WO1986002191A1 - Apparatus for detecting tracking error of an optical head - Google Patents

Apparatus for detecting tracking error of an optical head Download PDF

Info

Publication number
WO1986002191A1
WO1986002191A1 PCT/JP1985/000547 JP8500547W WO8602191A1 WO 1986002191 A1 WO1986002191 A1 WO 1986002191A1 JP 8500547 W JP8500547 W JP 8500547W WO 8602191 A1 WO8602191 A1 WO 8602191A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording medium
optical recording
order
reflected
tracking error
Prior art date
Application number
PCT/JP1985/000547
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Shintani
Takatoshi Yamada
Atsushi Fukumoto
Kiyoshi Ohsato
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Publication of WO1986002191A1 publication Critical patent/WO1986002191A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0901Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following only
    • G11B7/0903Multi-beam tracking systems
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/095Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
    • G11B7/0956Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble to compensate for tilt, skew, warp or inclination of the disc, i.e. maintain the optical axis at right angles to the disc
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector

Definitions

  • the present invention relates to an optical head tracking error detecting device suitable for application to an optical recording device, a reproducing device, and a recording / reproducing device.
  • a conventional optical head tracking error detecting device will be described with reference to FIG. OH indicates the optical head as a whole.
  • (1) is a semiconductor laser device (laser diode), which emits a divergent laser beam L having an elliptical cross section, emitted from the laser beam emitting end face (1A) side, through a collimator lens (unnecessary).
  • (2) After being incident on (2) to form a parallel beam, it is incident on a diffraction grating (grating). 0th order beam L emitted from diffraction grating).
  • ⁇ 1st order beams L +1 , L -1 (+ 2nd order, — beams below 2nd order are ignored) ' is a non-polarizing beam splitter (half mirror) (for a polarizing beam splitter) (In this case, a 1/4 wavelength plate is provided between the objective lens (5).)
  • the light After passing through ( 4 ), the light is made to enter the objective lens (5) and is focused.
  • the ⁇ 1st-order beams L + 1 > L-i are made to enter the recording surface of an optical recording medium (including a magneto-optical recording medium) (6) at a predetermined interval (for example, 10 / m).
  • a predetermined interval for example, 10 / m
  • the photodetector is composed of three photodetectors into which the zero-order beam L. and the ⁇ first-order beams L + 1 and L-i are separately incident.
  • the 0th-order beam L 0 on the recording surface of the optical recording medium ( 6 ) is obtained.
  • Toratsuki A tracking error signal corresponding to the tracking state is obtained. Also, a reproduced signal, a focused signal, and the like are obtained from the photodetector on which the zero-order beam is incident.
  • the semiconductor laser device (1) is usually fixed on a heat sink (8) made of copper or the like which also serves as one electrode.
  • the structure of the semiconductor laser device ⁇ will be described from the upper layer to the lower layer in the figure as follows.
  • (La) is the electrode layer
  • (lb) is n-GaAs layer (base layer)
  • (lc) is n- G ai -yAlyAs' layer (H la head layer)
  • (Id) is Gai -XAlxAs layer
  • active (Le) is the p-Gai-yAiyAs layer (cladding layer)
  • (If) is the p-Ga layer.
  • the above-described laser beam L is emitted from the active layer (Id).
  • the semiconductor laser device (1) has a width of 100 to 300 m and a height (thickness) of 100 to 300 m. 80 ⁇ ⁇ 00 ⁇ um, depth 200-300 m.
  • the height of the active layer (Id) from the top surface of the heat sink (S) is several m .
  • Optical recording medium (6) 0 order beam reflected by the L 0 and ⁇ 1-order beam L +1, after L is passing through the objective lenses), reflected by the reflecting surface of the beam Splitter (4) (4a)
  • a special zero-order beam In addition to passing through the beam splitter (4) and entering the diffraction grating (3), a special zero-order beam
  • Beam and ⁇ first-order beams are generated and pass through the collimator lens ( 2 ) to the semiconductor laser device (1).
  • the beam amount of the beam going to this semiconductor laser element-(1) can be reduced by using an unpolarized beam splitter. Most are less when using a polarizing beam splitter.
  • the semiconductor laser element (1) according to the relative rotation angle position between the laser beam emitting end face (1A) of the semiconductor laser element (1) and the diffraction grating (3), the semiconductor laser element (1)
  • the arrangement of the center beam L a toward the beam and the two side beams L b and L c located on both sides of the center beam La are such that the center beam La is located on the active layer (Id) on the laser beam emitting end face (U), respectively.
  • the two-sided beams Lb and Lc pass through the position of the center beam La and are positioned vertically on a straight line perpendicular to the active layer (Id), and when the center beam La and the two-sided beams Lb and Lc are Both cases are located on the active layer (Id), and a straight line connecting the center beam La and the side beams Lb and Lc is located at an arbitrary angular position between the above two cases.
  • the center beam La and both-side beams Lb> Lc are such that the 0th-order beam Lc and the ⁇ 1st-order beams L + 1 , L in FIG. 5 are re-diffracted by the diffraction grating ( 3 ) and mixed. Are superimposed.
