心的に包固する一次空気供給管 5が連続形成してあり、 その周囲にわたつ て 4個の一次空気流入口 6が穿設してあ'る。 さらに、 ガスパーナ 1の先端上に は、 15 ~ 60°の角度を有する一次空氪旋回羽根 10が保持筒(図示せず)を介して 固定されており、 燃焼筒 2および一次空気供給管 5の外周にはラジアン ト チューブ 12が設けてあり、 前記一次空気供給管およびラジアン トチューブは それぞれフランジ 14を介して端壁にて閉鎖され、 ガスパーナ 1は前記端壁を貫 通して延びている。 ' Next, in FIG. 7 showing a second embodiment of the present invention, the same parts as those in FIG. 1 are denoted by the same reference numerals. 7 and 8, the gas burner 1 has a flame dispersing nozzle 3a protruding into a combustion cylinder 2 provided concentrically around the burner 1, and a gas A connecting pipe 4 is connected, and a primary air supply pipe 5 for concentrically sealing the burner is continuously formed behind the combustion tube 2, and four primary air supply pipes are provided around the primary air supply pipe 5. A primary air inlet 6 is drilled. Further, a primary air swirl vane 10 having an angle of 15 to 60 ° is fixed on a tip end of the gas parner 1 through a holding cylinder (not shown), and the combustion cylinder 2 and the primary air supply pipe 5 A radiant tube 12 is provided on the outer periphery, and the primary air supply pipe and the radiant tube are each closed at an end wall via a flange 14, and the gas panner 1 extends through the end wall. '
ガスパーナ 1の先端に螺装されている火炎分散型ノズル 3aの中央には、 第 8 図にも示されているように前記パーナ内の添加水移送管 17に通ずる水噴霧ノズ ル 18とそのまわりにガス接続管 4に通ずる複数個のガス噴出口 19が穿設して ある。 なお、 ラジア トチューブ 12の後方には空気供給管 13が接続してあ リ、 前記添加水移送管の後端には加圧気体および添加水の供給管 20, 21が接続さ れている霧化水生成器 22が付設してある。  At the center of the flame dispersing nozzle 3a screwed at the tip of the gas parner 1, as shown in FIG. 8, a water spray nozzle 18 communicating with the additive water transfer pipe 17 in the parner and the surrounding area. A plurality of gas outlets 19 communicating with the gas connection pipe 4 are provided at the bottom. In addition, an air supply pipe 13 is connected to the rear of the radial tube 12, and supply pipes 20 and 21 for pressurized gas and added water are connected to the rear end of the added water transfer pipe. A water generator 22 is attached.
この霧化水生成器 22は、 第 9図および第 10図に示すように円形凹所 23を有 する円板 24と前記凹所に相当する径から次第に減少する中心の円錐状穴 25を有 し、 かつ、 前記円板と同じ怪の円筒 26を同軸的に嵌め会わせて一体形成し、 こ れをハウジング 27内に組み込むものであって、 この場合、 円板 24はプラグ 28 にて押着され、 かつ、 円筒 26は添加水移送管 17に接続されるものであり、 前 記円板と円筒の嵌合によって霧化水生成室 29が形成される。 円筒 26に近い方に ある円板 24の端面には凹所 23の接線方向に前記凹所へ通ずる加圧気体および添 加水を導入する吹き込み溝 30,31が中心軸に対して直角な 1つの面上に刻設され ており、 これらの溝はそれぞれ加圧気体供給管 20と添加水供給管 21に接続さ ている。 次に、 本発明の第 2実施例であるラジアン トチューブパーナの作用について 説明すると、 第 7図において、 接続管 4を介してガスパーナ 1へ供給された燃 料ガスは、 火炎分散型ノズル 3aから嫘焼筒 2内へ噴出されると、 当該ガスは流 入口 6を経て流入し、 かつ、 一次空気旋回羽根 10で旋回せしめられる一次空気 Ciと共に撹拌され、 高負荷で還元一次燃焼を行った後、 燃焼筒 2から噴出する ものであり、 これは前述した第 1実施冽と全く同様である。 As shown in FIGS. 9 and 10, the atomized water generator 22 has a disk 24 having a circular recess 23 and a conical hole 25 at the center which gradually decreases from a diameter corresponding to the recess. In addition, the same cylinder 26 as the disk is coaxially fitted and integrally formed, and this is incorporated into a housing 27. In this case, the disk 24 is pressed by a plug 28. The cylinder 26 is connected to the additive water transfer pipe 17, and an atomized water generation chamber 29 is formed by fitting the disk and the cylinder. On the end face of the disk 24, which is closer to the cylinder 26, there are provided blowing