WO1986000115A1 - Moteur eolien a systeme anti-rafales integre - Google Patents

Moteur eolien a systeme anti-rafales integre Download PDF

Info

Publication number
WO1986000115A1
WO1986000115A1 PCT/FR1984/000150 FR8400150W WO8600115A1 WO 1986000115 A1 WO1986000115 A1 WO 1986000115A1 FR 8400150 W FR8400150 W FR 8400150W WO 8600115 A1 WO8600115 A1 WO 8600115A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
wind
hub
motor according
blades
Prior art date
Application number
PCT/FR1984/000150
Other languages
English (en)
Inventor
André Dejoux
Marcel Villeger
Original Assignee
Dejoux Andre
Marcel Villeger
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dejoux Andre, Marcel Villeger filed Critical Dejoux Andre
Priority to EP84902346A priority Critical patent/EP0183689A1/fr
Priority to PCT/FR1984/000150 priority patent/WO1986000115A1/fr
Publication of WO1986000115A1 publication Critical patent/WO1986000115A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0658Arrangements for fixing wind-engaging parts to a hub
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to horizontal axis wind engines operating downstream of the pylon.
  • the variation in the pitch of the propeller is obtained by pivoting the blade around its aerodynamic center.
  • the most commonly used pitch variation control systems are actuated by centrifugal force.
  • the ambient wind, the engine speed, the change in wind direction are measured, this information is used by a computer which controls small electric motors varying the pitch of the propeller.
  • the wind motor according to the invention solves the problem of absorbing gusts and continuing to operate in storms without risk of destruction, and to store a maximum of kinetic energy.
  • the variation of the propeller pitch is eliminated and replaced by an integrated anti-gust system acting on the angle of incidence of the blades under the pressure of the wind.
  • the angle of incidence is the result of the opposition between: the centrifugal force and the characteristics of a damper acting on the blade feet on the one hand, and the forces generated by the displacement of the air surrounding the blades d 'somewhere else. Any sudden or simply rapid change in the speed of the surrounding air generates an immediate change in the angle of incidence eliminating the overload due to the time constant inherent in most systems currently used.
  • the variation of the angle of incidence as a function of the variations of the apparent or relative wind, in pressure and in orientation is obtained by fixing each of the blade feet on an articulated support cooperating with a lever with variable radius on which a damper simultaneously acts rebalancing the pressures, allowing a more flexible self-orientation damping the radial force on the axis of the motor, increasing the angle of incidence when stopped by modifying the point of support of the damper on the adjustment lever of incidence. This stopped position favors starting the propeller in low winds.
  • 5 schematically shows the wind motor according to the invention seen at the end; 6 -shows the wind motor according to the invention seen from the side;
  • 13 - shows an embodiment of blades by modules according to the invention
  • 14 - shows in section the attachment of the blade sails according to the invention
  • 15.16 - show an example of a three-blade propeller with its shock absorber according to the invention.
  • 17,18 - shows an example of a double wind turbine mounted on a water tower.
  • Fig.1 schematically shows an example of a two-blade propeller in calm weather, without wind, in the wind standby position, the blades 1.2, towards the wind, the direction of which is represented by arrows XX '.
  • the anti-gust system comprises a means 4 fixed on the receiving shaft 3, receiving the blade feet on the articulated supports 5,6, each provided with a lever 7,8, on which the shock absorber 9 which rests will be described in more detail in fig. 8.
  • Fig. 2 shows the blades subjected to a progressive wind in normal operation, the blades approach their alignment, the damper 9 compresses slightly and moves to a position of minimum resistance by reducing the length of the lever arm acting on the blade feet.
  • Fig.3 shows the blades subjected to a strong gust in the axis. The point of support of the shock absorber 9 on the levers of articulation of the blade feet approaches the hub, which allows a greater inclination of the blades which can go up to about 20o.
  • Figure 4 shows the blades subjected to a violent gust with a sudden change of orientation.