  • the intensity of the eleventh or primary beam incident on the photodetector (7) changes, and the tracking error is caused.
  • the signal changes periodically according to its skew angle.
  • FIG. 8 shows a case where one of the two side beams Lb and Lc enters the laser beam emitting end face (U) of the semiconductor laser device (1) and the other Lc enters the heat sink).
  • Optical recording media (6) 5 shows the periodicity of the level change of the tracking error signal Se with respect to the tangential skew angle of the recording surface.
  • the level of the tracking error signal S e attenuates. ⁇ , both side beams Lb, Lc Both laser beams.
  • Outgoing end face When incident on 10, the amplitude of the waveform corresponding to Fig. 8 is twice that of Fig. 8, and the phase is the same as Fig. 8. Is different.
  • ⁇ ⁇ 3 ⁇ 4 are each an optical recording medium (6 ) Is the optical path difference due to the skew, and the optical path difference due to the skew at the laser beam emitting end face (1A).
  • g is the 0th-order beam L in the diffraction grating.
  • Ii are the transmittances of the 0th-order beam and the + 1st-order beam in the diffraction grating (3)
  • t is the transmittance of the half mirror (4)
  • r and f are the transmittances of the optical recording medium (6).
  • the light intensity IB of the point B is expressed by the following equation.
  • IB i I t 2 ⁇ ⁇ + i 4 r 2 f 2 (3 + 2cos 2 (A & i
  • the present invention relates to a semiconductor laser device, a diffraction grating to which a laser beam (having a wavelength of ⁇ ⁇ ) from the semiconductor laser device is incident, and a 0-order beam and a soil primary beam emitted from the diffraction grating.
  • the beam splitter to be fixed, the zero-order beam and the soil primary beam emitted from the beam splitter are focused and focused by the objective lens to be incident on the optical recording medium, and reflected by the optical recording medium.
  • the 0th-order beam and the 1st-order beam pass through the objective lens and are reflected by the reflecting surface of the beam splitter.
  • a tracking error detection device of an optical head that obtains a tracking error signal according to a tracking state, light is attenuated in an optical path between a semiconductor laser element and an optical recording medium. Means to attenuate the reflected beam of the return beam from the optical recording medium due to the laser beam emitting end face of the semiconductor laser element, and to disturb the tracking error signal due to the fluctuation of the tangential skew angle of the optical recording medium. Is to be reduced.
  • FIG. 1 to 4 are cross-sectional views showing the optical attenuation means of each embodiment of the present invention.
  • FIG. 5 is a schematic arrangement diagram showing a conventional optical head tracking error detecting device
  • FIG. FIGS. 7 and 8 are front views showing an example of a semiconductor laser device in a conventional optical head tracking error detecting device
  • FIG. 8 is a waveform diagram
  • FIGS. 5 and 6 The overall configuration example of the optical head tracking error detection device and the configuration example of the semiconductor laser device are described in FIGS. 5 and 6, respectively. Figures and explanations based on them are referred to, and duplicate explanations are omitted.
  • the optical path between the semiconductor laser device (1) and the optical recording medium (6) is provided with light attenuating means.
  • the beam splitter ( 4 ) shown in FIG. 5 is used as an optical attenuator, and its transmittance is relatively small (for example, 25%). Are relatively selected as dogs (for example, 65%). In this case, the loss is 10%.
  • a beam splitter half mirror
  • Prism (4 t) dielectric multilayer film between the (4 3) which was deposited form, its thickness, by controlling the number of layers or the like, controlling the transmittance ⁇ beauty reflectance can do.
  • the diffraction grating (3) shown in FIG. 5 is used as light attenuation means! Therefore, the light absorption layer (3b) is formed on the surface opposite to the surface on which the groove (3a) is formed.
  • a light reflecting layer may be used instead of the light absorbing layer (3b).
  • the transmittance is reduced by using a neutral density (ND) filter (a light reflection filter is also possible) as the diffraction grating (3) itself. This is a case where it is used as a light attenuation means.
  • ND neutral density
  • an optical attenuator is used as a window (10) provided in a metal package (9) of the semiconductor laser device (1) shown in FIG. This is the case when the means is used.
  • a separate ND filter (a light reflection filter is also possible) may be provided in the optical path between the semiconductor laser element (1) and the optical recording medium (6) to serve as an optical attenuation means. If the ND filter is provided in the optical path between the semiconductor laser element (1) and the beam splitter (4), the optical path between the beam splitter ( 4 ) and the optical recording medium (6) is better.
  • the intensity of the beam incident on the photodetector) can be made to be a dog as compared with that provided inside, and the output power of the semiconductor laser element (1) does not need to be increased accordingly.
  • the semiconductor laser element of the return beam from the optical recording medium is provided. It is possible to attenuate the reflected beam from the laser beam emitting end face of the optical recording medium, and reduce disturbance to the tracking error signal due to the fluctuation of the tangential skew angle of the optical recording medium. .

