WO1986000933A1 - Novel reagent and method employing same - Google Patents

Novel reagent and method employing same Download PDF

Info

Publication number
WO1986000933A1
WO1986000933A1 PCT/US1984/001215 US8401215W WO8600933A1 WO 1986000933 A1 WO1986000933 A1 WO 1986000933A1 US 8401215 W US8401215 W US 8401215W WO 8600933 A1 WO8600933 A1 WO 8600933A1
Authority
WO
WIPO (PCT)
Prior art keywords
bilirubin
reagent
dodecyl sulfate
sodium
sodium dodecyl
Prior art date
Application number
PCT/US1984/001215
Other languages
French (fr)
Inventor
Shigemasa Osaki
Susanne Mary Anderson
Original Assignee
Beckman Instruments, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beckman Instruments, Inc. filed Critical Beckman Instruments, Inc.
Priority to PCT/US1984/001215 priority Critical patent/WO1986000933A1/en
Priority to EP19840903034 priority patent/EP0187749A1/en
Priority to JP50300184A priority patent/JPS61502443A/en
Publication of WO1986000933A1 publication Critical patent/WO1986000933A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase

Definitions

  • This invention relates to an enzymatic bilirubin assay and to a reagent and kit for use therein.
  • bilirubin oxidase from Myrothecium species does not measure all fractions of bilirubin in a sample, even when sodium dodecyl sulfate or sodium cholate is employed to disassociate the albumin-bound bilirubin. More, particularly, the present inventors have discovered that bilirubin oxidase from Myrothecium species does not measure ⁇ bilirubin, even with the use of. sodium dodecyl sulfate or sodium cholate.
  • bilirubin oxidase from Myrothecium species is capable of measuring all bilirubin fractions present in a sample to be assayed, including ⁇ bilirubin.
  • enzymatic methodologies and reagents and kits for use therein which employ bilirubin oxidase from Myrocthecium species and which are capable of measuring substantially all bilirubin present in a sample to be assayed, including ⁇ bilirubin.
  • the present invention encompasses an improved reagent.
  • the reagent is of the type comprising bilirubin oxidase from Myrothecium species, a buffer, and a surfactant, and having a pH of about 8 to about 8.4.
  • the reagent of the present invention is characterized in that the surfactant comprises a mixture of sodium cholate and sodium dodecyl cholate in respective amounts such that the reagent is capable of oxidizing ⁇ , ⁇ , ⁇ , and ⁇ bilirubin.
  • the present invention also encompasses a method for the determination of total bilirubin in a fluid.
  • the method of the present invention is of the type comprising (a) reacting each of a series of aqueous bilirubin solution having varying known bilirubin concentration with a reagent to form reaction mixtures in order to construct a calibration curve representing a relationship between absorbance of the reaction mixtures and the concentrations of the respective bilirubin solutions; (b) reacting a fluid having an unknown bilirubin concentration with the reagent and measuring the observance of the resultant reaction mixture; and (c) determining the bilirubin concentration in the fluid by comparing the measured value obtained in step (b) with the calibration curve.
  • the method of the present invention is characterized in the above reagent employed therein.
  • the instant invention also encompasses a method for determining ⁇ bilirubin.
  • This method comprises (a) contacting a first sample of a fluid with a reagent capable of only assaying o, b, and ⁇ bilirubin and obtaining a first measurement indicative of the concentration of ⁇ , ⁇ , and ⁇ bilirubin; (b) contacting a second sample of the fluid with the above reagent and obtaining a second measurement indicative- of the concentration of ⁇ , ⁇ , ⁇ , and ⁇ bilirubin present in the fluid; and (c) subtracting the first measurement from the second measurement.
  • the present invention also encompasses another method for determining ⁇ bilirubin.
  • This latter method comprises (a) contacting a sample of a fluid with a reagent comprising bilirubin oxidase from Myrothecium species; a buffer; and a surfactant selected from a group consisting of sodium cholate, sodium dodecyl sulfate, and mixtures thereof, the surfactant being present in an amount only capable of assaying for ⁇ , ⁇ , and ⁇ bilirubin; (b) obtaining a first measurement indicative of the concentration of ⁇ , ⁇ , and ⁇ bilirubin present in the fluid; (c) adding to the reaction mixture formed in step (a) a surfactant selected from a group consisting of sodium cholate, sodium dodecyl sulfate, and mixtures thereof, the surfactant present in this step (c) being in an amount capable of assaying for ⁇ , ⁇ , ⁇ , and ⁇ bilirub
