WO1987002740A1 - Fuel injection system - Google Patents

Fuel injection system Download PDF

Info

Publication number
WO1987002740A1
WO1987002740A1 PCT/DE1986/000248 DE8600248W WO8702740A1 WO 1987002740 A1 WO1987002740 A1 WO 1987002740A1 DE 8600248 W DE8600248 W DE 8600248W WO 8702740 A1 WO8702740 A1 WO 8702740A1
Authority
WO
WIPO (PCT)
Prior art keywords
warm
factor
throttle valve
engine
starting temperature
Prior art date
Application number
PCT/DE1986/000248
Other languages
German (de)
French (fr)
Inventor
Bernhard Vogt
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO1987002740A1 publication Critical patent/WO1987002740A1/en
Priority to KR870700559A priority Critical patent/KR880700157A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/068Introducing corrections for particular operating conditions for engine starting or warming up for warming-up

Definitions

  • the invention is based on a fuel injection system according to the type of the main claim.
  • the fuel-air mixture should be in a narrow range for idling and under load, both for idling and under load. This can only be achieved if, in addition to the amount of fuel injected, the air mass drawn in through the nozzle is known as precisely as possible.
  • the conventional warm-up correction does not take into account the fact that different temperature differences between the throttle valve and the surrounding connector housing occur during warm-up. These temperature differences are responsible for the fact that the nozzle housing expands or contracts more than the throttle valve and therefore the opening cross section between the nozzle housing and throttle valve can be up to 15% smaller, especially in idle mode. This temperature-dependent change in cross-section, which is dependent on the starting temperature, causes the fuel-air mixture to become rich during warm-up and has a stronger effect when idling than under load.
  • the injection system according to the invention with the features of the main claim has the advantage that a warm-up weakening factor dependent on the starting temperature of the engine and the throttle valve angle corrects the warm-up factor in such a way that the temperature differences and the associated different expansion of the throttle valve and connector housing are taken into account. This correction prevents unwanted additional enrichment of the fuel-air mixture during warm-up in idle and near idle.
  • the throttle valve angle corrects the warm-up factor in such a way that the temperature differences and the associated different expansion of the throttle valve and connector housing are taken into account. This correction prevents unwanted additional enrichment of the fuel-air mixture during warm-up in idle and near idle.
  • Start calculated warm-up attenuation factor is a value less than or equal to 1, which multiplied by the load warm-up factor at the end of warm-up results in 1, so that when the operating temperature is reached, the normal injection quantity or injection time is guaranteed, which can be found in the engine-specific characteristic curve.
  • This characteristic curve is stored in the engine control computer. The values of the water temperature transmitted to the engine control are used to determine the engine temperature.
  • Figure. 1 shows a course of the warm-up weakening factor F WLA as a function of the cooling water temperature of the engine when starting
  • FIG. 2 shows a course of the warm-up weakening WLA at a cooling water temperature of the engine at the start of -30 ° C. as a function of the throttle valve angle
  • FIG. 3 shows a course of the warm-up weakening WLA at a cooling water temperature of the engine at the start of 0 ° C. as a function of the throttle valve angle
  • Figure 4 shows a course of the warm-up factor F WL at a cooling water temperature of the engine at the start of -30 ° C as a function of the current cooling water temperature at different throttle valve angles and
  • FIG. 5 shows a course of the warm-up factor F WL at a cooling water temperature of the engine at the start of 0 ° C. as a function of the current cooling water temperature at different throttle valve angles.
  • the course of the warm-up attenuation factor F WLA shown in FIG. 1 depends on the cooling water temperature T W , Start. of the engine when starting.
  • the intermediate values of the warm-up factor F WLA are calculated by linear interpolation.
  • the warm-up attenuation factor F WL A 1.0, ie there are none from a start temperature of 60 ° C Warm-up reduction more, since from this temperature the load warm-up factor F WL, a> a2 applies to all throttle valve angles.
  • FIG. 2 shows a possible course of the warm-up heat recovery WLA at a cooling water temperature T W, starting at -30 ° C. as a function of the throttle valve angle ⁇ .
  • the values of the warm-up weakening WLA lying between the throttle valve angles ⁇ 1 and ⁇ 2 are calculated by means of linear interpolation.
  • the value F 2 0.75 results for the warm-up weakening WLA up to a throttle valve angle et.
  • the warm-up attenuation values WLA for throttle valve angles between ⁇ 1 and ⁇ 2 are calculated by linear interpolation.
  • Cooling water temperature T W represents.
  • the characteristic curve a shows the warm-up factor at idle F WL, ⁇ ⁇ 1 of the ZB the values 1.5 at -30 ° C, 1.25 at 0 ° C, 1.10 at 30 ° C, 1.04 at 60 ° C and 1, 00 at 90 ° C assumes.
  • the characteristic curve b shows the warm-up factor at load F W, ⁇ > ⁇ 2, the values of which, for example, 2.00 at -30 ° C,
  • the two characteristic curves a, b and a value range 1 delimited between them are according to the equation
  • F WL (F WL, ⁇ > ⁇ 2 - 1).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