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

An apparatus for detecting tracking errors of an optical head, wherein a laser beam from a semiconductor laser element (1) is permitted to be incident upon a diffraction grating (3), a zero-order beam and ↓∃ primary beams from the diffraction grating (3) are permitted to be incident upon an object glass (5) via a beam splitter (4), the zero-order beam and ↓∃ primary beams that fall focused on an optical recording medium (6) are that are reflected thereby, pass through the object glass (5), are further reflected by the reflecting surface of the beam splitter (4), and are permitted to be incident on a light detector (7) which produces a pair of outputs corresponding to ↓∃ primary beams, in order to obtain a tracking error signal of the zero-order beam which corresponds to the tracking condition on the optical recording medium (6) based upon the difference between the above-mentioned pair of outputs. In this apparatus, provision is made of a light attenuating means in an optical path between the semiconductor laster element (1) and the optical recording medium (6), in order to attenuate the laser beam reflected by the beam emitting end face (1A) of the semiconductor laser element (1), the reflected beam being produced by the beam which returns from the optical recording medium (6). This makes it possible to reduce disturbance to the tracking error signals caused by the change in the tangential skew angle of the optical recording medium (6).

Description

明 細 書  Specification
発明の名称 光学式へッ ドの ト ラ ッキング誤差検出装置 Title of the invention Optical head tracking error detection device
技術分野 Technical field
本発明は光学式記凝装置、 再生装置及び記録再生装置に適用し て好適な光学式へッ ドの ト ラ ッキング誤差検出装置に関する。  The present invention relates to an optical head tracking error detecting device suitable for application to an optical recording device, a reproducing device, and a recording / reproducing device.
背景技術 Background art
先ず第 5図を参照して、 従来の光学式へッ ドの ト ラ ッキング誤 差検出装置について説明する。 O Hは光学式へッ ドを全体として 示す。 (1)は半導体レーザ素子 (レーザダイオー ド) で、 これのレ —ザビーム出射端面 ( 1 A) 側より出射した、 断面が楕円の発散レ 一ザビーム Lは、 コ リ メ ータ レンズ (不用の場合もある) (2)に入 射せしめられて平行ビームとなされた後、 回折格子 (グレーチイ ング) )に入射せしめられる。 回折格子 )より出.射した 0次ビー ム L。 及び ± 1次ビーム L +1 , L - 1 (尚、 + 2次上、 — 2次以下 のビームは無視する)' は無偏光ビームスプリ ツ タ (ハーフ ミ ラー) (偏光ビームスプリ ッタの場合は、 対物レンズ (5)との間に 1ノ 4 波長板を設ける) (4)を通過した後、 対物レンズ (5)に入射せしめら れて集束せしめられ、 その集束された 0次ビーム L。 及び ± 1次 ビーム L +1 > L -iは光学式記録媒体 (光磁気記録媒体も舍む) (6) の記録面に所定間隔 (例えば 10 / m ) を置いて入射せしめられる。 光学式記録媒体 (6)で反射した 0次ビーム L。 及び ± 1次ビーム L +1 , L は対物レンズ )を通過した後、 ビ一ムスプリ ツタ(4)に 入射せしめられ、 その一部はその反射面 (4a〉 で反射して光検出 器 ( に入射せしめられる。 この光検出器 )は、 0次ビーム L。 及 び ± 1次ビーム L +1 , L -iが各別に入射せしめられる 3個の光検 出部にて構成される。 そして、 ± 1次ビームが夫々入射せしめら れる一対の光検出部からの一対の光検出出力の差を採ることによ り、 0次ビーム L 0 の光学式記録媒体 (6)の記録面上での ト ラ ツキ ング状態に応じた ト ラ ツキング誤差信号が得られる。 又、 0次ビ ームの入射せしめられた光検出部からは、 再生信号、 フ ォ ーカス ェラ一信号等が得られる。 First, a conventional optical head tracking error detecting device will be described with reference to FIG. OH indicates the optical head as a whole. (1) is a semiconductor laser device (laser diode), which emits a divergent laser beam L having an elliptical cross section, emitted from the laser beam emitting end face (1A) side, through a collimator lens (unnecessary). (In some cases.) After being incident on (2) to form a parallel beam, it is incident on a diffraction grating (grating). 0th order beam L emitted from diffraction grating). And ± 1st order beams L +1 , L -1 (+ 2nd order, — beams below 2nd order are ignored) 'is a non-polarizing beam splitter (half mirror) (for a polarizing beam splitter) (In this case, a 1/4 wavelength plate is provided between the objective lens (5).) After passing through ( 4 ), the light is made to enter the objective lens (5) and is focused. L. The ± 1st-order beams L + 1 > L-i are made to enter the recording surface of an optical recording medium (including a magneto-optical recording medium) (6) at a predetermined interval (for example, 10 / m). Zero-order beam L reflected by the optical recording medium ( 6 ). After passing through the +/- primary beam L + 1 and L through the objective lens, the beam is made incident on the beam splitter (4), and a part of the beam is reflected by the reflection surface (4a>) and the photodetector ( The photodetector) is composed of three photodetectors into which the zero-order beam L. and the ± first-order beams L + 1 and L-i are separately incident. By taking the difference between the pair of photodetection outputs from the pair of photodetectors where the ± primary beams are respectively incident, the 0th-order beam L 0 on the recording surface of the optical recording medium ( 6 ) is obtained. Toratsuki A tracking error signal corresponding to the tracking state is obtained. Also, a reproduced signal, a focused signal, and the like are obtained from the photodetector on which the zero-order beam is incident.
次に、 半導体レーザ素子 (1)の一例について第 6図を参照して説 明'する。 こ の半導体レーザ素子 (1)は通常一方の電極を兼ねた銅等 より成るヒ ー ト シ ンク(8)上に固着されている。 半導体レーザ素子 ωの構造を図に於いてその上層から下層に向かって説明すると、 Next, an example of the semiconductor laser device (1) will be described with reference to FIG. The semiconductor laser device (1) is usually fixed on a heat sink (8) made of copper or the like which also serves as one electrode. The structure of the semiconductor laser device ω will be described from the upper layer to the lower layer in the figure as follows.