  • the point of support of the shock absorber on the lever 8 slides towards the bottom of its light (see the following figs. 8, 9) and transfers the force from the right blade 2 to the left blade 1, thus limiting pressure imbalance and avoiding excessive fatigue of the Tax during the orientation period of the assembly in the wind.
  • the blade feet are protected due to this type of articulated mounting 5 thanks to the difference in length of the lever arm resulting from the variable position of the fulcrum support point, the force transmitted from the blade 2 on the blade 1 is amplified due to the unevenness of the ratio of the lever arms between the two blade feet, the shock of the gust is largely absorbed by the shock absorber which contributes to accelerating the reorientation of the blades in the wind.
  • Fig.5 shows the location of the drift, downstream of the pylon, in the unused area outside the area swept by the blades, not subject to the propeller's gyratory torque.
  • FIG. 6 shows a side view of the location of the fin 10 on a wind motor according to the invention with its pylon 11, its speed multiplier 12 and its alternator 13.
  • Fig. 7 shows for memory the angle of incidence of the blades.
  • Figs. 8, 9, 10 show an embodiment of the attachment of the blade root with its angle of incidence.
  • the supports 5 and 6 of the blade feet 1,2 are articulated at 15.16 on the hub 4. Screws 17.18 fix the levers 7.8 at the same time, the blade feet 1.2 on the supports 5,6, the levers 7,8, are cut in an angle section, they include a light 19,20, in which is engaged the rod 21 of the damper 9 constituted by two springs 22,23 bearing on the sliding sleeves 24,25, and on the guide washer 26 immobilized in the middle of the tube 27 by a pin 28.
  • the spherical end of the sleeves 24,25 is supported on the inside of the levers 7,8, on the part and other lights 19.20.
  • Fig.11 shows, at the end, the attachment of the blade feet 1,2, directly giving the angle of incidence 33 on the blade feet.
  • This angle is of the order of 8o with respect to the rear face 4A of the hub 4, it is obtained by oblique milling on the top 5A, 6A, supports 5,6, articulated in a milled housing on the hub 4
  • the response speed is increased by l hinge of the blade root.
  • Figs. 13 and 14 show an embodiment of wide blades by modules comprising a plastic plate 35 the length of the blade to be produced and a shape profile 36 also made of plastic, obtained by thermoforming by lengths placed end to end end, glued to the ends 37,38, then rounded side 37 and sanded I acute angle 38.
  • the two parts 35,36 are fixed to each other by countersunk screws 39 on a tubular section of rectangular section 40 in light alloy which constitutes the blade root fixed itself on its articulated support.
  • Tapped tubular spacers 41 are slid into the profile 40 to receive the fixing screws 39 on each side.
  • Figs. 15 and 16 show an example of a shock absorber according to the invention usable with three blades and extrapol abl e to a greater number of blades. It has a hub 43 designed to receive three blade feet in an identical manner to FIGS. 10, 11 and 12 and partially in fig. 8,9, The reference numbers of these figures have been taken up.
  • the midpoint of the anti-gust damper is produced by means of a cap 43 mounted on a double ball joint constituted by a threaded ball 44 into which is screwed a rod 45 terminated by a ball 46 fixed to the receiving shaft 47 at by means of a ring 48 screwed onto the end of the shaft 47 and stopped by a nut 49.
  • the hub 50 is offset to give sufficient length to the double ball joint allowing the shock absorber to move in the event of gusts outside the 'axis.
  • each of the three shock absorbers 52 is articulated in a yoke 53 on the ball joint cap 43 and engaged in the lumen 19 of the articulated lever 7,8, fixed on the corresponding blade foot 54,55,56, a spring 57 absorbs the forces on the blade feet as described in fig.8.
  • the return of the force on one or two blades is carried out in the same way as described above by comprising, for example the shock absorbers of the blade feet 55, 56, acting simultaneously on the blade foot 54 by means of its shock absorber.
  • Fig. 17,18 show an example of wind turbines mounted on a water tower 58 just below the tank 59 to use the effect of air acceleration due to the central column, to double the power, save a pylon and benefit from the acceleration effect.
  • These double wind turbines can, for example, electrically supply the pumping installation and supply electrical energy to the neighborhood.
  • this wind engine can be mounted in the traditional way upstream of the pylon, but this assembly would make it lose part of its advantages, in particular of self-orientation, it would be necessary to add a drift support arm, therefore an additional weight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

