WO1986003700A1 - Method of manufacturing spheroidal metal granules - Google Patents

Method of manufacturing spheroidal metal granules Download PDF

Info

Publication number
WO1986003700A1
WO1986003700A1 PCT/JP1984/000613 JP8400613W WO8603700A1 WO 1986003700 A1 WO1986003700 A1 WO 1986003700A1 JP 8400613 W JP8400613 W JP 8400613W WO 8603700 A1 WO8603700 A1 WO 8603700A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
molten metal
alloy
oil
nozzle
Prior art date
Application number
PCT/JP1984/000613
Other languages
French (fr)
Japanese (ja)
Inventor
Ritsue Yabuki
Junya Ohe
Original Assignee
Mitsubishi Kinzoku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP58221896A external-priority patent/JPS60114508A/en
Application filed by Mitsubishi Kinzoku Kabushiki Kaisha filed Critical Mitsubishi Kinzoku Kabushiki Kaisha
Priority to KR1019850700001A priority Critical patent/KR900007962B1/en
Priority to PCT/JP1984/000613 priority patent/WO1986003700A1/en
Publication of WO1986003700A1 publication Critical patent/WO1986003700A1/en
Priority to SE8603557A priority patent/SE8603557D0/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/086Cooling after atomisation
    • B22F2009/0864Cooling after atomisation by oil, other non-aqueous fluid or fluid-bed cooling

Definitions

  • the present invention relates to a method for producing spherical metal particles (including alloys) having regular dimensions.
  • a cemented carbide tip (made of WC-Co sintered alloy) is brazed or a Co-based surface hardening alloy [eg Statorite 3 ⁇ 4 1 (Co-30 wt 3 ⁇ 4 Cr-1 12 wt ⁇ W-2.5 wt C!] Etc. are hand-welded with oxygen-acetylene gas (hereinafter referred to as "gas-welded JT welding"), It has generally been the case that it is hard-cured.
  • gas-welded JT welding oxygen-acetylene gas
  • the exhaust pallets and intake pulp shaft ends of gasoline engines and diesel engines require particularly wear resistance because they are struck by the mouth force arm each time the pal: / is opened or closed.
  • the above-mentioned stellite 1 is hard-welded by overlay welding, but in recent years, it has been possible to reduce the amount of welding even to the difficult axis of welding such as the thin and gas-like welding like pulp for small engines. It has become necessary to supply a fixed amount of surface-hardened alloys in order to carry out hard metal hardening work.
  • the raw material mother alloy is used to add the active metal, but in the case of continuous casting, the molten metal is retained in the furnace for a long time, so its surface Part of the active metal acid It is said that the change occurs and component fluctuation occurs. Therefore, in order to compensate for the oxidative loss of the active metal, it is necessary to continuously add the active metal to the molten metal in small amounts at a constant rate and continuously.
  • the supplementary addition of such an inactive metal component is carried out by weighing a plate material, a lump material, or a chip-shaped material and intermittently introducing it by hand.
  • the build-up alloy and the supply mother alloy have a shape in which granular or spherical rollers are easily formed, and that continuous quantitative addition is carried out while this is done. It is being adopted as a thing.
  • the shape of the supply metal alloy in the automatic metallurgical device for surface hardening metal alloy should be changed from rod to grain! ), And the demand for active metal master alloys added to copper alloys has changed to spherical ones and having a certain weight.
  • the means for directly producing metal particles from a molten metal was mainly used for low melting point metals such as tin, pig iron and zinc, but as a typical example thereof, a saucer (tundish with many small holes is used. It is possible to pour the molten metal into), drop the molten metal into the small holes and drop it into water or low-viscosity oil, and allow it to solidify.
  • the inventors of the present invention particularly find a method of producing a spherical metal particle having a desired size and a high yield, which can be applied to a metal having a high melting point and poor workability. Focusing on the high efficiency of the method of directly obtaining metal particles from the molten metal, various studies were conducted on the structure of the refractory container and nozzle used for it, the heating melting and dropping means, and the solidification-cooling means. As a result, the following findings (a) to () have been obtained.
  • the metal in the refractory container or the molten alloy prepared to the specified composition is dripped into a small liquid droplet from the small hole nozzle provided at the bottom of the refractory container and solidified in the coolant.
  • the small hole nozzle has an inner diameter of 0.3 to 3.0 Use one that has one or two or more straight holes, and the molten metal droplets from this small hole diameter nozzle have an upper layer viscosity: ISO (International Viscosity Standard) VG
  • the refractory container used in the method of the present invention is a tundish type container that simply holds molten metal and keeps it warm, or has a carbon heating element for keeping warm outside, and stores it by high-frequency induction heating. In other words, it means anything that can hold molten metal and supply it to the outside of the container through a nozzle at the bottom, such as a crucible furnace type.
  • the inner diameter of the vertical hole of the small hole diameter nozzle provided at the bottom of the refractory container is limited to 0.3 to 3.0 hulls because the surface of the molten metal is limited if the inner diameter of the vertical hole is less than 0.3 »0. Even if the molten metal is added due to the tension, it does not flow down from the nozzle to the extent that it can be used practically. The reason is that even if it falls into the oil layer, it will not form a metal particle of a fixed shape in the shape of a pearl or a teardrop. And, in order to stably obtain the desired spherical metal particles, it is preferable to adjust the inner diameter of the vertical hole of the nozzle to about 0.5 to 2.0, and to improve workability and maintenance. From a theoretical point of view, it is recommended to replace the nozzle with a firing nozzle that can be freely replaced. If the nozzle hole is provided vertically, It becomes difficult to obtain granular droplets.