grooves 30, 31 for introducing the pressurized gas and the hydration fluid tangential to the recess 23 in a direction perpendicular to the central axis. These grooves are connected to the pressurized gas supply pipe 20 and the added water supply pipe 21, respectively. Next, the operation of the radiant tube parner according to the second embodiment of the present invention will be described. In FIG. 7, the fuel gas supplied to the gas parner 1 via the connection pipe 4 is supplied from the flame dispersion type nozzle 3a.噴 When the gas is jetted into the firing cylinder 2, the gas flows in through the inlet 6, and is stirred with the primary air Ci swirled by the primary air swirling blades 10 to perform reduced primary combustion under high load. The fuel is ejected from the combustion cylinder 2, which is exactly the same as the first embodiment described above.
一方、 第 1図に示すような空気調整ダンバ 7によって一次空気 Ciに対して一 定の比に分配された二次空氕 C2は、 燃焼筒 2とラジアントチューブ 12との環 状通路を前記燃焼筒を冷却しながらチューブ内側に沿って流れ、 一次燃焼ガスの 境界面で局部加熱することなく順次二次燃焼する。 この二次 i然焼する火炎の中 に、 第 10図および第 11図に示すような霧化水生成器 22にて得られた霧化水を 火炎分散型ノズル 3aの 心にある水噴霧ノズル 18から噴出せしめることによ り火炎の温度を低下させて、 NOxの発生を抑制するものであって、 この場合、 噴出せしめられた霧化水の泡沫は、 泡沫内の気体圧力と撚焼筒内の圧力の差に よって急激に膨張して破裂するものである力 泡沫の厚さは、 例えば Ο.ΐ μπι以 上で極めて薄いため、 破裂した泡沫の破片は非常に微細となり、 この微細な水 の粒子は火炎から蒸発潜熱を奪って火炎温度を低下させ、 これによつて NOxの 発生を大幅に低減させることが可能となる。 On the other hand, the secondary air C 2 distributed at a constant ratio to the primary air Ci by the air adjusting damper 7 as shown in FIG. 1 forms the annular passage between the combustion tube 2 and the radiant tube 12 as described above. It flows along the inside of the tube while cooling the combustion tube, and sequentially burns secondary without heating locally at the boundary of the primary combustion gas. The atomized water obtained by the atomized water generator 22 as shown in FIG. 10 and FIG. 11 is supplied to the water spray nozzle at the center of the flame dispersion type nozzle 3a in the flame of the secondary burning. The NOx is suppressed by lowering the temperature of the flame by jetting it out of 18; in this case, the foam of the atomized water that is jetted out depends on the gas pressure in the foam and the twisting cylinder. The thickness of the foam is extremely thin, for example, Ο.ΐμπι or more, and the ruptured foam fragments become very fine. The water particles deprive the flame of latent heat of vaporization and lower the flame temperature, thereby significantly reducing NOx emissions.
次に、 本発明の第 3実施例を示す第 12図および第 13図において、 第 7図およ び第 8図と同一部分には同一符号がつけてあり、 本実施例において、 第 2実施例 と異なる点は、 ノズルが火炎分散型ノズル 3bとして構成されており、 第 2実施 例では燃焼火炎中へ霧化水を添加するのに対して、 本実施例では燃料ガスの中心 に霧化媒体として燃焼排ガスを吹き込むようにしたものである。  Next, in FIGS. 12 and 13 showing a third embodiment of the present invention, the same parts as those in FIGS. 7 and 8 are denoted by the same reference numerals. The difference from the example is that the nozzle is configured as a flame-dispersed nozzle 3b.In the second embodiment, atomized water is added to the combustion flame, whereas in the present embodiment, the atomized water is centered on the fuel gas. The combustion exhaust gas is blown as a medium.