  • kits comprising, in association, an aqueous solution and a composition.
  • the aqueous solution comprises a buffer having a buffering capacity in the pH range of about 8.2 ⁇ 0.2; about 4 ⁇ 2 mM sodium cholate; about 15 ⁇ 5 mM sodium dodecyl sulfate; and an effective amount of the non-interfering preservative.
  • the composition comprises bilirubin oxidase from Myrothecium species; an effective amount of a bulking agent; and a buffer having a buffering capacity in the pH range of 9.0 ⁇ 0.2.
  • the pH of the reagent of the instant invention is preferably 8.2 ⁇ 0.5, more preferably 8.2 ⁇ 0.1, and optimally 8.2 ⁇ 0.05.
  • the mixture of sodium cholate and sodium dodecyl sulfate is formulated such that it comprises about 4 ⁇ 2 mM sodium cholate and about 15 ⁇ 5 mM sodium dodecyl sulfate. More preferably, the mixture comprises about 4 ⁇ 1 mM sodium cholate and about 15 ⁇ 2 mM sodium dodecyl sulfate. Optimally, the mixture comprises about 4 ⁇ 0.5 mM sodium cholate and about 15 ⁇ 1 mM sodium dodecyl sulfate.
  • the reagent of the instant invention preferably also comprises an effective amount of a non-intefering preservative.
  • non-interfering is meant a preservative which neither adversely affects the bilirubin oxidase nor other reactants present in the assay.
  • Virtually any non- interfering preservative can be employed in the reagent of the present invention.
  • Such non-interfering preservatives include, but are not limited to, EDTA, disodium salt.
  • EDTA disodium salt
  • M EDTA, disodium salt is employed in the present invention.
  • any buffer having a buffering capacity in the desired pH range can be employed in the reagent of the present invention.
  • buffers include, but are not limited to, Tris buffer.
  • M Tris buffer is employed in the reagent of the present invention.
  • the amount of bilirubin oxidase from Myrocthecium species employed in the present invention is not critical and is determined primarily by the speed at which one desires the reaction to proceed.
  • at least about 1, more preferably at least about 5, and yet more preferably at least about 10, IU/ml bilirubin oxidase is employed in the reagent of the present invention.
  • at least about 25 IU/ml bilirubin oxidase from Myrothecium species is employed in the reagent of the present invention.
  • the reagent of the instant invention can be prepared via any technique known to those skilled in the art.
  • One convenient technique employs a kit.
  • This kit comprises, in association, an aqueous solution and a composition.
  • the aqueous solution comprises a buffer having a buffering capacity in the pH range of about 8.2 ⁇ 0.2; about 4 ⁇ 2 mM sodium cholate; about 15 ⁇ 5 mM sodium dodecyl sulfate; and an effective amount of the non-interfering preservative.
  • the composition comprises bilirubin oxidase from Myrothecium species; an effective amount of a bulking agent; and a buffer having a buffering capacity in the pH range of 9.0 ⁇ 0.2.
  • any bulking agent can be employed in the kit of the present invention.
  • Such bulking agents include, but are not limited to, mannitol, sorbitol, any polyethylene glycol 400 (PEG 4000).
  • Example 1 The following enzymatic procedures were employed to assay total bilirubin in serum.
  • Buffer - an aqueous solution comprising 7.08 gm Tris base, 6.68 gm Tris HCl, 1.72 gm Sodium Cholate, 4.33 gm Sodium Dodecyl Sulfate, 0.372 gm EDTA, disodium salt, deionized water qs. 1,000 ml.
  • Enzyme Reagent - take 100 mg of a composition comprising 80 gm mannitol, 10 gm sorbitol, 5.475 gm Tris base, 0.763 gm Tris HCl, and 5 gm bilirubin oxidase (6 IU/mg) and dissolve in 1 ml water.

Abstract

A reagent, a reagent kit and method for use in the determination of total bilirubin and delta-bilirubin. The reagent has a pH of about 8 to 8.4 and comprises: a) bilirubin oxidase from Myrothecium species; b) a buffer, and c) a surfactant; whereby the surfactant comprises a mixture of sodium cholate and sodium dodecyl sulphate, the sodium cholate and sodium dodecyl sulphate being present in the mixture in respective amounts such that the reagent is capable of oxidising alpha, beta, gamma and delta-bilirubin.