The above system measures the throttle valve angle and the rotation speed and transmits them to an electronic motor control which, during warming-up of the engine calculates on the basis of the starting temperature of the engine and throttle valve angle a heating factor designed to correct the quantity to be injected when the engine has warmed up. A heating reduction factor FWLA, depening on the engine starting temperature and the angle of the throttle valve, influences the heating factor FWL according to the equation FWL=(FWL, alpha>alpha2-1) FWLA+1, where FWL is the effective heating factor, FWL, alpha>alpha2 is the heating factor when loaded and FWLA is the heating reduction factor. This prevents additional and unwanted enrichment during the warming-up phase.

Description

Kraftstoff-EinspritzsystemFuel injection system
Stand der TechnikState of the art
Die Erfindung geht aus von einem Kraftstoff-Einspritzsystem gemäß Gattung des Hauptanspruchs.The invention is based on a fuel injection system according to the type of the main claim.
Bei einem Kaltstart eines Kraftfahrzeugs mit anschließendem Warmlauf sollte das Kraftstoff-Luftgemisch aus fahr- und abgastechnischen Gründen sowohl im Leerlauf als auch unter Last in einem eng begrenzten Bereich liegen. Dies kann nur realisiert werden, wenn neben der eingespritzten Kraftstoffmenge die durch den Stutzen angesaugte Luftmasse möglichst genau bekannt ist.In the event of a cold start of a motor vehicle with subsequent warm-up, the fuel-air mixture should be in a narrow range for idling and under load, both for idling and under load. This can only be achieved if, in addition to the amount of fuel injected, the air mass drawn in through the nozzle is known as precisely as possible.
Bei der herkömmlichen Warmlaufkorrektur wird nicht berücksichtigt, daß während des Warmlaufs unterschiedlich starke Temperaturdifferenzen zwischen Drosselklappe und dem sie umgebenden Stutzengehäuse auftreten. Diese Temperaturunterschiede sind dafür verantwortlich, daß das Stutzengehäuse sich stärker ausdehnt bzw. zusammenzieht als die Drosselklappe und daher der Öffnungsquerschnitt zwischen Stutzengehäuse und Drosselklappe insbesondere im Leerlaufbetrieb bis zu 15% kleiner werden kann. Diese temperaturabhängige Querschnittsveränd-erung, die von der Starttemperatur abhängig ist, bewirkt eine Anfettung des Kraftstoff-Luftgemisches während des Warmlaufs und wirkt sich im Leerlauf stärker aus als bei Last.The conventional warm-up correction does not take into account the fact that different temperature differences between the throttle valve and the surrounding connector housing occur during warm-up. These temperature differences are responsible for the fact that the nozzle housing expands or contracts more than the throttle valve and therefore the opening cross section between the nozzle housing and throttle valve can be up to 15% smaller, especially in idle mode. This temperature-dependent change in cross-section, which is dependent on the starting temperature, causes the fuel-air mixture to become rich during warm-up and has a stronger effect when idling than under load.
Vorteile der ErfindungAdvantages of the invention