なお、 本発明の第 3実施例であるラジアン トチューブパーナの作用は、 ノズ ルが火炎分散型ノズル 3bであることが相違するのみで、 第 2実施例と同様であ るので、 説明は省略する。 次に、 本発明の第 3実施例改変形は低庄力の燃料ガスによる霧化方式に関する もので、 第 14図に示すように、 ガスバ一ナ 1のまわりに同心的に設けられた 燃焼筒 2の中へ突出している火炎分散型ノズル 3bの中心部には水流出ノズル 32 が設けてあり、 これらの水流出ノズルと排ガスノズルによつて形成された環状 空間にはガス旋回羽根 33が設けられ、 このガス旋回羽根の角度は 15 ~ 40°の範 囲で設定される。 ' The operation of the radiant tube parner according to the third embodiment of the present invention is the same as that of the second embodiment, except that the nozzle is the flame dispersion type nozzle 3b, and therefore, the description is omitted. I do. Next, a modified embodiment of the third embodiment of the present invention relates to an atomization system using a fuel gas having a low pressure, and as shown in FIG. 14, a combustion cylinder provided concentrically around a gas burner 1. A water outflow nozzle 32 is provided at the center of the flame dispersion type nozzle 3b protruding into 2, and a gas swirl vane 33 is provided in an annular space formed by the water outflow nozzle and the exhaust gas nozzle. The angle of the gas swirl vane is set in the range of 15 to 40 °. '
次:に、 低圧力の燧料ガスによる霧化方式を採用した本発明の第 3実施例の改変 形であるラジアン トチューブパーナにおいて、 第 14図に示すように、 ガス接 銃管 4からガスバ一ナ 1内へ導入された燃料ガス Gは矢印方向へ拾送さ 、 ガ ス旋回羽根 33により高速旋回流となり、 一方、 添加水接続口 36に接続されてい る添加水移送管 17 (第 12図および第 13図)内へ導入された水 Wは矢印方向へ拾 送され、 水流出ノズル 32から流出するものである力 この場合、 前記水流出ノ ズルから流出した燃料ガスの噴射ェネルギ一により噴霧せしめられる。  Next, as shown in FIG. 14, a gas tube 4 is used to change the gas gun tube 4 from the gas gun tube 4, as shown in FIG. The fuel gas G introduced into the tank 1 is picked up in the direction of the arrow, and is turned into a high-speed swirling flow by the gas swirling vanes 33. On the other hand, the added water transfer pipe 17 ( (Fig. 13 and Fig. 13) The water introduced into the water is picked up in the direction of the arrow and flows out of the water outflow nozzle 32. In this case, the fuel W is discharged from the water outflow nozzle by the injection energy of the fuel gas. Spray.
このように、 水は燃料ガスによって噴霧されるため、 噴霧水と撚料ガスが良 く混合され、 水の添加効果が上がって NOxの発生を大幅 低減させることが可 能となる。'  As described above, since water is sprayed by the fuel gas, the spray water and the twisting gas are well mixed, and the effect of adding water is increased, thereby making it possible to significantly reduce the generation of NOx. '
次に、 本発明の第 3実施例の改変形は低圧力の排ガスによる霧化方式に関する もので、 第 14図および第 15図に示すように、 火炎分散型ノズル 3bの中心部に 水 ¾ 出ノズル 32からの水を噴霧するための排ガス導入筒 34と、 この導入筒の 中-心.部に添加水移送管 17が設けてあり、 前記水流出ノズルと排ガスノズルに よって形成された環状空間には排ガス旋回羽根 35を設置し、 羽根角度は 15 ~ 40°の範囲で設定されている。  Next, a modification of the third embodiment of the present invention relates to an atomization method using low-pressure exhaust gas. As shown in FIGS. 14 and 15, water is discharged to the center of the flame-dispersed nozzle 3b. An exhaust gas introduction tube 34 for spraying water from a nozzle 32, and an addition water transfer pipe 17 provided at a center-center portion of the introduction tube, an annular space formed by the water outflow nozzle and the exhaust gas nozzle. Is equipped with exhaust gas swirl vanes 35, and the blade angle is set in the range of 15 to 40 °.
