WO1986002403A1 - Method and apparatus for combined jet and mechanical drilling - Google Patents
Method and apparatus for combined jet and mechanical drilling Download PDFInfo
- Publication number
- WO1986002403A1 WO1986002403A1 PCT/US1985/001975 US8501975W WO8602403A1 WO 1986002403 A1 WO1986002403 A1 WO 1986002403A1 US 8501975 W US8501975 W US 8501975W WO 8602403 A1 WO8602403 A1 WO 8602403A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluid
- drilling
- jet
- drill bit
- stream
- Prior art date
Links
- 238000005553 drilling Methods 0.000 title claims abstract description 110
- 238000000034 method Methods 0.000 title claims abstract description 31
- 239000012530 fluid Substances 0.000 claims abstract description 123
- 238000005520 cutting process Methods 0.000 claims abstract description 40
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 22
- 230000036346 tooth eruption Effects 0.000 claims abstract description 10
- 239000007787 solid Substances 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims description 9
- 239000000654 additive Substances 0.000 claims description 7
- 230000009471 action Effects 0.000 claims description 2
- 239000011435 rock Substances 0.000 abstract description 17
- 230000008901 benefit Effects 0.000 abstract description 6
- 230000009977 dual effect Effects 0.000 abstract description 6
- 238000005755 formation reaction Methods 0.000 description 16
- 230000035515 penetration Effects 0.000 description 10
- 238000004140 cleaning Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 208000036366 Sensation of pressure Diseases 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 229910052601 baryte Inorganic materials 0.000 description 1
- 239000010428 baryte Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 238000007560 sedimentation technique Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/18—Drilling by liquid or gas jets, with or without entrained pellets
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B10/00—Drill bits
- E21B10/60—Drill bits characterised by conduits or nozzles for drilling fluids
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/12—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor using drilling pipes with plural fluid passages, e.g. closed circulation systems
Definitions
- the present invention relates to a method and apparatus for drilling in earthen formations for the production of gas, oil, and water.
- the system is also useful in mining operations and anywhere it is necessary to drill a hole of a particular diameter into the earth.
- the present invention relates to a method and apparatus for fluid jet-assisted mechanical drilling or mechanically-assisted fluid jet drilling.
- the primary sources of drilling forces which affect the rate of penetration during drilling are: (1) the torque provided by the rotation of the drill bit as it bores its way through the earthen formation, (2) the weight, supplied by that portion of the drill assembly known as the drill collar, acting on the drill as it presses against the formation, and (3) the pressure of the drilling fluid which is delivered to the drill bit through the drill string.
- High pressure fluid jets provide a means of increasing the rate of penetration by increasing power levels at the bit without increasing directional control requirements.
- fluid jets to incre.se drilling rates. These methods involve increasing the fluid pressure of the conventional drilling mud stream from 2000 pounds per square inch (psi) to approximately 4000 psi. The added pressure is used to increase the velocity of the fluid leaving the nozzles. However, this is done only to assist in the removal of the cuttings, not to penetrate the rock. This method is commonly known as jet drilling and generally results in increased rates of penetration of about 30% to 50% over conventional approaches.
- the present invention comprises a drilling method and apparatus which achieves the advantages of jet drilling without the attendant disadvantages.
- This invention comprises a hybrid system which couples the advantageous effects of a fluid jet and a mechanical drill bit in a dual-fluid system.
- the resulting combined jet and mechanical drill provides a dramatic increase (up to five times) in the drilling rates available with conventional techniques, without increasing the weight acting on the drill bit or experiencing the related directional control problems.
- the methodology of this invention is to separate the power stream used for drilling from the end stream used for removing cuttings from the bore hole.
- the process takes a relatively small side stream from the total mud stream, raises it to much higher pressure, e.g., 20,000 psi or higher, transmits it via a dual conduit drilling assembly to a drill bit modified with a series of small nozzles, and recombine the two fluid streams at the bottom of the hole to form a conventional drilling fluid that is circulated back to the surface to repeat the cycle.
- the drilling mud containing the rock chips and debris, is filtered at the top of the well in the normal process.
- the side stream portion is filtered even further for use as a high pressure fluid. It may be necessary to clarify the side stream by decreasing suspended solids content and eliminating particle sizes larger than, for example, 300 microns.
- any fluid that the high pressure pumps can handle without excessive wear and tear, and that won't plug the nozzle at the drill bit, can be utilized as the high pressure fluid.
- the present method and system comprises a closed system in which the drilling fluid, including mud and high pressure fluid, continuously circulate. Because these two fluids mix at the drill bit, the drilling mud may be concentrated so that the final solution contains the proper additives for those particular drilling conditions. This drilling mud concentration is accomplished at the surface where the additives are added to the mud before it is pumped down the drill pipe.
- the volume of the high pressure fluid under the system of the present invention is much less than the total drilling mud volume as in prior art jet drilling systems.