Description

NOVEL REAGENT AND METHOD EMPLOYING SAME
Background of the Invention
1. Field of the Invention
This invention relates to an enzymatic bilirubin assay and to a reagent and kit for use therein.
2. Description of the Prior Art
Kosaka et al. (1) reported a novel method for the determination of total bilirubin (which consists of four fractions, namely, α , β, γ, and δ bilirubin) in serum using a new enzyme, bilirubin oxidase, which had been isolated and purified from Myrothecium species. Bilirubin oxidase is a copper-containing enzyme which catalyzes the oxidation of bilirubin to biliverdin and water. The biliverdin formed is successfully oxidized to color substances. As the enzyme does not work on albumin-bilirubin, Kosaka et al, found it necessary to disassociate the bound bilirubin with sodium dodecyl sulfate or sodium cholate.
The present inventors have discovered that contrary to the position of Kosaka et al., bilirubin oxidase from Myrothecium species does not measure all fractions of bilirubin in a sample, even when sodium dodecyl sulfate or sodium cholate is employed to disassociate the albumin-bound bilirubin. More, particularly, the present inventors have discovered that bilirubin oxidase from Myrothecium species does not measure δ bilirubin, even with the use of. sodium dodecyl sulfate or sodium cholate. Accordingly, it would be very desirable to have an enzymatic bilirubin assay and a reagent and kit for use therein wherein bilirubin oxidase from Myrothecium species is capable of measuring all bilirubin fractions present in a sample to be assayed, including δ bilirubin.
Summary of the Invention In accordance with the present invention, there are provided enzymatic methodologies and reagents and kits for use therein which employ bilirubin oxidase from Myrocthecium species and which are capable of measuring substantially all bilirubin present in a sample to be assayed, including δ bilirubin.
More particularly, the present invention encompasses an improved reagent. The reagent is of the type comprising bilirubin oxidase from Myrothecium species, a buffer, and a surfactant, and having a pH of about 8 to about 8.4. The reagent of the present invention is characterized in that the surfactant comprises a mixture of sodium cholate and sodium dodecyl cholate in respective amounts such that the reagent is capable of oxidizing α, β, γ, and δ bilirubin.
The present invention also encompasses a method for the determination of total bilirubin in a fluid. The method of the present invention is of the type comprising (a) reacting each of a series of aqueous bilirubin solution having varying known bilirubin concentration with a reagent to form reaction mixtures in order to construct a calibration curve representing a relationship between absorbance of the reaction mixtures and the concentrations of the respective bilirubin solutions; (b) reacting a fluid having an unknown bilirubin concentration with the reagent and measuring the observance of the resultant reaction mixture; and (c) determining the bilirubin concentration in the fluid by comparing the measured value obtained in step (b) with the calibration curve. The method of the present invention is characterized in the above reagent employed therein.
In addition, the instant invention also encompasses a method for determining δ bilirubin. This method comprises (a) contacting a first sample of a fluid with a reagent capable of only assaying o, b, and γ bilirubin and obtaining a first measurement indicative of the concentration of α, β, and γ bilirubin; (b) contacting a second sample of the fluid with the above reagent and obtaining a second measurement indicative- of the concentration of α, β, γ, and δ bilirubin present in the fluid; and (c) subtracting the first measurement from the second measurement.
The present invention also encompasses another method for determining δ bilirubin. This latter method comprises (a) contacting a sample of a fluid with a reagent comprising bilirubin oxidase from Myrothecium species; a buffer; and a surfactant selected from a group consisting of sodium cholate, sodium dodecyl sulfate, and mixtures thereof, the surfactant being present in an amount only capable of assaying for α, β, and γ bilirubin; (b) obtaining a first measurement indicative of the concentration of α, β, and γ bilirubin present in the fluid; (c) adding to the reaction mixture formed in step (a) a surfactant selected from a group consisting of sodium cholate, sodium dodecyl sulfate, and mixtures thereof, the surfactant present in this step (c) being in an amount capable of assaying for α, β, γ, and δ bilirubin; (d) obtaining a second measurement indicative of the concentration of α, β, γ, and δ bilirubin present in the fluid; and (e) substrating the first measurement from the second measurement. Furthermore, the present invention also encompasses a kit. The kit comprises, in association, an aqueous solution and a composition. The aqueous solution comprises a buffer having a buffering capacity in the pH range of about 8.2 ± 0.2; about 4 ± 2 mM sodium cholate; about 15 ± 5 mM sodium dodecyl sulfate; and an effective amount of the non-interfering preservative. The composition comprises bilirubin oxidase from Myrothecium species; an effective amount of a bulking agent; and a buffer having a buffering capacity in the pH range of 9.0 ± 0.2.