次に、 低圧力の燃焼排ガスによる霧化方式を採用した本発明の第 3実施例の改 変形であるラジアントチューブパーナにおいて、 第 15図に示すように、 排ガ ス G' は排ガス旋回羽根 35により高速旋回流となり、 水流出ノズル 32から流 出する水 Wを噴霧せしめ、 この噴霧された水は排ガス高速旋回流により火炎分 散型ノズル 3bから燃料ガス Gと混合し(WG)、 排ガスと撚料ガスの混合および 燃料ガスと噴霧水との混合が急速に行われ、 燃料ガスの燃焼遅れによる火炎温度 の均一化と噴霧水の蒸気潜熱の吸熱により火炎温度が低下し、 これによつて NOxの発生を大幅に低減させることが可能となる。 Next, as shown in FIG. 15, in a radiant tube parner which is a modification of the third embodiment of the present invention which employs an atomization method using low-pressure combustion exhaust gas, the exhaust gas G ′ is formed by exhaust gas swirling blades 35 as shown in FIG. A high-speed swirling flow causes the water W flowing out of the water outflow nozzle 32 to be sprayed, and the sprayed water is mixed with the fuel gas G from the flame-dispersing nozzle 3b by the high-speed swirling flow of exhaust gas (WG), and is mixed with the exhaust gas. Mixing of twisting gas and The fuel gas and the spray water are rapidly mixed, and the flame temperature is reduced due to the uniformization of the flame temperature due to the delay in combustion of the fuel gas and the absorption of the latent heat of the spray water vapor, which significantly increases the generation of NOx. It becomes possible to reduce.
なお、 第 3実施例の 2つの改変形を包含するようなラジアン トチューブバー ナにおいては、 加圧 ¾体 (空気、 蒸気、 不活性ガス) 2 ~ 6 kg/cm2の範囲による霧 化方式の水添加と、 低圧ガス(撚料ガス、 燃焼排ガス等) 300〜 l,000 mmAqの範 囲の霧化方式の水添加等がある。 In the radiant tube burner which includes the two modifications of the third embodiment, the atomizing method is used in the range of 2 to 6 kg / cm 2 under pressure (air, steam, inert gas). And low-pressure gas (twisting gas, flue gas, etc.) in the form of atomization in the range of 300 to l, 000 mmAq.
次に、 第 3実施例および第 4実施例を包含するような本発明に係わるラジア ントチューブパーナで水添加することによる NOx低減率を第 16図の添加水量 と NOx低減率の関係で示してある。 '  Next, the NOx reduction rate by adding water with the radiant tube parner according to the present invention including the third and fourth embodiments is shown by the relationship between the amount of added water and the NOx reduction rate in FIG. is there. '
前述した本発明のラジアントチューブパーナの操業条件を  The operating conditions of the radiant tube parner of the present invention described above are
燃料 COG 4,500 kcal/Nm3  Fuel COG 4,500 kcal / Nm3
燃焼量 145,000 kcal/h  Burning amount 145,000 kcal / h
燃焼用空気温度 400 °C  Combustion air temperature 400 ° C
排ガス中の残存 02 4 %  Residue in exhaust gas 02 4%
ラジアントチューブ 7ィ ンチ W型  Radiant tube 7 inch W type
として、 添加水量を徐々に増加して NOx低減率(%)を見た。 The NOx reduction rate (%) was monitored by gradually increasing the amount of water added.
この結果からみても明らかなように、 本発明に係わるラジアン トチューブ バ一ナにおける水添加によって NOx低減効果があり、 また最高チューブ温度も 低下することからラジアン トチューブの寿命を長期間の使用に耐える値にする ことが可能となった。  As is evident from these results, the addition of water to the radiant tube burner according to the present invention has the effect of reducing NOx, and the maximum tube temperature is also reduced. It became possible to do.
産業上の利用可能性 Industrial applicability
叙上のように、 本発明に係わるラジアン トチューブバーナは、 炉内で燃料ガ スを燃焼させることが適当でない炉、 即ち無酸化炉、 雰囲気ガスを利用する熱 処理、 被加熱材料を間接加熱する熱処理炉等に使用して著効を有するものであつ て、 金属工業、 窯業、 ガラス工業、 化学工業、 紙繊維工業、 食品工業等の各技術 分野における前記種類の炉に利用することができる。  As described above, the radiant tube burner according to the present invention is a furnace in which it is not appropriate to burn fuel gas in the furnace, that is, a non-oxidizing furnace, a heat treatment using an atmospheric gas, and an indirect heating of a material to be heated. It has a remarkable effect when used in heat treatment furnaces and the like, and can be used in furnaces of the above types in various technical fields such as metal industry, ceramic industry, glass industry, chemical industry, paper fiber industry, food industry, etc. .

