WO1985003904A1 - Hot runner-type injection molding device - Google Patents

Hot runner-type injection molding device Download PDF

Info

Publication number
WO1985003904A1
WO1985003904A1 PCT/JP1985/000091 JP8500091W WO8503904A1 WO 1985003904 A1 WO1985003904 A1 WO 1985003904A1 JP 8500091 W JP8500091 W JP 8500091W WO 8503904 A1 WO8503904 A1 WO 8503904A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
ripening
coil
molding apparatus
frequency induction
Prior art date
Application number
PCT/JP1985/000091
Other languages
French (fr)
Japanese (ja)
Inventor
Itsuo Shibata
Tetsuo Uchida
Original Assignee
Ju-Oh Trading Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP3712184A external-priority patent/JPS60180811A/en
Priority claimed from JP9627684A external-priority patent/JPS60239218A/en
Priority claimed from JP18735584A external-priority patent/JPS6164419A/en
Priority claimed from JP23105784A external-priority patent/JPS61108522A/en
Priority to PCT/JP1985/000091 priority Critical patent/WO1985003904A1/en
Priority to DE3590090A priority patent/DE3590090C2/de
Priority to US06/817,855 priority patent/US4726751A/en
Application filed by Ju-Oh Trading Co., Ltd. filed Critical Ju-Oh Trading Co., Ltd.
Priority to CH4674/85A priority patent/CH668220A5/en
Priority to DE19853590090 priority patent/DE3590090T/en
Priority to JP60159649A priority patent/JPS61197216A/en
Priority to JP60159648A priority patent/JPS61197215A/en
Publication of WO1985003904A1 publication Critical patent/WO1985003904A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2737Heating or cooling means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2737Heating or cooling means therefor
    • B29C2045/2743Electrical heating element constructions
    • B29C2045/2748Insulating layers covering the electrical heating element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/06Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using radiation, e.g. electro-magnetic waves, induction heating

Definitions

  • the present invention relates to a plastic injection molding apparatus, particularly to a hot runner complete injection molding apparatus.
  • the resin filled in the resin passage connecting the nozzle of the molding machine and the cavity of the mold that is, the resin (product) filled in the cavity with a so-called runner
  • the runner is melted in a so-called cold runner forming system, which is cooled and solidified so that when the mold is opened, the product is discharged out of the mold together with the mold. While maintaining the state, only the resin in the cavity is cooled and solidified and discharged out of the mold, and the runner in the molten state is transferred to the carrier in the next molding cycle.
  • a mechanical valve is provided in the gate portion, and the valve near the gate is ripened sufficiently to keep the resin in a molten state, and the valve is closed when the mold is opened.
  • a device was developed to prevent stringing and avalanche of resin. There is a drawback that failures are liable to occur because of having to do so. There is also a disadvantage that the device becomes large due to the use of a valve having a complicated structure.
  • a pointed ripening body is arranged so as to extend into the gate hole, and when the mold is opened, the resin in the gate hole is actively cooled and solidified.
  • the resin from the gate hole at the time of opening the mold does not become shallow, and stringing is prevented, and the heating element is ripened immediately just before the next cycle and solidifies in the gate hole.
  • a so-called hot-runner type injection molding machine of the so-called konomi-maturation type which re-melts the resin so that injection becomes possible, but in this device, the solidified resin in the gate is used. It takes time to re-dissolve the resin.
  • the present invention can control the resin temperature near each gate hole of a mold having a plurality of cavities with high accuracy, and can provide a good gate rose. Therefore, stringing, barrenness, clogging of the gate, etc. can occur without using a complicated mechanism such as opening and closing the valve, intermittent heating of the gate hole, etc.
  • the purpose of the present invention is to provide a hot runner complete injection molding apparatus capable of performing excellent molding. -I
  • each key of a resin passage (generally comprising a sprue part and a runner part) connecting a nozzle of a molding machine and each cavity in a mold.
  • the portion of the cavity adjacent to the gate hole is formed by a pipe-shaped member made of a material that can be heated by low frequency induction ripening.
  • a ⁇ -frequency induction ripening coil is wound around each of the pipe-shaped members, and the ripening coils are connected in series with each other to ⁇ -frequency power supply means. Further, control means for controlling the temperature of the pipe-shaped member by controlling the electric power supplied to the ripening coil is provided.
  • the pipe-shaped member When a low-frequency current is supplied to the ripening coil from the power supply means, the pipe-shaped member is ripened by electromagnetic induction. Ripening the pipe-shaped member due to the heat generated by the electromagnetic induction has a better responsiveness than heating by ripening transmission from a resistance heating heater. In other words, in the case of heat conduction from the heater, when the temperature of the pipe-shaped member reaches a predetermined temperature, the heater is heated to a higher temperature, and power is supplied to the heater. The temperature of the pipe-shaped member continues to increase even after the gas stops, or the temperature of the pipe-shaped member decreases even if the heater is turned on when the temperature of the pipe-shaped member decreases.
  • the induction-ripening coil is a simple wire wound, it can be wound to a position substantially close to the gate hole, and accordingly, the gate of the pipe-shaped member can be wound. Since it is possible to directly generate heat up to a portion substantially close to the hole, the temperature difference between the tip of the pipe-shaped member (the portion close to the gate hole) and the base ⁇ (the portion away from the gate hole) is determined. The temperature of the base rises too much when the tip is ripened to a temperature sufficient to keep the resin in the gate hole in a molten state.
  • the heat generated by the ⁇ -frequency induction ripening coil also depends on the distance from the power supply to the coil, that is, the resistance loss of the line including the skin effect, so when connecting each coil to the power supply in parallel If the distance from the power supply of each coil is exactly matched, or if the number of windings, etc., is not reduced in consideration of the difference in the distance from each power supply to the coil, the gate balance will be lost.
  • the fc device is advantageous in that each coil is connected to the power supply in series.
  • the resin near the gate hole is ripened by simply winding a few turns to a few turns of wire around the pipe-shaped member. As a result, the structure around the gate is simplified.
  • a hot runner of a mold having a large number of small products or a mold having several fc gates for one cavity is required. Can be easily realized.
  • the temperature control means for controlling the temperature of the pipe-shaped member to a desired value the temperature of the pipe-shaped m-material is detected, and the heating coil is supplied from the power supply means in accordance with a difference from a set value. Adjust or turn on the power supplied to You can use a circuit that turns off.
  • a gate balance adjusting circuit can be connected in parallel to each of the ripening coils.
  • a capacitor coil or a resistor can be used as the gate / parameter adjustment circuit.
  • a condenser is connected in parallel to several of several ripening coils in parallel with each other, the mixing of the pipe-shaped member around which the ripening coils are wound increases. However, the temperature of the pipe-shaped member around which another heating coil is wound decreases.
  • the heating coil is wound around a pipe-shaped member. The temperature drops and another heating coil is wound The temperature of the pipe-shaped member increases. In addition, the magnitude of the temperature at that time changes depending on the value of the gate impedance adjustment circuit.
  • the entire gate garden is selected. It can be fine-tuned by increasing the gate balance.
  • a resistor is used as the gate-parameter adjustment circuit, power loss occurs, and in that regard, a capacitor or a coil is more desirable.
  • the hot runner complete injection molding apparatus since the hot runner complete injection molding apparatus according to the present invention described above uses high frequency power, it generates noise when measuring the temperature of the tip of the pipe-shaped member using a thermocouple. However, if a thermocouple is used to prevent noise from being picked up, the structure around the gate becomes complex, resulting in a reduction in size.
  • the maturation power of a mature couple is very small at several 771 V, and ⁇
  • the SZN ratio becomes extremely poor due to induction, making accurate temperature detection difficult.
  • the vicinity of the gate of the pipe-shaped member be thin (about 7 ⁇ ), but if a thermocouple is used for this purpose, the thickness of the thermocouple is also reduced to about 0.5 ⁇ (outer sheath).
  • the electrical resistance will be higher. As is well known, the higher the electrical resistance, the easier it is to pick up noise. Including compensation guidance -?-It is difficult to completely cut the noise even if a mature couple is shielded.
  • the high frequency power is periodically stopped, for example, every 0.5 sec, for a predetermined time, for example, 1 OB sec, and stopped during that time.
  • a switching means for reading the output of the temperature detecting means is provided.
  • the high frequency power when reading the output of the temperature detecting means, the high frequency power is turned off, and therefore the temperature can be accurately detected without being affected by the high frequency magnetic field. it can.
  • the return control means receives a temperature signal from the temperature detection means for detecting the temperature of the pipe-shaped member, especially the temperature at the tip thereof, and By controlling the power supplied to the ripening coil to control the temperature of the pipe-shaped member to a desired temperature, a large amount of power is supplied to each ripening coil in response to a signal from the molding machine. O Only supply at the time of the o
  • the resin temperature in the vicinity of the gate hole is usually maintained at a sufficiently low level so that resin leakage or stringing does not occur from the gate hole, and the temperature is set immediately before injection. After ripening, the resin near the gate hole can be melted and injected. By doing so, the accuracy required for temperature control is reduced, and in particular, properties such as viscosity, such as nylon, change significantly within a small width of the resin mixture, and therefore,
  • properties such as viscosity, such as nylon
  • steady resin grip By setting the above-mentioned desired degree of attainment (hereinafter referred to as “steady resin grip”) at a temperature sufficiently lower than such an industrial temperature, the surrounding conditions of each gate hole can be adjusted. Even when the resin temperature is slightly different for each gate hole due to the difference, there is no occurrence of a trap such as stringing or shallow resin.
  • the timing and time for supplying the high power to each heating coil vary depending on molding conditions, molding cycle, type of resin, etc. It is desirable to adjust so that it melts to the extent that it can be injected.
  • each ripening coil was used until the resin grip (force of the pipe-shaped member) returned to the normal resin temperature.
  • the power supply to the pipes may be stopped only, or a cooling medium passage may be provided around the pipe-shaped member to actively cool the cooling medium. It may be provided integrally with the member, or a pipe with good ripening properties may be closely wound around the pipe-shaped member, and a cooling medium such as water may pass through the inside.
  • each ripening coil may be formed by a hollow pipe-shaped conductor, and a cooling medium may be passed through the inside.
  • the ripening means calculates the temperature of the pipe-shaped member and the rate of change of the degree of attraction, and from the relationship of the rate of change of the degree of return to the degree of return, the above-mentioned induction is performed.
  • -//-It is desirable to have a short-cut detection means to detect short-cuts of the induction ripening coil. This is because when the high-frequency induction ripening coil is short-cut, the change in electric resistance is almost negligible due to the small number of turns of the coil and the low electric resistance. In addition, it is very difficult to electrically detect this short-circuit. That is, the short-circuit detecting means is provided in a desired temperature range in which the pipe-shaped member is controlled by the humidity controlling means.
  • the shot detection means will be used. This is to determine that a short shot of the coil has occurred, and this makes it possible to reliably detect a shot that was electrically difficult.
  • a coil assembly for providing an insulating layer between the induction heating coil and the pipe-like member and for holding the induction heating coil is provided.
  • the outer wall of the mold is in contact with the mold.
  • An air insulation layer is preferred as a maturing layer.
  • the induction heating coil is kept at a relatively low temperature by restricting the transfer of heat from the pipe-shaped member by the air aging layer and dissipating the ripening to the mold.
  • the deterioration of the coil surface layer can be prevented.
  • FIG. 1 is a schematic view showing an injection molding apparatus according to one embodiment of the present invention
  • FIG. 2 is a sectional view showing a part of the apparatus shown in FIG. 1 in detail
  • Fig. 3 shows another example of how to wind a ripening coil
  • Fig. 4 shows an example of a method for fixing a ripening coil
  • Fig. 5 shows a modification of the device in Fig. 1.
  • FIG. 6 is a flowchart illustrating a part of the operation of the control circuit of the apparatus shown in FIG.
  • 7 to 11 are cross-sectional views each showing a modification of the vicinity of the chip of the apparatus shown in FIG.
  • a hot runner type injection molding apparatus according to one embodiment of the present invention is provided with a mold 10 having four cavities 12a, 12b, 12c, 12d.
  • the mold 10 is composed of a fixed half 14 fixed to a fixed die plate of a molding machine (not shown) and a movable half 16 fixed to a movable plate.
  • the side half 16 is pressed against the fixed half 14, that is, when the mold 10 is closed, the four cavities 12 a to 12 d are formed between the half halves 14 and 16. It is becoming.
  • the fixed half 14 has a mounting plate 18 attached to the fixed die plate 18, a manifold block 22 pressed and fixed to the mounting plate 18 with a heat insulating material 20 interposed therebetween, and It is composed of a cavity plate 26 which is pressed and fixed to the manifold block 22 with the support block 24 interposed therebetween.
  • the cavity plate 26 is provided with four concave portions 28a, 28b, 28c, 28d which open to the movable half 16 side. These four The recesses 28a to 28d form the four cavities 12a to 12d together with the four cores 17a, 17b, 17c, and 17d provided on the transfer side half 16. An opening is formed on the manifold block side of the cavity plate 26 so as to face the four recesses 28a to 28d, respectively, on the manifold block side. Four recesses 30a, 30b, 30c, 30d are provided.
  • a nozzle (not shown) of the molding machine and each of the cavities 12a to 12d are provided with gate holes 32a, 32b formed in the bottom surface of each of the recesses 30a to 30d, respectively.
  • 32c, and 32d are formed through the resin passage.
  • This resin passage is composed of a so-called sprue part 34a that is directly connected to the nozzle of the molding machine and a so-called runner part 34b that is branched into four parts in the manifold block 22. Portions of the runner portion 34b adjacent to the respective gate holes 32a to 32d are formed by pipe-shaped chips 36a, 36b, 36c, 36d.