- the volume of the high pressure fluid is on the order of 25 - 75 gpm as opposed to 300 - 400 gpm for the total drilling mud stream.
- the high pressure of the jet fluid (for example, on the order of 15,000 - 25,000 psi or even higher) can be achieved at these lower volumes by means of only 200 - 900 hp. This compares with 3,000 - 6,000 hp under prior systems.
- horsepower requirements for jet cutting by the present drilling system Because of this tremendous reduction in horsepower, even higher pressures, such as 40,000 - 50,000 psi, can be achieved in the jet fluid without uneconomical horsepower requirements when low flow rates are maintained.
- the high pressure fluid is filtered or clarified such that the abrasives and mud additives are reduced, there is minimal abrasion and wear on the pumping equipment and the drill string conduits. Furthermore, because of the lower flow rates and the positioning of the jet nozzles with respect to the drilling bit, there is no overcut. This aids in maintaining good hole straightness. Moreover, the concentric conduit, having the high pressure fluid within the outer, drilling mud fluid, minimizes any safety hazards associated with the high pressures of the fluid jet.
- the present method and apparatus is also highly advantageous because it can be easily integrated into conventional drilling systems. Moreover, conventional drilling can be continued without bit replacement should softer formations be encountered. Also, because the rate of penetration for the present method is so high, the delays and high expense associated with "fishing" may be eliminated. Fishing occurs when an object is lost at the bottom of the well and must be retrieved before drilling can continue. With the higher drilling rates achieved under the present system, the obstruction potentially can be drilled around or a new hole drilled with economic results.
- controlled directional drilling is faster. This is because the gravitational force component supplied to the conventional drill bit by the weight of the drill string decreases since gravity is no longer acting directly in line with the direction of the bit. Power levels to the bit are further reduced by the increased friction of the drill pipe and drill collar as it lays against the side of the hole. Because increases in power level are supplied, in the present invention, by high pressure fluid which is not affected by the change in hole direction, the present invention produces faster directional hole drilling than conventional approaches.
- the present invention also contemplates an improved drill bit system.
- the fluid jet acted on the rock independent of the mechanical cutter.
- the fluid jet acts in concert with the mechanical cutter. Two mechanisms are proposed.
- the fluid jet is configured with respect to each cutting tooth so that the jet is parallel and close to the cutting plane of the tooth and strikes the earthen formation at the cutting surface/rock interface.
- the fluid jet serves the important function of cleaning the surface of the rock so that the cutting tooth can avoid crushing cut rock and efficiently apply the cutting force.
- more than 75% of the cutting power is used up in crushing chips and rocks which have already been cut. This expenditure of power is wasteful and reduces the drilling rate.
- a fluid jet aimed at the cutter/rock interface previously cut rock is cleaned from the cutter, thus providing direct contact between the formation and the drill bit, thereby vastly increasing the drilling rate.
- An important advantage of the present fluid jet/mechanical drill bit is that the cutter forms cracks which may be propagated by the water jet.
- the fluid jet improves drilling in ductile failure conditions by encouraging the formations of cracks in the rock. This reduces pressure and horsepower requirements and improves bit life at the same time.
- the distance between the fluid jet and the substantially parallel cutting to the plane is approximately 0.5 - 3 millimeters and is located approximately 5 to 50 millimeters from the desired target.
- a submerged jet is involved in this invention since the drilling mud surrounds the cutting environment. It has been found that any power loss in the fluid jet due to its submerged state is due more to the dispersion of the jet by the drilling mud than the interference of the mud itself.
- a long chained polymer of approximately 0.1 to 2% solution may be added to the high pressure fluid in order to maintain the cohesiveness of the fluid jet. This also reduces the friction and wear on the drill string conduit, pump valves, etc.
- the fluid jets are located between the cutting teeth and actually form grooves in the rock. This facilitates the formation of cracks and chips by the mechanical cutting teeth.
- the jet is 5-50 millimeters from the cutting plane, commonly known as the stand-off distance.
- the drilling method and apparatus of the present invention increases the drilling rate of conventional drill rigs by up to five times the usual amount, while at the same time reducing the horsepower require ments of previous drilling systems by an order of magnitude.
- Figure 1 is a schematic view illustrating the overall drilling method and apparatus of the present invention including the components at the well head and the drill string.
- Figure 2 is a sectional view of a portion of the drill string illustrating the dual conduits thereof with the high pressure conduit concentrically arranged within the lower pressure drilling mud conduit, and also illustrating the mixture of the two fluids rising in the annulus of the hole.
- Figure 3 is a perspective view of a conventional drag bit which has been modified to receive jet nozzles at the cutting plane of each tooth.
- Figure 4 is a close-up, cross-sectional view taken along line 4-4 of Figure 3 illustrating the position of the fluid jet with respect to the cutting plane at the cutter/rock interface.