  • the viscosity of the oil used as a coolant is limited to ISO VG "10 to 680.
  • the speed of the molten metal droplet passing through the oil layer is high due to insufficient viscosity, Shaped droplets are shaped into spheres and the thickness of the oil layer required to form a solidified shell increases!), And it becomes necessary to deepen the cooling tank.
  • the cooling oil should have a viscosity of IS ⁇ VG "10 to 680, and it should have a viscosity of S OV & 3 2 to 460 (equivalent to SAE l 0W to SAE 10). Those with are recommended.
  • the molten metal droplets can be solidified into the desired spherical shape, but if workability is taken into consideration, the flash point .: 150 ° It is preferable to use a lubricating oil of C or higher (preferably -200 ° C or higher) (whether for automobiles, ships, industrial use, or general use). This is because the refractory container that holds the molten metal is close to the surface of the oil, which is the cooling liquid, so that there is no risk of oil ignition.
  • the surface of the oil layer should be inert gas or carbon dioxide. It is possible to prevent the oil from catching fire by covering it in a gas atmosphere and performing the work.
  • the thickness of the oil layer may be such that the molten metal droplets can form a spherical shell on the surface while passing through the layer, and, of course, the droplets are completely solidified in the oil layer. It doesn't matter.
  • the value of the inner diameter of the nozzle vertical hole, the viscosity range of the cooling oil, etc. as described above may not be applicable only to the production of spherical particles such as surface hardening hardfacing alloy and copper master alloy like Stellite. Needless to say, it is also a condition for surely forming spherical particles of various other metals or alloys.
  • any material generally known as a material for handling molten metal such as aluminum, magnesia, and zirconia can be used] 9
  • the particle size can also be appropriately selected depending on the type of metal, the size of spherical metal particles to be produced, and the like.
  • FIG. 1 is a schematic vertical cross-sectional schematic view of one example of a molten metal dropping device (refractory container) used in the present invention
  • FIG. 2 is a vertical section showing another example of the molten metal dropping device used in the present invention
  • FIG. 3 is a schematic diagram of a plane
  • FIG. 3 is a schematic diagram of a vertical cross section of the spherical metal particle manufacturing apparatus used in the examples of the present invention.
  • the refractory container shown in Fig. 1 consists of an aluminum crucible 3 with a small hole nozzle 2 made of aluminum and having a plurality of vertical holes 1 at the bottom J?
  • the outside of 3 is surrounded by a heating element 4 made of carbon, and it is located inside a high frequency induction heating coil 5.
  • the reference numeral 6 indicates that the heating element 4 made of carbon dioxide and the high-frequency induction heating coil 5 are held and the radiant heat is applied.
  • the raw material alloy 7 previously melted to the desired composition is charged into the crucible 3, heated and melted by the high-frequency induction coil 5, and the liquid from the lower end of the small hole nozzle 2 is melted. Drop 8 into the cooling liquid.
  • Fig. 2 it is applied when the diameter of the vertical hole of the nozzle is extremely small.
  • the main part has the same structure as that shown in Fig. 1 (in Fig. 2, those having the same function as in Fig. 1 are denoted by the same reference numerals), but in this example, the crucible 3
  • the opening of the is covered with a refractory wool 9 for preventing leakage of inert gas (including reducing gas), and a lid 11 having an inlet 10 for inert gas (including reducing gas) is used. Therefore, it is possible to pressurize the melted raw material alloy 7 with an inert gas, so that even if the diameter of the vertical hole 1 of the small-diameter nozzle 2 is small, the droplet will be smoothed. It is possible to drop it.
  • each one of these raw materials was melted using an apparatus as shown in FIG. 3, and dropped into a cooling liquid to produce each spherical alloy grain.
  • the refractory container is Similar to the one shown in Fig. 1 except that there is one vertical hole in the crane.
  • Drop of liquid droplet'Coagulation part is as follows. That is, below the alumina refractory material 6, there is provided a heat insulating water cooling board 13 for preventing the temperature of the cooling oil 12 from rising due to the radiant heat of the heating element. It is equipped with an inert gas inlet 14 for introducing an inert gas to prevent this.
  • a cooling cylinder 15 and a spherical metal particle receptor 16 are arranged next to the water cooling board 13 for heat insulation.] Inside the cooling cylinder 15, cooling oil 12 and cooling water 17 are contained in a two-layer state. There is.
  • the reference numeral 18 indicates a water-cooled corrugated pipe for suppressing the temperature rise of the cooling oil 12, and the reference numeral 19 indicates spherical metal particles.
  • the vertical hole diameters are different for each alloy shown in Table 1 above.
  • the lubricating oil of was used.
  • the vertical diameter of the nozzle was set to 0.1 rai? 5 , 0.3 wisteria 0, 0.5 dragon 0, 0.6 mm ⁇ , 0.7 ⁇ , 0.8 basket 0, 1 0.0 mm, 1.5 ⁇ , 2.0 ⁇ ⁇ , 3.0 j »0 and 4.0 were changed to produce the alloy grains, and the results shown in Table 3 were obtained.
  • Type C Fe W Si B Go + Impurity Ni + Impurity Cu + Impurity
  • Type 154 182 183 ⁇ 242 243 ⁇ 285 286 ⁇ 32 360 ⁇ 50 Lord 505 ⁇ 540 541 ⁇ 567
  • spherical metal particles of a desired size can be mass-produced relatively easily in a single cylinder and at a high rate of mass production.