  • the ripening coils 38a, 38b, 38c, 38d are wound around each of the chips 36a to 36d, respectively.As will be described in detail later, the ripening coils 38a to 38 (1 When an electric current is passed, each of the chips 36a to 36d ripens.
  • the said manifold block 22 is desirably formed by a suitable j3 ⁇ 4l ripening means (not shown). It has been ripened up to the temperature.
  • Molten resin injected from the nozzle of the molding machine in the same manner as the conventional hot runner type injection molding apparatus is filled into the cavities 12a to 12d through the resin passage.
  • the key The plate 26 and the movable half 16 are cooled, and after the resin in each of the cavities 12a to 12d is cooled and solidified, the relocated half 16 is retracted.
  • the mold is opened. At this time, the products formed in the cavities 12a to 12d are carried by the cores 17a to 17d of the movable half 16 and are removed from the fixed trailing half 14.
  • the ripening coils 38a to 38d are connected to the high-frequency power supply circuit 42 in series with each other via the relay pox 40.
  • the power supply circuit 42 is a rectifier circuit 44 for rectifying AC from the AG power supply and converting it to DC (current), an SSR (Solid Steady Relay) 45 for turning on / off the AC power supply, which will be described later.
  • a switching element 46, a translator 48, which repeats opening and closing (on-off) under the control of the temperature control circuit 52, and an fc capacitor C connected in parallel to the primary side of the translator 48, and a filter A circuit 50 is provided so that the four ripening coils 38a to 38d are connected in series to the secondary side of the transformer 48.
  • thermocouples 54a, 54b, 54c, 54d which are brought into contact with the tips of the chips 36a to 36d, respectively, and detect the temperatures of the tips of the chips 36a to 36d.
  • the outputs of the four thermocouples 54a to 54d are input to the secondary amplification circuit 58 by the switching circuit 56. After being amplified, the signal is input to the AZD conversion circuit 60.
  • the temperature information from each of the mating couples 54a to 54d converted by the AZD conversion circuit 60 into digital signals is transmitted to the control circuit 62. It is stored in the memory circuit 64 under control. Further, a set temperature input circuit 66 and a temperature display circuit 68 are connected.
  • the set temperature input circuit 66 inputs the set temperature at the tip of the chip, which is selected by a setting dial or the like, to the control circuit 62.
  • the set temperature is input to the recording circuit 64 under the control of the control circuit 62. It is recorded.
  • the control circuit 62 extracts the temperature information from the thermocouples 54a to 54d once stored in the memory circuit 64, that is, the temperature at the tip of the four chips 38a to 38d at that time, and calculates the temperature.
  • the circuit 70 calculates the 'average value' of the degree of mixing at the tips of the four chips 38a to 38d, and calculates the difference between the average value and the set temperature.
  • the control circuit 62 controls the oscillation circuit 72 according to the magnitude of the difference to change the output signal of the oscillation circuit 72.
  • the lower the frequency is within the predetermined box, the larger the power heating coils 38a to 38 (1), so that the control circuit 62
  • the oscillation circuit 72 is controlled so as to oscillate at a lower frequency as the difference between the set value and the average value of the degree of thinking at the tip of the chip is larger.
  • the output signal of the oscillation circuit 72 is amplified by a drive circuit 74 to drive the switching element 46 of the power supply circuit 42.
  • the switching element 46 repeats opening and closing in accordance with the oscillation frequency of the oscillation circuit 72, so that a high-frequency current flows through the primary side of the transformer 48, and a high-frequency current is induced on the secondary side of the transformer 48.
  • each of the chips 36a to 36d needs to be formed of a material that can ripen by high frequency induction ripening.
  • a variety of such materials are known, but as will be apparent to those skilled in the art, each chip 36a-36d must be suitable for pressure and pressure. Therefore, the material must be selected in consideration of such points.
  • the temperature control circuit 52 repeatedly repeats the ratio of the average value of the actual temperature at the tip of each of the chips 36a to 36d input from each of the thermocouples 54a to 54d to the set temperature, and the former is better than the latter.
  • the oscillation frequency of the oscillation circuit 72 is increased as the difference between the two becomes small.
  • the frequency of the current flowing through the primary side of the transformer 48 also increases, and the frequency of the current supplied to the heating coils 38a to 38d also increases.
  • the electric power supplied to each of the heating coils 38a to 38d is reduced. That is, when the actual mixing at the tip of the chip is lower than the set temperature, the temperature control circuit 52 supplies a large amount of power to the ripening coils 38a to 38d when the difference is large, and the actual temperature is reduced. As the temperature approaches the set temperature, the supplied power is reduced, thereby converging the actual flatness at the tip of the chip to the set grip.
  • the actual temperature is set When the temperature exceeds the temperature, the larger the difference is, the larger the power supply is destroyed, and the actual temperature is brought closer to the set temperature.
  • the temperature display circuit 68 displays the actual temperature at the tip of the chip, the difference from the set temperature, and the like. In the apparatus according to the present embodiment in which the chip is ripened by such high-frequency induction heating, the chip 363 is used.
  • the SSR 45 is connected to a control circuit 62 and is opened and closed at a predetermined period. For example, it is opened for 10 msec every 0.5 sec. That is, the control circuit 62 stops the output from the power supply circuit 42 by turning on the AC power at a predetermined cycle, and stores the temperature information from the thermocouples 54a to 54d in the meantime. To memorize it. Therefore, the signals of the thermocouples 54a to 54d can be read in the vicinity of the thermocouples 54a to 54d without being affected by the high-frequency magnetic field generated by the ripening coils 38a to 38d. . Note that the period of opening the SSR 45 and the bridge at that time are not particularly limited to the above example, and may be appropriately selected.
  • the period of opening the SSR 45 is too short, or if the opening time is too long, the time when power is supplied to the ripening coils 38a to 38d becomes shorter. -/ S-tips 36a to 36d take time to ripen to the desired temperature. Therefore, it is desirable to determine the cycle of opening SSR 45 and the holding garden in consideration of these points.
  • the SSR 45 does not open until the AC power supply voltage goes to zero even when a sword is received from the control circuit 62, and conversely until the AC power supply voltage goes to zero even when a close signal is received. It is desirable to use a zero-cross type SSR that does not close.
  • control circuit 62 maximizes the electric power supplied to each of the ripening coils 38a to 38d in response to a signal from a molding machine (not shown), for a predetermined time, as will be described in detail later.
  • control circuit 62 Normally, a microprocessor is used as the control circuit 62. The operation of the microprocessor for performing the above-described control will be described with reference to a flowchart of FIG. I do.
  • the control circuit (microprocessor) 62 first opens the SSR 45 and switches the switch 56 to read the output To of each of the thermocouples 54a to 54d, and averages the values. Calculate MT o.
  • Step S i> Next, in step S 2, the difference X between the set temperature ST and the average value MTo is calculated, and in step S 3 , whether the difference X is positive, that is, Determines whether the set temperature ST is higher than the average value MT o. If X> 0, ⁇ ( ⁇ 0) corresponding to the absolute value of X is added to the control value C, and the oscillation circuit and outputs 72.
  • step S 4, S 8) x ⁇ 0 when the output absolute planting corresponding to alpha (0) to Ji flashing from the control value C oscillator 72 of the X.
  • step S 5, S 6> then mold closing start signal from the molding machine at stearyl-up S 7 to determine whether the inputted. If the mold closing start signal has not been input, the process returns to step S i and strips steps S i to S 7. If the mold closing start signal is input, turn on the timer ⁇ .
  • Step Se> This timer Ti determines the timing for maximizing the power supplied to the ripening coils 38a to 38d. The timer T1 increases. other et al (Step-up S 3), the control value C to the maximum output to the oscillation circuit 72.
  • this Thailand M a T 2 are control values C a and the maximum our Ku time, i.e. Nodea Ri also determines the time to Kyoawase full power to the pressurized Jukuko yl 38a ⁇ 38D, Thailand mer T 2 is controlled value C until for up is kept to a maximum. then Thailand M a T 2 is a you up to (Step-up S i) zero control value C was minimal or (Step S 1)
  • step S 1 whether the average value MTo of the output To of the shunt couples 54 a to 54 d has fallen below the set value S ⁇ . There is determined.
  • the average value MT o ⁇ I Ri by the setting value ST ⁇ the control value C average value MT o is the phrase low-Ri by setting value ST in.
  • stearyl-up S Control returns to 2 so that the average value MTo converges to the set value ST.
  • the steady temperature the above-mentioned set temperature
  • the resin is set so that the resin near the gate hole can be melted and injected immediately before the injection.
  • the steady temperature set temperature
  • the temperature can be set lower than the critical temperature that does not cause avalanche and also does not cause clogging of the gate. Therefore, the requirement for the accuracy of the temperature is relaxed, and the control becomes easier with fc.
  • the maximum power is set by maximizing the control value C to make the injection possible state, so that the ripening coils 38a to 38a Although it is designed to be supplied to d, it is not always necessary to supply the maximum power, and it is sufficient to supply enough power to obtain a desired rise in resin temperature.
  • the control value C obtained by adding the value ( ⁇ >) corresponding to the desired resin temperature rise to the previous control value C is used. Then, it may be output to the oscillation circuit 72.
  • Figure 2 shows the structure around each chip, with tip 36a inverted. -U
  • the tip 36a is a pipe-shaped member provided with a through hole 80 forming a resin passage near the gate hole.
  • the through-hole 80 has a small diameter at the tip end (on the side of the gate hole 32a) and has substantially the same diameter as the gate hole 32a.
  • Annular ridges 82a and 82b are provided on both end surfaces of the chip 36a.
  • the tip 36a is pressed and sandwiched between the garden of the manifold block 22 and the cavity plate 26, and the ridges 82a and 82 are slightly deformed. By doing so, resin leakage from the pressing surface is prevented.
  • other sealing means such as a ring may be used to prevent the resin from leaking.
  • the protruding ridge 82b on the tip surface reduces the contact area between the tip 3a and the cavity plate 26 so that the tip plate of the tip 36a is connected to the cavity plate 26. It also helps to reduce the amount of ripeness that is robbed.
  • a concave portion 84 into which the tip of the mature couple 54a is inserted is provided near the tip of the tip 36a.
  • the ripening coil 38a and the thermocouple 54a are housed in a case 86 made of a metal having a high frequency shielding effect, and the lead wire 88a and the thermocouple of the ripening coil 38a are further provided.
  • the lead bran 88b of the pair 54a extends to the relay box 40 through the space 90 between the shields integrally connected to the case 86.
  • the ripening coil 38a is made of a metal having good conductivity and being resistant to corrosion, for example, silver, a silver alloy, silver, etc., and an insulating coating overlaid thereon. Normally several turns to several tens of turns depending on the size of the tip It is wound around the tip. At the rear end of the tip 36a, there is a transfer of ripening from the manifold block 22, and on the other hand, from the tip of the tip 36a, the ripening is made by the cavity plate 26. Because it is deprived, it is desirable that the ripened coil 38a be wound as close to the tip of the tip 36a as possible so that the magnetic flux from the coil 38a is concentrated at the tip.
  • the coil should be dense from the tip and sparse from the center to the rear as shown in Fig. 3. May be wound. Whether or not the ripened coil 38a is in close contact with the outer surface of the tip 36a has little effect on the temperature of the tip of the tip 36a, but the length of the tip 36a of the coil 38a is small. Since the position in the vertical direction and the winding density greatly affect the grip at the tip of the tip 36a, it is desirable to fix the coil 38a around the tip 36a. For this, a ripening adhesive or the like may be used. Alternatively, as shown in FIG. 4, a spiral groove 90 is cut on the outer surface of the chip 36a according to a desired winding pattern. Wrap the coil in the groove 9Q.
  • the relay box 40 includes a connector 100 for connecting a secondary side of the transformer 48 of the high-frequency power supply circuit 42, and a connector 101 for connecting each of the heating coils 38a to 38d. 102, 103, and 104 are provided. The connectors 101, 102, 103, 104 are connected to the connector 100 in series with each other. In addition, each connector 101, 102, 103, 104 Gate balance adjustment connectors-111, 112, 1 13.114 for connecting the gate balance adjustment circuit so as to straddle them (in parallel) are connected. The temperature of each of the chips 36a to 36d can be controlled by connecting the gate balance adjustment circuit to the gate balance adjustment connectors 111 to 114 as appropriate. can do . Fig.
  • FIG. 1 shows an example in which capacitors 105 are connected in parallel to heating coils 38a and 38c via gate balance adjustment connectors 111 and 113, respectively. It is shown .
  • the temperature of the chips 36a and 36c around which the heating coils 38a and 38c are wound rises, and the temperature of the chips 36b and 36d around which the other mature coils 38b and 38d are wound. The temperature drops.
  • a coil or resistor is used instead of a capacitor as the gate / parallel adjustment circuit, the heating coils 38a and 38c are wound.
  • the degree of thinking of the chips 36a and 36c decreases, and the temperature of the other heating coils 38b and 38 (the chips 36b and 36d around which the coil 1 is wound rises.
  • the condenser and the condenser By selectively connecting gate and balance adjustment circuits, such as coils and resistors, to the ripening coils in parallel, power supply to each ripening coil can be controlled.
  • the distribution can be changed, whereby the chips 36a to 36d are matured by a plurality of ripening coils 38a to 38d connected in series. It is possible to raise and lower the angle separately, which means that the angle is easily reduced by some factor.