- Figure 5 is a close-up sectional view illustrating an alternate positioning of the fluid jet between cutting teeth.
- FIG. 1 there is shown a conventional drilling rig with the additional components necessitated by the method and apparatus of the combined jet/mechanical drill of the present invention.
- the components of the conventional drilling system include the drill string 10 (both above ground and below ground portions), the drill pipe handler 12 for attaching the individual sections of the drill pipe 14, the mud cleaning system 16 shown in the lower right hand portion of Figure 1, and the separation system 20 located at the upper right hand portion of Figure 1.
- the mud cleaning system cycles the drilling mud back into the well through the swivel 18 located at the top of the drill string 10.
- the separation system 20 further filters and clarifies the drilling mud so that it serves as the high pressure fluid for the jet drill.
- the above ground portions of the drill string 10 include the swivel 18, as mentioned above, which permits the drill string to rotate while passing drilling fluid through the conduit of the drill pipe 14.
- a conventional swivel has been modified to include a dual rotary hose system for the injection of both the lower pressure drilling mud through one hose 22 and the high pressure jet drill fluid through a second hose 24.
- the drill string 10 also includes a normal kelly section 26 for imparting rotation to the drill string 10 and a series of inter-connected drill pipe 14.
- The. drill pipe of the present invention has been modified, as will be explained in more detail in connection with Figure 2, to comprise a dual conduit system. Individual sections of the drill pipe are interconnected at tool joints 64, only one of which is illustrated in Figures 1 and 2.
- the below ground portion of the drill string 10 includes a weighted drill collar 28 which provides gravitational weight acting on the drill bit and a MWD (measurement while drilling) collar (not shown) which gathers vital information at the bottom of the well and transmits it up through the hole to a monitor 30.
- MWD measurement while drilling
- a conventional mud cleaning system 16 as shown in Figure 1 includes a solids/fluid separator 34 (sometimes referred to as a "shale shaker") located above a tank 36.
- the drilling mud is pumped from the well through a conduit 38 to the shaker 34.
- the cuttings and other major solids 40 which are contained in the drilling mud as it emerges from the hole are dumped into a cuttings pit 42.
- the drilling mud may or may not receive a secondary treatment 44 before being pumped back into the well.
- the amount and types of mud treatment depend on the individual drilling operation, geographic location, type of drilling mud, and a number of other factors.
- the mud may be passed through mechanical or vacuum degasing equipment and then through a series of hydrocyclones which remove successively finer solid components from the mud stream.
- Such de-sanding and de-silting cyclones can remove virtually all material greater than 40 microns and about 50% of the material greater than 15-20 microns.
- De-silting cyclones frequently remove the barite in weighted drilling muds and other additives which then must be replenished before the mud is ready to be pumped back into the well. Furthermore, sufficient additives must be added to the mud so that it is slightly concentrated as it goes back down the well.
- the drilling mud is pumped by means of pumps 46 to the normal pressure of 3,000-5,000 psi through a conduit 48 back to the low-pressure rotary hose 22 of the swivel 18.
- the drilling mud is slightly concentrated as it re-enters the well so that when it mixes with the high pressure fluid at the bottom of the well it will have the proper concentration to perform its usual work of bit cooling, cuttings removal, and hole maintenance.
- the separation system 20 of the present invention provides the high pressure fluid for the jet assisted drilling.
- the high pressure fluid may need to be of higher clarity than the mud since suspended solids could cause serious erosion and damage to pumps and other exposed equipment.
- a portion of the drilling mud stream about 10-25%, is drawn through a conduit 50 to a decanting centrifuge 52 which removes fine colloidal material from the drilling mud.
- Such centrifuges can remove material in the 3-5 micron range to provide a clarified fluid for pressurization purposes. Further clarification involves the use of gravity sedimentation techniques (not shown), including the use of thickeners, clarifiers and flocculating agents to neutralize the surface charges on the colloidal particles.
- the clarified liquid may be distilled, if necessary, utilizing waste heat from the drilling rig power source and then passed through ultra filtration devices or used directly as the fluid source for the high pressure pumps.
- the appropriateness of further treatment would be considered separately for each type of mud system and would depend on the adequacy of the solids control system available in the mud cleaning system.
- the high pressure liquid would contain particles only .015 inches or less and would be not any larger than one half the diameter of the jet nozzles (shown in Figures 4 and 5).
- the clarified fluid is then conducted through a conduit 54 to a conventional intensifier 56 which pressurizes the fluid to at least 20,000 psi at a flow rate of 25-75 gallons per minute. At these levels, only about 200-900 hp is required in the intensifier 56 or the pumping system.
- the pressurized fluid is then passed through a high pressure conduit 58 to the high pressure rotary hose 24 of the swivel 18.
- the method and apparatus of the present invention contemplates a closed system in which two fluids are continuously circulated, being separated, mixed and separated again.