Abstract

Spheroidal metal granule manufacturing method in which a molten metal or alloy in a container of a refractory is arranged to drop in the form of a small droplet from a small-diameter nozzle provided in the bottom of the container and is solidified in a cooling medium to thereby obtain a metal granule, the method comprising the steps of: employing the small-diameter nozzle having one or more vertical bores with an inside diameter of 0.3 to 3.0 mmo/; making the molten metal drop from the nozzle into a cooling liquid constituted by two layers, that is, an upper layer of an oil having a viscosity of ISOVG 10 to 680 (International Standards of Viscosity Grade) and a lower layer of water; and passing the molten metal through the liquid such that the molten metal is solidified and cooled, whereby it is possible to manufacture spheroidal metal granules having a uniform shape at high yield and efficiency.

Description

明 細 書  Specification
〔 発明の名称 〕  [Title of Invention]
球状金属粒の製造方法  Method for producing spherical metal particles
〔 技術分野 〕  〔 Technical field 〕
この発明は、 寸法 '形状の整った球状金属(合金をも含む) 粒の製造方法に関するものである。  The present invention relates to a method for producing spherical metal particles (including alloys) having regular dimensions.
〔 背景技術 〕  [Background technology]
近年、 製材用帯鋸等の刃先に、 切れ味の向上や寿命延命化の ため、 例えば超硬チップ( W C - Co焼結合金から成るもの)を ろう付けしたり、 或いは Co基の表面硬化合金〔 例えばステラ ィ ト ¾ 1 ( Co - 3 0重量 ¾ Cr一 1 2重量^ W - 2.5重量 C! ) 〕 等を酸素 - アセチレンガスによって手盛溶接(以下、 「ガス盛 JT溶接」 と称する) し、 盛金硬化することが一般的に ¾つてき た。  In recent years, for the purpose of improving sharpness and prolonging the life of cutting blades such as saw blades for sawing, for example, a cemented carbide tip (made of WC-Co sintered alloy) is brazed or a Co-based surface hardening alloy [eg Statorite ¾ 1 (Co-30 wt ¾ Cr-1 12 wt ^ W-2.5 wt C!)] Etc. are hand-welded with oxygen-acetylene gas (hereinafter referred to as "gas-welded JT welding"), It has generally been the case that it is hard-cured.
一方、 ガソ リ ンエンジンやディ一ゼルエンジンの排気パルブ や吸気パルプの軸端は、 パル:/の開閉のたびに口ッ力一アーム で叩かれることから特に耐摩耗性を必要とし、 そのため、 通常 は前記ステライ ト ½ 1を肉盛溶接して る盛金硬化がなされて いるが、 近年では、 小型エンジン用のパルプのような細くてガ ス盛]?溶接の困難 軸にまで、 小量の表面硬化合金を定量ずつ 供給して盛金硬化作業を行うことが要求されるようになつてい る。  On the other hand, the exhaust pallets and intake pulp shaft ends of gasoline engines and diesel engines require particularly wear resistance because they are struck by the mouth force arm each time the pal: / is opened or closed. Usually, the above-mentioned stellite 1 is hard-welded by overlay welding, but in recent years, it has been possible to reduce the amount of welding even to the difficult axis of welding such as the thin and gas-like welding like pulp for small engines. It has become necessary to supply a fixed amount of surface-hardened alloys in order to carry out hard metal hardening work.
また、 他方、 銅合金の連続銕造では活性金属の添加に原料母 合金が使用されるが、 連続錡造の場合には溶融金属が炉中で長 時間に亘つて保持されるので、 その表面部で前記活性金属の酸 化が起って成分的 変動を生ずることと ¾る。 従って、 活性金 属の酸化損失を補償するため、 前記溶融金属中へ少量ずつ一定 の割合で、 かつ連続的に該活性金属の補充添加を行うことが必 要とされている。 そして、 現状では、 活性金属のこのようる不 足分の補充添加は、 板材、 塊材、 或いは切粉形態のものを秤量 して間歇的に手で投入するという方法で行われている。 On the other hand, in the continuous ironmaking of copper alloys, the raw material mother alloy is used to add the active metal, but in the case of continuous casting, the molten metal is retained in the furnace for a long time, so its surface Part of the active metal acid It is said that the change occurs and component fluctuation occurs. Therefore, in order to compensate for the oxidative loss of the active metal, it is necessary to continuously add the active metal to the molten metal in small amounts at a constant rate and continuously. At present, the supplementary addition of such an inactive metal component is carried out by weighing a plate material, a lump material, or a chip-shaped material and intermittently introducing it by hand.
ところで、 最近になって、 製材用の帯鋸の刃先に表面硬化合 金を自動的に肉盛する自動溶接装置が開発され、 肉盛 ·研削仕 上げ作業の自動化、 省力化が図られるようになってきた。  By the way, recently, an automatic welding device has been developed that automatically builds up a surface hardening alloy on the cutting edge of a band saw for sawing, which has made it possible to automate the build-up / grinding work and save labor. Came.
また、 エンジンパルプの軸端の肉盛溶接も自動溶接装置が開 発されつつあ J?、 更に、 銅合金の連続篛造に於ける活性金属母 合金の添加作業にも自動化の検討が加えられている。  In addition, automatic welding equipment is being developed for overlay welding of shaft ends of engine pulp. In addition, automation studies are being added to the work of adding the active metal master alloy in the continuous production of copper alloys.
そして、 これら各作 ¾ の自動化にあたっては、 肉盛合金や供 給母合金を、 粒状や球状のころが ]3やすい形状とし、 これをこ ろがしながら連続的 定量添加を行う方式が最も好ましいもの として採用されつつある。  Then, in automating each of these operations, it is most preferable that the build-up alloy and the supply mother alloy have a shape in which granular or spherical rollers are easily formed, and that continuous quantitative addition is carried out while this is done. It is being adopted as a thing.
従って、 表面硬化盛金合金の自動化盛金装置に於ける供給盛 金合金の形状は、 棒から粒へと変化するように !)、 また、 銅 合金に添加する活性金属母合金も、 球状で、 かつ一定の重量を 持つものへと要望が変わってきている。  Therefore, the shape of the supply metal alloy in the automatic metallurgical device for surface hardening metal alloy should be changed from rod to grain! ), And the demand for active metal master alloys added to copper alloys has changed to spherical ones and having a certain weight.