( la) は電極層、 ( lb) は n- GaAs層 (基体層) 、 ( lc) は n- Gai -yAlyAs'層 (ク ラ ッ ド層) 、 ( Id) は Gai -xAlxAs 層 (活性層) 、 ( le) は p- Gai - yAiyAs 層 (ク ラ ッ ド層) 、 ( If) は p-Ga 層で ある。 そして、 活性層 ( Id) から上述のレーザビーム Lが出射す る。 こ の半導体レーザ素子 (1)の レーザビー ム出射端面 (劈開面) ( IA) を正面とすると、 半導体レーザ素子(1)は、 その幅が 100〜 , 300 ' m 、 高さ (厚さ) が 80〜 丄 00<u m 、 奥行が 200〜 300 m である。 活性層 ( Id) のヒー ト シ ンク (S)の上面からの高さは数〃 m である。 (La) is the electrode layer, (lb) is n-GaAs layer (base layer), (lc) is n- G ai -yAlyAs' layer (H la head layer), (Id) is Gai -XAlxAs layer (active (Le) is the p-Gai-yAiyAs layer (cladding layer), and (If) is the p-Ga layer. Then, the above-described laser beam L is emitted from the active layer (Id). When the laser beam emitting end face (cleavage plane) (IA) of this semiconductor laser device (1) is set to the front, the semiconductor laser device (1) has a width of 100 to 300 m and a height (thickness) of 100 to 300 m. 80 ~ 丄 00 <um, depth 200-300 m. The height of the active layer (Id) from the top surface of the heat sink (S) is several m .
と こ ろで、 Q次ビーム L .〕 の光学式記録媒体 (6)の記録面に対す るタ ンジェ ン シ ャルスキュ ー角が変化すると、 ト ラ ソ キングエ ラ — ί言号もそれに応じて周期的に変化し、 正確な ト ラ—ッキ ングェラ —を検出することができなかった。  At this point, when the tangential skew angle of the Qth-order beam L. with respect to the recording surface of the optical recording medium (6) changes, the trasso King error—the symbol is periodically changed accordingly. And it was not possible to detect an accurate tracking.
本発明者等はその原因を究明したところ、 次のようなことが分 かった。 光学式記録媒体 (6)で反射した 0次ビーム L 0 及び ± 1 次 ビーム L +1 , L は対物レ ンズ )を通過した後、 ビーム スプリ ッ タ(4)の反射面 (4a) で反射するのみならず、 ビーム スプリ ッタ(4) を通過し、 回折格子 (3)に入射して、 夫々に対応して格別の 0次ビThe present inventors have investigated the cause and found the following. Optical recording medium (6) 0 order beam reflected by the L 0 and ± 1-order beam L +1, after L is passing through the objective lenses), reflected by the reflecting surface of the beam Splitter (4) (4a) In addition to passing through the beam splitter (4) and entering the diffraction grating (3), a special zero-order beam
—ム及び ± 1 次ビームが発生し、 コ リ メ ータ レ ンズ (2)を通過して 半導体レーザ素子(1)に向かう。 こ の半導体レ —ザ素 - (1)に向かう ビー ムのビーム量は、 無偏光ビー ムスプリ ッタを用いた場合には 多く 、 偏光ビームスプリ ッタを用いた場合は少 い'。 この場合、 第 7図に示す如く 、 半導体レーザ素子 (1)のレーザビーム出射端面 ( 1A) と、 回折格子 (3)との相対回動角位置に応じて、 半導体レ— ザ素子(1)に向かう中心ビーム L a 及びその両側に位置する両側ビ ーム L b , L c の配置は、 夫々中心ビーム L a がレーザビーム出 射端面 ( U) 上の活性層 ( Id) に位置し、 両側ビーム L b , L c が中心ビーム L a の位置を通り、 活性層 ( Id) と直交する直線上 に於いて上下に位置する場合と、 中心ビーム L a 及び両側ビーム L b , L c が共に活性層 ( Id) 上に位置する場合と、 中心ビーム L a 及び両側ビーム L b , L c を結ぶ直線が上記 2つの場合の中 間の任意の角度位置に来る場合とがある。 尚、 これら中心ビーム L a 及び両側ビーム L b > L c は、 第 5図の 0次ビーム L c 及び ± 1 次ビーム L +1, L が回折格子 (3)によって再回折され、 且つ 混在して重畳されたものである。 Beam and ± first-order beams are generated and pass through the collimator lens ( 2 ) to the semiconductor laser device (1). The beam amount of the beam going to this semiconductor laser element-(1) can be reduced by using an unpolarized beam splitter. Most are less when using a polarizing beam splitter. In this case, as shown in FIG. 7, according to the relative rotation angle position between the laser beam emitting end face (1A) of the semiconductor laser element (1) and the diffraction grating (3), the semiconductor laser element (1) The arrangement of the center beam L a toward the beam and the two side beams L b and L c located on both sides of the center beam La are such that the center beam La is located on the active layer (Id) on the laser beam emitting end face (U), respectively. The two-sided beams Lb and Lc pass through the position of the center beam La and are positioned vertically on a straight line perpendicular to the active layer (Id), and when the center beam La and the two-sided beams Lb and Lc are Both cases are located on the active layer (Id), and a straight line connecting the center beam La and the side beams Lb and Lc is located at an arbitrary angular position between the above two cases. Note that the center beam La and both-side beams Lb> Lc are such that the 0th-order beam Lc and the ± 1st-order beams L + 1 , L in FIG. 5 are re-diffracted by the diffraction grating ( 3 ) and mixed. Are superimposed.
ところで、 両側ビーム L b > L c の少な く とも一方がヒ一 ト シ ンク(8)の面に入射した場合は、 その面が粗面であるので、 そのビ ームはそこで乱反射されるので問題はないが、 両側ビーム L b , L c の少な く とも一方が半導体レーザ素子(1)のレーザビーム出射 端面 ( ) に入射する場合は、 この端面 ( U) は反射率が良好 (例えば 10%) なので、 この嫱面 ( 1A) で反射し、 上述の光路を 通過して光検出器 )に入射するので、 + 1 次又は - 1 ビームと干 渉を起こす。 このため、 0次ビーム L。 の光学式記録媒体 (6)の記 録面に対するタ ンジヱ ンシャルスキュー角に応じて、 光検出器 (7) に入射する 十 1次又は一 1次ビームの強度が変化し、 ト ラ ツキン グヱラ—信号がそのスキュー角に応じて周期的に変化する。 By the way, when at least one of the two-sided beams Lb> Lc is incident on the surface of the heat sink ( 8 ), the surface is rough and the beam is diffusely reflected there. Although there is no problem, when at least one of the two-sided beams Lb and Lc is incident on the laser beam emitting end face () of the semiconductor laser device (1), this end face (U) has a good reflectance (for example, 10 %), The light is reflected from this surface (1A), passes through the optical path described above, and enters the photodetector), causing interference with the +1 order or -1 beam. Therefore, the zero-order beam L. According to the tangential skew angle with respect to the recording surface of the optical recording medium (6), the intensity of the eleventh or primary beam incident on the photodetector (7) changes, and the tracking error is caused. The signal changes periodically according to its skew angle.