  • the effect of the gate balance adjustment circuit increases as the value of the element increases. Therefore, the operator can view the temperature display or check the state of the resin in each gate hole, and connect an element with an appropriate value to an appropriate gate-parameter adjustment connector. Or a plurality of gate-parameter adjusting circuits having different values may be set in advance for each ripening coil in advance so that they can be connected according to the humidity difference between the chips. An element having an appropriate value may be selected for connection.
  • each gate balance adjustment connector can be selectively brought into contact with six fixed contacts and one of the six fixed contacts. It comprises relays 121, 122, 123, and 124 having three movable contacts. For each of the relays-1 2 1 to 1 24, 5 of the 6 contacts - ⁇ -A different capacitor is connected, and the other contact is open. Each of the relays 121 to 124 is driven by a relay drive circuit 125 controlled by the control circuit 62.
  • the control circuit 62 selectively executes the relays 121 to 124 according to the temperature variation of the four chips 36a to 36 (1 input from the thermocouples 54a to 54 (1) to set the desired value.
  • the relay drive circuit 125 is controlled so that the capacitors are connected in parallel to the corresponding ripening coils 38a to 38d.
  • the lead palm passed through the mold cannot be made too thick for practical use, the resistance loss including the skin effect of the circuit from the power supply circuit to the coil should be minimized. Therefore, it is desirable to use a thick conductor with as low a high-frequency resistance as possible for the line up to the relay box 40, and to arrange the relay box 40 as close to the mold as possible.
  • the temperature of the chips 36a to 36d may be positively lowered to the steady temperature by cooling water or the like.
  • the conductor for the ripened coil may be a hollow pipe-shaped lead and a cooling medium may be passed through it. In the latter case, in particular, the structure around the chip can be prevented from becoming complicated, and there is an advantage that oxidation of the bran for the ripening coil can be prevented.
  • Fig. 9 shows the details of the structure around the chip to prevent the ripening coil from heating.
  • the tip 36a has a flange portion 93 at the upper end, and a thickness of about 1 mm is formed between the outer surface 94 of the cylindrical portion below the flange 93 and the ripening coil 38a.
  • the lake is filled with air and the fc air ripening layer 92 is formed.
  • the ripened coil 38a is supported by the case 86 via the filler 91 in this state, and the outer surface of the case 86 is in stark contact with the cavity plate 26.
  • the chip 36a is ripened by the air-ripening slaughter 92, so that the ripening of the chip 36a
  • the heating coil 38a is cooled to a relatively low temperature by the water cooling via the soil agent 91 and the case 86 through the heating coil 26a.
  • the ripening of the ripening coil 38a can be released toward the cavity plate 26, keeping the ripening coil 38a relatively low in mixing. You can do that. For this reason, it is desirable that the filler 91 and the case 86 be made of a material having a good conductivity.
  • the thickness of the air ripening layer 92 is reduced to some extent because the present invention employs high-frequency induction heating using a coil.
  • the heating coil has a coil length of 20 mm, a coil inner diameter of 7 mm, and a coil outer diameter of 9 MI. Almost no decline occurs.
  • the inner diameter of the coil 38a is not affected by high-frequency induction ripening.
  • a pipe 95 made of a mother is provided and the filler 91 is charged. You may be sick.
  • case 86 is cylindrical and the entire outer surface contacts the cavity plate 26 is shown above. As shown in A-A section), a part of the outer surface of the case 86 may contact the cavity plate 26.
  • the tip 36a of the coil assembly (case 86, filler 91, ripening coil 38a, and mica pipe 95) may be separated or may be integrated. Good.
  • the case 86 is preferably made of a non-magnetic material such as stainless steel or aluminum, and the pitting agent is preferably made of ceramics.
  • the apparatus of this embodiment has a short circuit detecting means for detecting when the ripening coils 38a to 38d are short-circuited in the control circuit 62. Since the electric resistance of the heating coils 38a to 38d themselves is very small, even when the ripening coils 38a to 38d are short-circuited, the change in the resistance hardly appears, so that the short-circuiting is performed. Is electrically detected based on current, voltage, voltage change, etc. Very difficult to get out. Therefore, in the present invention, the presence or absence of a short is detected based on the temperatures of the tips of the tips 36a to 36d detected by the mature couples 54a to 54d and the rate of change of this temperature. I am trying to do it.
  • the temperature is determined at a predetermined temperature at the tip of the chips 36a to 36d, that is, at a point below the lower limit value within the range of the critical rinsing degree that does not cause resin leakage or stringing.
  • is set to 5
  • the chip is ripened by the heating coil and the temperature changes in the rising direction. The rise is slowed or, conversely, a drop in temperature is detected to detect a short shot of the coil.
  • appropriate ripening is performed so as to keep the chip temperature almost constant. In this way, a short shot of the coil is detected.
  • the S degree control circuit 52 compares the average value of the actual S degrees at the leading ends of the four chips 36a to 36d with the set temperature. Alternatively, the actual temperature at the tip of any one of the chips may be compared with the set S degree.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

A hot runner-type plastic injection molding device in which the resin temperature near the gates of a metal mold having a plurality of cavities is precisely controlled to obtain a good gate balancing, without using a mechanism for opening and closing valves or a mechanism for intermittently heating the gates, and without causing threading or clogging in the gates. Resin paths adjacent to gates of cavities are formed in the shape of a pipe that can be heated by the high-frequency induction. Coils for high-frequency induction heating are wound round the resin paths, and are connected in series with each other to high-frequency power supply means which is controlled by power control means.

Description

明 細 書  Specification
ホ ッ 卜 ラ ン ナ ー式射出成形装 Hot runner type injection molding equipment
技 術 分 野 Technical field
本発明 はプラス チッ ク射出成形装鼸、 特に ホ ッ ト ラ ン ナ 一式射出成形装置に 関 す る ものである 。  The present invention relates to a plastic injection molding apparatus, particularly to a hot runner complete injection molding apparatus.
背 景 技 術 Background technology
成形機の ノ ズル と金型のキ ヤ ビテ ィ をつ な ぐ樹脂通路内 に 充唭された樹脂、 所謂ラ ン ナ ー を キ ヤ ビ テ ィ 内 に 充塡 さ れた樹脂 ( 製品 ) と と も に冷却固化 し て型開 時に製品 と と も に 金型外 に排出 す る よ う に し た所謂コ ー ル ド ラ ン ナ ー成 形シス テム に対 し て 、 ラ ンナ ー を溶融状態 に保 っ た ま ま キ ャ ビ テ ィ 内の樹脂の みを冷却'固化 し て 金型外 に 排出 し 、 そ の溶融状態のラ ン ナ ー は次の成形サイ クルに おいて キ ヤ ビ テ ィ 内 に充填する よ う に し た ホ ッ ト ラ.ン ナ 一 式射出成形 シ ステ ム が知 ら れて いる 。  The resin filled in the resin passage connecting the nozzle of the molding machine and the cavity of the mold, that is, the resin (product) filled in the cavity with a so-called runner The runner is melted in a so-called cold runner forming system, which is cooled and solidified so that when the mold is opened, the product is discharged out of the mold together with the mold. While maintaining the state, only the resin in the cavity is cooled and solidified and discharged out of the mold, and the runner in the molten state is transferred to the carrier in the next molding cycle. 2. Description of the Related Art A hot runner complete injection molding system designed to fill a cavity is known.
こ の よ う なホ ッ 卜 ラ ンナ ー式射出成形に おいて は型開時 のゲー ト 部の樹脂の 「 切 れ」 が問題 と な る 。 す なわ ち 、 成 形機の ノ ズルか ら各キ ヤ ビテ ィ のゲー 卜 に至る ま での樹脂 通路を外部か ら抵抗加熟 ヒ ー タ ー に よ っ て 加熟 し て樹脂を 溶融状態に 保つ も の が知 ら れて いるが 、 該樹脂通路のゲー 卜 孔 に近い部分 は 、 一般 に冷却水 に よ っ て常に冷却 さ れ て いるキ ヤ ビテ ィ プ レー 卜 に近いために 、 金型の開閉操作に 伴なう 濯度変動が激し く ゲー 卜孔付近の樹脂温度を一定に 保つのが極めて困難であり 、 樹脂温が髙通ぎて樹脂が糸を 引いた り 、 樹脂が固化 し てゲー 卜孔を詰ま らせて し ま っ て 次の射出が不可能になる という よ う な問題があ っ た 。 ま た 樹脂溫が髙過ぎる と、 型開中にゲー 卜孔から樹脂が浅れ出 す所謂 「 はなだれ」 現象も起きる。 In such hot runner type injection molding, the problem of "cutting" of the resin at the gate portion when the mold is opened is a problem. That is, the resin path from the nozzle of the molding machine to the gate of each cavity is ripened from the outside by a resistance ripening heater, and the resin is melted. Although it is known that the resin passage is kept close to the gate hole, the resin passage is generally always cooled by cooling water. Because of the close proximity to the cavity plate, the rinsing rate fluctuates greatly with the opening and closing operations of the mold, making it extremely difficult to keep the resin temperature near the gate hole constant. There was a problem that the resin pulled through the thread and the resin solidified and clogged the gate hole, making it impossible to perform the next injection. If the resin is too long, a so-called “washout” phenomenon occurs in which the resin becomes shallow from the gate hole during mold opening.
このよう な問題を解決する ため に、 ゲー ト部分に機械的 な弁を設け、 ゲー ト近傍の樹脂を溶融状態に保つのに充分 な熟を加える と と もに型開時に前記弁を閉 じて樹脂の糸引 きや はなだれを防止するよう に した装置が開発さ れたが、 周知のよう にゲー 卜 近傍に は髙圧がかかる と ともに前記弁 は莫大な数の開閉を繰 り返さなければなら ないために 、 故 障が起きやすい という欠点がある。 ま た複雑な構造の弁を 使用 するために装置が大きく なる という欠点もある。  In order to solve such a problem, a mechanical valve is provided in the gate portion, and the valve near the gate is ripened sufficiently to keep the resin in a molten state, and the valve is closed when the mold is opened. A device was developed to prevent stringing and avalanche of resin. There is a drawback that failures are liable to occur because of having to do so. There is also a disadvantage that the device becomes large due to the use of a valve having a complicated structure.
ま .た、 ゲー ト孔近傍の樹脂通路内に先の尖っ た発熟体を ゲー ト 孔に瞄むよう に配し 、 型開時に はゲー 卜孔内の樹脂 を積極的に '冷却固化させて、 型開時のゲー ト孔から の樹脂 浅れない し、 糸引きを防止する と ともに次のサイ クルの射 出直前に前記発熱体を髙握に加熟 し てゲー 卜 孔内の固化 し た樹脂を再溶融させ射出が ^能となるよ う にする所謂囿欠 加熟方式のホ ッ 卜 ラ ンナー式射出成形装置も知 られている が、 この装置において はゲー ト 内の固化 した樹脂を再溶醮 させるのに時間を要する、 樹脂通路内に発熟体が配される ため に射出圧の減損が著 しい、 特にガラス繊維入り の樹脂 等による成形の際に は発熟体の先端が破損 し た り 、 摩耗 し た り する とい ゥ た種々 の問題がある。 ま たゲー 卜 内の固化 し た樹脂を瞬時に再溶融させる た め に発熱体先端に充分な 熱を与え よ う と する と 、 発熟体の基部の方が どう しても先 端よ り 高温に な るために基部の周辺の樹脂が焦げた り分解 し た り する という 問題もある。 In the resin passage near the gate hole, a pointed ripening body is arranged so as to extend into the gate hole, and when the mold is opened, the resin in the gate hole is actively cooled and solidified. However, the resin from the gate hole at the time of opening the mold does not become shallow, and stringing is prevented, and the heating element is ripened immediately just before the next cycle and solidifies in the gate hole. There is also known a so-called hot-runner type injection molding machine of the so-called konomi-maturation type, which re-melts the resin so that injection becomes possible, but in this device, the solidified resin in the gate is used. It takes time to re-dissolve the resin. For this reason, there are various problems such that the injection pressure is remarkably impaired, and particularly when molding with a resin containing glass fiber, the tip of the ripened body is damaged or worn. Also, if sufficient heat is applied to the tip of the heating element in order to instantly re-melt the solidified resin in the gate, the base of the ripening body will inevitably be higher than the tip. There is also the problem that the resin around the base is burned or decomposed due to the high temperature.
ま た従来のホ ッ 卜 ラ ンナー式射出成形装置はいずれも抵 抗加熟 ヒ ー タ ーからの熱伝達に よ っ て所望の加熱部位、 例 えぱゲー 卜 孔を加熟するよ う にな つ て いるた め熟的な レス ポ ンスが悪く その加煞部位を所望の温度に制御するのが極 め て 困難であ り 、 特に複数個のキ ヤ ビテ ィ を備えた多数儸 取り の金型の場合に は各キ ヤ ビテ ィ のゲー 卜孔の温度を等 し く するのが ( 所謂ゲー トパラ ンスの維持 〉 棰めて 困 IIで あ っ た 。 ま た抵抗加熱 ヒ ー タ ー は自己抵抗発熟であるため に 断線が頻繁に起きる とい う欠点がある。  In addition, all of the conventional hot runner type injection molding machines use a heat transfer from a resistive ripening heater to ripen a desired heated portion, for example, a gate hole. Therefore, it is extremely difficult to control the heating part to a desired temperature due to its poor response, especially for a large number of units with multiple cavities. In the case of molds, it was difficult to equalize the temperatures of the gate holes of the cavities (so-called maintenance of gate balance). Has the drawback that disconnection frequently occurs due to self-resistance maturation.