- FIG. 2 there is shown a section of the drill pipe 14 located within the hole and just below the surface of the ground.
- the drill pipe is concentric, with the high pressure conduit 60 containing the jet drill fluid located within the outer conduit 62 which conducts the concentrated drilling mud to the bottom of the hole.
- This configuration promotes the safety of the present invention by locating the high pres sure conduit 60 within the drill pipe 14.
- Two sections of the dr-ill pipe 14a and 14b are joined at a tool joint 64 by a threaded connection. At this location, the joined portions 60a and 60b of the high pressure conduit are connected by a stab joint 66 connection and high pressure seals 68.
- the arrows within the drill pipe 14 indicate that the flow of fluid therein is downward. Also shown in Figure 2, as indicated by the arrows, is the drilling mud of normal concentration rising in the annulus 70 of the hole after the concentrated drilling mud in conduit 62 has mixed with the high pressure fluid in conduit 60 at the bottom. The mud is pumped to the mud cleaning and separation systems 16 and 20, respectively, (shown in Figure 1) through a conduit 38 at the surface.
- Figure 3 illustrates a conventional drag bit 32 which has been modified to receive fluid jet nozzles to provide a jet assisted mechanical drill; although the principles of the present invention can also be utilized with other types of drilling bits.
- the bit 32 is located at the end of the drill string, as shown in Figure 1.
- the cutting surface 76 of the drag bit 32 contains a number of strategically located cutting teeth 78, each having a coated, inclined cutting surface 80 manufactured from a very hard material, such as polycrystalline diamond compact (PDC). As the bit 32 rotates, these teeth 78 bite and cut into the formation.
- the fluid jet nozzles 82 are located immediately adjacent the cutting plane 80 of the teeth 78, shown in more detail in Figure 4, to provide a jet assisted mechanical drill.
- the tooth 78 is shown having a standard mounting in a recess of the cutting surface 76 of the drag bit 32 and is provided with a PDC cutting plane 80.
- the jet nozzle 82 is located so that the fluid jet (indicated by arrow 94) is parallel to the cutting surface 76 and aimed at the cutter/rock interface 96.
- the cutter 78 opens a crack or deformation in the formation which is then propagated by the fluid jet 94.
- Cuttings and splashback of the jet 94 are away from the cutter surface 76 to minimize erosion and wear on the cutter surface 80.
- the jet 94 may be located anywhere from 0.5-3 millimeters in front of and parallel with the cutting plane 80 and approximately 5 to 50 millimeters from the target which is the cutter/rock interface 96.
- the fluid jet 94 In addition to cleaning the cuttings and dirt from the interface area, the fluid jet 94 also cools the cutting plane 80 and the tooth 78 in order to vastly increase the drilling rate and life of the bit 32.
- the fluid contains a long chain polymer in order to maintain the integrity of the jet 94 in its submerged conditions.
- Figure 5 illustrates an alternate arrangement for the fluid jets 94 which are between a pair of cutting teeth 78.
- the jets 94 actually form grooves 98 in the rock which facilitate the formation of cracks and chips by the mechanical cutting teeth 78.
- the jets preferably are about 5 to 50 millimeters from the target.
- the jet locations shown in Figures 4 and 5 are preferred, other locations can also accomplish the advantages of the present invention, namely, increased drilling rate and extended bit life.
- the present invention dramatically improves the typical drilling rates by providing a high pressure fluid jet stream acting in combination with a conventional mechanical cutter. Furthermore, the fluid jet is economically provided by diverting and clarifying only a small portion of the total drilling mud stream and then combining the two fluids at the drill bit.