Still other features and attendant advantages of the present invention will become apparent to those skilled in the art from a reading of the following detailed description of the preferred embodiments.
Description of the Preferred Embodiments The pH of the reagent of the instant invention is preferably 8.2 ± 0.5, more preferably 8.2 ± 0.1, and optimally 8.2 ± 0.05.
Preferably, the mixture of sodium cholate and sodium dodecyl sulfate is formulated such that it comprises about 4 ± 2 mM sodium cholate and about 15 ± 5 mM sodium dodecyl sulfate. More preferably, the mixture comprises about 4 ± 1 mM sodium cholate and about 15 ± 2 mM sodium dodecyl sulfate. Optimally, the mixture comprises about 4 ± 0.5 mM sodium cholate and about 15 ± 1 mM sodium dodecyl sulfate.
The reagent of the instant invention preferably also comprises an effective amount of a non-intefering preservative. By non-interfering is meant a preservative which neither adversely affects the bilirubin oxidase nor other reactants present in the assay. Virtually any non- interfering preservative can be employed in the reagent of the present invention. Such non-interfering preservatives include, but are not limited to, EDTA, disodium salt. Preferably, from about 0.05 to about 0.2, more preferably about 0.1 ± 0.5, and more preferably about 0.1 ± 0.02, M EDTA, disodium salt is employed in the present invention.
Virtually any buffer having a buffering capacity in the desired pH range can be employed in the reagent of the present invention. Such buffers include, but are not limited to, Tris buffer. Preferably, about 0.1 ± 0.01, and more preferably about 0.1 ± 0.005, M Tris buffer is employed in the reagent of the present invention.
The amount of bilirubin oxidase from Myrocthecium species employed in the present invention is not critical and is determined primarily by the speed at which one desires the reaction to proceed. Preferably, at least about 1, more preferably at least about 5, and yet more preferably at least about 10, IU/ml bilirubin oxidase is employed in the reagent of the present invention. Optimally at least about 25 IU/ml bilirubin oxidase from Myrothecium species is employed in the reagent of the present invention.
The reagent of the instant invention can be prepared via any technique known to those skilled in the art. One convenient technique employs a kit. This kit comprises, in association, an aqueous solution and a composition. The aqueous solution comprises a buffer having a buffering capacity in the pH range of about 8.2 ± 0.2; about 4 ± 2 mM sodium cholate; about 15 ± 5 mM sodium dodecyl sulfate; and an effective amount of the non-interfering preservative. The composition comprises bilirubin oxidase from Myrothecium species; an effective amount of a bulking agent; and a buffer having a buffering capacity in the pH range of 9.0 ± 0.2.
Virtually any bulking agent can be employed in the kit of the present invention. Such bulking agents include, but are not limited to, mannitol, sorbitol, any polyethylene glycol 400 (PEG 4000).
Exemplary kit formulations are set forth in
Table I.
Figure imgf000008_0001
The following examples are provided for the purpose of further illustration only and are not intended to be limitations on the disclosed invention.
Example 1 The following enzymatic procedures were employed to assay total bilirubin in serum.
Materials
Buffer - an aqueous solution comprising 7.08 gm Tris base, 6.68 gm Tris HCl, 1.72 gm Sodium Cholate, 4.33 gm Sodium Dodecyl Sulfate, 0.372 gm EDTA, disodium salt, deionized water qs. 1,000 ml.
Enzyme Reagent - take 100 mg of a composition comprising 80 gm mannitol, 10 gm sorbitol, 5.475 gm Tris base, 0.763 gm Tris HCl, and 5 gm bilirubin oxidase (6 IU/mg) and dissolve in 1 ml water.
System Parameters Wavelength 465 nm
Incubation Temperature 37 °C. Mode Absorbance
Absorbance Range 0 to 1.5A Optical Pathlength 1.0 cm Reaction Time 5 minutes Sample Volume 0.050 ml Buffer Volume 1.00 ml Enzyme Reagent Volume 0.020 ml
1. To 1 ml buffer solution placed in a spectrophotometer at 37°C.,
2. Add 50 μl sample or standard.
3. Record the absorbance at 465 nm (Ai).
4. Add 20 μl of the enzyme solution and 5. Incubate for 5 minutes.
6. Read absorbance at 465 nm (Ae).
Calculations:
From Ai (0.280) and Ae (0.055) of the standard (Beckman Instruments, Inc.'s Ultimate" C-8 brand calibrator (7.7 mg/dl assigned valve)), computed mg/dl bilirubin per unit absorbance at 465 nm (factor = 34.2). Multiply (Ai-Ae) of unknown by the factor.
Patient samples (n=42) were assayed and the results are set forth in Table II.
Figure imgf000010_0001
Figure imgf000011_0002
Y = MX + B
M = 0.981
B = -0.13 = 7.3
Figure imgf000011_0001
= 7.1
SY.X = 0-21 r2 = 0.999
Example 2
The same 42 patient samples were also assayed by a Jendrassik-Grof reference method and the results are also set forth in Table II. As indicated by the data in Table II, the reagent of the instant invention correlates well with a recognized prior art technique.
Based upon this disclosure, many other modifications and ramifications will naturally suggest themselves to those skilled in the art. These are intended to be within the scope of this invention.
Bibliography 1. Kosaka et al., Clin. Biochem., 16: abstract A108 (October 1983).