Le système anti-rafales comporte un moyeu (4) fixé sur l'arbre récepteur (3), ledit moyeu comporte deux logements recevant deux blocs supports (5, 6), articulés sur ledit moyeu, la surface supérieure desdits supports (5, 6), reçoit le pied de pale correspondant et un levier (7, 8) à rayon variable coopérant avec un amortisseur anti-rafales (9) dont la tige (21) est engagée dans les lumières (19, 20), des leviers (7, 8) une violente rafale de vent avec changement de direction provoque le déplacement de la pale (2) et le renvoi de l'effort sur la pale (1) qui s'oriente au vent en reculant cependant qu l'amortisseur absorbe une partie de l'energie de la rafale.

Description

Moteur éolien à système anti-rafales intégré
L'invention concerne les moteurs éoliens à axe horizontal fonctionnant en aval du pylone.
Dans les moteurs éoliens connus à axe horizontal, la variation du pas de l'hélice est obtenue par pivotement de la pale autour de son centre aérodynamique. Les systèmes de commande de variation de pas les plus couramment utilisés sont actionnés par la force centrifuge. Dans d'autres modèles sophistiqués on effectue les mesures du vent ambiant, de la vitesse de rotation du moteur, du changement d'orientation du vent, ces informations sont exploitées par un calculateur qui commande de petits moteurs électriques faisant varier le pas de l'hélice.
Les inconvénients présentés par ces moteurs éoliens sont les suivants:
- constante de temps entre la variation de la vitesse du vent et la modification du pas de l'hélice, ce temps de réponse est toujours trop long, il en résulte des efforts importants sur les pieds de pale;
- commande simultanée d'orientation de toutes les pales, et en cas de changement de direction du vent avec des rafales accroissant sa vitesse, les pieds de pale et l'axe du moteur éolien sont soumis â des efforts importants et destructeurs, l'hélice décrit un plan voilé et les taux de fatigue qui en résultent ne sont actuellement/calculables par manque de données précises. Les constructeurs se contentent dèessayer de renforcer la fixation des pieds de pale, des axes et des roulements pour éviter la rupture, ce qui revient à augmenter la masse donc l'inertie dynamique et à rechercher un compromis entre la vitesse de mise en alignement avec le sens de déplacement du vent et le gauchissement du plan de rotation des pales; - dans la plupart des modèles connus, il est nécessaire d'immobiliser la machine au-dessus de 50 KM/H. Comme l'énergie du vent croît avec le cube de sa vitesse, ils ne permettent pas de recueillir d'énergie en cas de tempête au moment ou celle-ci est maximale, bien au contraire, ces modèles nécessitent une surveillance constante ou au moins un dispositif automatique de mise en drapeau.
Tel qu'il est décrit dans les revendications, le moteur éolien selon l'invention résout le problème consistant à absorber les rafales et à continuer à fonctionner en tempête sans risque de destruction, et à emmagasiner un maximum d'énergie cinétique. La variation du pas de l'hélice est supprimée et remplacée par un système anti-rafales intégré agissant sur l'angle d'incidence des pales sous la pression du vent. L'angle d'incidence est le résultat de l'opposition entre: la force centrifuge et les caractéristiquesd'un amortisseur agissant sur les pieds de pale d'une part, et les forces engendrées par le déplacement de l'air environnant les pales d'autre part. Toute variation brutale ou simplement rapide de la vitesse de l'air environnant engendre une variation immëdiate de l'angle d'incidence supprimant la surcharge due à la constante de temps inhérente à la plupart des systèmes actuellement employés. La variation de l'angle d'incidence en fonction des variations du vent apparent ou relatif, en pression et en orientation est obtenue en fixant chacun des pieds de pale sur un support articulé coopérant avec un levier à rayon variable sur lequel agit simultanément un amortisseur rééquilibrant les pressions , permettant une auto-orientation plus souple amortissant l'effort radial sur l'axe du moteur, augmentant l'angle d'incidence à l'arrêt par modification du point d'appui de l'amortisseur sur le levier de réglage d'incidence. Cette position à l'arrêt favorise le démarrage de l'hélice à faible vent.