発 明 の 目 的  Purpose of the invention
上記のよ う な事情に鑑みて本発明 は複数のキ ヤ ビテ ィ を 備えた金型の各ゲー 卜孔付近の樹脂温を精度よ く 制御する こ と ができる と とも に 良好なゲー 卜バラ ンスを雑持する こ とができ、 したが っ て弁の開閉、 ゲー ト孔の間欠加熱等複 雑な機構を用いな く と も糸引 、 はなだれ、 ゲー 卜 詰ま り 等 を起こす こ とな く 良好な成形ができるよ う に したホ ッ 卜 ラ ン ナ一式射出成形装置を提供する こ と を目 的 と するもので -I 一 In view of the above-described circumstances, the present invention can control the resin temperature near each gate hole of a mold having a plurality of cavities with high accuracy, and can provide a good gate rose. Therefore, stringing, barrenness, clogging of the gate, etc. can occur without using a complicated mechanism such as opening and closing the valve, intermittent heating of the gate hole, etc. The purpose of the present invention is to provide a hot runner complete injection molding apparatus capable of performing excellent molding. -I
Ah
発 明 の 開 示  Disclosure of the invention
本発明のホ ッ 卜 ラ ンナー式射出成形装置におい ては成形 機の ノズルと金型内の各キ ヤ ビテ ィ を接続する樹脂通路 ( 一般にスプル一部 とラ ンナー部からなる。 ) の各キ ヤ ビ テ ィ のゲー ト孔に隣接した部分が、 离周波誘導加熟に ょ ゥ て加熱 し得る材料で形成されたパイ プ状部材によ っ て形成 される。 その各パイプ状部材の周囲には髙周波誘導加熟コ ィルが巻回さ れ、 その加熟コ イ ルは互いに直列に髙周波電 力供拾手段に接続される。 ま たその加熟コ イルに供袷され る電力 を制御する こ と に よ っ てパイ プ状部材の温度を制御 する制御手段が設け られる。  In the hot runner type injection molding apparatus of the present invention, each key of a resin passage (generally comprising a sprue part and a runner part) connecting a nozzle of a molding machine and each cavity in a mold. The portion of the cavity adjacent to the gate hole is formed by a pipe-shaped member made of a material that can be heated by low frequency induction ripening. A 髙 -frequency induction ripening coil is wound around each of the pipe-shaped members, and the ripening coils are connected in series with each other to 髙 -frequency power supply means. Further, control means for controlling the temperature of the pipe-shaped member by controlling the electric power supplied to the ripening coil is provided.
前記加熟コイルに前記電力供袷手段から 髙周波電流を供 袷する と前記パイプ状部材が電磁誘導に よ っ て発熟する。 この電磁誘導に よる発熱に ょ ゥ てパイ プ状部材を加熟する の は抵抗加熱 ヒ ー タ ーからの熟伝達に よ つ て加熱するのに 比べて熟的レスポ ンスが良い。 すなわち 、 ヒ ー タ ーからの 熱伝導による場合に はパイプ状部材の溫度が所定の温度に 達した ときに は、 ヒ ー タ ー はよ り高温にな っ ていて ヒ ー タ 一への通電が停止 し た後にもパイ プ状部材の篛度が上昇 し 続けた り 、 パイプ状部材の温度が低下 した ときに ヒ ー タ ー に通電を開始 し てもパイプ状部材の温度が下が り続ける リ ンギング現象による遅延時間があるが、 誘導加熟による場 合に はパイ プ状 ^材自体が発熱するのであ り 、 しかも発煞 速度も捶めて速いから リ ンギ ングのおそれがな く 、 極めて 良好に溻度制御ができる。 ま た ヒ ー タ ーか らの熟伝導に よ る場合は ヒ ー タ ー と被加熟部材 ( パイ プ状部材 ) の接触具 合な どによ っ てその被加熱部材の還度が大き く 変化するの に対 して電磁誘導に よ る加熱の場合に はコ イ ルと被加熱部 材の閻の微小な位置関係はその被加熱部材の渥度に殆ど影 轡を与えないため 、 各ゲー ト孔付近の樹脂温を精度良く 制 御するこ とができ、 ま たゲ一 卜バラ ンスの雑持も棰め て容 易になる という特長がある。 さ ら に前記誘導加熟コ イ ルは 単なる導線を巻い た ものであるか ら 、 ゲー ト 孔に相当近い 位置ま で巻回する こ と ができ、 したが っ てパイ プ状部材の ゲー 卜 孔に相当近い部分ま で直接発熱さ せる こ と ができる から 、 パイ プ状部材の先端部 ( ゲー 卜孔に近い部分 〉 と基 ¾β ( ゲー ト孔か ら離れた部分 〉 と の温度差を極め て小さ く する こ とができる 。 そのた めゲー ト孔内の樹脂を溶融状態 に保つのに充分な温度ま で先端部を加熟 し た とき に 基部の 溻度が上が り過ぎてその部分に接触 している樹脂が焦げた り 分解 し た り する とい う よ う なこ と がない。 さ ら に各加熱 コ イルを直列に接続する と 、 例えば経年変化に よる 1 つの 加熟コ イル回路の抵抗の変化等が全て の加熱コ イルに流れ る電流に影轡するためゲー 卜パラ ンスが特に維持 し易い。 すなわ ち各加熟コ イルを並列に電源に接続 し た場合に は何 らかの理由で 1 つの加熟コ イル回路の抵抗が大き く なる と そのコ イルに加え ら れる電力が小さ く な つ てそのコ イルの ら When a low-frequency current is supplied to the ripening coil from the power supply means, the pipe-shaped member is ripened by electromagnetic induction. Ripening the pipe-shaped member due to the heat generated by the electromagnetic induction has a better responsiveness than heating by ripening transmission from a resistance heating heater. In other words, in the case of heat conduction from the heater, when the temperature of the pipe-shaped member reaches a predetermined temperature, the heater is heated to a higher temperature, and power is supplied to the heater. The temperature of the pipe-shaped member continues to increase even after the gas stops, or the temperature of the pipe-shaped member decreases even if the heater is turned on when the temperature of the pipe-shaped member decreases. There is a delay due to the ringing phenomenon that continues, but in the case of induction ripening, the pipe-like material itself generates heat, and furthermore, it generates heat. Since the speed is high, there is no risk of ringing, and the angle control can be performed very well. In addition, in the case of heat conduction from the heater, the degree of return of the heated member is large due to the contact between the heater and the member to be aged (pipes). However, in the case of heating by electromagnetic induction, the minute positional relationship between the coil and the member to be heated hardly affects the toughness of the member to be heated. The resin temperature in the vicinity of each gate hole can be controlled with high precision, and the gate balance can be reduced easily. Further, since the induction-ripening coil is a simple wire wound, it can be wound to a position substantially close to the gate hole, and accordingly, the gate of the pipe-shaped member can be wound. Since it is possible to directly generate heat up to a portion substantially close to the hole, the temperature difference between the tip of the pipe-shaped member (the portion close to the gate hole) and the base β (the portion away from the gate hole) is determined. The temperature of the base rises too much when the tip is ripened to a temperature sufficient to keep the resin in the gate hole in a molten state. There is no such thing as the resin in contact with that part being burned or decomposed, and if each heating coil is connected in series, for example, one aging coil due to aging Changes in the resistance of the coil circuit affect the current flowing through all the heating coils. The gate balance is particularly easy to maintain because of the gagging, that is, when each ripening coil is connected to the power supply in parallel, the resistance of one ripening coil circuit is large for some reason. As the power gets smaller, less power is applied to the coil La
巻かれたパイプ状部材の温度のみが下がるこ とになるが、 直列に接続 し ておく と全ての加熟コ イルに加え られる電力 が小さ く な り、 したが っ て全てのパイプ状部材の温度がほ ぽ一様に下がる こ と にな り 、 ゲー トバラ ンスが棰め て維持 し易い。 ま た実験によれぱ各加熱コ イルの巻数は数タ ー ン から 1 0数タ ー ンで充分であ り 、 各コ イ ルを並列に電源に接 続 し た場合には負荷が小さいためにパワーが入り に く い と いう 問題がある。 さ ら に髙周波誘導加熟コ イルに よる発熱 はコ イ ルの電源からの距離'すなわち表皮効果を含めた線路 の抵抗ロ スにも依存するから各コ イルを並列に電源に接続 する場合に は各コ イルの電源からの距維を正確に一致させ るか、 或いは各コ イルの電源から の距離の違いを考慮 し て 巻数等を加滅しない とゲー 卜パラ ンスが くずれるこ と にな り 、 この点でも各コ イルを直列に電源に接檨するよ う に し fc前記装置は有利である。 さ ら に 、 前述のよう にその装置 に おいて はパイ プ状部材の周囲に数タ ー ンから 1 0数タ ー ン 導鎳を巻く だけでゲー 卜孔付近の樹脂を加熟するこ とがで きるから 、 ゲー ト 周囲の構造が棰め て簡単になる。 し たが つ て本発明の装置に よれば小さな製品の多数摑取 りの金型 や 1 つのキ ヤ ビテ ィ に対し fc数個のゲー 卜 を備えた金型の ホ ッ ト ラ ンナー化が容易に実現できる。 なお、 パイプ状部 材の温度を所望の値に制御する前記温度制御手段と し て は パイ プ状 m材の温度を検出 して設定値との髙低に応じて 、 電源手段から加熱コ イルへ供給される電力を調整乃至オン 一オ フ す る よ う な回路を使用 する こ とがで きる 。 Only the temperature of the wound pipe-shaped member decreases, but if it is connected in series, the power applied to all the ripening coils will be small, and therefore all the pipe-shaped members will be cooled. The temperature will decrease almost uniformly, and the gate balance will be extremely low and easy to maintain. According to experiments, it is sufficient that the number of turns of each heating coil is from several turns to 10 turns, and when each coil is connected in parallel to a power supply, the load is small. There is a problem that power is difficult to enter. Furthermore, the heat generated by the 髙 -frequency induction ripening coil also depends on the distance from the power supply to the coil, that is, the resistance loss of the line including the skin effect, so when connecting each coil to the power supply in parallel If the distance from the power supply of each coil is exactly matched, or if the number of windings, etc., is not reduced in consideration of the difference in the distance from each power supply to the coil, the gate balance will be lost. In this respect, too, the fc device is advantageous in that each coil is connected to the power supply in series. Furthermore, as described above, in the apparatus, the resin near the gate hole is ripened by simply winding a few turns to a few turns of wire around the pipe-shaped member. As a result, the structure around the gate is simplified. Therefore, according to the apparatus of the present invention, a hot runner of a mold having a large number of small products or a mold having several fc gates for one cavity is required. Can be easily realized. As the temperature control means for controlling the temperature of the pipe-shaped member to a desired value, the temperature of the pipe-shaped m-material is detected, and the heating coil is supplied from the power supply means in accordance with a difference from a set value. Adjust or turn on the power supplied to You can use a circuit that turns off.
周知の よ う にゲー 卜 孔付近の樹脂温を精度良 く 制御 す る こ と さ えできれば、 型開 時にゲー 卜 孔か ら の樹脂洩れや ^ 引 を生ぜず 、 し かもゲ一 卜 詰 ま り を起 こ さ ない よ う な 臨界 的な樹脂温を探 し 出 す の は当業者に は容易で あ り 、 し た が つ てそ の装翬 に よ れば機械的に 開閉 す る弁、 間欠加熱等の 複雑な機構を用 いる こ と な く 良好なホ ッ 卜 ラ ン ナ ー式成形 を行な う こ と がで きる 。 ま た 上述の 間欠加熟方式 の成形装 置の よ う に樹脂通路の内部に発熟休を配す る必要がないか ら 射出圧の 減損が少な く 、 ま た発熱体の破損等に よ る装置 の故障が ない 。 ま た 、 そ の装置に使用 さ れる加熱コ イ ルは 自 己'抵抗発熱が殆 ど ない か ら 断線の おそ れが な く 、 従来の ホ ッ 卜 ラ ンナー式成形装置に 頻繁に生 じ た ヒ ー タ ー の断線 に よ る故降が殆 ど ない。  As is well known, if the temperature of the resin near the gate hole can be controlled with high accuracy, resin leakage from the gate hole does not occur when the mold is opened, and the gate is clogged. It is easy for a person skilled in the art to find a critical resin temperature which does not cause the resin to melt, and thus the valve which opens and closes mechanically depending on the equipment. In addition, good hot runner molding can be performed without using a complicated mechanism such as intermittent heating. Also, unlike the above-mentioned intermittent ripening molding equipment, there is no need to arrange a ripening period inside the resin passage, so that the injection pressure is not reduced and the heating element is damaged. There is no equipment failure. In addition, the heating coil used in the device has little self-resistance heat generation, so there is no risk of disconnection, and it has frequently occurred in conventional hot runner type molding devices. There is almost no downfall due to heater disconnection.
本発明 の一実施例 に おい て は 、 前記各加熟コ イ ルに並列 に ゲ ー 卜 バ ラ ン ス 調整用 回路を接続 し 得る よ う に さ れ る 。  In one embodiment of the present invention, a gate balance adjusting circuit can be connected in parallel to each of the ripening coils.