Claims

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A reagent of the type having a pH of about 8 to about 8.4 and comprising:
(a) bilirubin oxidase from Myrothecium species;
(b) a buffer; and
(c) a surfactant; characterized in that:
(a) said surfactant comprises a mixture of sodium cholate and sodium dodecyl sulfate, said sodium cholate and sodium dodecyl sulfate being present in said mixture in respective amounts such that said reagent is capable of oxidizing α, β, γ, and δ bilirubin.
2. The reagent of claim 1 having a pH of about 8.2 ± 0.5 and comprising:
(a) about 4 ± 2 mM sodium cholate; and
(b) about 15 ± 5 mM sodium dodecyl sulfate.
3. The reagent of claim 1 having a pH of about 8.2 ± 0.1 and comprising:
(a) about 4 ± 1 mM sodium cholate; and
(b) about 15 ± 2 mM sodium dodecyl sulfate.
4. The reagent of claim 1 having a pH of about 8.2 ± 0.05 and comprising:
(a) about 4 ± 0.5 mM sodium cholate; and
(b) about 15 ± 1 mM sodium dodecyl sulfate.
5. The reagent of claim 1 further comprising an effective amount of a non-interfering preservative.
6. The reagent of claim 5 comprising:
(a) at least about 1 IU/ml bilirubin oxidase; (b) about 4 ± 2 mM sodium cholate;
(c) about 15 ± 5 mM sodium dodecyl sulfate; and
(d) from about 0.05 to about 0.2 mM EDTA.
7. The reagent of claim 5 having a pH of about 8.2 ± 0.1 and comprising:
(a) at least about 5 IU/ml bilirubin oxidase;
(b) about 4 ± 1 mM sodium cholate;
(c) about 15 ± 2 mM sodium dodecyl sulfate;
(d) about 0.1 ± 0.5 mM EDTA; and
(e) about 0.1 ± 0.01 M Tris buffer.
8. The reagent of claim 5 having a pH of about 8.2 ± 0.05 and comprising:
(a) at least about 10 IU/ml bilirubin oxidase;
(b) about 4 ± 0.5 mM sodium cholate;
(c) about 15 ± 1 mM sodium dodecyl sulfate;
(d) about 0.1 ± 0.02 mM EDTA; and
(e) about 0.1 ± 0.005 M Tris buffer.
9. A method for the determination of total bilirubin in a fluid, said method being of the type comprising:
(a) reacting each of a series of aqueous bilirubin solutions having varying known bilirubin concentrations with a reagent to form reaction mixtures in order to construct a calibration curve representing a relationship between absorbance of said reaction mixtures and the concentrations of the respective bilirubin solutions;
(b) reacting a fluid having an unknown bilirubin concentration with said reagent and measuring the absorbance of the resulting reaction mixture; and
(c) determining the bilirubin concentration in said fluid by comparing the measured value obtained in step (b) with said calibration curve. characterized in that the reagent employed therein is the reagent of claim 1.
10. The method of claim 9 wherein said reagent having a pH from about 8.2 ± 0.5 and comprises:
(a) about 4 ± 2 mM sodium cholate; and
(b) about 15 ± 5 mM sodium dodecyl sulfate.
11. The method of claim 9 wherein said reagent has a pH of about 8.2 ± 0.1 and comprises:
(a) about 4 ± 1 mM sodium cholate; and
(b) about 15 ± 2 mM sodium dodecyl sulfate.
12. The method of claim 9 wherein said reagent has a pH of about 8.2 ± 0.05 and comprises:
(a) about 4 ± 0.5 mM sodium cholate; and
(b) about 15 ± 1 mM sodium dodecyl sulfate.
13. The method of claim 9 wherein said reagent further comprises an effective amount of a non-intefering preservative.
14. The method of claim 13 wherein said reagent comprises:
(a) at least about 1 IU/ml bilirubin oxidase;
(b) about 4 ± 2 mM sodium cholate;
(c) about 15 ± 5 mM sodium dodecyl sulfate; and
(d) from about 0.05 to about 0.2 mM EDTA.
15. The method of claim 13 wherein said reagent has a pH of about 8.2 ± 0.1 and comprises:
(a) at least about 5 IU/ml bilirubin oxidase;
(b) about 4 ± 1 mM sodium cholate;
(c) about 15 ± 2 mM sodium dodecyl sulfate;
(d) about 0.1 ± 0.5 mM EDTA; and
(e) about 0.1 ± 0.01 M Tris buffer.
16. The method of claim 13 wherein said reagent has a pH of about 8.2 ± 0.05 and comprises:
(a) at least about 10 IU/ml bilirubin oxidase;
(b) about 4 ± 0.5 mM sodium cholate;
(c) about 15 ± 1 mM sodium dodecyl sulfate;
(d) about 0.1 ± 0.02 mM EDTA; and
(e) about 0.1 ± 0.005 M Tris buffer.
17. A method for determining δ bilirubin comprising:
(a) contacting a first sample of a fluid with a reagent capable of only assaying α, β, and γ bilirubin and obtaining a first measurement indicative of the concentration of α, β, and γ bilirubin;
(b) contacting a second sample of said fluid with the reagent of claim 1 and obtaining a second measurement indicative of the concentration of α, β, γ, and δ bilirubin present in said fluid; and
(c) subtracting said first measurement from said second measurement.
18. A method for determining δ bilirubin comprising:
(a) contacting a sample of a fluid with a reagent comprising bilirubin oxidase produced by a microorganism of the genus Myrothecium; a buffer; and a surfactant selected from a group consisting of sodium cholate, sodium dodecyl sulfate, and mixtures thereof, said surfactant being present in an amount only capable of assaying for α, β, and γ bilirubin;