Claims

請 求 の 範囲 The scope of the claims
1. ラジアントチューブ内に設けられた燃焼筒内へ、 ガスパーナのノズルを 同心的に臨ませ、 ガスバーナから噴出される燃料ガスを前記ガスパーナと燃 焼筒との間の環状空間を通して供給される一次空気により一次燃焼させ、 さ らに、 前記撚焼筒とラジアントチューブとの間の環状空間を通して供給され る二次空気により二次燃焼させるものにおいて、  1. With the nozzle of the gas burner concentrically facing the combustion cylinder provided in the radiant tube, the primary air that is supplied with the fuel gas ejected from the gas burner through the annular space between the gas parner and the combustion cylinder Primary combustion, and secondary combustion by secondary air supplied through an annular space between the twisting cylinder and the radiant tube,
燃宪筒内に同心的に配置されるべき軸線方向に移動可能な先端に火炎分散型 ノズルを有するガスバ一ナと、  A gas burner having a flame dispersing nozzle at a tip that can move in the axial direction to be concentrically arranged in the fuel cylinder;
該パーナ先端上に固定された旋回火炎を形成する一次空気旋回羽根と、 前記撚焼筒に接続している一次空気供給筒に嵌装されている一次空気と二 次空気との比を調整する空気調整ダンパとを具備せしめたことを特徴とする ラジアン トチューブパーナ。  A primary air swirl vane forming a swirl flame fixed on the tip of the parner, and a ratio of primary air to secondary air fitted to a primary air supply cylinder connected to the twisting cylinder is adjusted. A radiant tube parner having an air adjusting damper.
2. 空気調整ダンパにより一次空気 Ci ( 10 ~ 50 )に対して二次空気 ( 90 - 50 % )を一定の比に分配したことを特徴とする請求の範囲第 1項に記載のラジ アン トチューフ'、パーナ。  2. The radiant tube according to claim 1, wherein the secondary air (90-50%) is distributed at a constant ratio to the primary air Ci (10-50) by an air conditioning damper. ', Pana.
3. 火炎分散型ノズルの設定位置 Lを 100 500 mmの範囲としたことを特徴 とする請求の範囲第 1項に記載のラジアン 卜チューブパーナ。  3. The radiant tube parner according to claim 1, wherein the setting position L of the flame dispersion type nozzle is set in a range of 100 to 500 mm.
4. ラジアントチューブ内に設けられた燃焼筒内へ、 ガスパーナのノズルを 同心的に臨ませ、 ガスパーナから噴出される燃料ガスを前記ガスパーナと燃 焼筒との間の環状空間を通して供給される一次空気により一次燃焼させ、 さ らに、 前記撚焼筒とラジアントチューブとの間の環状空間を通して供給され る二次空気により二次燃焼させるものにおいて、  4. Primary air supplied through the annular space between the gas parner and the combustion cylinder, with the nozzle of the gas parner concentrically facing the combustion cylinder provided in the radiant tube. Primary combustion, and secondary combustion by secondary air supplied through an annular space between the twisting cylinder and the radiant tube,
燃焼筒内に同心的に配置されるべきガスパーナの先端に螺装した火炎分散 型ノズルの中心口を水噴霧ノズルとし、  The center port of the flame-dispersed nozzle screwed on the tip of the gas parner to be arranged concentrically inside the combustion cylinder is the water spray nozzle,
該ノズルをガスバーナ内部に設けた添加水移送管を介して加圧気体およぴ 添加水の供給が可能な霧化水生成器に接続したことを特徴とするラジアント チューブパーナ。 .11 A radiant tube parner, characterized in that the nozzle is connected to an atomized water generator capable of supplying pressurized gas and added water via an added water transfer pipe provided inside a gas burner. .11
5. 霧化水生成器が添加水移送管に接続されるべき円錐状穴を有する円筒と、 これに眹合せしめられるべき加圧気体および添加水の吹き込み溝を有する凹 所円板と、 これらの円筒および円板を内蔵するハウジングとから成ることを 特徴とする請求の範 ffl第 4項に記載のラジアントチューブパーナ。  5. A cylinder with a conical hole in which the atomized water generator is to be connected to the additive water transfer pipe, a concave disk with a pressurized gas and additive water blowing groove to be combined therewith, 5. The radiant tube parner according to claim 4, wherein the housing comprises a cylindrical body and a disk.
6. 低圧燃料ガスの噴射エネルギーにより添加水移送管からの水を噴霧させる ために、 水流出ノズルを火炎分散型ノズルの中心部に設置したことを特徴と する請求の範囲第 4項に記載のラジアントチューブパーナ。  6. The method according to claim 4, wherein the water outflow nozzle is installed at the center of the flame dispersion type nozzle in order to spray water from the additive water transfer pipe with the injection energy of the low-pressure fuel gas. Radiant tube parna.
7. 低圧燃焼排ガスの噴射エネルギ一によリ添加水移送管からの水を噴霧させ るために、 排ガス導入筒および'水流出ノズルを火炎分散型ノズルの中心部に 設置したことを特徴とする請求の範囲第 4項に記載のラジアン トチューブ ノヾ一ナ  7. In order to spray water from the added water transfer pipe by the injection energy of the low pressure combustion exhaust gas, the exhaust gas introduction cylinder and the water outflow nozzle are installed at the center of the flame dispersion type nozzle. Radiant tube according to claim 4.
8. 加圧気体(空気、 蒸気、 不活性ガス) 2 ~ 6 kg m2の範囲による霧化方式の 水添加と低圧ガス(燃料ガス、 燃焼排ガス等) 300 ~ l,000 mmAqの範囲の霧 化方式の水添加を行うことを特徴とする請求の '範囲第 4乃至 7項のいずれか 1項に記載のラジアントチューブバ一ナ。 8. pressurized gas (air, steam, inert gas) 2 ~ 6 kg m 2 atomizing system according range of water addition and the low pressure gas (fuel gas, combustion exhaust gas or the like) 300 ~ l, 000 mmAq range of fog The radiant tube burner according to any one of claims 4 to 7, wherein water is added in a chemical manner.
PCT/JP1986/000550 1985-10-31 1986-10-30 Radiant tube burner WO1987002756A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1019870700529A KR910001837B1 (en) 1985-10-31 1986-10-30 Radiant tube burner
AT86906451T ATE56520T1 (en) 1985-10-31 1986-10-30 RADIANT TUBE BURNER.
US07/060,395 US4813867A (en) 1985-10-31 1986-10-30 Radiant tube burner
DE8686906451T DE3674198D1 (en) 1985-10-31 1986-10-30 RADIATION PIPE BURNER.