Landscapes
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- Geochemistry & Mineralogy (AREA)
- Mechanical Engineering (AREA)
- Earth Drilling (AREA)
- Drilling And Boring (AREA)
- Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
- Lubricants (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR8506979A BR8506979A (pt) | 1984-10-16 | 1985-10-09 | Processo e aparelho para perfuracao combinada a jato/mecanica |
AT85905455T ATE91748T1 (de) | 1984-10-16 | 1985-10-09 | Methode und geraet zum kombinierten jet- und mechanischbohren. |
DK273686A DK273686D0 (da) | 1984-10-16 | 1986-06-10 | Fremgangsmaade og apparat til kombineret straale- og mekanisk boring |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US661,368 | 1984-10-16 | ||
US06/661,368 US4624327A (en) | 1984-10-16 | 1984-10-16 | Method for combined jet and mechanical drilling |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1986002403A1 true WO1986002403A1 (en) | 1986-04-24 |
Family
ID=24653305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1985/001975 WO1986002403A1 (en) | 1984-10-16 | 1985-10-09 | Method and apparatus for combined jet and mechanical drilling |
Country Status (10)
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996018800A1 (en) * | 1994-12-15 | 1996-06-20 | Telejet Technologies, Inc. | Method and apparatus for drilling with high-pressure, reduced solid content liquid |
Families Citing this family (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3620700A1 (de) * | 1986-06-20 | 1987-12-23 | Kreyenberg Heiner | Verfahren und vorrichtung zum entschlammen von gewaessern |
ATE52240T1 (de) * | 1987-03-19 | 1990-05-15 | Kreyenberg Heiner | Verfahren und vorrichtung zum entschlammen von gewaessern. |
US4871037A (en) * | 1988-09-15 | 1989-10-03 | Amoco Corporation | Excavation apparatus, system and method |
US4940098A (en) * | 1989-05-26 | 1990-07-10 | Moss Daniel H | Reverse circulation drill rod |
AU7796591A (en) * | 1990-04-27 | 1991-11-27 | Harry Bailey Curlett | Method and apparatus for drilling and coring |
US5199512A (en) * | 1990-09-04 | 1993-04-06 | Ccore Technology And Licensing, Ltd. | Method of an apparatus for jet cutting |
US5542486A (en) * | 1990-09-04 | 1996-08-06 | Ccore Technology & Licensing Limited | Method of and apparatus for single plenum jet cutting |
US5291957A (en) * | 1990-09-04 | 1994-03-08 | Ccore Technology And Licensing, Ltd. | Method and apparatus for jet cutting |
US5186266A (en) * | 1991-02-15 | 1993-02-16 | Heller Marion E | Multi-walled drill string for exploration-sampling drilling systems |
US5713423A (en) * | 1992-07-24 | 1998-02-03 | The Charles Machine Works, Inc. | Drill pipe |
US5267621A (en) * | 1992-10-29 | 1993-12-07 | The Charles Machine Works, Inc. | Drill pipe breakout device |
US5355967A (en) * | 1992-10-30 | 1994-10-18 | Union Oil Company Of California | Underbalance jet pump drilling method |
US5425428A (en) * | 1993-07-22 | 1995-06-20 | Fugro-Mcclelland Marine Geosciences, Inc. | Slimhole coring system |
US5544712A (en) * | 1994-11-18 | 1996-08-13 | The Charles Machine Works, Inc. | Drill pipe breakout device |
US5862871A (en) * | 1996-02-20 | 1999-01-26 | Ccore Technology & Licensing Limited, A Texas Limited Partnership | Axial-vortex jet drilling system and method |
AUPO022996A0 (en) * | 1996-06-04 | 1996-06-27 | Commonwealth Scientific And Industrial Research Organisation | A drilling apparatus and method |
US5879057A (en) | 1996-11-12 | 1999-03-09 | Amvest Corporation | Horizontal remote mining system, and method |
US6364418B1 (en) * | 1996-11-12 | 2002-04-02 | Amvest Systems, Inc. | Cutting heads for horizontal remote mining system |
US6371209B1 (en) * | 1999-04-16 | 2002-04-16 | John F. Allyn | Casing installation and removal apparatus and method |
US6386300B1 (en) | 2000-09-19 | 2002-05-14 | Curlett Family Limited Partnership | Formation cutting method and system |
US7090036B2 (en) * | 2001-02-15 | 2006-08-15 | Deboer Luc | System for drilling oil and gas wells by varying the density of drilling fluids to achieve near-balanced, underbalanced, or overbalanced drilling conditions |
US6823721B1 (en) * | 2001-12-13 | 2004-11-30 | Hutchison Hayes, L.P. | Method and system for mass flow balance accounting |
US6733207B2 (en) * | 2002-03-14 | 2004-05-11 | Thomas R. Liebert, Jr. | Environmental remediation system and method |