(b) obtaining a first measurement indicative of the concentration of α, β, and γ bilirubin present in said fluid; (c) adding to the reaction mixture formed in step (a) a surfactant selected from a group consisting of sodium cholate, sodium dodecyl sulfate, and mixtures thereof, said surfactant present in this step (c) being in an amount capable of assaying for α, β, γ, and δ bilirubin;
(d) obtaining a second measurement indicative of the concentration of α, β, γ, and δ bilirubin present in said fluid; and
(e) subtracting said first measurement from said second measurement.
19. A kit comprising in association:
(a), an aqueous solution comprising:
(i) a buffer having a buffering capacity in the pH range of about 8.2 ± 0.2; (ii) 4 ± 2 mM sodium cholate; (iii) 15 ± 5 mM sodium dodecyl cholate; and (iv) an effective amount of a non-interfering preservative; and (b) a composition comprising:
(i) bilirubin oxidase from the Myrothecium species; (ii) an effective amount of a bulking agent; and (iii) a buffer having a buffering capacity in the pH range of 9.0 ± 0.2.
20. The kit of claim 19 wherein:
(a) said aqueous solution comprises:
(i) about 0.1 ± 0.01 M Tris buffer; (ii) about 4 ± 1 mM sodium cholate; (iii) about 15 ± 2 mM sodium dodecyl suifate; and (iv) from about 0.05 to about 0.2 mM EDTA, disodium salt; and (b) said composition comprises:
(i) at least about 10 IU/gm bilirubin oxidase; (ii) about 0.8 ± 0.1 gm/gm mannitol and about 0.1 ± 0.01 gm/gm sorbitol; and (iii) about 0.055 ± 0.0055 gm/gm Tris base and about 0.0076 ± 0.0008 gm/gm Tris HCl.
NOVEL REAGENT AND METHOD EMPLOYING SAME
Abstract of the Disclosure A reagent of the type having a pH of about 8 to about 8.4 and comprising:
(a) bilirubin oxidase from Myrothecium species;
(b) a buffer; and
(c) a surfactant; characterized in that:
(a) the surfactant comprises a mixture of sodium cholate and sodium dodecyl sulfate, the sodium cholate and sodium dodecyl sulfate being present in the mixture in respective amounts such that the reagent is capable of oxidizing α, β, γ, and δ bilirubin.
A method for the determination of total bilirubin in a fluid, the method being of the type comprising:
(a) reacting each of a series of aqueous bilirubin solutions having varying known bilirubin concentrations with a reagent to form reaction mixtures in order to construct a calibration curve representing a relationship between absorbance of the reaction mixtures and the concentrations of the respective bilirubin solutions;
(b) reacting a fluid having an unknown bilirubin concentration with the reagent and measuring the absorbance of the resulting reaction mixture; and
(c) determining the bilirubin concentration in the fluid by comparing the measured value obtained in step (b) with the calibration curve, characterized in that the above reagent is employed therein.
A method for determining δ bilirubin comprising:
(a) contacting a first sample of a fluid with a reagen capable of only assaying α, β, and γ bilirubin;
(b) contacting a second sample of said fluid with the reagent of claim 1 and obtaining a second measurement indicative of the concentration of α, β, γ, and δ biliruin present in said fluid; and
(c) subtracting the first measurement from the second measurement.
A mehod for determining δ bilirubin comprising:
(a) contacting a sample of a fluid with a reagent comprising bilirubin oxidase produced by a microorganism of the genus Myrothecium; a buffer; and a surfactant selected from a group consisting of sodium cholate, sodium dodecyl sulfate, and mixtures thereof, the surfactant being present in an amount only capable of assaying for α, β, and γ bilirubin;
(b) obtaining a first measurement indicative of the concentration of α, β, and q bilirubin present in the fluid;
(c) adding to the reaction mixture formed in step (a) a surfactant selected from a group consisting of sodium cholate, sodium dodecyl sulfate, and mixtures thereof, the surfactant present in this step (c) being in an amount capable of asaying for α, β, q, and w bilirubin; (d) obtaining a second measurement indicative of the concentration of α, β, q, and w bilirubin present in said fluid; and
(e) subtracting the first measurement from the second measurement.
A kit comprising in association:
(a) an aqueous solution comprising:
(i) a buffer having a buffering capacity in the pH range of about 8.2 ± 0.2; (ii) 4 ± mM sodium cholate; (iii) 15 ± 5 mM sodium dodecyl cholate; and (iv) an effective amount of a non-interfering preservative; and
(b) a composition comprising:
(i) bilirubin oxidase from Myrothecium species; (ii) an effective amount of a bulking agent; and (iii) a buffer having a buffering capacity in the pH range of 9.0 ± 0.2.
PCT/US1984/001215 1984-07-28 1984-07-28 Novel reagent and method employing same WO1986000933A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/US1984/001215 WO1986000933A1 (en) 1984-07-28 1984-07-28 Novel reagent and method employing same
EP19840903034 EP0187749A1 (en) 1984-07-28 1984-07-28 Novel reagent and method employing same
JP50300184A JPS61502443A (en) 1984-07-28 1984-07-28 Novel reagents and their use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1984/001215 WO1986000933A1 (en) 1984-07-28 1984-07-28 Novel reagent and method employing same