このようなことから、 盛金合金や母合金等の供給の自動化推 進にあたっては、 所望寸法でパラツキの無い球状金属粒の製造 が必須と ¾るが、 このような金属粒の製造方法として、 従来、 溶湯から金属粒を直接製造する種々の手段が提案され、 実際に 採用されてもいる。 しかしながら、 溶湯から球状の金属粒(以 下、 合金粒をも含む)を製造することは極めて困難ることであ ]?、 未だ次の様な各種の問題を解決できずにいたのである。 From the above, it is essential to manufacture spherical metal particles having desired dimensions and no fluctuations in order to promote the automation of supply of hot-melt alloys and mother alloys. Conventionally, various means for directly producing metal particles from a molten metal have been proposed and actually used. However, spherical metal particles (below It is extremely difficult to manufacture (including alloy particles below) ??, but we have not yet been able to solve various problems such as the following.
即ち、 金属粒を溶湯から直接的に製造する手段は、 錫、 銥及 び亜鉛のよう 低融点金属に主として採用されていたが、 その 代表的なものとして、 多数の小孔を有する受皿( タンデッシュ) に金属の溶湯を注ぎ、 その小孔ょ ir滴下する溶湯を水中又は粘 度の低 油中に落下させて、 その中で凝固せしめる方法をあげ ることができる。  That is, the means for directly producing metal particles from a molten metal was mainly used for low melting point metals such as tin, pig iron and zinc, but as a typical example thereof, a saucer (tundish with many small holes is used. It is possible to pour the molten metal into), drop the molten metal into the small holes and drop it into water or low-viscosity oil, and allow it to solidify.
ところが、 この方法によって金属粒を製造する場合には、 液 滴が涙滴状になった 大きさが不揃いに った])する上、 液滴 が水中又は油中に落下したときに形が崩れた b細かく分散した するために、 所定の大きさの球状の金属粒の叹率が余])良く なかったのである。  However, in the case of producing metal particles by this method, the size of the liquid droplets became teardrop-shaped and the sizes were not uniform]), and when the liquid droplets dropped into water or oil, the shape collapsed. B) Because of the fine dispersion, the rate of spherical metal particles of a given size was not good).
更に、 ステライ ト等の表面硬化用合金の様に、 高融点で非常 に延性の少 い金属にこのようる方法を適用すると、 急冷によ る熱歪のために割れるという問題点もあった。  Further, when such a method is applied to a metal having a high melting point and a very low ductility, such as a surface hardening alloy such as stellite, there is a problem that cracking occurs due to thermal strain due to quenching.
〔 発明の要約 〕  [Summary of Invention]
本発明者等は、 上述のよう ¾観点から、 高融点で、 しかも加 ェ性の乏しい金属にも適用でき、 かつ所望の大きさの球状金属 粒を収率良く製造する方法を見出すべく、 特に、 溶湯から金属 粒を直接的に得る方法の高能率性に着目じて、 それに使用する 耐火物容器とノズルの構造、 加熱溶解 ·滴下手段、 並びに凝固- 冷却手段等に関する各種の研究を重ねた結果、 以下 (a)〜( に示 される如き知見を得るに至ったのである。 即ち、  From the above viewpoints, the inventors of the present invention particularly find a method of producing a spherical metal particle having a desired size and a high yield, which can be applied to a metal having a high melting point and poor workability. Focusing on the high efficiency of the method of directly obtaining metal particles from the molten metal, various studies were conducted on the structure of the refractory container and nozzle used for it, the heating melting and dropping means, and the solidification-cooling means. As a result, the following findings (a) to () have been obtained.
(a) 溶融金属を叹容する耐火物製容器の底部に、 特定内径の 垂直孔を 1又は 2以上有する管状の小孔径ノズルを取]?付け、 このノズルを介して前記溶融金属を滴下させると、 該溶融金属 の液滴は涙滴.状とるらずにほぼ球状となって落下すること、 (a) At the bottom of a refractory container containing molten metal, A tubular small-hole nozzle having one or two or more vertical holes was attached, and when the molten metal was dropped through this nozzle, the molten metal droplet became a nearly spherical shape without forming a teardrop shape. And then fall,
(b) ノズルを冷却材に近付けたとしても落下する溶融金属の 液滴が冷却材に接した際に或る程度形崩れを起すのは避けられ るいが、 冷却材として通常使用される水の中へ前記液滴を直接 落下させた場合には該液滴が急速冷却して崩れた形のままで凝 固するのに対して、 溶融金属液滴を特定粘度の油中に落下させ てこの中で冷却すると、 油中では液滴の冷却速度が遅いので、 液滴の丸ぐるろうとする力(表面張力)によって多少の形の崩 れは修正されて所望形状の球形に凝固するように ること、  (b) Even if the nozzle is brought close to the coolant, it is unavoidable that the liquid droplets of the molten metal that fall into contact with the coolant will deform to some extent. When the droplet is dropped directly into it, it rapidly cools and solidifies in a collapsed form, whereas the molten metal droplet drops into oil of a specific viscosity. When cooled in oil, the cooling speed of the droplets is slow in oil, so some deformation due to the rounding force of the droplets (surface tension) is corrected and the droplets solidify into the desired spherical shape. thing,
(c) 更に、 冷却材として特定粘度の油を使用するだけでなく、 該油の下に水層を設けた 2層形態の冷却液を冷却材として使用 すると、 この中に落下する溶融金属の液滴は、 まず油層におい て球状の凝固殼を形成し、 次いで水層に達して完全に凝固せし められるので、 冷却槽の深さを浅くすることができる上、 引け 巣が減少して金属粒中への水又は油の侵入も極力抑制でき、 更 に、 油中に落下して凝固を始めた金属粒を、 水層を経由させて 回叹することによ i?金属粒に付着して冷却槽外に持ち出される 油の量が少 くな ]9、 かつ洗浄処理が容易になること。  (c) Furthermore, when not only an oil of a specific viscosity is used as a coolant but also a two-layer type cooling liquid having a water layer below the oil is used as a coolant, the molten metal falling into this The droplets first form a spherical solidifying shell in the oil layer, then reach the water layer and are completely solidified, so that the cooling tank can be made shallower and shrinkage cavities are reduced. Intrusion of water or oil into the metal particles can be suppressed as much as possible.Furthermore, the metal particles that have fallen into the oil and started to solidify are attached to the metal particles by being circulated through the water layer. The amount of oil taken out of the cooling tank is small] 9, and the cleaning process is easy.
この発明は、 上記知見に基づいてなされたものであ i)、  This invention was made based on the above findings i),