Das erfindungsgemäße Einspritzsystem mit den Merkmalen des Hauptanspruchs hat den Vorteil, daß ein von der Starttemperatur des Motors und dem Drosselklappenwinkel abhängiger Warmlaufabschwächungsfaktor den Warmlauffaktor so korrigiert, daß die Temperaturunterschiede und die damit verbundene unterschiedliche Ausdehnung von Drosselklappe und Stutzengehäuse berücksichtigt sind. Durch diese Korrektur wird eine ungewollte zusätzliche Anfettung des Kraftstoff-Luftgemisches während des Warmlaufs im Leerlauf und leerlaufnahen Bereich vermieden. Bei der bevorzugten Ausführungsform besitzt der beimThe injection system according to the invention with the features of the main claim has the advantage that a warm-up weakening factor dependent on the starting temperature of the engine and the throttle valve angle corrects the warm-up factor in such a way that the temperature differences and the associated different expansion of the throttle valve and connector housing are taken into account. This correction prevents unwanted additional enrichment of the fuel-air mixture during warm-up in idle and near idle. In the preferred embodiment, the
Start berechnete Warmlaufabschwächungsfaktor einen Wert kleiner gleich 1, der mit dem Lastwarmlauffaktor multipliziert am Ende des Warmlaufs 1 ergibt, so daß bei Erreichen der Betriebstemperatur die normale Einspritzmenge bzw. Einspritzzeit gewährleistet wird, die der motorspezifischen Kennlinie zu entnehmen ist. Diese Kennlinie ist im Rechner der Motorsteuerung abgespeichert. Zur Bestimmung der Motortemperatur werden die der Motorsteuerung übermittelten Werte der Wassertemperatur verwendet.Start calculated warm-up attenuation factor is a value less than or equal to 1, which multiplied by the load warm-up factor at the end of warm-up results in 1, so that when the operating temperature is reached, the normal injection quantity or injection time is guaranteed, which can be found in the engine-specific characteristic curve. This characteristic curve is stored in the engine control computer. The values of the water temperature transmitted to the engine control are used to determine the engine temperature.
Durch die in den weiteren Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Einspritzsystems möglich.Advantageous developments and improvements of the injection system specified in the main claim are possible through the measures listed in the further subclaims.
Zeichnungdrawing
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:Embodiments of the invention are shown in the drawing and in the description below explained in more detail. Show it:
Figur. 1 einen Verlauf des Warmlaufabschwächungsfaktors FWLA in Abhängigkeit von der Kühlwassertemperatur des Motors beim Start,Figure. 1 shows a course of the warm-up weakening factor F WLA as a function of the cooling water temperature of the engine when starting,
Figur 2 einen Verlauf der Warmlaufabschwächung WLA bei einer Kühlwassertemperatur des Motors beim Start von -30 °C in Abhängigkeit vom Drosselklappenwinkel,FIG. 2 shows a course of the warm-up weakening WLA at a cooling water temperature of the engine at the start of -30 ° C. as a function of the throttle valve angle,
Figur 3 einen Verlauf der Warmlaufabschwächung WLA bei einer Kühlwassertemperatur des Motors beim Start von 0 °C in Abhängigkeit vom Drosselklappenwinkel,FIG. 3 shows a course of the warm-up weakening WLA at a cooling water temperature of the engine at the start of 0 ° C. as a function of the throttle valve angle,