Publications (1)

Publication Number Publication Date
WO1986000933A1 true WO1986000933A1 (en) 1986-02-13

Family

ID=22182218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1984/001215 WO1986000933A1 (en) 1984-07-28 1984-07-28 Novel reagent and method employing same

Country Status (3)

Country Link
EP (1) EP0187749A1 (en)
JP (1) JPS61502443A (en)
WO (1) WO1986000933A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0238914A1 (en) * 1986-03-14 1987-09-30 Roche Diagnostics GmbH Method and reagent for the determination of total bilirubin
EP0240021A1 (en) * 1986-04-03 1987-10-07 Abbott Laboratories Fluorescence polarization immunoassay and reagents for use therein
FR2653891A1 (en) * 1989-10-31 1991-05-03 Moussa Fathi METHOD OF ASSAYING BILIRUBINS AND / OR BILIVERDINS PRESENTED IN A BIOLOGICAL ENVIRONMENT BY ELECTROCHEMICAL OXIDATION
WO1997038317A1 (en) * 1996-04-05 1997-10-16 Beckman Instruments, Inc. Method of measuring bilirubin
US5945298A (en) * 1997-02-28 1999-08-31 Nitto Boseki Co., Ltd. Method for assaying bilirubin δ fractions
WO2008136273A1 (en) 2007-04-27 2008-11-13 Arkray, Inc. Method for bilirubin determination and analytical instrument used for bilirubin determination