Les avantages présentés par le moteur éolien selon l'invention sont les suivants:
- Fiabilité très accrue de l'ensemble malgrénson apparente finesse, - Suppression des efforts imprévus sur les pieds de pale
- Grande légèreté de l'ensemble par rapport aux modèles existants
-Auto-orientation rapide au vent sans danger, même en cas de rafales très brutales
- Permet pour une même surface balayée, un rendement annuel beaucoup plus important notamment dans les régions à rafales de tempête (de l'ordre de
3 fois)
- Utilisation de pales légères
- Il nlest pas nécessaire de limiter le rendement à des vitesses de vent inférieures à 15 m/sec (54 KM/H). Pour mémoire (Betz définit la puissance disponible au mètre carré balayé comme étant de 0,156 KWH pour un vent de 7,50 m/s et 1,248 KWH pour un vent de 15 m/s
- Pylône allégé en raison du faible poids du moteur éolien - Possibilité de fonctionner en toute sécurité à proximité d'obstacles naturels ou artificiels engendrant des accélérations locales de la vitesse du vent naturel mais inégales sur la surface balayée par l'hélice. -Amortissement immédiat des vibrations inhérentes aux hélices bipales
- Possibilité d'utiliser les "Chateaux d'eau" comme pylone. Ils existent déjà et sont sur des sites très favorables - Rapport SECURITE/PRIX excellent
-Limitation de la vitesse de rotation de l'hélice par décrochage de son profil, le moteur éolien continue à délivrer l'énergie correspondant à cette vitesse en cas de tempête. Il n'est pas nécessaire d'en arrêter le fonctionnement - Sa légèreté permet de l'immobiliser par simple surconsommation d'un alternateur à aimants permanents pour les opérations d'entretien.
-Démarrage à 3,75 m/s. La vitesse moyenne de démarrage des bipales actuels est de l'ordre de 5 m/s.
L'invention est décrite en détail dans le texte qui suit en référence aux dessins annexés dans lesquels les figures:
1,2,3,4, montrent schématiquement vu en élévation un moteur éolien selon l'invention soumis à diverses forces de vent;
5 -montre schématiquement le moteur éolien selon l'invention vu en bout; 6 -montre le moteur éolien selon l'invention vu de côté;
7 -montre un schéma de l'angle d'incidence d'une pale
8,9,10,11,12 -montrent des exemple de fixation du pied de pale selon l'invention;
13 - montre un mode de réalisation de pales par modules selon l'invention; 14 -montre en coupe la fixation des voiles de pales selon l'invention;
15,16 - montrent un exemple d'hélice tri-pales avec son amortisseur selon l'invention;
17,18 -montre un exemple de double éolienne montées sur un chateau d'eau .
La fig.1 montre schématiquement un exemple d'hélice bi-pales par temps calme, sans vent, en position d'attente du vent, les pales 1,2, vers le vent dont le sens est représenté par des flèches XX'. Le système anti-rafales comporte un moyen 4 fixé sur l'arbre récepteur 3, recevant les pieds de pales sur les supports articulés 5,6, munis chacun d'un levier 7,8, sur lequel s'appuie l'amortisseur 9 qui sera décrit plus en détail sur la fig.8.