第 8図は、 両側ビーム L b , L c の一方 L b が半導体レーザ素 子 (1)の レーザビーム出射端面 ( U) に入射し、 他方 L c がヒー ト シンク )に入射した場合の、 0次ビーム L。 の光学式記録媒体 (6) の記録面に対するタンジヱン シ ャルスキュー角 ° に対する ト ラ ッキングエラー信号 S e のレベル変化の周期性を示す。 尚、 実際 には、 I α I が増大するにつれて、 トラ ッキングエラー信号 S e の レベルは減衰する。 简、 両側ビーム L b , L c 共レーザビーム . 出射端面 (1 0 に入射する場合は、 第 8図に対応する波形の振幅 が第 8図のそれの 2倍となり、 位相は第 8図とは異なる。 FIG. 8 shows a case where one of the two side beams Lb and Lc enters the laser beam emitting end face (U) of the semiconductor laser device (1) and the other Lc enters the heat sink). 0th order beam L. Optical recording media (6) 5 shows the periodicity of the level change of the tracking error signal Se with respect to the tangential skew angle of the recording surface. In practice, as IαI increases, the level of the tracking error signal S e attenuates.简, both side beams Lb, Lc Both laser beams. Outgoing end face (When incident on 10, the amplitude of the waveform corresponding to Fig. 8 is twice that of Fig. 8, and the phase is the same as Fig. 8. Is different.
次に、 両側ビーム L b , L c のうちの一方 L b が半導体レーザ 素子 (1)のレーザビーム出射嫱面 ( U) に入射し、 他方し c がヒ一 トシンク(8)に入射する場合の干渉について、 第 9図 (レンズ系の 図示を省略してある) を参照して説明する。 第 9図に於いて、 実 線にて示される ( 1A) はレーザ.ビーム出射端面であるが、 破線に て示される正規の位置の出射嫱面 (U) に対し傾いている一般的 な場合を示す。 又、 実線にて.示される (6)は光学式記録媒体である が、 破線にて示される正規の位置の光学式記録媒体 (6)に対し傾い ている場令を示す。 0次ビーム L。 は正規の位置のレーザビーム 出射孅面 ( 1 A) 及び正規の位置の光学式記録媒体 (6)の記録面に対 し鉛直である。 0 は + 1次ビーム L の 0次ビーム L o に対する 角度である。 はレーザビーム出射嬙面 ( 1 A) 及び回折格子 ) 間の光路長、 & 2 は面折格子 )及び光学式記録媒体 (6)の記録面間 の光路县である。 " , Δ & 2 は夫々光路县 £ i , & 2 に対す る 0次ビーム L。 及び + 1次ビーム L +1間の光路差である。 Δ ί 34 は夫々光学式記録媒体 (6)のスキューによる光路差、 レーザ ビーム出射端面 (1A) のスキューによる光路差である。 Next, when one of the two side beams Lb and Lc is incident on the laser beam emitting surface (U) of the semiconductor laser device (1), and on the other hand, c is incident on the heat sink (8). The interference will be described with reference to FIG. 9 (illustration of the lens system is omitted). In Fig. 9, (1A) shown by the solid line is the laser beam emission end face, but the general case where it is inclined with respect to the emission surface (U) at the regular position shown by the broken line. Is shown. Also, (6) indicated by a solid line indicates an optical recording medium, which is inclined with respect to the optical recording medium ( 6 ) at a regular position indicated by a broken line. 0th order beam L. Is perpendicular to the laser beam emission surface (1 A) at the regular position and the recording surface of the optical recording medium (6) at the regular position. 0 is the angle of the first-order beam L with respect to the zero-order beam L o. Is the optical path length between the laser beam output surface (1A) and the diffraction grating), and & 2 is the optical path length between the plane-folded grating) and the recording surface of the optical recording medium (6). ", Delta & 2 are each optical path县£ i, is an optical path difference between the zero-order beam L. and + 1-order beam L +1 against the & 2. Δ ί 34 are each an optical recording medium (6 ) Is the optical path difference due to the skew, and the optical path difference due to the skew at the laser beam emitting end face (1A).
又、 gを回折格子 )に於ける 0次ビーム L。 及び + 1次ビーム L +i間の位相差とする。 i 。 , i i を夫々回折格子 (3)に於ける 0 次ビーム、 + 1次ビームの透過率、 tをハーフ ミ ラ ー(4)の透過率、 r , f を夫々光学式記録媒体 (6)の記録面上、 レーザビーム出射端 面 ( U) 上の反射率とする。 しかして、 + 1 次ビーム L +1が入射する光学式記録媒体 (6)の記 録面上の点 Aに於ける光の複素振幅を次の 4つの場合に分けて考 んる。 Also, g is the 0th-order beam L in the diffraction grating. And + the phase difference between the primary beams L + i . i. , Ii are the transmittances of the 0th-order beam and the + 1st-order beam in the diffraction grating (3), t is the transmittance of the half mirror (4), and r and f are the transmittances of the optical recording medium (6). The reflectivity on the recording surface and on the laser beam emitting end surface (U). Thus, the complex amplitude of light at the point A on the recording surface of the optical recording medium (6) on which the + 1st-order beam L + 1 is incident is divided into the following four cases.
(1) a i + 1次ビーム L +1が直接点 Aに入射した場合。 (1) ai + primary beam L +1 is directly incident on point A.
(2) a 2 0次ビーム L。 が光学式記録媒体 (6)で反射し、 再度回折 格子 )に入射するこ とによって得られた 0次ビームがレ 一ザビーム出射端面 ( 1A) で反射し、 再度画折格子 (3)に 入射するこ とによって得られた + 1次ビームが点 Aに入 射した場合である。  (2) a 20th order beam L. Is reflected by the optical recording medium (6) and re-enters the diffraction grating), the 0th-order beam obtained is reflected by the laser beam exit end face (1A) and re-enters the grating (3) This is the case where the + first-order beam obtained at this point enters point A.
(3) a 0次ビーム L。 が光学式記録媒体 (6)で反射し、 再度回折 格子 )に入射するこ とによって得られた + 1次ビームが レーザビーム出射嬸面 ( U) で反射し、 再度画折格子 (3) に入射することによって得られた 0次ビー が点 Aに入 射した場合である。  (3) a 0th order beam L. Is reflected by the optical recording medium (6) and re-enters the diffraction grating), the + primary beam is reflected by the laser beam exit surface (U), and is again reflected by the grating (3). This is the case where the 0th-order bead obtained by incidence enters point A.