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2115926A (en) * 1982-02-18 1983-09-14 Amano Pharma Co Ltd Method for the quantitative determination of physiological components in biological fluids
EP0114381A1 (en) * 1982-12-29 1984-08-01 Nippon Shoji Kaisha, Ltd. Reagent for measuring direct bilirubin by enzymatic method and method for measurement thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2115926A (en) * 1982-02-18 1983-09-14 Amano Pharma Co Ltd Method for the quantitative determination of physiological components in biological fluids
EP0114381A1 (en) * 1982-12-29 1984-08-01 Nippon Shoji Kaisha, Ltd. Reagent for measuring direct bilirubin by enzymatic method and method for measurement thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Clinical Chemistry, Vol. 29, No. 1, January 1983 (Washington, US) G. DAPPEN et al.: "A Diazo-Dry Film for Determination of Total Bilirubin in Serum", pages 37-41, see page 41, last paragraph *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751190A (en) * 1985-07-22 1988-06-14 Abbott Laboratories Fluorescence polarization immunoassay and reagents for use therein
EP0238914A1 (en) * 1986-03-14 1987-09-30 Roche Diagnostics GmbH Method and reagent for the determination of total bilirubin
EP0240021A1 (en) * 1986-04-03 1987-10-07 Abbott Laboratories Fluorescence polarization immunoassay and reagents for use therein
FR2653891A1 (en) * 1989-10-31 1991-05-03 Moussa Fathi METHOD OF ASSAYING BILIRUBINS AND / OR BILIVERDINS PRESENTED IN A BIOLOGICAL ENVIRONMENT BY ELECTROCHEMICAL OXIDATION
WO1991006868A1 (en) * 1989-10-31 1991-05-16 Fathi Moussa Bilirubin assay using electrochemical oxidation
US5783407A (en) * 1996-04-05 1998-07-21 Beckman Instruments, Inc. Method of measuring bilirubin
WO1997038317A1 (en) * 1996-04-05 1997-10-16 Beckman Instruments, Inc. Method of measuring bilirubin
US5863746A (en) * 1996-04-05 1999-01-26 Beckman Coulter, Inc. Method of measuring bilirubin
US5945298A (en) * 1997-02-28 1999-08-31 Nitto Boseki Co., Ltd. Method for assaying bilirubin δ fractions
DE19807550C2 (en) * 1997-02-28 2002-10-24 Nitto Boseki Co Ltd Procedure for analyzing bilirubin fractions
WO2008136273A1 (en) 2007-04-27 2008-11-13 Arkray, Inc. Method for bilirubin determination and analytical instrument used for bilirubin determination
EP2108703A1 (en) * 2007-04-27 2009-10-14 Arkray, Inc. Method for bilirubin determination and analytical instrument used for bilirubin determination
EP2108703A4 (en) * 2007-04-27 2010-02-24 Arkray Inc Method for bilirubin determination and analytical instrument used for bilirubin determination
US9442122B2 (en) 2007-04-27 2016-09-13 Arkray, Inc. Method for assaying bilirubin and assay instrument used in bilirubin assay

Also Published As

Publication number Publication date
EP0187749A1 (en) 1986-07-23
JPS61502443A (en) 1986-10-30

Similar Documents

Publication Publication Date Title
Dorsey et al. A heated biuret-Folin protein assay which gives equal absorbance with different proteins
Lott et al. Evaluation of Trinder's glucose oxidase method for measuring glucose in serum and urine
RU2054674C1 (en) Method of potassium ion concentration assay in biological material
Bondar et al. Evaluation of glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides in the hexokinase method for determining glucose in serum
Megraw et al. Manual and continuous-flow colorimetry of triacylglycerols by a fully enzymic method.
Carroll et al. A simplified alkaline phosphotungstate assay for uric acid in serum
US4120755A (en) Kinetic method for determination of glucose concentrations with glucose dehydrogenase
US7368231B2 (en) Detection assay for potassium ions using a potassium-dependent urea amidolyase enzyme
Kohlbecker et al. Direct spectrophotometric determination of serum and urinary oxalate with oxalate oxidase
Deutsch Maleimide as an inhibitor in measurement of erythrocyte glucose-6-phosphate dehydrogenase activity.
EP0533183B1 (en) Composition for the measurement of potassium ion concentration
US3862012A (en) Quantitative determination of uric acid
WO1986000933A1 (en) Novel reagent and method employing same
EP0140589B1 (en) Enzymatic determination of d-3-hydroxybutyric acid or acetoacetic acid, and reagents therefor
Majkić-Singh et al. Spectrophotometric assay of xanthine oxidase with 2, 2'-azino-di (3-ethylbenzthiazoline-6-sulphonate)(ABTS) as chromogen
Lundin et al. Optimized bioluminescence assay of creatine kinase and creatine kinase B-subunit activity.
CN110702676A (en) Kit and method for detecting 1,5-AG with good stability
US5866352A (en) Kit for fructosamine determination
US5266472A (en) Stabilization of the enzyme urate oxidase in liquid form
Purcell et al. Evaluation of the BMC glucose oxidase/peroxidase-4-aminophenazone-phenol procedure for glucose as adapted to the Technicon SMAC.
EP0716149B1 (en) Method of determining sodium ion
Sonowane et al. Kinetic measurement of glucose with a centrifugal analyzer; hexokinase and glucose oxidase procedures compared.
Fujita et al. Enzymatic rate assay of creatinine in serum and urine
US4311791A (en) Automated kinetic determination of lactate dehydrogenase isoenzymes in serum
EP0159513A1 (en) Enzymatic inorganic phosphate assay

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1984903034

Country of ref document: EP

AK Designated states

Designated state(s): JP US

AL Designated countries for regional patents

Designated state(s): BE DE FR GB NL SE

WWP Wipo information: published in national office

Ref document number: 1984903034

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1984903034

Country of ref document: EP