Figur 4 einen Verlauf des Warmlauffaktors FWL bei einer Kühlwassertemperatur des Motors beim Start von -30 °C in Abhängigkeit von der momentanen Kühlwassertemperatur bei unterschiedlichen Drosselklappenwinkeln undFigure 4 shows a course of the warm-up factor F WL at a cooling water temperature of the engine at the start of -30 ° C as a function of the current cooling water temperature at different throttle valve angles and
Figur 5 einen Verlauf des Warmlauffaktors FWL bei einer Kühlwassertemperatur des Motors beim Start von 0 °C in Abhängigkeit von der momentanen Kühlwassertemperatur bei unterschiedlichen Drosselklappenwinkeln.FIG. 5 shows a course of the warm-up factor F WL at a cooling water temperature of the engine at the start of 0 ° C. as a function of the current cooling water temperature at different throttle valve angles.
Der in Figur 1 dargestellte Verlauf des Warmlaufabschwächungsfaktors FWLA hängt Von der Kühlwassertemperatur TW, Start. des Motors beim Start ab. Der Warmlaufabschwächungsfaktor FWLA besitzt bei -30 °C den Wert F1=0,5, bei 0 °C den Wert F2=0,75 und bei 60 °C den Wert F3= 1,0. Die dazwischenliegenden Werte des Warml a u f a bs chwä c hu n g s f a kt ors FWLA werden rechnerisch durch lineare Interpolation bestimmt. Bei einer Kühlwassertemperatur TW , Start, größer als 60 °C beträgt der Wert des Warmlaufabschwächungsfaktors FWL A =1,0, d.h. es gibt ab einer Starttemperatur von 60 °C keine Warmlaufabschwächung mehr, da ab dieser Temperatur für alle Drosselklappenwinkel der Lastwarmlauffaktor FWL, a>a2 gilt.The course of the warm-up attenuation factor F WLA shown in FIG. 1 depends on the cooling water temperature T W , Start. of the engine when starting. The warm-up attenuation factor F WLA has the value F 1 = 0.5 at -30 ° C, the value F 2 = 0.75 at 0 ° C and the value F 3 = 1.0 at 60 ° C. The intermediate values of the warm-up factor F WLA are calculated by linear interpolation. At a cooling water temperature T W , start, greater than 60 ° C, the warm-up attenuation factor F WL A = 1.0, ie there are none from a start temperature of 60 ° C Warm-up reduction more, since from this temperature the load warm-up factor F WL, a> a2 applies to all throttle valve angles.
In Figur 2 ist ein möglicher Verlauf der Warmlaufabschwärjhung WLA bei einer Kühlwassertemperatur TW, Start beim Start des Motors von -30 °C in Abhängigkeit vom Drosselklappenwinkel α dargestellt. Die Warmlaufabschwächung WLA besitzt bis zu einem Drosselklappenwinkelα1 =5° den Wert F1 =0,5. Wird der Drosselklappenwinkel α auf ungefähr 12° erhöht, dann nimmt der Wert der Warmlaufabschwächung WLA bis auf 1,0 zu, d.h. es gibt keine Warmlaufabschwächung mehr, da dann der Lastwarmlauffaktor FWL,α>α2 verwendet wird. Die zwischen den Drosselklappenwinkeln α1 undα2 liegenden Werte der Warmlaufabschwächung WLA werden rechnerisch durch lineare Interpolation ermittelt.FIG. 2 shows a possible course of the warm-up heat recovery WLA at a cooling water temperature T W, starting at -30 ° C. as a function of the throttle valve angle α. The warm-up reduction WLA has the value F 1 = 0.5 up to a throttle valve angle α 1 = 5 °. If the throttle valve angle α is increased to approximately 12 °, the value of the warm-up weakening WLA increases to 1.0, ie there is no longer any warm-up weakening, since the load warming factor F WL, α> α2 is then used. The values of the warm-up weakening WLA lying between the throttle valve angles α 1 and α 2 are calculated by means of linear interpolation.