耐火物製容器内の金属、 又は所定の成分組成に調製された合 金溶湯を、 該耐火物製容器底部に設けた小孔径ノズルから小液 滴状に滴下し、 冷却材中で凝固させて金属粒を製造する方法に いて、 前記小孔径ノズルとして、 内径: 0.3〜 3.0麟0 の垂 直孔を 1又は 2以上有するものを使用し、 この小孔径ノズルか らの金属溶湯滴を、 上層が粘度: I S O (国際粘度規格) V GThe metal in the refractory container or the molten alloy prepared to the specified composition is dripped into a small liquid droplet from the small hole nozzle provided at the bottom of the refractory container and solidified in the coolant. In the method for producing metal particles, the small hole nozzle has an inner diameter of 0.3 to 3.0 Use one that has one or two or more straight holes, and the molten metal droplets from this small hole diameter nozzle have an upper layer viscosity: ISO (International Viscosity Standard) VG
1 0〜 6 8 0の油で下層が水である 2層形態の冷却液中に落下 させ、 該液中を通過させて凝固 ·冷却せしめることによ ]?、 整 つた形状の球状金属粒を収率良く、 高能率で製造し得るように した点、 By dropping it into a two-layer cooling liquid with 10 to 680 oil as the lower layer of water and allowing it to pass through the liquid to solidify and cool the liquid, a spherical metal particle with an organized shape is formed. It has a high yield and can be manufactured with high efficiency.
に特徵を有するものである。 It has something special about it.
〔発明を実施するための最良の形態〕  [Best Mode for Carrying Out the Invention]
お、 この発明の方法において使用する耐火物製容器とは、 溶融金属を単に収容 ·保温するのみのタンデッシュ形式のもの、 或いは外側に保温用のカーボン加熱体を備え、 かつ高周波誘導 加熱によって収容原料を溶解することが可能 ルツボ炉形式の ものなど、 要するに溶融金属を保持し、 底部のノズルを介して 容器外へ供給し得るものるらばいずれをも意味するものである。  The refractory container used in the method of the present invention is a tundish type container that simply holds molten metal and keeps it warm, or has a carbon heating element for keeping warm outside, and stores it by high-frequency induction heating. In other words, it means anything that can hold molten metal and supply it to the outside of the container through a nozzle at the bottom, such as a crucible furnace type.
また、 前記耐火物製容器底部に設ける小孔径ノズルの垂直孔 の内径を 0. 3〜 3. 0雕0と限定したのは、 該垂直孔の内径が 0. 3 » 0未満では溶湯の表面張力のために該溶湯を加 Eしたと しても実用に供する程度のノズルからの流下がなされず、 一方 3. 0 ππ を越えると溶湯がノズルから違続的に流出して球状と るらず、 油層中へ落下しても連珠状或いは涙滴状となって一定 形状の金属粒とならないからである。 そして、 よ ]?安定して所 望の球状金属粒を得るためには、 ノズルの垂直孔の内径を 0. 5 〜 2. 0麟0程度に調整するのが好ましく、 また作業性や保守管 理の面からは、 前記ノズルを取換え自在の焼成ノズルとするこ とが推奨される。 お、 ノズル孔が垂直に設けられてい ¾いと 粒状の液滴を得難くなる。 Also, the inner diameter of the vertical hole of the small hole diameter nozzle provided at the bottom of the refractory container is limited to 0.3 to 3.0 hulls because the surface of the molten metal is limited if the inner diameter of the vertical hole is less than 0.3 »0. Even if the molten metal is added due to the tension, it does not flow down from the nozzle to the extent that it can be used practically. The reason is that even if it falls into the oil layer, it will not form a metal particle of a fixed shape in the shape of a pearl or a teardrop. And, in order to stably obtain the desired spherical metal particles, it is preferable to adjust the inner diameter of the vertical hole of the nozzle to about 0.5 to 2.0, and to improve workability and maintenance. From a theoretical point of view, it is recommended to replace the nozzle with a firing nozzle that can be freely replaced. If the nozzle hole is provided vertically, It becomes difficult to obtain granular droplets.
更に、 冷却材として使用する油の粘度を ISO VG"10〜 680と限定したのは、 油の粘度が IS0V&1 0未満では粘性 不足のために溶融金属の液滴が油層を通過する速度が速く、 形 の崩れた液滴が球状に整形されて凝固殼を形成するのに必要な 油層厚が大きくな!)、 冷却槽を深くする必要が生じ、 一方、 Furthermore, the viscosity of the oil used as a coolant is limited to ISO VG "10 to 680. When the viscosity of the oil is less than IS0V & 10, the speed of the molten metal droplet passing through the oil layer is high due to insufficient viscosity, Shaped droplets are shaped into spheres and the thickness of the oil layer required to form a solidified shell increases!), And it becomes necessary to deepen the cooling tank.
I S OVG 6 8 0を越える粘度に ると、 今度は粘性過多のた めに液滴を球状に整形でき く るばか か、 金属粒による油 の水層への持ち込みが多くなって好ましくるいとの理由からで ある。 もちろん、 金属粒が油層に留まるような流動性の無い油 は使えるい。 If the viscosity exceeds IS OVG 680, this time, it may be feasible that the droplets cannot be shaped into a spherical shape due to excessive viscosity this time, or the amount of oil carried into the water layer by metal particles increases. Because of the reason. Of course, oil that does not have fluidity such that metal particles stay in the oil layer can be used.
出来れば、 冷却油は、 I S〇VG" 1 0〜6 80の粘度のもの 、 よ ]?好ま しぐはェ S OV & 3 2〜46 0 ( S A E l 0W〜 S A E 1 0に相当) の粘度を有するものが推奨される。  If possible, the cooling oil should have a viscosity of IS 〇VG "10 to 680, and it should have a viscosity of S OV & 3 2 to 460 (equivalent to SAE l 0W to SAE 10). Those with are recommended.
冷却材として使用される油の粘度が上述した範囲の値であれ ば所望の球形状に溶融金属液滴を凝固させることができるが、 作業性等を考慮すれば引火点.: 1 5 0°C以上(出来れば、 - 20 0 °C以上)の潤滑油(自動車用、 船舶用、 工業用、 一般用 を問わない)を使用するのが好ましい。 これは、 溶湯を保持す る耐火物製容器が冷却液たる油の面と近いので、 油の引火の危 険を防止するためである。  If the viscosity of the oil used as the coolant is within the above range, the molten metal droplets can be solidified into the desired spherical shape, but if workability is taken into consideration, the flash point .: 150 ° It is preferable to use a lubricating oil of C or higher (preferably -200 ° C or higher) (whether for automobiles, ships, industrial use, or general use). This is because the refractory container that holds the molten metal is close to the surface of the oil, which is the cooling liquid, so that there is no risk of oil ignition.