US7503407B2 (en) * | 2003-04-16 | 2009-03-17 | Particle Drilling Technologies, Inc. | Impact excavation system and method |
US7258176B2 (en) * | 2003-04-16 | 2007-08-21 | Particle Drilling, Inc. | Drill bit |
US7793741B2 (en) * | 2003-04-16 | 2010-09-14 | Pdti Holdings, Llc | Impact excavation system and method with injection system |
US8342265B2 (en) | 2003-04-16 | 2013-01-01 | Pdti Holdings, Llc | Shot blocking using drilling mud |
US7343987B2 (en) * | 2003-04-16 | 2008-03-18 | Particle Drilling Technologies, Inc. | Impact excavation system and method with suspension flow control |
US7398839B2 (en) * | 2003-04-16 | 2008-07-15 | Particle Drilling Technologies, Inc. | Impact excavation system and method with particle trap |
US7798249B2 (en) * | 2003-04-16 | 2010-09-21 | Pdti Holdings, Llc | Impact excavation system and method with suspension flow control |
US7383896B2 (en) * | 2003-04-16 | 2008-06-10 | Particle Drilling Technologies, Inc. | Impact excavation system and method with particle separation |
US20090200080A1 (en) * | 2003-04-16 | 2009-08-13 | Tibbitts Gordon A | Impact excavation system and method with particle separation |
US7398838B2 (en) * | 2003-04-16 | 2008-07-15 | Particle Drilling Technologies, Inc. | Impact excavation system and method with two-stage inductor |
US20080156545A1 (en) * | 2003-05-27 | 2008-07-03 | Particle Drilling Technolgies, Inc | Method, System, and Apparatus of Cutting Earthen Formations and the like |
US7114583B2 (en) * | 2004-02-04 | 2006-10-03 | David Scott Chrisman | Tool and method for drilling, reaming, and cutting |
FR2869066B1 (fr) * | 2004-04-16 | 2007-01-05 | Technip France Sa | Methode et ensemble de forage pour forer des trous de large diametre |
US7997355B2 (en) * | 2004-07-22 | 2011-08-16 | Pdti Holdings, Llc | Apparatus for injecting impactors into a fluid stream using a screw extruder |
US7584794B2 (en) * | 2005-12-30 | 2009-09-08 | Baker Hughes Incorporated | Mechanical and fluid jet horizontal drilling method and apparatus |
US7699107B2 (en) * | 2005-12-30 | 2010-04-20 | Baker Hughes Incorporated | Mechanical and fluid jet drilling method and apparatus |
US7677316B2 (en) * | 2005-12-30 | 2010-03-16 | Baker Hughes Incorporated | Localized fracturing system and method |
US7779922B1 (en) | 2007-05-04 | 2010-08-24 | John Allen Harris | Breakout device with support structure |
US20090038856A1 (en) * | 2007-07-03 | 2009-02-12 | Particle Drilling Technologies, Inc. | Injection System And Method |
US7987928B2 (en) | 2007-10-09 | 2011-08-02 | Pdti Holdings, Llc | Injection system and method comprising an impactor motive device |
US7980326B2 (en) | 2007-11-15 | 2011-07-19 | Pdti Holdings, Llc | Method and system for controlling force in a down-hole drilling operation |
US8529169B2 (en) * | 2007-12-07 | 2013-09-10 | Hitachi Koki Co., Ltd. | Drilling tool with dust collector |
US8037950B2 (en) | 2008-02-01 | 2011-10-18 | Pdti Holdings, Llc | Methods of using a particle impact drilling system for removing near-borehole damage, milling objects in a wellbore, under reaming, coring, perforating, assisting annular flow, and associated methods |
US7896108B2 (en) * | 2008-03-06 | 2011-03-01 | Able Robert E | Dual string orbital drilling system |
US8485279B2 (en) | 2009-04-08 | 2013-07-16 | Pdti Holdings, Llc | Impactor excavation system having a drill bit discharging in a cross-over pattern |
BR112014030520A2 (pt) | 2012-06-05 | 2017-06-27 | Halliburton Energy Services Inc | métodos e sistemas para execução de operações subterrâneas usando tubos de coluna dupla |
US8739902B2 (en) | 2012-08-07 | 2014-06-03 | Dura Drilling, Inc. | High-speed triple string drilling system |
US10094172B2 (en) | 2012-08-23 | 2018-10-09 | Ramax, Llc | Drill with remotely controlled operating modes and system and method for providing the same |
US9371693B2 (en) | 2012-08-23 | 2016-06-21 | Ramax, Llc | Drill with remotely controlled operating modes and system and method for providing the same |
CN102913160A (zh) * | 2012-11-12 | 2013-02-06 | 中国石油集团长城钻探工程有限公司 | 一种连续循环钻井系统 |
TWI546059B (zh) * | 2014-12-24 | 2016-08-21 | Jiann Jzaw Metal Industry Co Ltd | 沖牙器的快速接頭 |
US9464487B1 (en) | 2015-07-22 | 2016-10-11 | William Harrison Zurn | Drill bit and cylinder body device, assemblies, systems and methods |
CN109723401B (zh) * | 2017-10-27 | 2021-10-29 | 中国石油化工集团公司 | 油田废弃井改造成地热井的方法 |