そ の ゲー ト パラ ンス調整用 回路 と し て は 、 コ ンデンサー コ イ ル ま た は抵抗 を使用 す る こ と が で きる 。 例 え ば複数の 加熟 コ イ ルの幾つ かに各 コ イ ルに並列 に コ ンデンサー を接 続する とその加熟 コ イ ルが巻かれたパ イ プ状部材の 混度が 上が り 、 他の加熱コ イ ルが巻かれた パイ プ状部材の温度が 下がる 。 ま た コ イ ルも し く は抵抗を複数の加熟 コ イ ルの幾 つ かに各 コ イ ルに並列 に接続す る とそ の加熱コ イ ルが巻か れたパイ プ状部材の 温度が下が り 他の加熱コ イ ルが巻かれ たパイ プ状部材の溫度が上がる。 ま たその際の温度の上下 の大きさ はゲー 卜パラ ンス調整用回路の値の大小によ っ て 変化する。 A capacitor coil or a resistor can be used as the gate / parameter adjustment circuit. For example, if a condenser is connected in parallel to several of several ripening coils in parallel with each other, the mixing of the pipe-shaped member around which the ripening coils are wound increases. However, the temperature of the pipe-shaped member around which another heating coil is wound decreases. When a coil or a resistor is connected in parallel to each of several ripening coils in parallel with each other, the heating coil is wound around a pipe-shaped member. The temperature drops and another heating coil is wound The temperature of the pipe-shaped member increases. In addition, the magnitude of the temperature at that time changes depending on the value of the gate impedance adjustment circuit.
し たが っ て 、 複数の加熟コ イルの幾つかに選択的にゲー 卜パラ ンス調整用回路を並列接続 し、 かつその素子の値を 選択するこ とによ っ て全ゲー 卜 園のゲー 卜パラ ンスを棰め て微少に調整する ことができる。  Therefore, by selectively connecting a gate impedance adjustment circuit in parallel to some of the plurality of ripening coils and selecting the values of the elements, the entire gate garden is selected. It can be fine-tuned by increasing the gate balance.
なお、 ゲー トパラ ンス調整甩回路 と して抵抗を使用 した 場合には電力損が生 じ、 その点ではコ ンデンサー、 も し く はコ イルの方が望ま しい。  If a resistor is used as the gate-parameter adjustment circuit, power loss occurs, and in that regard, a capacitor or a coil is more desirable.
さ ら に、 上記の本発明 に係るホ ッ ト ランナ一式射出成形 装置は高周波電力を使用 する ため 、. 熱電対を使用 し てパイ プ状部材の先端の温度を測定する際に信号に ノ イズが入 り 易 く 、 ノ イ ズを拾うのを防止するため に熱電対 シ ニル ド する とゲー 卜周囲の構造が複雜になり 、 小型化のネ ッ ク と なる という 問題がある。  Further, since the hot runner complete injection molding apparatus according to the present invention described above uses high frequency power, it generates noise when measuring the temperature of the tip of the pipe-shaped member using a thermocouple. However, if a thermocouple is used to prevent noise from being picked up, the structure around the gate becomes complex, resulting in a reduction in size.
すなわち熟電対 (例えば C A ) の熟起電力 は数 771 V と非 常に小さく 、 髙出力の高周波磁界中では誘導に よ り S Z N 比が極端に悪く なり正確な温度検出が困難になるのである えば前記パイプ状部材のゲー ト 近傍は細い (約 7 Φ ) の が望ま しいが、 これに熱電対を対応させる と熱電対の太さ も約 0. 5 Φ ( シースの外形 ) 程度と棰めて細く な り し たが ゥ て電気抵抗が髙く な っ て しま う 。 周知のよ う に電気抵抗 が高ければそれだけノ イズを拾い易い。 補償導耱を含めて -? - 熟電対に シール ドを施こ し て も ノ イズを完全に カ ツ 卜 する のは困難である。 That is, the maturation power of a mature couple (for example, CA) is very small at several 771 V, and 髙 In a high-frequency magnetic field of output, the SZN ratio becomes extremely poor due to induction, making accurate temperature detection difficult. It is desirable that the vicinity of the gate of the pipe-shaped member be thin (about 7 Φ), but if a thermocouple is used for this purpose, the thickness of the thermocouple is also reduced to about 0.5 Φ (outer sheath). Although it has become thinner, the electrical resistance will be higher. As is well known, the higher the electrical resistance, the easier it is to pick up noise. Including compensation guidance -?-It is difficult to completely cut the noise even if a mature couple is shielded.
以上のこ と に鑑みて 、 本発明の他の望ま しい実施例にお いて は定期的に 、 例えば 0 . 5 s e c 毎に髙周波電力 を所定時 圜だけ、 例えば 1 O B s e c 、 停止 してその間に温度検出手段 の出力を読み と ら せる切換手段が設け ら れる。  In view of the above, in another preferred embodiment of the present invention, the high frequency power is periodically stopped, for example, every 0.5 sec, for a predetermined time, for example, 1 OB sec, and stopped during that time. A switching means for reading the output of the temperature detecting means is provided.
こ のよ う な装置において は温度検出手段の出力を読みと る際に离周波電力 が オ フ されて お り 、 し たが っ て髙周波磁 界の影響を受けずに正確に温度が検出できる。  In such a device, when reading the output of the temperature detecting means, the high frequency power is turned off, and therefore the temperature can be accurately detected without being affected by the high frequency magnetic field. it can.
本発明の更に他の望 ま し い実施例 に おいて は、 還度制御 手段はパイ プ状部材の温度、 特にその先端部の溻度を検出 する溫度検出手段から の钃度信号を受け 前記加熟コ イル に供給さ れる電力 を制御 してパイ プ状部材の温度を所望の 她に 制御する と と ちに 、 成形機か らの信号に応じ て各加熟 コ イルに大電力を所定の時園だけ供給するよ う にな っ て い る o  In still another preferred embodiment of the present invention, the return control means receives a temperature signal from the temperature detection means for detecting the temperature of the pipe-shaped member, especially the temperature at the tip thereof, and By controlling the power supplied to the ripening coil to control the temperature of the pipe-shaped member to a desired temperature, a large amount of power is supplied to each ripening coil in response to a signal from the molding machine. O Only supply at the time of the o
この よ う な装置に よれば、 ゲー 卜孔近傍の樹脂温を通常 はゲー 卜孔か らの樹脂洩れや糸引 が生 じ ないよ う な充分低 ぃ溫度に維持 して置き、 射出寸前に急加熟 してゲー 卜孔近 傍の樹脂を溶融させ射出可能と するこ とができる。 こ のよ う に すれば、 温度制御に要求さ れる精度が低く な り 、 特に ナイ ロ ン等のよ う に粘度等の特性が樹脂混の僅かな巾内で 大き く 変化 し 、 そのた めに 、 型開時にゲー ト孔からの樹脂 洩れや糸引を生ぜず、 し かも射出時にゲー 卜 詰ま り を起こ -ιο - さないような醮界的な樹脂温の巾が極めて狭いよう な樹脂 を成形する際に特に有利である。 さ ら にそのよ う な酶界的 な温度よ り も充分低い温度に前記所望の渥度 ( 以下定常樹 脂握 と称する。 ) を設定 し て置けば、 ゲー ト 孔毎の周囲の 条件の差によ っ てゲ一 卜孔毎に多少樹脂温に差が出るよ う な場合にも、 糸引や樹脂浅れとい っ た ト ラプルを起こすこ とがない。 According to such an apparatus, the resin temperature in the vicinity of the gate hole is usually maintained at a sufficiently low level so that resin leakage or stringing does not occur from the gate hole, and the temperature is set immediately before injection. After ripening, the resin near the gate hole can be melted and injected. By doing so, the accuracy required for temperature control is reduced, and in particular, properties such as viscosity, such as nylon, change significantly within a small width of the resin mixture, and therefore, In addition, when the mold is opened, there is no resin leakage or stringing from the gate hole, and the gate is clogged during injection. This is particularly advantageous when molding resins that have an extremely narrow range of global resin temperatures that will not cause -ιο-. Furthermore, by setting the above-mentioned desired degree of attainment (hereinafter referred to as “steady resin grip”) at a temperature sufficiently lower than such an industrial temperature, the surrounding conditions of each gate hole can be adjusted. Even when the resin temperature is slightly different for each gate hole due to the difference, there is no occurrence of a trap such as stringing or shallow resin.
なお、 前記大電力を各加熱コ イルに供袷するタ イ ミ ング および時間は成形条件、 成形サイ クル、 樹脂の種類等に よ つ て異なるが、 できるだけ射出開始寸前にゲー 卜孔近傍の 樹脂が射出可能な程度まで溶融するよ う に調整するのが望 ま しい。  The timing and time for supplying the high power to each heating coil vary depending on molding conditions, molding cycle, type of resin, etc. It is desirable to adjust so that it melts to the extent that it can be injected.
なお、 射 後、 樹脂温 (パイ プ状部材の混度) を定常樹 脂混に戻すため に は、 樹脂握 ( パイプ状部材の鑷度 〉 が定 常樹脂温に戻るまで各加熟コ イ ルへの電力供袷を停止する だけでも よいが、 パイ プ状部材の周囲に冷却媒体通路を設 けて積極的に冷却するよ う に しても'よい。 その冷却媒体通 路はパイプ状部材と一体的に設けて もよい し 、 熟伝達性の 良いパイプをパイプ状部材の周囲に密着 して巻回 して、 そ の内部を水等の冷却媒体を通すよ う に し てもよい。 ま た 、 各加熟コ イ ルを中空のパイプ状導線に よ っ て形成し、 その 内部を冷却媒体を通すよ う に し てもよい。  In order to return the resin temperature (mixing degree of the pipe-shaped member) to the steady resin mixture after the injection, each ripening coil was used until the resin grip (force of the pipe-shaped member) returned to the normal resin temperature. The power supply to the pipes may be stopped only, or a cooling medium passage may be provided around the pipe-shaped member to actively cool the cooling medium. It may be provided integrally with the member, or a pipe with good ripening properties may be closely wound around the pipe-shaped member, and a cooling medium such as water may pass through the inside. Alternatively, each ripening coil may be formed by a hollow pipe-shaped conductor, and a cooling medium may be passed through the inside.
ま た前記加熟手段は、 パイプ状部材の温度と渥度変化率 を算出 し、 この還度に対する篛度変化率の関係か ら上記誘 - // - 導加熟コ イ ルのシ ョ 一 卜 を検出するシ ョ 一 卜検出手段を備 え ているのが望 ま しい。 こ れは、 高周波誘導加熟コ イルが 途中でシ ョ ー 卜 し た場合に 、 コ イルの巻数が少な く 電気抵 抗が棰く 小さいものであるため電気抵抗の変化がほ とんど な く 、 こ のシ ョ ー ト を電気的に検出するの は非常に難 しい すなわち 、 その シ ョ ー 卜検出手段は、 パイ プ状部材が湿度 制御手段によ り制御さ れる所望の温度範囲にある時に 、 温 度が急速に低下する場合や、 上記溜度範囲以下の温度の時 に 、 温度が低下、 も し く はその上昇率が一定値以下の時は シ ョ ー 卜検出手段によ り コ イ ルの シ ョ ー 卜 が生 じ た と判定 するもので、 これに よ り 電気的に は難 しかっ た シ ョ ー 卜 の 検出を確実に行な う こ とができる。 Further, the ripening means calculates the temperature of the pipe-shaped member and the rate of change of the degree of attraction, and from the relationship of the rate of change of the degree of return to the degree of return, the above-mentioned induction is performed. -//-It is desirable to have a short-cut detection means to detect short-cuts of the induction ripening coil. This is because when the high-frequency induction ripening coil is short-cut, the change in electric resistance is almost negligible due to the small number of turns of the coil and the low electric resistance. In addition, it is very difficult to electrically detect this short-circuit. That is, the short-circuit detecting means is provided in a desired temperature range in which the pipe-shaped member is controlled by the humidity controlling means. At some point, if the temperature drops rapidly, or if the temperature falls below the above-mentioned range, or if the rate of increase is below a certain value, the shot detection means will be used. This is to determine that a short shot of the coil has occurred, and this makes it possible to reliably detect a shot that was electrically difficult.
本発明の更に他の望ま しい実施例に おいて は、 誘導加熱 コ イル とパ イ プ状部材の間に 断熱層を設ける と と も に 、 こ の誘導加熱コ イルを保持するコ イルアセ ンブ リ の外壁が金 型 と接蝕せ し め ら れる。 断熟層 と し て は空気断熱層が好 ま しい。  In yet another preferred embodiment of the present invention, a coil assembly for providing an insulating layer between the induction heating coil and the pipe-like member and for holding the induction heating coil is provided. The outer wall of the mold is in contact with the mold. An air insulation layer is preferred as a maturing layer.
このよ う に すれば、 誘導加熱コ イルは、 空気断熟層に よ るパイ プ状部材か らの熱の伝達制限およ び金型への熟の放 散に よ っ て比較的低温に保たれ、 コ イ ル表面層の劣化を防 止 する こ と ができる。  In this way, the induction heating coil is kept at a relatively low temperature by restricting the transfer of heat from the pipe-shaped member by the air aging layer and dissipating the ripening to the mold. Thus, the deterioration of the coil surface layer can be prevented.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
第 1 図 は本発明の一実施例の射出成形装置を示す概略図, 第 2 図 は第 1 図の装置の一部を詳細に示す断面図、 第 3 図は加熟コ イルの巻き方の他の例を示す図、 第 4 図 は加熟コ イルの固定方法の一例を示す図、 第.5 図は第 1 図の装置の変更例を示す図、 FIG. 1 is a schematic view showing an injection molding apparatus according to one embodiment of the present invention, FIG. 2 is a sectional view showing a part of the apparatus shown in FIG. 1 in detail, Fig. 3 shows another example of how to wind a ripening coil, Fig. 4 shows an example of a method for fixing a ripening coil, and Fig. 5 shows a modification of the device in Fig. 1. Diagram,
第 6 図は第 1 図の装置の制御回路の作用の一部を説明す る た めの フ ロ ー チ ヤ 一 卜 、  FIG. 6 is a flowchart illustrating a part of the operation of the control circuit of the apparatus shown in FIG.