もっとも、 引火点がこれよ])も低い油の場合には(もちろん、 安全を期して、 引火点: 1 5 0 °C以上の油の場合でも良い)、 油層の表面を不活性ガス又は炭酸ガス雰囲気で覆って作業を行 うことによ j油の引火を防止することができる。 また、 油層の厚さは、 溶融金属の液滴が該層を通過する間に その表面に球状の殼を形成し得る程度の厚さで良く、 もちろん、 油層中で液滴が完全に凝固してもかまわ い。 However, in the case of oils with a low flash point] (for safety, it is also possible to use oils with a flash point of 150 ° C or higher), the surface of the oil layer should be inert gas or carbon dioxide. It is possible to prevent the oil from catching fire by covering it in a gas atmosphere and performing the work. The thickness of the oil layer may be such that the molten metal droplets can form a spherical shell on the surface while passing through the layer, and, of course, the droplets are completely solidified in the oil layer. It doesn't matter.
ところで、 以上述べたようなノズル垂直孔の内径の値、 冷却 油の粘度範囲等は、 ステライ トのよう 表面硬化用肉盛合金や 銅母合金等の球状粒の製造のみに適合するのではるく、 その他 の各種金属又は合金の球状粒を確実に形成するための条件とも ¾つていることはもちろんである。  By the way, the value of the inner diameter of the nozzle vertical hole, the viscosity range of the cooling oil, etc. as described above may not be applicable only to the production of spherical particles such as surface hardening hardfacing alloy and copper master alloy like Stellite. Needless to say, it is also a condition for surely forming spherical particles of various other metals or alloys.
そして、 耐火物製容器及びノズルの材質としては、 アルミ ナ、 マグネシア及びジルコニァ等、 一般に溶融金属の取扱い材料と して知られているものであればいずれをも使用可能であ ]9、 そ の粒度も金属の種類や製造する金属球状粒の大きさ等によって 適宜選択することができる。  As the material for the refractory container and the nozzle, any material generally known as a material for handling molten metal such as aluminum, magnesia, and zirconia can be used] 9, The particle size can also be appropriately selected depending on the type of metal, the size of spherical metal particles to be produced, and the like.
〔 図面の簡単な説明 〕  [Brief description of drawings]
第 1図は本発明で使用する溶融金属滴下装置(耐火物製容器) の 1例の縦断面概略模式図、 第 2図は本発明で使用する溶融金 属滴下装置の他の例を示す縦断面概略模式図、 第 3図は本発明 の実施例において使用した球状金属粒製造装置の縦断面概略模 式図である。  FIG. 1 is a schematic vertical cross-sectional schematic view of one example of a molten metal dropping device (refractory container) used in the present invention, and FIG. 2 is a vertical section showing another example of the molten metal dropping device used in the present invention. FIG. 3 is a schematic diagram of a plane, and FIG. 3 is a schematic diagram of a vertical cross section of the spherical metal particle manufacturing apparatus used in the examples of the present invention.
第 1図に示される耐火物製容器は、 底部に、 アルミ ナ製でか つ複数の垂直孔 1を有する小孔径ノズル 2を設けたアルミ ナル ッボ 3から成るものであ J?、 該ルツボ 3はその外側をカーボン 製の加熱体 4で囲まれ、 しかも高周波誘導加熱コィル 5の中に 位置せしめられている。 お、 符号 6で示されるものは、 力一 ボン製加熱体 4及び高周波誘導加熱コイ ル 5の保持と、 輻射熱 の断熱を行うためのアルミナ耐火物である。 The refractory container shown in Fig. 1 consists of an aluminum crucible 3 with a small hole nozzle 2 made of aluminum and having a plurality of vertical holes 1 at the bottom J? The outside of 3 is surrounded by a heating element 4 made of carbon, and it is located inside a high frequency induction heating coil 5. The reference numeral 6 indicates that the heating element 4 made of carbon dioxide and the high-frequency induction heating coil 5 are held and the radiant heat is applied. Alumina refractory for heat insulation.
さて、 金属粒の製造に際しては、 予め目的の成分組成に溶製 された原料合金 7をルツボ 3内に装入し、 高周波誘導コイル 5 で加熱溶融させて、 小孔径ノズル 2の下端よ j 液滴 8として冷 却液中に落下させるのである。  When manufacturing metal particles, the raw material alloy 7 previously melted to the desired composition is charged into the crucible 3, heated and melted by the high-frequency induction coil 5, and the liquid from the lower end of the small hole nozzle 2 is melted. Drop 8 into the cooling liquid.
また、 第 2図ではノズルの垂直孔の径が極く小さいものの場 合に適用されるものである。 主要部は第 1図で示されるものと 同様に構成されているが(第 2図において、 第 1図におけると 同様の機能を有するものには同じ符号を付した》、 この例では、 ルツボ 3の開口部は、 不活性ガス(還元性ガスをも含む)の漏 れ止め用耐火物ウール 9を介して、 不活性ガス(含、 還元性ガ ス) の注入口 1 0を有する蓋 11で密閉されている。 従って、 溶 融された原料合金 7を不活性ガスによって加圧することができ"" るので、 例え小孔径ノズル 2の垂直孔 1の径が小さぐても液滴 をス ムーズに落下させることが可能である。  Also, in Fig. 2, it is applied when the diameter of the vertical hole of the nozzle is extremely small. The main part has the same structure as that shown in Fig. 1 (in Fig. 2, those having the same function as in Fig. 1 are denoted by the same reference numerals), but in this example, the crucible 3 The opening of the is covered with a refractory wool 9 for preventing leakage of inert gas (including reducing gas), and a lid 11 having an inlet 10 for inert gas (including reducing gas) is used. Therefore, it is possible to pressurize the melted raw material alloy 7 with an inert gas, so that even if the diameter of the vertical hole 1 of the small-diameter nozzle 2 is small, the droplet will be smoothed. It is possible to drop it.
〔 実施例 〕  〔 Example 〕
次に、 この発明を、 実施例によ 比較例と対比しながら説明 す o  Next, the present invention will be described by comparing Examples with Comparative Examples.
まず、 第 1表に示す成分組成をもった市販の表面硬化合金 A 及び B、 並びに成分調整用母合金 Cの、 直径: 4. 8 難 0の丸棒 と 1 5 rai X 1 0 raiの角材とを用意した。  First, commercially available surface-hardening alloys A and B having the composition shown in Table 1 and mother alloy C for adjusting the composition of a round bar with a diameter of 4.8 difficult and a square bar of 15 rai X 10 rai And prepared.
そして、 これらの原材料の各 1 づっを、 第 3図に示される 如き装置を用いて溶解し、 冷却液中に滴下してそれぞれの球状 合金粒を製造した。  Then, each one of these raw materials was melted using an apparatus as shown in FIG. 3, and dropped into a cooling liquid to produce each spherical alloy grain.