La fîg.2 montre les pales soumises à un vent progressif en fonctionnement normal, les pales se rapprochent de leur alignement, l'amortisseur 9 se comprime légèrement et se déplace vers une position de résistance minimale en réduisant la longueur du bras de levier agissant sur les pieds de pales. La fig.3 montre les pales soumises à une forte rafale dans l'axe. Le point d'appui de l'amortisseur 9 sur les leviers d'articulation des pieds de pales se rapproche du moyeu, ce qui permet une plus grande inclinaison des pales qui peut aller jusqu'à environ 20º.
La figure 4 montre les pales soumises à une violente rafale avec un changement brutal d'orientation. Le point d'appui de l'amortisseur sur le levier 8 glisse vers le fond de sa lumière (voir les fig. suivantes 8,9,) et reporte l'effort de la pale de droite 2 vers la pale gauche 1, limitant ainsi le déséquilibre de pression et évitant une fatigue excessive de Taxe pendant la période d'orientation de l'ensemble dans le vent. Les pieds de pale sont protégés du fait de ce type de montage articulé 5 grâce à la différence de longueur du bras de levier résultant de la position variable du point d'appui de l'amortisseur, l'effort transmis de la pale 2 sur la pale 1 est amplifié du fait de l'inégalité du rapport des bras de levier entre les deux pieds de pale, le choc de la rafale est absorbé en grande partie par l'amortisseur qui contribue à accélérer la réorientation des pales au vent.
La fig.5 montre l'emplacement de la dérive, en aval du pylone, dans la zone inutilisée hors de la surface balayée par les pales, non soumise au couple giratoire de l'hélice.
La fig.6, montre une vue de côté de l'emplacement de la dérive 10 sur un moteur éolien selon l'invention avec son pylône 11, son multiplicateur de vitesse 12 et son alternateur 13.
La fig.7 montre pour mémoire l'angle d'incidence des pales. Les fig. 8,9,10, montrent un mode de réalisation de la fixation du pied de pale avec son angle d'incidence. Les supports 5 et 6 des pieds de pale 1,2, sont articulés en 15,16, sur le moyeu 4. Des vis 17,18, fixent en même temps les leviers 7,8, les pieds de pale 1,2, sur les supports 5,6, les leviers 7,8, sont coupés dans un profilé en cornière, ils comportent une lumière 19,20, dans laquelle est engagée la tige 21 de l'amortisseur 9 constitué par deux ressorts 22,23 en appui sur les fourreaux coulissants 24,25, et sur la rondelle guide 26 immobilisée au milieu du tube 27 par une goupille 28. L'extrémité sphérique des fourreaux 24,25, est en appui sur l'intérieur des leviers 7,8, de part et d'autre des lumières 19,20. L'amortisseur est maintenu sur les leviers par des rondelles sphériques 29,30, arrêtées par des goupilles 31,32. La fig.11 montre, vue en bout, la fixation des pieds de pale 1,2, donnant directement l'angle d'incidence 33 sur les pieds de pale. Cet angle est de l'ordre de 8º par rapport à la face arrière 4A du moyeu 4, il est obtenu par un fraisage en biais sur le dessus 5A,6A, des supports 5,6, articulés dans un logement fraisé sur le moyeu 4. En perçant le trou de passage de l'axe d'articulation 15,16, en biais, parallèlement aux faces biaises 5a,6a, du support 5,6, comme sur la fig.12, on accroît la rapidité de réponse de l'articulation du pied de pale. Grâce aux lumières 19, 20, et au mode de réalisation de l'amortisseur, on obtient, de manière extrêmement simple et peu onéreuse, des leviers à rayon variable, fonction de la position du vent.