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP24293085 1985-10-31
JP60/242930 1985-10-31
JP60/267348 1985-11-29
JP26734885 1985-11-29
JP23701686A JPS62190311A (en) 1985-10-31 1986-10-07 Radiant tube burner
JP61/237017 1986-10-07
JP61/237016 1986-10-07
JP23701786A JPS62242711A (en) 1985-11-29 1986-10-07 Radiant tube burner

Publications (1)

Publication Number Publication Date
WO1987002756A1 true WO1987002756A1 (en) 1987-05-07

Family

ID=27477683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1986/000550 WO1987002756A1 (en) 1985-10-31 1986-10-30 Radiant tube burner

Country Status (4)

Country Link
EP (1) EP0243506B1 (en)
AU (1) AU573109B2 (en)
DE (1) DE3674198D1 (en)
WO (1) WO1987002756A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2656676B1 (en) * 1989-12-28 1994-07-01 Inst Francais Du Petrole INDUSTRIAL BURNER WITH LIQUID FUEL WITH LOW EMISSION OF NITROGEN OXIDE, SAID BURNER GENERATING SEVERAL ELEMENT FLAMES AND ITS USE.
US5228283A (en) * 1990-05-01 1993-07-20 General Electric Company Method of reducing nox emissions in a gas turbine engine
US5146741A (en) * 1990-09-14 1992-09-15 Solar Turbines Incorporated Gaseous fuel injector
US5513981A (en) * 1991-11-22 1996-05-07 Aichelin Gmbh Burner with variable volume combination chamber
DE4138434C1 (en) * 1991-11-22 1992-12-03 Aichelin Gmbh, 7015 Korntal-Muenchingen, De
FI101419B1 (en) * 1996-11-26 1998-06-15 Teollisuuslaempoe Oy Gas burner
IT1287521B1 (en) * 1996-12-20 1998-08-06 Ipeg Spa INTENSIVE BURNER
US6872070B2 (en) * 2001-05-10 2005-03-29 Hauck Manufacturing Company U-tube diffusion flame burner assembly having unique flame stabilization
ITVE20110066A1 (en) * 2011-10-06 2013-04-07 Foinox S P A HEAT EXCHANGER FOR GAS COOKING APPLIANCES.
ITVE20110067A1 (en) * 2011-10-06 2013-04-07 Foinox S P A HEAT EXCHANGER FOR GAS COOKING APPLIANCES.