Der in Figur 3 beispielsweise angegebene Verlauf der Warmlaufabschwächung WLA gilt für eine Kühlwassertemperatur TW Start des Motors beim Start von 0 °C. ImThe example given in Figure 3 the course of the warm-attenuation WLA applies to a cooling water temperature TW start of the engine at the start of 0 ° C. in the
Unterschied zu Figur 2 ergibt sich für die Warmlaufabschwächung WLA bis zu einem Drαsselklappenwinkel et der Wert F2=0,75. Die Werte der Warmlaufabschwächung WLA bei Drosselklappenwinkeln zwischen α1 und α2 ergeben sich rechnerisch durch lineare Interpolation.In contrast to FIG. 2, the value F 2 = 0.75 results for the warm-up weakening WLA up to a throttle valve angle et. The warm-up attenuation values WLA for throttle valve angles between α 1 and α 2 are calculated by linear interpolation.
Figur 4 stellt den Verlauf des Warmlauffa ktors FWL bei einer Kühlwassertemperatur des Motors beim Start TW,Start =-30 º C in Abhängigkeit von der momentanenFIG. 4 shows the course of the warm-up factor F WL at a cooling water temperature of the engine at the start T W, start = -30 ° C. as a function of the current one
Kühlwassertemperatur TW dar. Der Warmlaufabschwächungsfaktor FWLA nimmt dann nach Figur 1 den Wert F1=0,5 an. Die Kennlinie a zeigt den Warmlauffaktor bei Leerlauf FWL , α≤ α1 der Z.B. die Werte 1.5 bei -30 °C, 1,25 bei 0 ºc, 1,10 bei 30 °C, 1,04 bei 60 °C und 1,00 bei 90 °C annimmt. Die Kennlinie b zeigt dagegen den Warmlauffaktor bei Last FW ,α>α2,dessen Werte z.B. 2,00 bei -30 °C,Cooling water temperature T W represents. The warm-up attenuation factor F WLA then assumes the value F 1 = 0.5 according to FIG. The characteristic curve a shows the warm-up factor at idle F WL, α≤ α1 of the ZB the values 1.5 at -30 ° C, 1.25 at 0 ° C, 1.10 at 30 ° C, 1.04 at 60 ° C and 1, 00 at 90 ° C assumes. The characteristic curve b, on the other hand, shows the warm-up factor at load F W, α> α2, the values of which, for example, 2.00 at -30 ° C,
1,50 bei 0 °C, 1,20 bei 30 °C, 1,08 bei 60 °C und 1,00 bei 90 °C betragen. Der schraffierte Wertebereich 1 gibt die Werte für den Warmlauffaktor FWL i.n Abhängigkeit vom Drosselklappenwinkel α an, der beispielsweise zwischen α1=5º und α2=15° liegen kann. Die beiden Kennlinien a, b und ein zwischen ihnen eingegrenzter Wertebereich 1 werden gemäß Gleichung1.50 at 0 ° C, 1.20 at 30 ° C, 1.08 at 60 ° C and 1.00 at 90 ° C. The hatched value range 1 indicates the values for the warm-up factor F WL as a function of the throttle valve angle α, which can be, for example, between α 1 = 5 ° and α 2 = 15 °. The two characteristic curves a, b and a value range 1 delimited between them are according to the equation
FW L= ( FW L , α > α 2 - 1 ) . FWLA+1F WL = (F WL, α> α 2 - 1). F WLA +1
bestimmt. Bei einem Drosselklappenwinkel α>α2 gibt es keine Warmlaufabschwächung mehr, d.h. es gilt der Lastwarmlauffaktor F WL α>α2 certainly. With a throttle valve angle α> α2 there is no longer any warm-up reduction, ie the load warm-up factor F WL α> α2 applies
Bei dem in Figur 5 dargestellten Verlauf des Warmlauffaktors FWL wird von einer beim Start vorhandenen Kühl¬In the course of the warm-up factor F WL shown in FIG
Wassertemperatur TW, Start=0 °C ausgegangen. Die sich daraus ergebenden Werte sind entsprechend dem Diagramm zu entnehmen, wobei der Warmlaufabschwächungsfaktor FWL A gemäß Figur 1 den Wert F2=0,75 annimmt. Water temperature T W, start = 0 ° C assumed. The resulting values are shown in the diagram, the warm-up attenuation factor F WL A according to FIG. 1 assuming the value F 2 = 0.75.