第 7 図から第 11図は第 1 図の装置のチッ プ近傍部の変更 例をそれぞれ示す断面図である。  7 to 11 are cross-sectional views each showing a modification of the vicinity of the chip of the apparatus shown in FIG.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下図面を参照 し て本発明の実施例を詳細に説明する。 第 1 図において本発明の一実施例のホ ッ 卜 ラ ンナー式射 出成形装置は 4 つ のキ ヤ ビテ ィ 12 a , 12b . , 12c , 12d を 有する金型 10を備えている。 金型 10は成形機 ( 図示せず ) の固定ダイ プ レ ー 卜 に固定される固定側ハー フ 14と移動ダ ィプ レー 卜 に固定される移動側ハー フ 16からな つ ており 、 移動側ハー フ 16が固定側ハー フ 14に押圧される と 、 すなわ ち金型 10が閉 じ ら れる と両ハー フ 14, 16の間に前記 4つの キ ヤ ビティ 12a 〜 12d が形成されるよ う にな っ ている。 固 定側ハーフ 14は固定ダイ プ レー 卜 に取り付け ら れる取付プ レー 卜 18, 断熱材 20を挟んでその取付プレ ー 卜 18に押圧固 定されているマ二ホール ドプロ ッ ク 22 , お よび支持ァロ ッ ク 24を挟んでそのマ二ホール ドプロ ッ ク 22に押圧固定され ているキ ヤ ビテ ィ プ レー 卜 26からな ゥ ている。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In FIG. 1, a hot runner type injection molding apparatus according to one embodiment of the present invention is provided with a mold 10 having four cavities 12a, 12b, 12c, 12d. The mold 10 is composed of a fixed half 14 fixed to a fixed die plate of a molding machine (not shown) and a movable half 16 fixed to a movable plate. When the side half 16 is pressed against the fixed half 14, that is, when the mold 10 is closed, the four cavities 12 a to 12 d are formed between the half halves 14 and 16. It is becoming. The fixed half 14 has a mounting plate 18 attached to the fixed die plate 18, a manifold block 22 pressed and fixed to the mounting plate 18 with a heat insulating material 20 interposed therebetween, and It is composed of a cavity plate 26 which is pressed and fixed to the manifold block 22 with the support block 24 interposed therebetween.
キ ヤ ビテ ィ プ レー 卜 26は移動側ハ ー フ 16側に開口 する 4 つの凹部 28a , 28b , 28c , 28d を備えている。 この 4-つ の凹部 28a 〜 28d は移勒側ハー フ 16に設け られて いる 4 つ の コ ア 17a , 17b , 17c , 17d と共鳓 し て前記 4 つ のキ ヤ ビテ ィ 12a 〜 12d を形成する。 キ ヤ ビテ ィ プ レ ー 卜 26のマ 二ホ ール ドプロ ッ ク側に は前記 4 つの凹部 28a 〜 28d とそ れぞれ対向するよ う に 、 マ二ホ ール ドプロ ッ ク側に 開口 す る 4 つの凹部 30a , 30b , 30c , 30d が設け ら れて いる。 ま た固定側ハ ー フ 14に は成形機の ノ ズル ( 図示せず ) と各 キ ヤ ビテ ィ 12a 〜 12d を各凹部 30a 〜 30d の底面にそれぞ れ形成されたゲー ト 孔 32a , 32b , 32c , 32d を介 し て接 続する樹脂通路が形成さ れている 。 こ の樹脂通路は成形機 の ノ ズル と直接つ なげ ら れる所謂スプル一部 34a とマニホ 一ル ドプロ ッ ク 22内で 4 つ に分岐 した所謂ラ ンナー部 34b とからな っ て お り 、 そのラ ンナ ー部 34b の各ゲー ト 孔 32a 〜 32d に隣接 した部分はパイ プ状のチッ プ 36a , 36b , 36 c , 36d に よ っ て形成されて いる。 各チッ プ 36a 〜 36d の 周囲に は加熟コ イル 38a , 38b , 38c , 38d がそれぞれ巻 回されてお り 、 後に詳述するよ う に こ の加熟コ イル 38a 〜 38(1 に高周波電流を通す と各チッ プ 36a 〜 36d が発熟する よ う にな つ ている。 前記マ二ホ ール ドプ ロ ッ ク 22は適当な j¾l熟手段 ( 図示せず ) に よ っ て所望の温度まで加熟される よ う にな っ てい る。 The cavity plate 26 is provided with four concave portions 28a, 28b, 28c, 28d which open to the movable half 16 side. These four The recesses 28a to 28d form the four cavities 12a to 12d together with the four cores 17a, 17b, 17c, and 17d provided on the transfer side half 16. An opening is formed on the manifold block side of the cavity plate 26 so as to face the four recesses 28a to 28d, respectively, on the manifold block side. Four recesses 30a, 30b, 30c, 30d are provided. In the fixed side half 14, a nozzle (not shown) of the molding machine and each of the cavities 12a to 12d are provided with gate holes 32a, 32b formed in the bottom surface of each of the recesses 30a to 30d, respectively. , 32c, and 32d are formed through the resin passage. This resin passage is composed of a so-called sprue part 34a that is directly connected to the nozzle of the molding machine and a so-called runner part 34b that is branched into four parts in the manifold block 22. Portions of the runner portion 34b adjacent to the respective gate holes 32a to 32d are formed by pipe-shaped chips 36a, 36b, 36c, 36d. The ripening coils 38a, 38b, 38c, 38d are wound around each of the chips 36a to 36d, respectively.As will be described in detail later, the ripening coils 38a to 38 (1 When an electric current is passed, each of the chips 36a to 36d ripens.The said manifold block 22 is desirably formed by a suitable j¾l ripening means (not shown). It has been ripened up to the temperature.
従来のホ ッ 卜 ラ ンナー式射出成形装置と周様に成形機の ノ ズルか ら射出された溶融樹脂は前記樹脂通路を通 つ て各 キ ヤ ビテ ィ 12a 〜 12d 内に充唭さ れる。 通常、 キ ヤ ビテ ィ 一 |t 一 プ レー 卜 26および移動側ハ ーフ 16は冷却されてお り 、 各キ ャ ビテ ィ 12a 〜 12d 内の樹脂が冷却固化 した後、 移勅儺ハ ー フ 16が後退せ しめ られて金型が開かれる。 この ときキ ヤ ビテ ィ 12a 〜12d 内に形成された製品は移動側ハー フ 16の コ ア 17a 〜17d にそれぞれ担われて固定惻ハーフ 14から除 去される。 Molten resin injected from the nozzle of the molding machine in the same manner as the conventional hot runner type injection molding apparatus is filled into the cavities 12a to 12d through the resin passage. Normally, the key The plate 26 and the movable half 16 are cooled, and after the resin in each of the cavities 12a to 12d is cooled and solidified, the relocated half 16 is retracted. The mold is opened. At this time, the products formed in the cavities 12a to 12d are carried by the cores 17a to 17d of the movable half 16 and are removed from the fixed trailing half 14.
各加熟コィル 38a 〜 38d は中継ポ クズ 40を介して互い に直列に高周波電力供給回路 42に接続さ れる。 電力供給回 路 42は A G電源からの交流を整流 して直流 ( 臃流) に変換 する整流回路 44, A C電源をオ ン · オフ する S S R ( ソ リ ッ ドステ 一 卜 リ レー ) 45、 後述する温度制御回路 52の制御 の下に開閉 ( オン 一才 フ 》 を繰り返すスイ ッ チング素子 46 卜ラ ンス 48 , その ト ラ ンス 48の一次側に並列に接続され fc コ ンデンサ C , およびフ ィ ルタ ー 回路 50からな つ てお り 、 前記 卜 ラ ンス 48の二次側に前記 4 つ の加熟コ イル 38a 〜 38 d が直列に接続されるよ う にな っ ている。 想度制御回路 52 は前記各チッ プ 36a 〜 36d の先端部にそれぞれ接触せ しめ ら れて各チッ プ 36a 〜36d の先端部の温度を検出する 4 つ の熱電対 54a , 54b , 54c , 54d を備えている。 その 4つ の熱電対 54a 〜54d の出力は切換回路 56に よ っ て顺次増巾 回路 58に入力され、 増巾された後、 A Z D変換回路 60に入 力 さ れる。 この A Z D変換回路 60に よ っ てデジタル信号に 変換さ れた各熟電対 54a 〜54d からの温度情報は制御回路 62の制御の下に記億回路 64に記憶される。 制御回路 62には 更に設定温度入力回路 66および温度表示回路 68が接続さ れ ている。 設定温度入力回路 66は設定ダイ ヤル等に よ っ て選 択さ れるチッ プ先端部の設定温度を制御回路 62に入力 する こ の設定溫度は制御回路 62の制御の下に記愤回路 64に記億 される 。 制御回路 62は記億回路 64に一旦記憶さ れて いた各 熱電対 54a 〜 54d からの温度情報、 すなわちその時点での 4 つのチッ プ 38a 〜 38d の先端部の温度 取り 出 して 、 演 算回路 70に よ っ て 4 つのチッ プ 38a 〜 38d の先端部の混度 の'平均値を求め 、 その平均値 と前記設定温度と の差を求め る。 制御回路 62は こ の差の大き さ に応じ て発振回路 72を制 御 して発振回路 72の出力信号を変化させる 。 本実施例に お ける電力供給回路 42に おい て は周波数が所定の箱囲内で低 い程大きな電力 加熱コ イ ル 38a 〜 38(1 に入る よ う にな つ てお り 、 制御回路 62は前記設定渥度 とチッ プ先端部の想度 の平均値との差が大きい程低い周波数で発振するよ う に発 振回路 72を制御する。 本実施例で は発振回路 72« 20K H Z 〜 50K H Z の囿で発振する。 この発振回路 72の出力信号は ド ライ ブ回路 74に よ っ て電流増巾 されて電力供袷回路 42の 前記スィ チング素子 46を駆動する。 このスイ ッ チング素 子 46が発振回路 72の発振周波数に応 じ て 開閉を辗り返す こ と に よ っ て前記 卜 ラ ンス 48の一次側に高周波電流が流れ、 卜 ラ ンス 48の二次側に高周波電流が誘起さ れ、 卜 ラ ンス 48 の二次側に直列に接耪さ れた前記 4 つの加熟コ イ ル 38a 〜 38d に高周波電流が供給される。 加熱コ イ ル 38a 〜 38d に ― ら- 高周波電流が流れる とその加熟コ イ ルが巻かれている各チ ヅ プ 36a 〜 36d が電磁誘導によ っ て発熟する。 もち ろん、 各チッ プ 36a 〜36d は高周波誘導加熟で発熟し得る材料で 形成されている必要がある。 そのよう な材料と し ては種々 のものが知 られているが、 当業者には明 らかなよ う に 、 各 チ yプ 36a 〜 36d は髙搵, 髙圧に酎えなければな らないか ら、 このよ うな点も考慮 して材質を選択 しなければな らな い。 特に髙漏 ま で加熟されても機械的強度が大きく 、 透磁 率が大き く 、 しかも透磁率の温度依存性の小さ いものが望 ま しい。 このよ う な材料 と し て は例えぱ熱間金型用の S K D - 61 , 62等がある。 前記温度制御回路 52は各熱電対 54a 〜 54d から入力 される各チッ プ 36a 〜 36d の先端部の実際 温度の平均値と設定温度の比较を刻々繰 り返 し 、 前者の方 が後者よ り低い場合に は両者の差が小さ く なるにつれて発 振回路 72の発振周波数を髙く して行く 。 この発振周波数が 高く なる と、 卜 ラ ンス 48の一次側に流れる電流の周波数も 高く な り 、 したが っ て加熱コ イ ル 38a 〜 38d に供拾される 電流の周波数も高く な つ て結局各加熱コ イル 38a 〜 38d に 供耠される電力が小さ く なる。 すなわち、 温度制御回路 52 はチップの先端部の実際の混度が設定溫度よ り低い場合に は、 その差が大きい ときには大きな電力を加熟コ イル 38a 〜 38d に供袷 し 、 実際の温度が設定温度に近づく につれて その供拾電力を小さ く し 、 それに よ つ てチッ プ先端部の実 際の潟度を設定握度に収束させる。 逆に実際の温度が設定 温度を上回ゥ た場合に は、 その差が大きい程大き く 供給電 カ を滅ずるよ う に し て実際溻度を設定温度に近づける。 ま た前記温度表示回路 68はチッ プ先端部の実際温度, 設定温 度との差等を表示する。 このよ う な离周波誘導加熱に よ つ て チッ プを加熟する本実施例の装置において はチッ プ 363The ripening coils 38a to 38d are connected to the high-frequency power supply circuit 42 in series with each other via the relay pox 40. The power supply circuit 42 is a rectifier circuit 44 for rectifying AC from the AG power supply and converting it to DC (current), an SSR (Solid Steady Relay) 45 for turning on / off the AC power supply, which will be described later. A switching element 46, a translator 48, which repeats opening and closing (on-off) under the control of the temperature control circuit 52, and an fc capacitor C connected in parallel to the primary side of the translator 48, and a filter A circuit 50 is provided so that the four ripening coils 38a to 38d are connected in series to the secondary side of the transformer 48. The imagination control circuit Numeral 52 includes four thermocouples 54a, 54b, 54c, 54d which are brought into contact with the tips of the chips 36a to 36d, respectively, and detect the temperatures of the tips of the chips 36a to 36d. The outputs of the four thermocouples 54a to 54d are input to the secondary amplification circuit 58 by the switching circuit 56. After being amplified, the signal is input to the AZD conversion circuit 60. The temperature information from each of the mating couples 54a to 54d converted by the AZD conversion circuit 60 into digital signals is transmitted to the control circuit 62. It is stored in the memory circuit 64 under control. Further, a set temperature input circuit 66 and a temperature display circuit 68 are connected. The set temperature input circuit 66 inputs the set temperature at the tip of the chip, which is selected by a setting dial or the like, to the control circuit 62.The set temperature is input to the recording circuit 64 under the control of the control circuit 62. It is recorded. The control circuit 62 extracts the temperature information from the thermocouples 54a to 54d once stored in the memory circuit 64, that is, the temperature at the tip of the four chips 38a to 38d at that time, and calculates the temperature. The circuit 70 calculates the 'average value' of the degree of mixing at the tips of the four chips 38a to 38d, and calculates the difference between the average value and the set temperature. The control circuit 62 controls the oscillation circuit 72 according to the magnitude of the difference to change the output signal of the oscillation circuit 72. In the power supply circuit 42 in the present embodiment, the lower the frequency is within the predetermined box, the larger the power heating coils 38a to 38 (1), so that the control circuit 62 The oscillation circuit 72 is controlled so as to oscillate at a lower frequency as the difference between the set value and the average value of the degree of thinking at the tip of the chip is larger. The output signal of the oscillation circuit 72 is amplified by a drive circuit 74 to drive the switching element 46 of the power supply circuit 42. The switching element 46 repeats opening and closing in accordance with the oscillation frequency of the oscillation circuit 72, so that a high-frequency current flows through the primary side of the transformer 48, and a high-frequency current is induced on the secondary side of the transformer 48. And the four ripening coils 38a to 38 connected in series to the secondary side of the transformer 48. High-frequency current is supplied to 38d Heating coils 38a to 38d When a high-frequency current flows, the chips 36a to 36d around which the ripening coil is wound ripen by electromagnetic induction. Of course, each of the chips 36a to 36d needs to be formed of a material that can ripen by high frequency induction ripening. A variety of such materials are known, but as will be apparent to those skilled in the art, each chip 36a-36d must be suitable for pressure and pressure. Therefore, the material must be selected in consideration of such points. In particular, it is desirable to have a material having a large mechanical strength, a large magnetic permeability, and a small temperature dependence of the magnetic permeability even when it is ripened before leakage. Examples of such materials include SKD-61 and 62 for hot dies. The temperature control circuit 52 repeatedly repeats the ratio of the average value of the actual temperature at the tip of each of the chips 36a to 36d input from each of the thermocouples 54a to 54d to the set temperature, and the former is better than the latter. When the difference is small, the oscillation frequency of the oscillation circuit 72 is increased as the difference between the two becomes small. As the oscillation frequency increases, the frequency of the current flowing through the primary side of the transformer 48 also increases, and the frequency of the current supplied to the heating coils 38a to 38d also increases. The electric power supplied to each of the heating coils 38a to 38d is reduced. That is, when the actual mixing at the tip of the chip is lower than the set temperature, the temperature control circuit 52 supplies a large amount of power to the ripening coils 38a to 38d when the difference is large, and the actual temperature is reduced. As the temperature approaches the set temperature, the supplied power is reduced, thereby converging the actual flatness at the tip of the chip to the set grip. Conversely, the actual temperature is set When the temperature exceeds the temperature, the larger the difference is, the larger the power supply is destroyed, and the actual temperature is brought closer to the set temperature. The temperature display circuit 68 displays the actual temperature at the tip of the chip, the difference from the set temperature, and the like. In the apparatus according to the present embodiment in which the chip is ripened by such high-frequency induction heating, the chip 363 is used.