Les fig.13 et 14 montrent un exemple de réalisation de pales larges par modules comportant une plaque 35 en matière plastique de la longueur de la pale à réaliser et un profil de forme 36 également en matière plastique, obtenu par thermoformage par longueurs mises bout à bout, collées aux extrémités 37,38, arrondi ensuite côté 37 et poncé I angle aigu 38. Les deux parties 35,36 sont fixées entre elles par des vis à tête fraisée 39 sur un profilé tubulaire de section rectangulaire 40 en alliage léger qui constitue le pied de pale fixé lui-même sur son support articulé. On voit mieux en coupe sur la fig.13 la fixation des éléments de pales. Des entretoises tubulaires taraudées 41 sont glissées dans le profilé 40 pour recevoir les vis de fixation 39 de chaque côté. Les hélices bipale de grande largeur facilitent le démarrage et l'accrochag'e de l'hélice aux basses vitesses du vent sans altération de rendement par accroissement de trainée aéro-dynamique qui est la conséquence inévitable de la multiplication du nombre de pales généralement utilisées pour obtenir ce résultat. Les fig.15 et 16 montrent un exemple d'amortisseur selon l'invention utilisable avec trois pales et extrapol abl e à un nombre supérieur de pales. Il comporte un moyeu 43 prévu pour recevoir trois pieds de pale de façon identique aux fig. 10,11 et 12 et partiellement aux fig.8,9, Les n° de repère de ces figures ont été repris. Le point milieu de l'amortisseur anti-rafales est réalisé au moyen d'un chapeau 43 monté sur une double rotule constituée par une bille taraudée 44 dans laquelle est vissée une tige 45 terminée par une bille 46 fixée sur l'arbre récepteur 47 au moyen d'une bague 48 vissée sur l'extrémité de l'arbre 47 et arrêtéepar un écrou 49. Le moyeu 50 est déporté pour donner suffisamment de longueur à la double rotule permettant le déplacement de l'amortisseur en cas de rafales hors de l'axe. La tige 51 de chacun des trois amortisseurs 52 est articulée en chape 53 sur le chapeau de rotule 43 et engagée dans la lumière 19 du levier articulé 7,8, fixé sur le pied de pale correspondant 54,55,56, un ressort 57 absorbe les efforts sur les pieds de pale comme décrit sur la fig.8. Le renvoi de l'effort sur une ou deux pales s'effectue de la même façon que décrite précédemment en se composant, par exemple les amortisseurs des pieds de pales 55,56, agissant simultanément sur le pied de pale 54 par l'intermédiaire de son amortisseur. Lorsqu'un pied de pale est sollicité, il pousse avec un effort démultiplié par effet de genouillère sur les deux autres pieds de pale.
Les fig.17,18, montrent un exemple d'éoliennes montées sur un chateau d'eau 58 juste en dessous du réservoir 59 pour utiliser l'effet d'accélération de l'air dû à la colonne centrale, pour doubler la puissance, faire l'économie d'un pylone et bénéficier de l'effet d'accélération. Ces doubles éoliennes peuvent par exemple alimenter électriquement l'installation de pompage et fournir de l'énergie électrique au voisinage. Ces deux éoliennes se déplacent sur un rail double 60 au moyen de galets de roulement 61,62, fixés sur un châssis 63, l'effort de balancement est absorbé par deux galets 64,65, se déplaçant à cheval sur un rail 66 fixé sur la colonne/supportant le réservoir 59 Lorsque le vent devient prépondérant sur l'une des deux éoliennes, elle tend à reculer en tirant sur les câbles 67,68, accrochés à un chariot 69 disposé entre les éoliennes et se déplaçant sur le rail accroché au réservoir, cela jusqu'à ce que Têquilibre entre les deux éoliennes soit atteint. Le système fonctionne en recherche continue de cet équilibre.
Compte tenu de l'accélération du vent produite par la colonne du chateau d'eau, qui est presque toujours inégale sur la surface balayée, les pales tourneront presque en permance sur un plan plus ou moins voilé. n ne serait pas possible d'utiliser des moteurs éoliens non équipés d'un système anti-rafale car ils seraient rapidement détruits par les efforts anormaux quasi permanents qu'ils auraient à supporter.
Bien entendu on peut monter ce moteur éolien de façon traditionnelle en amont du pylône, mais ce montage lui ferait perdre une partie de ses avantages, notamment d'auto-orientation, il faudrait rajouter un bras support de dérive, donc un poids supplémentaire.