Claims

Patentansprüche Claims
1. Kraftstoff-Einspritzsystem, bei dem der Drαsselklappenwinkel und die Drehzahl gemessen und einer elektronischen Motorsteuerung zugeführt werden, die während des Warmlaufs in Abhängigkeit von der Starttemperatur des Motors und dem Drosselklappenwinkel eine Warrnlaufanreicherung zur Korrektur der bei betriebswarmem Motor erforderlichen Einspritzmenge berechnet, dadurch gekennzeichnet, daß ein von der Starttemperatur des Motors abhängiger Warmlaufabschwächungsfaktor FWL A, der beim Start berechnet wird und einen Wert kleiner gleich 1 besitzt in Abhängigkeit vom Drosselklappenwinkelα den Warmlauffaktor FWL gemäß der Gleichung1. A fuel injection system in which the throttle valve angle and the speed are measured and fed to an electronic engine control system which, during warm-up, calculates an accumulation of warm-up depending on the starting temperature of the engine and the throttle valve angle to correct the injection quantity required when the engine is warm, characterized in that that a warm-up attenuation factor F WL A which is dependent on the starting temperature of the engine and which is calculated at the start and has a value less than or equal to 1 has the warm-up factor F WL according to the equation, depending on the throttle valve angle α
FWL= (FWL, α>α2-1).F WLA +1F WL = (F WL, α> α2 -1). F WLA +1
beeinflußt, wobei F WL der tatsächliche Warmlauffaktor undinfluenced, where F WL is the actual warm-up factor and
FWL ,α>α2 d er Warmlauffaktor bei Last ist.F WL, α> α2 is the warm-up factor under load.
2. Einspritzsy stem nach Anspruch 1, dadurch gekennzeichnet, daß der Warmlaufabschwächungsfaktor FWLA bei höherer Starttemperatur einen höheren und bei niedrigerer Starttemperatur einen kleineren Wert einnimmt und bei einer Starttemperatur von größer gleich 60 °C den Wert 1 b esitzt .2. Injection system according to claim 1, characterized in that the warm-up attenuation factor F WLA assumes a higher value at a higher starting temperature and a smaller value at a lower starting temperature and the value at a starting temperature of greater than or equal to 60 ° C 1 b.
3. Einspritzsystem nach Anspruch 2, dadurch gekennzeichnet, daß der Warmlaufabschwächungsfaktor FWLA bei einer Starttemperatur von -30 °C 0,5, bei 0 °C 0,75 und bei über 60 °C 1,0 beträgt und dazwischenliegenden Werte durch lineare Interpolation rechnerisch festgelegt werden.3. Injection system according to claim 2, characterized in that the warm-up reduction factor F WLA is 0.5 at a starting temperature of -30 ° C, 0.75 at 0 ° C and 1.0 at over 60 ° C and values in between by linear interpolation be determined mathematically.
4. Einspritzsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Warmlaufabsctiwächungsfaktor FWLA bei einem kleinen Drαsselklappenwinkel, der beispielsweise zwischen 0° und 5° liegt, bei gleicher Starttemperatur, jedoch beliebiger momentaner Temperatur des Kühlwassers konstant ist.4. Injection system according to one of the preceding claims, characterized in that the warm-up absorption factor F WLA is constant at a small throttle valve angle, which is for example between 0 ° and 5 °, at the same starting temperature but any instantaneous temperature of the cooling water.
5. Einspritzsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der beim Start berechnete Warmlaufabschwächungsfaktor FWLA in Abhängigkeit vom Drosselklappenwinkel im Winkelbereich zwischen ungefähr 5° und 15° linear von seinem ursprünglichen Wert auf den Wert 1 ansteigt.5. Injection system according to one of the preceding claims, characterized in that the warm-up attenuation factor F WLA calculated at the start increases linearly from its original value to the value 1 as a function of the throttle valve angle in the angular range between approximately 5 ° and 15 °.
6. Einspritzsystem nach einem der vorhergehenden AnSprüche, dadurch gekennzeichnet, daß der Warmlauffaktor FWL , α>α2 ungefähr 2,0 bei -30 °C, 1,5 bei 0 °C, 1,20 bei 30 °C, 1,08 bei 60 °C und 1,0 bei 90 °C beträgt, und die dazwischenliegenden Werte durch lineare Interpolation rechnerisch festgelegt werden. 6. Injection system according to one of the preceding claims, characterized in that the warm-up factor F WL, α> α2 approximately 2.0 at -30 ° C, 1.5 at 0 ° C, 1.20 at 30 ° C, 1.08 at 60 ° C and 1.0 at 90 ° C, and the values in between are determined by linear interpolation.
PCT/DE1986/000248 1985-10-30 1986-06-13 Fuel injection system WO1987002740A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR870700559A KR880700157A (en) 1985-10-30 1987-06-29 Fuel injection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853538520 DE3538520A1 (en) 1985-10-30 1985-10-30 FUEL INJECTION SYSTEM
DEP3538520.0 1985-10-30