(4) a + 1 次ビーム L +1が光学式記録媒体 で反射し、 再度回 折格子 (3)に入射するこ とによって得られた 0次ビームが レーザビーム出射嬙面 ( U) で反射し、 再度面折格子 (3) に入射するこ とによって得られた 0次ビームが点 Aに入 射する場合である。 (4) The a + 1 primary beam L + 1 is reflected by the optical recording medium, and the 0th-order beam obtained by re-entering the diffraction grating ( 3 ) is reflected by the laser beam exit surface (U) In this case, the zero-order beam obtained by re-entering the folded grating (3) enters point A.
次に a 1 〜 a 4 を式にて示す。 Then shows a a 1 ~ a 4 in the formula.
a l = i 1 t · exp { j ( & i + g + ί 2 + 厶 J2 2 al = i 1 texp {j (& i + g + ί 2 + m J2 2
+ 厶 ) } (1) a 2 i i i t 3 rf · exp C j { 3 ( H i + i 2 ) + g + 1)} (1) a 2 iiit 3 rf · exp C j {3 (H i + i 2 ) + g
+ A & 2 + Δ 3 } 〕 (2) + A & 2 + Δ 3}] (2)
―一 ί 2 ―One ί 2
1 0 i t 3 rf - exp ( j { 3 ( & i + 8. 2 ) + g 1 0 it 3 rf - exp ( j {3 (& i + 8. 2) + g
+ 2 & ί + A & 2 + 厶 £ 3 + 2 Δ £ 4 } 〕 (3) a 4 = i I i i t 3 rf - exp 〔 j { 3 ( & i + & 2 ) + g + 2 & ί + A & 2 + m £ 3 + 2 Δ £ 4}] (3) a 4 = i I iit 3 rf-exp [j {3 (& i + & 2 ) + g
+ 3 ( Δ £ 2 + Δ jg 3 ) + 2 厶 1 + 2 Δ jg 4 } )  + 3 (Δ £ 2 + Δ jg 3) + 2 m 1 + 2 Δ jg 4})
(4) 計算の簡単のため、 レーザビームの可干渉距離を 2 ( ϋ 1 + & 2 ) 以下とすると、 点 Aに於ける光の強度 I A は次式のように表され る (Four) For simplicity of calculation, if the coherence length of the laser beam is 2 (ϋ1 + & 2) or less, the light intensity IA at point A is expressed as
I A = a + a 2 + a + a 4  I A = a + a 2 + a + a 4
= i 〔 l + i t 4 r 2 f 2 { 3 + 2cos 2 ( Δ £ .! + A £ 4 ) + 2cos 2 ( Δ 5 i + Δ ί 4 + Δ £ a + 厶 ) + 2cos 2 (厶 ^ 2 + 厶 3 ) } 〕 · · · (5) 又、 両側ビーム L b , L c の両方がレーザビーム出射端面 ( 1A) に入射する場合に於いて、 + 1次ビーム L "が光学式記録媒体 (6) の記録面上の点 Aに入射し、 ― 1次ビーム L が 0次ビーム L 0 に対し対称な点 Bに入射する場合は、 点 Aの光の強度 I A は )式 の通りであるが、 点 Bの光の強度 I B は次式のように表される。 .. = i [l + it 4 r 2 f 2 {3 + 2 cos 2 (Δ £.! + A £ 4) + 2 cos 2 (Δ 5 i + Δ ί 4 + Δ £ a + m) + 2 cos 2 (m ^ 2 + m 3)}] · · · (5) When both beams L b and L c are incident on the laser beam exit end face (1A), the + primary beam L "is optically recorded. incident on a point a on the recording surface of the medium (6), - primary beam if L is incident on the zero-order beam L 0 symmetric point with respect to B, the intensity I a of the light from the point a) formula As described above, the light intensity IB of the point B is expressed by the following equation.
I B = i I t 2 ί ϊ + i 4 r 2 f 2 { 3 + 2cos 2 ( A & iIB = i I t 2 ί ϊ + i 4 r 2 f 2 (3 + 2cos 2 (A & i
- Δ jg 4 ) + 2cos 2 (厶 i ー 厶 4 + A £ 2 ー厶 3 ) + 2cos 2 (厶 £ 2 - Δ £ 3 ) } 〕 · · · (6) 本発明は上述した光学式ト ラ ッキング誤差'検出装置に於いて、 光学式記録媒体に対するタンジニ ンシャルスキュー角の変化によ る外乱を減少させた ト ラ ツキングヱラー信号を得ることのできる ものを提案しよう とするものである。 -Δ jg 4) + 2 cos 2 (m i m 4 + A £ 2 m 3) + 2 cos 2 (m £ 2-Δ £ 3 )}] · · · · (6) It is an object of the present invention to propose a tracking error 'detection device capable of obtaining a tracking error signal in which disturbance due to a change in a tangential skew angle with respect to an optical recording medium is reduced.
発明の開示 Disclosure of the invention
本発明は、 半導体レーザ素子と、 この半導体レーザ素子よりの レーザビーム (波县をス とする) が入射せしめられる回折格子と、 この回折格子より出射した 0次ビーム及び土 1次ビームが通過せ しめられるビームスプリ ッタ と、 このビームスプリ フタより出射 した.0次ビーム及び土 1次ビームが集束せしめられて光学式記録 媒体に入射せしめられる対物レンズと、 光学式記録媒体により反 射せしめられた 0次ビーム及び土 1次ビームが対物レンズを通過 し、 更にビームスプリ ッタの反射面で反射した後、 入射せしめら れる光検出器とを有し、 光検出器より ± 1次ビームに対応した一 対の光検出出力を得、 この一対の光検出出力の差に基づいて 0次 ビームの光学式記録媒体上の ト ラ ッキング状態に応じた ト ラ ツキ ング誤差信号を得るようにした光学式へッ ドの ト ラ ッキング誤差 検出装置に於いて、 半導体レーザ素子及び光学式記録媒体間の光 路中に光減衰手段を配して、 光学式記録媒体よりの戻り ビームの 半導体レーザ素子のレーザビーム出射端面による反射ビームを減 衰せしめ、 光学式記録媒体のタ ンジユ ンシャルスキュー角の変動 による トラ ツキング誤差信号に対する外乱を減少せしめるように したものである。 The present invention relates to a semiconductor laser device, a diffraction grating to which a laser beam (having a wavelength of よ り) from the semiconductor laser device is incident, and a 0-order beam and a soil primary beam emitted from the diffraction grating. The beam splitter to be fixed, the zero-order beam and the soil primary beam emitted from the beam splitter are focused and focused by the objective lens to be incident on the optical recording medium, and reflected by the optical recording medium. The 0th-order beam and the 1st-order beam pass through the objective lens and are reflected by the reflecting surface of the beam splitter. A pair of photodetection outputs corresponding to ± primary beams from the photodetector, and based on the difference between the pair of photodetection outputs, the 0th-order beam on the optical recording medium. In a tracking error detection device of an optical head that obtains a tracking error signal according to a tracking state, light is attenuated in an optical path between a semiconductor laser element and an optical recording medium. Means to attenuate the reflected beam of the return beam from the optical recording medium due to the laser beam emitting end face of the semiconductor laser element, and to disturb the tracking error signal due to the fluctuation of the tangential skew angle of the optical recording medium. Is to be reduced.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図〜第 4図は本発明の各実施例の光減衰手段を示す断面図. 第 5図は従来の光 式へッ ドの トラ ッキング誤差検出装置を示す 略線的配置図、 第 6図及び第 7図は従来の光学式へッ ドの ト ラ -ン キング誤差検出装置に於ける半導体レーザ素子の一例を示す正面 図、 第 8図は波形図、 第 9図は午淥の説明に供する線図である。 