第 3図に示された装置のうち、 耐火物製容器部についてはノ ズルの垂直孔が 1つである他は第 1図で示したものと同様であOf the equipment shown in Fig. 3, the refractory container is Similar to the one shown in Fig. 1 except that there is one vertical hole in the crane.
D (各部の符号は、 第 1図におけると同様のものを示している)、 液滴の落下 '凝固部は次のようになっている。 即ち、 アルミナ 耐火物 6の下部には、 加熱体の輻射熱による冷却油 12の温度上 昇を防止するための断熱用水冷盤 13が設けられてお 、 この断 熱用水冷盤 13は冷却油 12の引火を防ぐための不活性ガスを導入 する不活性ガス注入口 14を備えている。 D (symbols of each part are the same as in Fig. 1), Drop of liquid droplet'Coagulation part is as follows. That is, below the alumina refractory material 6, there is provided a heat insulating water cooling board 13 for preventing the temperature of the cooling oil 12 from rising due to the radiant heat of the heating element. It is equipped with an inert gas inlet 14 for introducing an inert gas to prevent this.
断熱用水冷盤 13に続いて、 冷却筒 15と球状金属粒受容器 16と が配置されてお]?、 冷却筒 15内には冷却油 12と冷却水 17とが 2 層状態に叹容されている。 ¾お、 符号 18で示されるものは冷却 油 12の温度上昇を抑えるための水冷蛇管であ])、 符号 19で示さ れるものは球状金属粒である。  A cooling cylinder 15 and a spherical metal particle receptor 16 are arranged next to the water cooling board 13 for heat insulation.] Inside the cooling cylinder 15, cooling oil 12 and cooling water 17 are contained in a two-layer state. There is. The reference numeral 18 indicates a water-cooled corrugated pipe for suppressing the temperature rise of the cooling oil 12, and the reference numeral 19 indicates spherical metal particles.
更に、 この実施例においては、 前記第 1表に示した合金毎に、 垂直孔径がそれぞれ、  Further, in this embodiment, the vertical hole diameters are different for each alloy shown in Table 1 above.
合金 A ··· ().6薦 0,  Alloy A ··· () .6 Recommendation 0,
合金 Β··· 0.7 ηπ Φ ,  Alloy Β ··· 0.7 ηπ Φ,
合金 0··· 1. 5 ηπ ,  Alloy 0 ··· 1.5 ηπ,
の小孔径ノズルを適用し、 冷却油としては粘度がそれぞれ、 Applying a small hole diameter nozzle, the viscosity of the cooling oil is
合金 … I S O V G 3 2,  Alloy… I S O V G 3 2,
合金 B〜 I S O V G 2 2 0,  Alloy B ~ I S O V G 220 0,
合金 C!… I S 0 V G 4 6 0,  Alloy C! … I S 0 V G 460,
の潤滑油を使用した。 The lubricating oil of was used.
小孔径ノズルから滴下し、 潤滑油と水の 2層を通過して凝固 · 冷却したそれぞれの球状合金粒から無作為に抽出した 100 個 の合金粒の平均重量及び重量の分布を調べた結果を第 2表に示 した。 The average weight and weight distribution of 100 alloy particles randomly sampled from each spherical alloy particle, which was dropped from a small-diameter nozzle and passed through two layers of lubricating oil and water and solidified and cooled, were investigated. Shown in Table 2 did.
第 2表に示される結果からも、 本発明の方法によれば、 重量 分布が非常に良好で、 かつ殆んど球状に近い合金粒の得られる ことが明らかで、 またノズルの垂直孔径と重量分布の関係も明 白である。  From the results shown in Table 2, it is clear that according to the method of the present invention, the weight distribution is very good, and almost spherical alloy particles can be obtained. The relationship of distribution is clear.
次いで、 合金 Aについて、 ノズルの垂直子し径を 0. 1 rai ?5 , 0. 3藤 0 , 0. 5龍 0, 0. 6 mm Φ , 0. 7 τιιπ , 0. 8籠 0, 1. 0 mm , 1. 5 ΜΜ , 2. 0■ Φ, 3. 0 j» 0及び 4. 0 0と変えて合 金粒の製造を行い、 第 3表に示されるような結果を得た。 Then, for alloy A, the vertical diameter of the nozzle was set to 0.1 rai? 5 , 0.3 wisteria 0, 0.5 dragon 0, 0.6 mm Φ, 0.7 τιιπ, 0.8 basket 0, 1 0.0 mm, 1.5 ΜΜ, 2.0 ■ Φ, 3.0 j »0 and 4.0 were changed to produce the alloy grains, and the results shown in Table 3 were obtained.
第 3表に示される結果からは、 ノズルの垂直孔径が 0· 1臃 0 では溶湯が流出せず( Ar ガスで加圧しても流出しなかった)、 一方 4. 0鵬 では溶湯が連続的に流出してしまって、 製品粒の 形状が連珠状や涙滴状にる' j 加えて潤滑油の温度上昇による 粘度の低下と引火の危険を伴うことから実用的で いことがわ かった。  The results shown in Table 3 indicate that the molten metal did not flow out when the vertical hole diameter of the nozzle was 0. 1 sq. 0 (it did not flow out even when pressurized with Ar gas), while the molten metal was continuous at 4.0 Peng. It has been found that it is not practical because the product grain shape becomes a continuous beads or a teardrop shape, and in addition, there is a risk of ignition and a decrease in viscosity due to a rise in the temperature of the lubricating oil. .
このことからも、 小孔径ノズルの垂直孔の内径を 0. 3〜 3. 0 にする必要のあることが確認された。 From this, it was confirmed that it is necessary to set the inner diameter of the vertical hole of the small hole nozzle to 0.3 to 3.0.
合金 化 学 成 分 ( 重量 ) Alloying composition (weight)
備 考 Remarks
;種別 C Γ Fe W Si B Go +不純物 Ni +不純物 Cu +不純物 Type C Γ Fe W Si B Go + Impurity Ni + Impurity Cu + Impurity
; A 2.51 30.04 12.01 1.02 Co— W合金 ; A 2.51 30.04 12.01 1.02 Co—W alloy
B 0.76 15.02 4.15 4.05 3.48 Ni— B合金B 0.76 15.02 4.15 4.05 3.48 Ni—B alloy
C 1.76 Cu— B合金 C 1.76 Cu—B alloy
2 合金 平均重量 直 分 布 (個) 2 Alloy average weight Straight cloth (pieces)
種別 154〜: 182 183〜242 243〜285 286〜32 360〜50卿 505〜540 541〜567 Type 154 ~: 182 183 ~ 242 243 ~ 285 286 ~ 32 360 ~ 50 Lord 505 ~ 540 541 ~ 567
A 212.4 2 92 6 0 A 212.4 2 92 6 0
B 251.6 1 22 70 7  B 251.6 1 22 70 7
C 501.7 1 3 73 14 C 501.7 1 3 73 14
3 3
Figure imgf000014_0001
Figure imgf000014_0001
〔 産業上の利用 可能性 〕 [Industrial availability]
上述のように、 この発明によれば、 所望の大きさの球状金属 粒を比較的筒単 ·容易に、 かつ叹率良く量産することができ、 製材用帯鋸の刃先への自動肉盛用ショッ ト、 エンジンパルプ軸 端への自動肉盛用ショッ ト、 或いは銅合金連続鏡造時の活性金 属母合金等の自動添加用ショット等、 汎用球状金属粒の高能率 生産が可能と るなど、 工業上有用る効果がもたらされるので ¾る。  As described above, according to the present invention, spherical metal particles of a desired size can be mass-produced relatively easily in a single cylinder and at a high rate of mass production. , A shot for automatic build-up on the shaft end of engine pulp, or a shot for automatic addition of activated metal mother alloy during copper alloy continuous mirroring, enabling high-efficiency production of general-purpose spherical metal particles. This is because it brings about an industrially useful effect.