Claims

R EV EN D I CAT I O N S:
1 - Moteur éolien à système anti-rafales intégré comportant au moins deux pales fixées sur un moyeu solidaire d'un arbre récepteur caractérisé en ce que chaque pale (1,2) est fixée sur un bloc support (5,6) articulé perpendiculairement à l'axe des pales sur un moyeu (4) solidaire de l'arbre récepteur (3) , chaque support (5,6,) reçoit en outre un levier (7,8) à rayon variable coopérant avec un amortisseur anti-rafales (9).
2 - Moteur selon 1, caractérisé en ce que le levier à rayon variable (7,8) de chaque pied de pale,solidarisé au bloc support, comporte une lumière (19,20) sur une aile perpendiculaire à la pale, ladite lumière coopère avec la tige (21) de l'amortisseur (9).
3 - Moteur selon 1, caractérisé en ce que le support articulé est un bloc (5,6) disposé dans un logement du moyeu (4) et articulé sur celui-ci au moyen d'un axe (15,16) et en ce que la partie supérieure dudit bloc (5a,6a) est parallèle à l'axe d'articulation et parallèle à la base (4a) du moyeu.
4- Moteur selon1,3,caractérisé en ce que la partie supérieure (5a,6a) du support articulé présente une pente (33) de Tordre de 8° par rapport à la face inférieure (4a) du moyeu.
5 - Moteur selon1,3 et 4, caractérisé en ce que Taxe d'articulation
(15,16) du support articulé (5,6) est parallèle à la face inclinée (5a,6a).
6 - Moteur selon l'une quelconque des revendications précédentes, caractérisé en ce que les pales sont réalisées par longueur d'éléments modulaires (36) obtenus par thermoformage d'une feuille de matière plastique, lesdits éléments (36) sont assemblés par collage en bordure sur une plaque (35) également en matière plastique pouvant faire toute la longueur de la pale, les deux parties (35,36) sont ensuite vissées sur un profilé desection rectangulaire tubulaire en alliage léger (40) qui constitue le pied de pale fixé sur son support articulé. 7- Moteur selon 1, caractérisé en ce que l'amortisseur anti-rafales pour une hélice à trois pales ou plus, comporte une double rotule montée préférablement sur le bout d'arbre récepteur (47) et coiffée d'un chapeau (43) recevant en chape les tiges (51) de chacun des amortisseurs en appui sur les leviers (7,8) des pieds de pale correspondants.
8- Moteur selon lu'ne quelconque des revendications précédentes, caractérisé en ce qu'il est monté sur un chateau d'eau faisant office de pylone, sous le réservoir, en coopération avec un second moteur éolien situé diamétralement opposé, se déplaçant sur des rails circulaires en recherche couplée d'équilibre au vent au moyen de câbles (67,68) les réunissant, disposés entre les deux moteurs et fixés sur un chariot (69) se déplaçant sur un rail circulaire fixé sous le réservoir (59).
PCT/FR1984/000150 1984-06-15 1984-06-15 Moteur eolien a systeme anti-rafales integre WO1986000115A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP84902346A EP0183689A1 (fr) 1984-06-15 1984-06-15 Moteur eolien a systeme anti-rafales integre
PCT/FR1984/000150 WO1986000115A1 (fr) 1984-06-15 1984-06-15 Moteur eolien a systeme anti-rafales integre

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR1984/000150 WO1986000115A1 (fr) 1984-06-15 1984-06-15 Moteur eolien a systeme anti-rafales integre

Publications (1)

Publication Number Publication Date
WO1986000115A1 true WO1986000115A1 (fr) 1986-01-03

Family

ID=9299878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1984/000150 WO1986000115A1 (fr) 1984-06-15 1984-06-15 Moteur eolien a systeme anti-rafales integre

Country Status (2)

Country Link
EP (1) EP0183689A1 (fr)
WO (1) WO1986000115A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103982373A (zh) * 2014-05-30 2014-08-13 北京金风科创风电设备有限公司 风力涡轮机
GB2494389B (en) * 2011-09-01 2015-02-18 Aviat Entpr Ltd Rotor blade

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE549618C (de) * 1930-11-22 1932-04-29 Hermann Honnef Windkraftmaschine, deren Treibfluegelspitzen durch einen Radkranz miteinander in Verbindung stehen
US2516576A (en) * 1947-01-04 1950-07-25 Charles R Jacobs Self-governing wind-driven propeller
US2533785A (en) * 1946-11-15 1950-12-12 Fumagalli Charles Variable propeller
CH303398A (de) * 1952-04-17 1954-11-30 Bauer Richard Schnellaufender Windmotor.
US2955656A (en) * 1954-12-27 1960-10-11 Fairchild Engine & Airplane Auxiliary power system for aircraft
FR2413567A1 (fr) * 1978-01-03 1979-07-27 Garnier Jean Turbine auto-regulatrice
DE2944718A1 (de) * 1979-11-06 1981-05-21 Hans-Dietrich Ing.(grad.) 2000 Hamburg Goslich Rotor fuer windkraftanlagen in leichtbauweise