発明を実施するための最良の形態  1 to 4 are cross-sectional views showing the optical attenuation means of each embodiment of the present invention. FIG. 5 is a schematic arrangement diagram showing a conventional optical head tracking error detecting device, and FIG. FIGS. 7 and 8 are front views showing an example of a semiconductor laser device in a conventional optical head tracking error detecting device, FIG. 8 is a waveform diagram, and FIG. FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の一実施例を説明するも、 光学式へッ ドの ト ラ ッキング誤差検出装置の全体の構成例及び半導体レーザ素子の構 成例は、 夫々上述の第 5図及び第 6図並びにそれにづいての説明 を援用し、 重複説明は省略する。  One embodiment of the present invention will be described below. The overall configuration example of the optical head tracking error detection device and the configuration example of the semiconductor laser device are described in FIGS. 5 and 6, respectively. Figures and explanations based on them are referred to, and duplicate explanations are omitted.
本発明では、 半導体レーザ素子 (1)及び光学式記録媒体 (6)間の光 路に光減衰手段を設けるものである。  In the present invention, the optical path between the semiconductor laser device (1) and the optical recording medium (6) is provided with light attenuating means.
第 1 の実施例では、 第 1図に示すように、 第 5図のビームスプ リ ッタ (4)を光減衰手段として用いるもので、 その透過率を比較的 小に (例えば 25% ) 反射率を比較的犬に (例えば 65% ) 夫々選定 する。 尚、 この場合、 損失が 10%である。 In the first embodiment, as shown in FIG. 1, the beam splitter ( 4 ) shown in FIG. 5 is used as an optical attenuator, and its transmittance is relatively small (for example, 25%). Are relatively selected as dogs (for example, 65%). In this case, the loss is 10%.
ビームスプリ ッタ (ハーフ ミ ラー) (4)は周知の如く 、 三角プリ ズム ( 4 t ) , ( 4 2 ) 間の誘電体の多層膜 ( 4 3 ) を被着形成 したもので、 その膜厚, 層数等を制御することにより、 透過率及 び反射率を制御することができる。 As is well known, a beam splitter (half mirror) is a triangular prism. Prism (4 t), (4 2) dielectric multilayer film between the (4 3) which was deposited form, its thickness, by controlling the number of layers or the like, controlling the transmittance及beauty reflectance can do.
第 2の実施例では、 第 2図に示す如く 、 第 5図の回折格子 (3)を 光減衰手段として用いる!)ので、 溝 (3a) の形成された面の反対 側の面に光吸収層 (3b) を被着形成するものである。 光吸収層 ( 3b) の代りに光反射層を用いても良い。  In the second embodiment, as shown in FIG. 2, the diffraction grating (3) shown in FIG. 5 is used as light attenuation means! Therefore, the light absorption layer (3b) is formed on the surface opposite to the surface on which the groove (3a) is formed. A light reflecting layer may be used instead of the light absorbing layer (3b).
第 3の実施例では、 第 3図に示す如く 、 回折格子 (3)自体として N D (ニュー ト ラル ' デンシティ) フ ィ ルタ (光反射フ ィルタ も 可.) を用いて、 透過率を下げて、 光減衰手段と'して用いるように した場合である。  In the third embodiment, as shown in FIG. 3, the transmittance is reduced by using a neutral density (ND) filter (a light reflection filter is also possible) as the diffraction grating (3) itself. This is a case where it is used as a light attenuation means.
第 4図の実施例では、 第 4図に示す如く 、 第 5図の半導体レー ザ素子 (1)の金属バッケージ(9)に設けられた窓 (10)として N Dフィル タを用いて、 光減衰手段とした場合である。  In the embodiment shown in FIG. 4, as shown in FIG. 4, an optical attenuator is used as a window (10) provided in a metal package (9) of the semiconductor laser device (1) shown in FIG. This is the case when the means is used.
この他、 別体の N Dフ ィ ルタ (光反射フ ィ ルタも可) を半導体 レーザ素子 (1)及び光学式記録媒体 (6)間の光路中に設けて、 光減衰 手段としても良い。 尚、 この N Dフ ィ ルタは半導体レーザ素子 (1) 及びビームスプリ ッタ(4)間の光路中に設けた方が、 ビームスプリ ッタ(4)及び光学式記録媒体 (6)間の光路中に設けるに比し、 光検出 器 )への入射ビームの強さを犬にすることができ、 それだけ半導 体レーザ素子 (1)の出力パワーを大き く しな く て済む。 In addition, a separate ND filter (a light reflection filter is also possible) may be provided in the optical path between the semiconductor laser element (1) and the optical recording medium (6) to serve as an optical attenuation means. If the ND filter is provided in the optical path between the semiconductor laser element (1) and the beam splitter (4), the optical path between the beam splitter ( 4 ) and the optical recording medium (6) is better. The intensity of the beam incident on the photodetector) can be made to be a dog as compared with that provided inside, and the output power of the semiconductor laser element (1) does not need to be increased accordingly.
上述せる如き光減衰手段を設けるこ とにより、 上述のほ)式及び (6)式に於ける、 透過率を小さ く することができ、 これにより点 Α Βの光の強度 I A , I s を小さ く することができる。 尚、 これに より、 光検出器 )への入射光量が減少するので、 その分半導体レ 一ザ素子 (1)の出力パワーを上げる必要がある。 By providing the light attenuating means as described above, it is possible to reduce the transmittance in the above formulas ( 6 ) and ( 6 ), whereby the light intensities I A , I s Can be reduced. Since this reduces the amount of light incident on the photodetector, it is necessary to increase the output power of the semiconductor laser element (1).
って、 本発明による光学式へッ ドの トラ ツキング誤差検出装 置によれば、 光学式記録媒体よりの戻り ビームの半導体レーザ素 子のレーザビーム出射端面による反射ビームを減衰せしめること が出来、 光学式記録媒体のタ ンジ ンシ ャルスキュー角の変動に よる ト ラ ッキング誤差信号に対する外乱を減少させることができ る。 . Therefore, according to the optical head tracking error detecting device of the present invention, the semiconductor laser element of the return beam from the optical recording medium is provided. It is possible to attenuate the reflected beam from the laser beam emitting end face of the optical recording medium, and reduce disturbance to the tracking error signal due to the fluctuation of the tangential skew angle of the optical recording medium. .