〜 36d 自体が発熱するのであるか ら 、 抵抗加熱 ヒ ー タ ーか らの熟伝達によ っ て チッ プを加熟するの 比べて熟的 レス ポ ンスが速く 、 リ ンギングゃ煞伝達に帰因する遅延な く 精 度良 く チッ プの溫度を制御するこ と ができる。 Since 36d itself generates heat, the mature response is faster than ripening the chip by ripening transmission from the resistance heating heater, resulting in ringing ゃ 煞 transmission. It is possible to control the chip angle with high accuracy without causing delay.
前記 S S R 45は制御回路 62に接続さ れてお り 、 所定の周 期で開閉さ れる。 例 ば 0.5 s e c 毎に 10m s e c だけ開 かれる。 .すなわ ち 制御回路 62は所定の周期で A C電源を 才 フ する こ と に よ っ て電力供給回路 42からの出力を停止 し 、 その間に熱電対 54a 〜 54d から の温度情報を記憶回路 64に 記憶させる。 したが っ て熱電対 54a 〜 54d の近傍において 加熟コ イル 38a 〜 38d に よ っ て発生 さ れる高周波磁界の影 饔を受けずに熟電対 54a 〜 54d の信号を読み取るこ とがで きる。 なお、 S S R 45を開 く 周期お よ びその時闥は特に上 記例に限定さ れるものでな く 適当 に選択 して差 し支えない が、 その周期を余り 長く する と 、 温度検出の簡隔が広く な り過ぎて 、 特に熟的 レスポンスの良い本実施例の装置に お いて は混度制御上望ま し く ない。 ま た S S R 45を開 く 周期 が短か過ぎた り 、 あるいは開 く 時間が長過ぎた り する と 、 電力が加熟コ イル 38a 〜 38d に供給さ れる時閽が短 く な り -/ S- チッ プ 36a 〜 36d を所望の温度まで加熟するのに時園がか かるこ と になる。 したが っ てこのよ う な点を適切に考慮し て S S R 45を開 く 周期および持園を決定するのが望ま しい。 The SSR 45 is connected to a control circuit 62 and is opened and closed at a predetermined period. For example, it is opened for 10 msec every 0.5 sec. That is, the control circuit 62 stops the output from the power supply circuit 42 by turning on the AC power at a predetermined cycle, and stores the temperature information from the thermocouples 54a to 54d in the meantime. To memorize it. Therefore, the signals of the thermocouples 54a to 54d can be read in the vicinity of the thermocouples 54a to 54d without being affected by the high-frequency magnetic field generated by the ripening coils 38a to 38d. . Note that the period of opening the SSR 45 and the bridge at that time are not particularly limited to the above example, and may be appropriately selected. However, if the period is too long, the temperature detection becomes simple. Is too large, which is not desirable in the control of the mixture, particularly in the apparatus of the present embodiment having a good responsiveness. If the period of opening the SSR 45 is too short, or if the opening time is too long, the time when power is supplied to the ripening coils 38a to 38d becomes shorter. -/ S-tips 36a to 36d take time to ripen to the desired temperature. Therefore, it is desirable to determine the cycle of opening SSR 45 and the holding garden in consideration of these points.
なお、 S S R 45と して は制御回路 62から鬨信号が入 っ て も A C電源の電圧がゼロ になる迄は開かず、 逆に閉信号が 入っ ても A C電源の電圧がゼ ロ になる迄は閉 じないゼ ロ ク ロス型の S S R を使用するのが望ま しい。  Note that the SSR 45 does not open until the AC power supply voltage goes to zero even when a sword is received from the control circuit 62, and conversely until the AC power supply voltage goes to zero even when a close signal is received. It is desirable to use a zero-cross type SSR that does not close.
更に 、 制御回路 62は後に詳述するよ う に成形機 ( 図示せ ず ) からの信号に応答 して各加熟コ イル 38a 〜38d に供給 される電力を所定の時簡だけ最大に する。  Further, the control circuit 62 maximizes the electric power supplied to each of the ripening coils 38a to 38d in response to a signal from a molding machine (not shown), for a predetermined time, as will be described in detail later.
制御回路 62と して は通常マイ ク ロプロ セサ一が使用され るが、 上記のよ う な制御を行なう ためのマイ ク ロプロ セサ 一の動作を第 6 図のフ ローチヤ一 卜を参照 して説明する。  Normally, a microprocessor is used as the control circuit 62. The operation of the microprocessor for performing the above-described control will be described with reference to a flowchart of FIG. I do.
第 6 図におい て制御回路 ( マイ ク ロプロ せサー ) 62は ま ず S S R 45を開 く と とも に切換 56を切 り換えて各熱電対 54 a 〜54d の出力 T o を読み取り 、 その平均値 M T o を演算 する 。 ( ステ ッ プ S i > 次にステ ッ プ S 2 において設定温 度 S T と平均値 M T o の僱差 X を演算 し 、 ステ ッ プ S 3 に おいてその儷差 X が正かどうか、 すなわち設定温度 S T の 方が平均値 M T o よ り高いかどう かを判別する。 X > 0 の 場合に はその X の絶対値に対応する α ( ≥ 0 ) を制御値 C に加えて、 発振回路 72に出力 する。 ( ステッ プ S 4 , S 8 ) x < 0 場合にはその X の絶対植に対応する α ( 0 ) を 制御値 Cから滅じ て発振回路 72に出力 する。 ( ステッ プ S 5 , S 6 〉 次にステ ッ プ S 7 において成形機から型閉め開 始信号が入力 さ れたかどう かを判別する。 型閉め開始信号 が入力 さ れていない場合に はステ ッ プ S i に戻っ てステ ツ プ S i 〜 S 7 を裸り返す。 型閉め開始信号が入力 されて い る場合はタ イ マー Τ ι を O N する。 ( ステ ッ プ S e 〉 この タ イ マー T i は加熟コ イル 38a 〜38d に供給する電力 を最 大に するタ イ ミ ングを決定するものである。 このタ イ マー T 1 が u p し た ら ( ステ ッ プ S 3 ) 、 前記制御値 Cを最大 と し て発振回路 72に出力 する。 ( ス テ ッ プ S ) こ れと周 時に タ イ マ ー T 2 を O N する。 ( ステ ッ プ S i ) こ の タ イ マ ー T 2 は制御値 Cを最大に して お く 時間、 すなわち最大 電力 を加熟コ イル 38a 〜38d に供袷する時間を決定するも のであ り 、 タ イ マー T 2 が u pする ま で制御値 Cは最大に 保た れる。 次に タ イ マ ー T 2 が u p す る と ( ステ ッ プ S i ) 制御値 Cが最小ま た は零にさ れる。 ( ステ ッ プ S 1 ) 次に ス テ ッ プ S 1 に おい て熟電対 54a 〜 54d の出力 T o の平均 値 M T o が前記設定値 S τ よ り 下が っ たかどう かが判別さ れる。 平均値 M T o が設定値 S T よ り 髙ぃ閭は制御値 Cは 最小に保たれる。 こ こで平均値 M T o が設定値 S T よ り低 く なる とステ ッ プ S 2 に戻っ て平均値 M T o が設定値 S T に収束するよ う に制御がなされる。 In Fig. 6, the control circuit (microprocessor) 62 first opens the SSR 45 and switches the switch 56 to read the output To of each of the thermocouples 54a to 54d, and averages the values. Calculate MT o. (Step S i> Next, in step S 2, the difference X between the set temperature ST and the average value MTo is calculated, and in step S 3 , whether the difference X is positive, that is, Determines whether the set temperature ST is higher than the average value MT o.If X> 0, α (≥ 0) corresponding to the absolute value of X is added to the control value C, and the oscillation circuit and outputs 72. (step S 4, S 8) x < 0 when the output absolute planting corresponding to alpha (0) to Ji flashing from the control value C oscillator 72 of the X. (step S 5, S 6> then mold closing start signal from the molding machine at stearyl-up S 7 to determine whether the inputted. If the mold closing start signal has not been input, the process returns to step S i and strips steps S i to S 7. If the mold closing start signal is input, turn on the timer Τι. (Step Se> This timer Ti determines the timing for maximizing the power supplied to the ripening coils 38a to 38d. The timer T1 increases. other et al (Step-up S 3), the control value C to the maximum output to the oscillation circuit 72. to oN (the scan STEP S) this is the circumferential sometimes Thailand M a T 2. (Step -up S i) this Thailand M a T 2 are control values C a and the maximum our Ku time, i.e. Nodea Ri also determines the time to Kyoawase full power to the pressurized Jukuko yl 38a ~38D, Thailand mer T 2 is controlled value C until for up is kept to a maximum. then Thailand M a T 2 is a you up to (Step-up S i) zero control value C was minimal or (Step S 1) Next, in step S 1, whether the average value MTo of the output To of the shunt couples 54 a to 54 d has fallen below the set value S τ. There is determined. The average value MT o 髙I Ri by the setting value ST 閭 the control value C average value MT o is the phrase low-Ri by setting value ST in. Here is kept to a minimum and stearyl-up S Control returns to 2 so that the average value MTo converges to the set value ST.
なお、 前述のよ う に タ イマー T i は加熱コ イル 38a 〜38 d に供袷する電力を最大と するタ イ ミ ングを決定するもの であ り 、 タ イマ ー T 2 はその最大電力の持続時藺を決定す るあのであ り 、 樹脂の種類、 定常温度 (前記設定温度〉 、 成形サイ クル時簡等を考慮し て射出寸前にゲー ト孔近傍の 樹脂が溶融 して射出可能となるよう に設定さ れる。 このよ う に射出寸前に加熱コ イル 38 a 〜 38 d に大電流を供袷し て 射出可能状態となるよ う にするこ とによ っ て定常温度 ( 設 定温度 〉 を、 糸ひきや、 はなだれが生ぜず、 しかもゲー ト 詰ま り も発生 しないよ う な臨界的な温度よ り低く 設定する こ とができ、 多少のゲー 卜パラ ンスの く ずれもそれに ^ つ て吸収するこ とができるから温度の精度に対する要求が緩 く な り 、 し fcが っ て制御が楽になる。 Incidentally, the timer T i to cormorants good mentioned above all SANYO determining the maximum and Suruta Lee Mi ing power to Kyoawase the heating coils 38a to 38 DEG d, timer over T 2 are the maximum power Determine rush when sustained In consideration of the type of the resin, the steady temperature (the above-mentioned set temperature), the molding cycle time, etc., the resin is set so that the resin near the gate hole can be melted and injected immediately before the injection. In this way, just before the injection, a large current is supplied to the heating coils 38a to 38d so that the injection is possible, so that the steady temperature (set temperature) can be reduced. In addition, the temperature can be set lower than the critical temperature that does not cause avalanche and also does not cause clogging of the gate. Therefore, the requirement for the accuracy of the temperature is relaxed, and the control becomes easier with fc.