Publications (1)

Publication Number Publication Date
WO1987002740A1 true WO1987002740A1 (en) 1987-05-07

Family

ID=6284769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1986/000248 WO1987002740A1 (en) 1985-10-30 1986-06-13 Fuel injection system

Country Status (5)

Country Link
EP (1) EP0244419A1 (en)
JP (1) JPS63501234A (en)
KR (1) KR880700157A (en)
DE (1) DE3538520A1 (en)
WO (1) WO1987002740A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19646941A1 (en) * 1996-11-13 1998-05-14 Bayerische Motoren Werke Ag Method for regulating the air-fuel ratio of an internal combustion engine after starting

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3914615C2 (en) * 1989-05-03 1997-08-07 Vdo Schindling Process and arrangement for triggering full-load enrichment
US5806486A (en) * 1997-10-06 1998-09-15 Ford Global Technologies, Inc. Automative engine idle speed control
US9926870B2 (en) * 2010-09-08 2018-03-27 Honda Motor Co, Ltd. Warm-up control apparatus for general-purpose engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2519086A1 (en) * 1981-12-29 1983-07-01 Sibe Air-fuel mixture regulator for IC engine - uses microprocessor controlled fuel injector responsive to engine parameters, in addition to vacuum aspirated carburettor
US4437445A (en) * 1981-08-13 1984-03-20 Toyota Jidosha Kabushiki Kaisha Method and apparatus for controlling the fuel feeding rate of an internal combustion engine
US4501247A (en) * 1982-02-10 1985-02-26 Robert Bosch Gmbh Electronically controllable and regulatable fuel metering system of an internal combustion engine
GB2146800A (en) * 1983-09-12 1985-04-24 Honda Motor Co Ltd Fuel supply control method for internal combustion engines immediately after cranking
US4548178A (en) * 1982-11-22 1985-10-22 Toyota Jidosha Kabushiki Kaisha Method and apparatus for controlling the air-fuel ratio in an internal-combustion engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2612913C2 (en) * 1976-03-26 1984-11-08 Robert Bosch Gmbh, 7000 Stuttgart Method for warm-up enrichment of the fuel-air mixture supplied to an internal combustion engine and warm-up enrichment circuit
DE2948867A1 (en) * 1979-12-05 1981-06-11 Robert Bosch Gmbh, 7000 Stuttgart CONTROL DEVICE FOR A FUEL METERING SYSTEM OF AN INTERNAL COMBUSTION ENGINE
DE3207787A1 (en) * 1982-03-04 1983-09-08 Robert Bosch Gmbh, 7000 Stuttgart FUEL FEEDING SYSTEM FOR AN INTERNAL COMBUSTION ENGINE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437445A (en) * 1981-08-13 1984-03-20 Toyota Jidosha Kabushiki Kaisha Method and apparatus for controlling the fuel feeding rate of an internal combustion engine
FR2519086A1 (en) * 1981-12-29 1983-07-01 Sibe Air-fuel mixture regulator for IC engine - uses microprocessor controlled fuel injector responsive to engine parameters, in addition to vacuum aspirated carburettor
US4501247A (en) * 1982-02-10 1985-02-26 Robert Bosch Gmbh Electronically controllable and regulatable fuel metering system of an internal combustion engine
US4548178A (en) * 1982-11-22 1985-10-22 Toyota Jidosha Kabushiki Kaisha Method and apparatus for controlling the air-fuel ratio in an internal-combustion engine
GB2146800A (en) * 1983-09-12 1985-04-24 Honda Motor Co Ltd Fuel supply control method for internal combustion engines immediately after cranking