Claims

請 求 の 範 囲 The scope of the claims
1. 耐火物製容器内の金属(合金をも含む)溶湯を、 該耐火物 製容器底部に設けた小孔ノズルから小液滴状に滴下し、 冷却 材中で凝固させて金属粒を製造する方法にお て、 前記小孔 径ノズルと して、 内径: 0.3〜 3.0 m 0の垂直孔を 1又は 2 以上有するものを使用し、 この小孔径ノズルからの金属溶湯 滴を、 上層が粘度: I S 0 V G (国際粘度規格) 1 0〜  1. Molten metal (including alloys) in a refractory container is dripped into small droplets from a small hole nozzle provided at the bottom of the refractory container and solidified in a coolant to produce metal particles. In this method, as the small-diameter nozzle, one having 1 or 2 or more vertical holes with an inner diameter of 0.3 to 3.0 m 0 is used. : IS 0 VG (International viscosity standard) 10 ~
680 の油で下層が水である 2層形態の冷却液中に落下させ、 該液中を通過させて凝固,冷却せしめることを特徵とする球 状金属粒の製造方法。  A method for producing spherical metal particles, which comprises dropping 680 oil into a two-layer cooling liquid having a lower layer of water, passing through the liquid to solidify and cool.
2. 該垂直孔の内径が 0.5〜 2.0鵬である請求の範囲第 1項記 載の球状金属粒の製造方法。  2. The method for producing spherical metal particles according to claim 1, wherein the inner diameter of the vertical hole is 0.5 to 2.0.
3. 該上層の冷却液の粘度が I S O - VG 3 2〜 4 6 0である 請求の範囲第 1項記載の球状金属粒の製造方法。  3. The method for producing spherical metal particles according to claim 1, wherein the viscosity of the upper layer cooling liquid is I S O -VG 3 2 to 460.
PCT/JP1984/000613 1983-11-25 1984-12-24 Method of manufacturing spheroidal metal granules WO1986003700A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019850700001A KR900007962B1 (en) 1984-12-24 1984-12-24 Process for producting spheroidal metal particles
PCT/JP1984/000613 WO1986003700A1 (en) 1983-11-25 1984-12-24 Method of manufacturing spheroidal metal granules
SE8603557A SE8603557D0 (en) 1983-11-25 1986-08-22 METHOD OF PRODUCING SFEROIDAL METAL PARTICLES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP58221896A JPS60114508A (en) 1983-11-25 1983-11-25 Production of spherical metallic particle
PCT/JP1984/000613 WO1986003700A1 (en) 1983-11-25 1984-12-24 Method of manufacturing spheroidal metal granules

Publications (1)

Publication Number Publication Date
WO1986003700A1 true WO1986003700A1 (en) 1986-07-03

Family

ID=26425089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1984/000613 WO1986003700A1 (en) 1983-11-25 1984-12-24 Method of manufacturing spheroidal metal granules

Country Status (1)

Country Link
WO (1) WO1986003700A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0325798A1 (en) * 1988-01-14 1989-08-02 Electroplating Engineers of Japan Limited A metallic powder and a paste made from it, and a metallic powder manufacture device
CN109773199A (en) * 2019-01-15 2019-05-21 中国科学院合肥物质科学研究院 A kind of fast preparation method of multiple dimensioned lithium ball
CN110976874A (en) * 2019-12-10 2020-04-10 上海工程技术大学 Three-dimensional forming device of welding wire shower nozzle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528359A (en) * 1978-08-22 1980-02-28 Nippon Mining Co Ltd High carbon ferronickel shotting method
JPS5914083B2 (en) * 1981-05-19 1984-04-03 日本鉱業株式会社 Manufacturing method for zinc or zinc alloy shot balls

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528359A (en) * 1978-08-22 1980-02-28 Nippon Mining Co Ltd High carbon ferronickel shotting method
JPS5914083B2 (en) * 1981-05-19 1984-04-03 日本鉱業株式会社 Manufacturing method for zinc or zinc alloy shot balls

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0325798A1 (en) * 1988-01-14 1989-08-02 Electroplating Engineers of Japan Limited A metallic powder and a paste made from it, and a metallic powder manufacture device
CN109773199A (en) * 2019-01-15 2019-05-21 中国科学院合肥物质科学研究院 A kind of fast preparation method of multiple dimensioned lithium ball
CN109773199B (en) * 2019-01-15 2021-05-28 中国科学院合肥物质科学研究院 Rapid preparation method of multi-scale lithium ball
CN110976874A (en) * 2019-12-10 2020-04-10 上海工程技术大学 Three-dimensional forming device of welding wire shower nozzle

Similar Documents

Publication Publication Date Title
KR102292150B1 (en) Centrifugal atomization of iron-based alloys
CN105537582B (en) It is a kind of for 316L powder of stainless steel of 3D printing technique and preparation method thereof
EP0788416B1 (en) Method of making composite shots
US5381847A (en) Vertical casting process
JPS60114508A (en) Production of spherical metallic particle
US6112669A (en) Projectiles made from tungsten and iron
US5336342A (en) Copper-iron-zirconium alloy having improved properties and a method of manufacture thereof
US4996025A (en) Engine bearing alloy composition and method of making same
US20100282428A1 (en) Spray deposition of l12 aluminum alloys
CN111014703B (en) Preparation method of nickel-based alloy powder for laser cladding
US20130216426A1 (en) Strip castings of immiscible metals
JPH0328341A (en) Aluminum-strontium mother alloy
US5074933A (en) Copper-nickel-tin-silicon alloys having improved processability
Dube Metal strip via roll compaction and related powder metallurgy routes
Ikawa et al. Spray deposition method and its application to the production of mill rolls
US4402884A (en) Method for producing ferro-nickel shots
WO1986003700A1 (en) Method of manufacturing spheroidal metal granules
JPS599601B2 (en) Method for producing metal and alloy granules
Ditze et al. Strip casting of magnesium with the single‐belt process
WO1991000933A1 (en) Engine bearing alloy and method for making same
KR900007962B1 (en) Process for producting spheroidal metal particles
CN114262820B (en) Novel zinc alloy wire for electric arc spraying and preparation method of coating
CA1240108A (en) Process for producing spheroidal co-base alloy particles having a uniform size and shape in padding use
JPS5832567A (en) Manufacture of metallic shot
CN1308474C (en) Aluminium lead alloy bush cast lingot and its production process and apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU DE GB KR NO SE US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): FR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642