CN108894733B (zh) * | 2018-09-25 | 2024-04-30 | 徐州徐工基础工程机械有限公司 | 双壁钻杆和钻机 |
CN109098657A (zh) * | 2018-10-24 | 2018-12-28 | 云南建投基础工程有限责任公司 | 一种与旋挖桩机结合的处理漂石的高压水射流装置及方法 |
US10876376B2 (en) | 2018-10-29 | 2020-12-29 | Cameron International Corporation | Erosion control system |
CN109653691B (zh) * | 2019-02-27 | 2024-01-26 | 西南石油大学 | 一种水力与机械复合可控式岩屑床清除工具 |
CN111764821B (zh) * | 2020-08-03 | 2023-04-14 | 四川大学 | 一种微波水射流协同破岩方法与装置 |
CN116397700B (zh) * | 2023-01-16 | 2025-06-03 | 广西路建工程集团有限公司 | 一种冲孔长桩卡锤后埋锤施工处理方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1585969A (en) * | 1923-10-24 | 1926-05-25 | Roy N Ferguson | Method of maintaining a double circulation in oil wells |
US2941783A (en) * | 1957-07-15 | 1960-06-21 | Phillips Petroleum Co | Hydraulic earth boring and cyclone separation system |
US3112800A (en) * | 1959-08-28 | 1963-12-03 | Phillips Petroleum Co | Method of drilling with high velocity jet cutter rock bit |
US3375886A (en) * | 1963-09-24 | 1968-04-02 | Gulf Research Development Co | Method of treating abrasive-laden drilling liquid |
US3508621A (en) * | 1968-09-09 | 1970-04-28 | Gulf Research Development Co | Abrasive jet drilling fluid |
CA933146A (en) * | 1970-06-19 | 1973-09-04 | Becker Drills Ltd. | Method of drilling and casing a large diameter borehole |
US4359115A (en) * | 1979-03-08 | 1982-11-16 | Construction De Materiels De Mines S.A. | Novel rotary drill bits and drilling process |
US4534427A (en) * | 1983-07-25 | 1985-08-13 | Wang Fun Den | Abrasive containing fluid jet drilling apparatus and process |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3273660A (en) * | 1966-09-20 | Method and apparatus for changing single drill pipe strings to | ||
US1338460A (en) * | 1919-08-22 | 1920-04-27 | James D Morrison | Well-drilling device |
US1512140A (en) * | 1923-07-09 | 1924-10-21 | Schaub Otto | Rock boring |
US1716245A (en) * | 1925-04-06 | 1929-06-04 | Otho S Shaw | Tubing anchor |
US2258001A (en) * | 1938-12-23 | 1941-10-07 | Dow Chemical Co | Subterranean boring |
US2720381A (en) * | 1949-05-02 | 1955-10-11 | Thomas E Quick | Method and apparatus for hydraulic reaming of oil wells |
DE1274537B (de) * | 1967-01-25 | 1968-08-08 | Masch Und Bohrgeraete Fabrik | Verbindung zwischen Innenrohr und Aussenrohr bei als Bohrgestaenge verwendbaren Doppelmantelrohren |
US3489438A (en) * | 1968-04-08 | 1970-01-13 | Denali Services Co Inc | Oil well tubing having noncommunicating fluid passages |
US3664443A (en) * | 1969-11-28 | 1972-05-23 | Walker Neer Mfg Co | Dual circulation bumper subs |
CA926377A (en) * | 1970-08-25 | 1973-05-15 | Can-Tex Drilling And Exploration Ltd. | Dual concentric drillpipe |
US3677355A (en) * | 1970-12-16 | 1972-07-18 | Wayland D Elenburg | Core retrieving apparatus |
JPS5217646B2 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) * | 1972-07-28 | 1977-05-17 | ||
JPS536766B2 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) * | 1972-07-28 | 1978-03-11 | ||
US3871486A (en) * | 1973-08-29 | 1975-03-18 | Bakerdrill Inc | Continuous coring system and apparatus |
US4012061A (en) * | 1974-12-23 | 1977-03-15 | Smith International, Inc. | Dual conduit drill stem member |
US4280723A (en) * | 1978-07-26 | 1981-07-28 | Moldestad Jon P | Safety device for hose connections |
US4431069A (en) * | 1980-07-17 | 1984-02-14 | Dickinson Iii Ben W O | Method and apparatus for forming and using a bore hole |
US4458766A (en) * | 1982-09-20 | 1984-07-10 | Gilbert Siegel | Hydrojet drilling means |
-
1984
- 1984-10-16 US US06/661,368 patent/US4624327A/en not_active Expired - Lifetime
-
1985
- 1985-03-05 US US06/708,245 patent/US4691790A/en not_active Expired - Fee Related
- 1985-10-09 DE DE85905455T patent/DE3587472T2/de not_active Expired - Fee Related
- 1985-10-09 WO PCT/US1985/001975 patent/WO1986002403A1/en active IP Right Grant
- 1985-10-09 EP EP85905455A patent/EP0198060B1/en not_active Expired - Lifetime
- 1985-10-09 AU AU50645/85A patent/AU585287B2/en not_active Ceased
- 1985-10-09 BR BR8506979A patent/BR8506979A/pt unknown
- 1985-10-09 AT AT85905455T patent/ATE91748T1/de not_active IP Right Cessation
- 1985-10-15 MX MX289A patent/MX162577A/es unknown
-
1986
- 1986-06-10 DK DK273686A patent/DK273686D0/da unknown
- 1986-06-13 NO NO862365A patent/NO862365L/no unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1585969A (en) * | 1923-10-24 | 1926-05-25 | Roy N Ferguson | Method of maintaining a double circulation in oil wells |