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE549618C (de) * 1930-11-22 1932-04-29 Hermann Honnef Windkraftmaschine, deren Treibfluegelspitzen durch einen Radkranz miteinander in Verbindung stehen
US2533785A (en) * 1946-11-15 1950-12-12 Fumagalli Charles Variable propeller
US2516576A (en) * 1947-01-04 1950-07-25 Charles R Jacobs Self-governing wind-driven propeller
CH303398A (de) * 1952-04-17 1954-11-30 Bauer Richard Schnellaufender Windmotor.
US2955656A (en) * 1954-12-27 1960-10-11 Fairchild Engine & Airplane Auxiliary power system for aircraft
FR2413567A1 (fr) * 1978-01-03 1979-07-27 Garnier Jean Turbine auto-regulatrice
DE2944718A1 (de) * 1979-11-06 1981-05-21 Hans-Dietrich Ing.(grad.) 2000 Hamburg Goslich Rotor fuer windkraftanlagen in leichtbauweise

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2494389B (en) * 2011-09-01 2015-02-18 Aviat Entpr Ltd Rotor blade
CN103982373A (zh) * 2014-05-30 2014-08-13 北京金风科创风电设备有限公司 风力涡轮机

Also Published As

Publication number Publication date
EP0183689A1 (fr) 1986-06-11

Similar Documents

Publication Publication Date Title
CA1219849A (fr) Agencement de rotor de queue a poussee accrue pour aeronef a voilure tournante et dispositif pour accroitre la poussee d'un tel agencement
FR2480862A1 (fr) Turbine eolienne comportant un systeme d'isolation des perturbations provenant du train d'entrainement
EP2986848B1 (fr) Structure d'eolienne flottante
EP2572100B1 (fr) Turbogenerateur a rotor a pales a incidence adaptee au vent apparent
US4257740A (en) Speed governing hub for windmill
US4443154A (en) Windmill tower shadow eliminator
FR2768187A1 (fr) Eolienne helicoidale a axe de rotation vertical
WO1986000115A1 (fr) Moteur eolien a systeme anti-rafales integre
FR2538041A1 (fr) Moteur eolien a systeme anti-rafales integre
FR2609506A1 (fr) Turbine multi-usage
EP0033258B1 (fr) Aérogénérateur à axe d'orientation variable
FR2569243A1 (fr) Rotor a helice a pas variable, en particulier pour moteur eolien
WO2012172022A1 (fr) Dispositif de freinage pour eolienne a axe vertical
FR2555125A1 (fr) Dispositif de regulation automatique du pas d'une helice
FR2750460A1 (fr) Perfectionnement a un dispositif aero-generateur
FR2589201A1 (fr) Eolienne a rotors contrarotatifs a reglage d'orientation des pales
FR3022880A1 (fr) Eolienne flottante
FR2520057A1 (fr) Perfectionnement aux aerogenerateurs
FR2520814A1 (fr) Perfectionnements aux eoliennes
FR3113892A1 (fr) Aéronef à voilure tournante avec motorisation en bout de pales et à pas modifiable
FR3132547A1 (fr) Eolienne à axe vertical, et navire équipé d’au moins une telle éolienne
FR2855563A1 (fr) Eolienne equipee de deux diffuseurs
FR2817298A1 (fr) Eolienne avec dispositif de regulation
FR2491556A1 (fr) Eolienne a capteur lent adaptable aux conditions de vent
FR2985291A1 (fr) Dispositif de limiteur de couple pour un turbogenerateur a rotor a reaction

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): BR JP US

Kind code of ref document: A1

Designated state(s): BR JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE GB NL SE

Designated state(s): AT BE CH DE GB NL SE

WWP Wipo information: published in national office

Ref document number: 1984902346

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1984902346

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1984902346

Country of ref document: EP