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19646941A1 (en) * 1996-11-13 1998-05-14 Bayerische Motoren Werke Ag Method for regulating the air-fuel ratio of an internal combustion engine after starting

Also Published As

Publication number Publication date
EP0244419A1 (en) 1987-11-11
JPS63501234A (en) 1988-05-12
KR880700157A (en) 1988-02-20
DE3538520A1 (en) 1987-05-07

Similar Documents

Publication Publication Date Title
DE3717368C2 (en) Device for damping jerky vibrations in motor vehicles
DE19607151C1 (en) Regeneration of nitrogen oxide storage catalyst
DE4117440C2 (en) Adaptive fuel / air mixture setting to take fuel properties into account
DE4033500C2 (en)
DE19803653B4 (en) Control device for direct injection engines
DE3129726A1 (en) "METHOD AND DEVICE FOR OPERATING AN INTERNAL COMBUSTION ENGINE WITH TWO DIFFERENT TYPES OF FUEL"
DE3302931A1 (en) METHOD AND DEVICE FOR REGULATING THE IDLE SPEED OF AN INTERNAL COMBUSTION ENGINE
DE19754913A1 (en) Method and system for controlling fuel injector pulse width based on fuel temperature
DE19630944A1 (en) Engine fueling control device
WO2003087560A1 (en) Device for determining fuel quality and corresponding method
EP0051723A2 (en) Method of operating an electronic control system for an internal-combustion engine
DE3330700C2 (en)
DE4141946A1 (en) METHOD AND DEVICE FOR CONTROLLING THE OPERATION OF A SECONDARY AIR PUMP
EP0890724A2 (en) Method for operating a combustion engine for protecting an exhaust gas processing device
DE3545812A1 (en) ARRANGEMENT FOR REGULATING THE AIR FUEL RATIO FOR A MOTOR VEHICLE ENGINE
WO1987002740A1 (en) Fuel injection system
DE3501669A1 (en) FUEL INJECTION DEVICE FOR A COMBUSTION ENGINE
DE3537996A1 (en) START CONTROL FOR FUEL INJECTION SYSTEMS
EP0525120B1 (en) Process for controlling the speed of an internal combustion engine after starting
DE19933712A1 (en) Method for controlling an operating mode of an internal combustion engine
DE3627419A1 (en) METHOD FOR REGULATING FUEL INJECTION
DE4205050C2 (en) Control device for an internal combustion engine
DE69020029T2 (en) Device for fuel injection for an electronically controlled internal combustion engine.
WO2002020966A1 (en) Method for determining a hot-start situation in an internal combustion engine
DE3231766A1 (en) DEVICE FOR REGULATING THE IDLE SPEED IN AN INTERNAL COMBUSTION ENGINE

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1986903247

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1986903247

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1986903247

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1986903247

Country of ref document: EP