US2941783A (en) * | 1957-07-15 | 1960-06-21 | Phillips Petroleum Co | Hydraulic earth boring and cyclone separation system |
US3112800A (en) * | 1959-08-28 | 1963-12-03 | Phillips Petroleum Co | Method of drilling with high velocity jet cutter rock bit |
US3375886A (en) * | 1963-09-24 | 1968-04-02 | Gulf Research Development Co | Method of treating abrasive-laden drilling liquid |
US3508621A (en) * | 1968-09-09 | 1970-04-28 | Gulf Research Development Co | Abrasive jet drilling fluid |
CA933146A (en) * | 1970-06-19 | 1973-09-04 | Becker Drills Ltd. | Method of drilling and casing a large diameter borehole |
US4359115A (en) * | 1979-03-08 | 1982-11-16 | Construction De Materiels De Mines S.A. | Novel rotary drill bits and drilling process |
US4534427A (en) * | 1983-07-25 | 1985-08-13 | Wang Fun Den | Abrasive containing fluid jet drilling apparatus and process |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996018800A1 (en) * | 1994-12-15 | 1996-06-20 | Telejet Technologies, Inc. | Method and apparatus for drilling with high-pressure, reduced solid content liquid |
US5586609A (en) * | 1994-12-15 | 1996-12-24 | Telejet Technologies, Inc. | Method and apparatus for drilling with high-pressure, reduced solid content liquid |
AP763A (en) * | 1994-12-15 | 1999-09-15 | Telejet Tech Inc | Method and apparatus for drilling with high pressure, reduced solid content liquid. |
KR100411580B1 (ko) * | 1994-12-15 | 2004-04-03 | 텔레제트 테크놀로지즈, 인코포레이티드 | 고압,저고체함유량의액체로드릴링하기위한장치및방법 |
Also Published As
Publication number | Publication date |
---|---|
DE3587472T2 (de) | 1994-02-03 |
US4624327A (en) | 1986-11-25 |
ATE91748T1 (de) | 1993-08-15 |
MX162577A (es) | 1991-05-27 |
EP0198060A1 (en) | 1986-10-22 |
BR8506979A (pt) | 1987-01-06 |
NO862365D0 (no) | 1986-06-13 |
US4691790A (en) | 1987-09-08 |
DK273686A (da) | 1986-06-10 |
DE3587472D1 (de) | 1993-08-26 |
EP0198060B1 (en) | 1993-07-21 |
NO862365L (no) | 1986-06-13 |
US4624327B1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1990-08-21 |
EP0198060A4 (en) | 1988-10-20 |
AU5064585A (en) | 1986-05-02 |
AU585287B2 (en) | 1989-06-15 |
DK273686D0 (da) | 1986-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4624327A (en) | Method for combined jet and mechanical drilling | |
US5535839A (en) | Roof drill bit with radial domed PCD inserts | |
US3424255A (en) | Continuous coring jet bit | |
US8113300B2 (en) | Impact excavation system and method using a drill bit with junk slots | |
US7383896B2 (en) | Impact excavation system and method with particle separation | |
US4296970A (en) | Hydraulic mining tool apparatus | |
US12129723B2 (en) | Managing dielectric properties of pulsed power drilling fluids | |
EP0030558A1 (en) | Deep hole rock drill bit | |
CN1071223A (zh) | 盘式钻头 | |
US4540056A (en) | Cutter assembly | |
US20090200080A1 (en) | Impact excavation system and method with particle separation | |
US20090205871A1 (en) | Shot Blocking Using Drilling Mud | |
CA2588170A1 (en) | Impact excavation system and method with particle separation | |
US20060011386A1 (en) | Impact excavation system and method with improved nozzle | |
CN1056553A (zh) | 用于钻探和取样的方法和装置 | |
CN112204222A (zh) | 井筒钻头喷嘴 | |
US7398839B2 (en) | Impact excavation system and method with particle trap | |
US7398838B2 (en) | Impact excavation system and method with two-stage inductor | |
US3375886A (en) | Method of treating abrasive-laden drilling liquid | |
CN119021578A (zh) | 一种机械-水力联合破岩旋挖钻掘进系统 | |
CA1260455A (en) | Method and apparatus for combined jet and mechanical drilling | |
EP1871506A1 (en) | Method and apparatus for centrifugal separation enhancement | |
RU2641150C1 (ru) | Отклоняющее устройство для вырезки окна в обсадной колонне скважины | |
RU2239728C1 (ru) | Насосно-эжекторная скважинная струйная установка для очистки забоя скважин от песчаных пробок и способ ее работы | |
Vestavik et al. | Abrasive water-jet drilling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU BR DK FI JP KR NO |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LU NL SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1985905455 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1985905455 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1985905455 Country of ref document: EP |