Claims

請 求 の 範 囲 The scope of the claims
半導体レーザ素子と、 該半導体レーザ素子よりの レーザビーム が入射せしめられる回折格子と、 該回折格子より出射した 0次ビ ーム及び ± 1次ビームが通過せしめられるビームスプリ フ タ と、 該ビームスプリ フ タ よ り出射した 0次ビーム及び土 1次ビームが 集束せしめられて光学式記録媒体に入射せしめられる対物レ ンズ と、 上記光学式記録媒体により反射せしめられた 0次ビーム及び 土 1次ビームが上記対物レンズを通過し、 更に上記ビ—ムスプリ ッタの反射面で反射した後、 入射せしめられる光検出器とを有し、 該光検出器より上記土 1次ビームに対応した一対の光検出出力を 得、 該一対の光検出出力の差に基づいて上記 0次ビームの上記光 学式記録媒体上の ト ラ ッキング状態に応じた ト ラ ッキング誤差信 号を得るよ .うにした光学式へッ ドの ト ラ ツキング誤差検出装置に 於いて、 上記半導体レーザ素子及び上記光学式記録媒体間の光路 中に光減衰手段を配して、 上記光学式記録媒体よりの戻り ビーム の上記半導体レーザ素子のレーザビーム出射端面による反射ビー ムを減衰せしめ、 上記光学式記録媒体のタ ンジ シャルスキュー 角の変動による上記 ト ラ ッキング誤差信号に对する外乱を減少せ しめるようにしたことを特徵とする光学式へッ ドの ト ラ ッキング 誤差検出装置。  A semiconductor laser device, a diffraction grating into which a laser beam from the semiconductor laser device is incident, a beam splitter through which a zero-order beam and a ± first-order beam emitted from the diffraction grating are passed, and the beam splitter An objective lens in which the zero-order beam and soil primary beam emitted from the foot are focused and made incident on the optical recording medium, and the zero-order beam and soil primary beam reflected by the optical recording medium A light detector that passes through the objective lens, is reflected by the reflection surface of the beam splitter, and then enters the light detector. The light detector detects a pair of light beams corresponding to the soil primary beam. A detection output is obtained, and a tracking error signal corresponding to a tracking state of the zero-order beam on the optical recording medium is obtained based on a difference between the pair of light detection outputs. In the tracking error detecting device for an optical head described above, light attenuating means is arranged in an optical path between the semiconductor laser element and the optical recording medium, and a return beam from the optical recording medium is provided. The beam reflected by the laser beam emitting end face of the semiconductor laser element is attenuated to reduce disturbances to the tracking error signal due to a change in the tangential skew angle of the optical recording medium. An optical head tracking error detection device.
PCT/JP1985/000547 1984-10-04 1985-10-03 Apparatus for detecting tracking error of an optical head WO1986002191A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP59/208936 1984-10-04
JP59208936A JP2575099B2 (en) 1984-10-04 1984-10-04 Optical head tracking error detector

Publications (1)

Publication Number Publication Date
WO1986002191A1 true WO1986002191A1 (en) 1986-04-10

Family

ID=16564584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1985/000547 WO1986002191A1 (en) 1984-10-04 1985-10-03 Apparatus for detecting tracking error of an optical head

Country Status (3)

Country Link
JP (1) JP2575099B2 (en)
AU (1) AU4963585A (en)
WO (1) WO1986002191A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0223191A2 (en) * 1985-11-20 1987-05-27 Mitsubishi Denki Kabushiki Kaisha Optical head Apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8501665A (en) * 1985-06-10 1987-01-02 Philips Nv OPTICAL SCANNER WITH POSITION AND POSITION DETECTION SYSTEM FOR AN ELECTROMAGNETICALLY BEARING OBJECTIVE.
JPH07105055B2 (en) * 1985-11-20 1995-11-13 三菱電機株式会社 Optical head device
JP4930718B2 (en) * 2007-09-13 2012-05-16 セイコーエプソン株式会社 Display support device, electronic equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51148405A (en) * 1975-06-02 1976-12-20 Philips Nv Recording carrier reader

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51148405A (en) * 1975-06-02 1976-12-20 Philips Nv Recording carrier reader

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0223191A2 (en) * 1985-11-20 1987-05-27 Mitsubishi Denki Kabushiki Kaisha Optical head Apparatus
EP0223191A3 (en) * 1985-11-20 1989-06-14 Mitsubishi Denki Kabushiki Kaisha Optical head apparatus

Also Published As

Publication number Publication date
JP2575099B2 (en) 1997-01-22
JPS6187225A (en) 1986-05-02
AU4963585A (en) 1986-04-17

Similar Documents

Publication Publication Date Title
JP4272696B2 (en) Optical head
US4908506A (en) Apparatus for optically scanning a radiation-reflecting information plane
JPH0719394B2 (en) Semiconductor laser device
KR100479701B1 (en) Photoelectronic device
WO1986002191A1 (en) Apparatus for detecting tracking error of an optical head
JPH0513334B2 (en)
JP2590904B2 (en) Optical head device
KR940004656B1 (en) Tracking error detecting apparatus
JP4231126B2 (en) Optical head
KR930007176B1 (en) Tracking check device of optical head
JP2565183B2 (en) Optical head tracking error detector
JPH0712104B2 (en) Semiconductor laser
JP2565185B2 (en) Optical head
JPH0519971Y2 (en)
JPH0822624A (en) Optical head device and optical information device
JP2978269B2 (en) Optical disk drive
JPH058501B2 (en)
JPH0829124A (en) Displacement measuring device and optical pickup
JP2002288854A (en) Optical pickup device
JPH05303016A (en) Optical pickup
KR0129963B1 (en) Optical pick-up apparatus using evanescent-wave hologram device
JPH05128577A (en) Optical pickup
JPH0729202A (en) Laser coupler
JPH06103632A (en) Optical pickup device
JPH064928A (en) Magneto-optical pickup

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT DE FR GB IT NL