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4996323A (en) * 1973-01-18 1974-09-12
JPS5070929A (en) * 1973-10-24 1975-06-12
JPS50108767A (en) * 1974-02-06 1975-08-27
JPS5156028A (en) * 1974-11-12 1976-05-17 Nippon Kokan Kk CHITSUSOSANKABUTSUYOKUSEIHOHO
JPS5221036U (en) * 1975-08-02 1977-02-15
JPS5222132A (en) * 1975-08-07 1977-02-19 Daido Steel Co Ltd Burner combustion method and apparatus with addition of water
JPS5229007B2 (en) * 1974-05-27 1977-07-29
JPS57166410A (en) * 1981-04-03 1982-10-13 Maruzen Eng Kk Water injection combustion method and water injection combustion burner
JPS5942427U (en) * 1982-09-10 1984-03-19 東京瓦斯株式会社 Double tube type radiant tube
JPS60218519A (en) * 1984-04-13 1985-11-01 Nippon Nenshiyou Syst Kk Multi-fuel combustion burner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560104A (en) * 1978-10-30 1980-05-07 Nippon Steel Corp Two-stage combustion burner for radiant tube
GB8301274D0 (en) * 1983-01-18 1983-02-16 Wb Combustion Ltd Single-ended recouperative radiant tube

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4996323A (en) * 1973-01-18 1974-09-12
JPS5070929A (en) * 1973-10-24 1975-06-12
JPS50108767A (en) * 1974-02-06 1975-08-27
JPS5229007B2 (en) * 1974-05-27 1977-07-29
JPS5156028A (en) * 1974-11-12 1976-05-17 Nippon Kokan Kk CHITSUSOSANKABUTSUYOKUSEIHOHO
JPS5221036U (en) * 1975-08-02 1977-02-15
JPS5222132A (en) * 1975-08-07 1977-02-19 Daido Steel Co Ltd Burner combustion method and apparatus with addition of water
JPS57166410A (en) * 1981-04-03 1982-10-13 Maruzen Eng Kk Water injection combustion method and water injection combustion burner
JPS5942427U (en) * 1982-09-10 1984-03-19 東京瓦斯株式会社 Double tube type radiant tube
JPS60218519A (en) * 1984-04-13 1985-11-01 Nippon Nenshiyou Syst Kk Multi-fuel combustion burner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0243506A4 *

Also Published As

Publication number Publication date
EP0243506A1 (en) 1987-11-04
AU6594086A (en) 1987-05-19
DE3674198D1 (en) 1990-10-18
AU573109B2 (en) 1988-05-26
EP0243506A4 (en) 1989-01-24
EP0243506B1 (en) 1990-09-12

Similar Documents

Publication Publication Date Title
KR970001468B1 (en) Burner
CA2151541C (en) Narrow spray angle liquid fuel atomizers for combustion
US2806517A (en) Oil atomizing double vortex burner
US6027330A (en) Low NOx fuel gas burner
US4813867A (en) Radiant tube burner
JPH0820047B2 (en) Low NOx short flame burner
US4601428A (en) Burner tip
US6024083A (en) Radiant tube burner nozzle
US5009174A (en) Acid gas burner
US4728285A (en) Device for the combustion of fluid combustible materials
WO1987002756A1 (en) Radiant tube burner
JPH0252765B2 (en)
US4519322A (en) Low pressure loss burner for coal-water slurry or fuel oil
JP4103795B2 (en) Hot air generator and control method
EP0025219A2 (en) Apparatus for heating a gas flowing through a duct
US3610536A (en) Combination gas/oil burner
US3424542A (en) Radiant spiral flame gas burner
US4628832A (en) Dual fuel pilot burner for a furnace
KR910001837B1 (en) Radiant tube burner
JPS63116011A (en) Radiant tube burner
CN219414745U (en) Multi-fuel combined spray gun
KR100246876B1 (en) An improved burner operable from dual fuels supplied simultaneously or singly
JPH0450481B2 (en)
JP2561382B2 (en) Low NOx burner
RU192543U1 (en) Burner device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1986906451

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1986906451

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1986906451

Country of ref document: EP