, なお、 第 6図に示す フ ロ ーチャ ー ト においては、 射出可 能状態と するために制御値 Cを最大と するこ と に よ っ て最 大電力を加熟コ ィル 38 a 〜 38 d に供袷するよう にな っ てい るが、 必らず し も最大電力を供給する必要はな く 、 所望の 樹脂温の上昇が得られるだけの電力を供給すれぱよい。 こ の場合に はステ ッ プ S M におい て制御値 Cを最大と する替 り に 、 それまでの制御値 C に所望の樹脂温上昇分に応じた 値 ( α 〉 を加えたものを制御値 C と し て発振回路 72に出力 してやればよい。  In the flowchart shown in FIG. 6, the maximum power is set by maximizing the control value C to make the injection possible state, so that the ripening coils 38a to 38a Although it is designed to be supplied to d, it is not always necessary to supply the maximum power, and it is sufficient to supply enough power to obtain a desired rise in resin temperature. In this case, instead of maximizing the control value C in step SM, the control value C obtained by adding the value (α>) corresponding to the desired resin temperature rise to the previous control value C is used. Then, it may be output to the oscillation circuit 72.
ま た第 6図のフ ロ ー チ ャ ー ト においては成形機からの信 号を型閉め開始信号 と し たが、 成形サイ クル中 に一定タ イ ミ ングで出力され.る信号であればどのよ う な信号を利用 し In the flowchart of Fig. 6, the signal from the molding machine was used as the mold closing start signal.However, if the signal is output at a fixed timing during the molding cycle, What kind of signal to use
- てもよいこ と は言う迄もない。 -Needless to say.
第 2 図は各チッ プ周辺の構造をチッ プ 36 a を倒に と っ て - 卜 Figure 2 shows the structure around each chip, with tip 36a inverted. -U
詳細に示すものである。  This is shown in detail.
第 2 図に示すよ う に 、 チッ プ 36a はゲー 卜孔近傍の樹脂 通路を形成する貫通孔 80を備えたパイ プ状の部材である。 貫通孔 80は先端部 ( ゲー ト孔 32a 側 ) において綑 く な ゥ て ゲー 卜孔 32a と ほぼ同 じ径を有するよ う にな ゥ ている。 チ ッ プ 36a の両端面に は環状の突条 82a , 82b が設け られて いる。 チッ プ 36a はマ二ホ ール ドプロ ッ ク 22と キ ヤ ビテ ィ プ レー ト 26の園に押圧挾持さ れるよ う に な つ て'お り 、 その 際上記突条 82a , 82 が多少変形する こ と に よ っ て押圧面 から の樹脂洩れを防止するよ う にな っ て いる。 もちろん他 の シール手段例えば 0 リ ングを用 い て樹脂の洩れを防止す るよ う に してもよい。 ま た先端面の突条 82b はチ ッ プ 3せ a と キ ヤ ビテ ィ プ レ ー 卜 26と の接触面積を小さ く し て チッ プ 36a の先端部からキ ヤ ビテ ィ プ レー 卜 26に奪われる熟量を 小さ く するのにも役立つ 。 チッ プ 36a の先端近 に は熟電 対 54a の先端を挿 し込む凹部 84が設け ら れて いる。 加熟コ ィ ル 38a および熱電対 54a は高周波遮へい効果を有する金 属で形成さ れたケース 86内に収容されて お り 、 さ ら にその 加熟コ イル 38a の リ ー ド線 88a および熱電対 54a の リ ー ド 糠 88b はケース 86に一体的に接続された シ ール ド間 90内を 通 ゥ て前記中継ボ ッ クス 40ま で延びて いる。 加熟コ イ ル 38 a は導電性が良く 、 腐食に強い金属、 例えば銀, 銀の合金, 鋇耱等の心線 とその上に被せ ら れた絶縁被覆か ら な っ て お り 、 チ ッ プの大きさ等に応じて通常数タ ー ンから 10数タ ー ンチッ プの周囲に巻回される。 チッ プ 36a の後端部にはマ 二ホ ール ドプロ ッ ク 22からの熟伝達があ り 、 逆にチ yプ 36 a の先端部からはキ ヤ ビティ プレー 卜 26に よ っ て熟が奪わ れるため、 加熟コ イル 38a はできるだけチッ プ 36a の先端 に近い位置に巻回 し て先端部に コ イル 38a から の磁束が集 中するよ う にするのが望ま しい。 As shown in FIG. 2, the tip 36a is a pipe-shaped member provided with a through hole 80 forming a resin passage near the gate hole. The through-hole 80 has a small diameter at the tip end (on the side of the gate hole 32a) and has substantially the same diameter as the gate hole 32a. Annular ridges 82a and 82b are provided on both end surfaces of the chip 36a. The tip 36a is pressed and sandwiched between the garden of the manifold block 22 and the cavity plate 26, and the ridges 82a and 82 are slightly deformed. By doing so, resin leakage from the pressing surface is prevented. Of course, other sealing means such as a ring may be used to prevent the resin from leaking. The protruding ridge 82b on the tip surface reduces the contact area between the tip 3a and the cavity plate 26 so that the tip plate of the tip 36a is connected to the cavity plate 26. It also helps to reduce the amount of ripeness that is robbed. A concave portion 84 into which the tip of the mature couple 54a is inserted is provided near the tip of the tip 36a. The ripening coil 38a and the thermocouple 54a are housed in a case 86 made of a metal having a high frequency shielding effect, and the lead wire 88a and the thermocouple of the ripening coil 38a are further provided. The lead bran 88b of the pair 54a extends to the relay box 40 through the space 90 between the shields integrally connected to the case 86. The ripening coil 38a is made of a metal having good conductivity and being resistant to corrosion, for example, silver, a silver alloy, silver, etc., and an insulating coating overlaid thereon. Normally several turns to several tens of turns depending on the size of the tip It is wound around the tip. At the rear end of the tip 36a, there is a transfer of ripening from the manifold block 22, and on the other hand, from the tip of the tip 36a, the ripening is made by the cavity plate 26. Because it is deprived, it is desirable that the ripened coil 38a be wound as close to the tip of the tip 36a as possible so that the magnetic flux from the coil 38a is concentrated at the tip.
なお、 チッ プが長く て、 チッ プ中央部からの放熟が大き い場合に は、 第 3図に示すよ う に先端部において密、 中央 部から後端部において疎となるよう に コ イルを巻いてもよ い。 なお 、 加熟コ イル 38a がチップ 36a の外面に密着 して いるかどう かは チッ プ 36a の先端部の温度に殆ど影饗を与 えないが、 コ イル 38 a のチ ッ プ 36 a の長さ方向の位置や巻 き密度はチッ プ 36a の先端部の握度に大きな影饔を与える から 、 コ イル 38a はチッ プ 36a の周囲に固定するのが望ま しい。 これには耐熟性の接着剤等を使用 し ても良い し 、 第 4 図に示すよ う にチッ プ 36a の外面に所望の巻きパタ ー ン に従つ て螺旋状の溝 90を切っ てその溝 9Q内に コ イ ルを巻く よう に してちょい。  If the tip is long and ripening from the center of the chip is large, the coil should be dense from the tip and sparse from the center to the rear as shown in Fig. 3. May be wound. Whether or not the ripened coil 38a is in close contact with the outer surface of the tip 36a has little effect on the temperature of the tip of the tip 36a, but the length of the tip 36a of the coil 38a is small. Since the position in the vertical direction and the winding density greatly affect the grip at the tip of the tip 36a, it is desirable to fix the coil 38a around the tip 36a. For this, a ripening adhesive or the like may be used. Alternatively, as shown in FIG. 4, a spiral groove 90 is cut on the outer surface of the chip 36a according to a desired winding pattern. Wrap the coil in the groove 9Q.
前記中継ボ ッ クス 40は高周波電力供給回路 42の前記 ト ラ ンス 48の二次側を接続するためのコネクタ ー 100、 および 前記各加熱コイル 38a 〜38d を接続するためのコネ ク タ ー 101 , 102, 103, 104を備えている。 コ ネク タ ー 101, 102, 103, 104は互いに直列にコネクタ ー 100に接檨さ れている。 更に 、 各 コ ネク タ ー 101 , 102 , 103, 104 を 跨 ぐよ う に ( 並列 に ) ゲー トバラ ンス調整用 回路を接耪す る た めのゲー トバ ラ ンス 調整用 コ ネ ク タ — 111 , 112, 1 13. 114が接続さ れて いる 。 こ のゲー ト パ ラ ンス調整用 コ ネ ク タ ー 111〜 114に適宜ゲ ー トバ ラ ンス調整用 回路を接 続す る こ と に よ っ て個々 のチ ッ プ 36a 〜36d の温度を制御 す る こ と が で き る 。 第 1 図 に はゲー ト バ ラ ンス 調整用 コ ネ ク タ一 111, 113を介 し て加熱コ イ ル 38a , 38c にそ れぞ れ並列 に コ ン デ ン サ一 105を接続 し た例が示 さ れ て い る 。 こ の場合 、 加熱コ イ ル 38a , 38c が巻かれて いる チ ッ プ 36 a , 36c の 溫度が 上昇 し 、 他の加熟コ イ ル 38b , 38d が巻 かれて いる チ プ 36b , 36d の温度が下が る 。 ゲ ー 卜 パ ラ ン ス 調整用 回路 と し て コ ン デ ン サ ー の替 り に コ イ ルも し く は抵抗を使用 する と 、 加熱コ イ ル 38a , 38c が巻かれて い る チ ッ プ 36a , 36c の想度が下が り 、 他の加熱コ イ ル 38b 38(1 が巻かれて いるチ ッ プ 36b , 36d の温度が上がる 。 す なわち 、 コ ン デ ン サー 、 コ イ ル 、 抵抗等のゲー ト バ ラ ン ス 調整用 回路を加熟コ イ ルに選択的に並列 に 接続す る こ と に よ っ て 、 各加熟 コ イ ルへ の電力 の供袷の配分を変 え る こ と ができ 、 そ れに よ つ て 直列 に接続さ れた複数の加熟コ イ ル 38a 〜 38d に よ っ て発熟せ し め ら れ る チ ッ プ 36a 〜 36d の 溫度を別々 に上下せ し め ら れる こ と ができる のである 。 つ ま り 、 何 ら かの要因 に よ っ て 钃度が下が り 易い チ 、 プ に.巻 かれて いる加熟コ イ ルに 他の加熟コ イ ルよ り も大きな電力 が供袷さ れる よ う に対応す るゲ ー 卜 バ ラ ン ス 調整用 コ ネ ク _ 2屮 - タ ーに コ ンデンサーを接耪しても よいし、 逆に何らかの要 因に よ っ て温度が他よ り も上が り 易いチッ プに巻かれてい る加熟コ イ ルに供給される電力が他の加熱コ イルに供狯さ れる電力 よ り も小さく なるよ う に 、 その加熱コ イルに対応 するゲー トパラ ンス調整用 コネク タ ーに コ イルまたは抵抗 を接続 し てもよい。 もち ろん、 コ ンデンサー、 コ イル、 抵 抗を適当に組み合わせて使用 して も差し支えない。 しかし なが ら 、 ゲー トバラ ンス調整用 回路 と し て抵抗を使用 する と 、 電力擤が生じ-、 その点では他の 2 者の方が望ま しい。 言う までもな く 、 ゲー トバラ ンス調整用回路の作用 はその 素子の値が大きい程大きい。 したが っ て オペ レー タ ーが温 度表示を見た り 、 各ゲー ト孔での樹脂の状態を見た り し て 適当な値の素子を適当なゲー 卜パラ ンス調整用 コネ ク タ ー に接続するよう に し てもよい し 、 予め異なる値の複数のゲ 一 卜パラ ンス調整用回路を各加熟コ イル毎に切換自在に設 け ておき、 チッ プ間の湿度差に応じ て適当な値の素子を選 択して接耪するよ うに してもよい。 The relay box 40 includes a connector 100 for connecting a secondary side of the transformer 48 of the high-frequency power supply circuit 42, and a connector 101 for connecting each of the heating coils 38a to 38d. 102, 103, and 104 are provided. The connectors 101, 102, 103, 104 are connected to the connector 100 in series with each other. In addition, each connector 101, 102, 103, 104 Gate balance adjustment connectors-111, 112, 1 13.114 for connecting the gate balance adjustment circuit so as to straddle them (in parallel) are connected. The temperature of each of the chips 36a to 36d can be controlled by connecting the gate balance adjustment circuit to the gate balance adjustment connectors 111 to 114 as appropriate. can do . Fig. 1 shows an example in which capacitors 105 are connected in parallel to heating coils 38a and 38c via gate balance adjustment connectors 111 and 113, respectively. It is shown . In this case, the temperature of the chips 36a and 36c around which the heating coils 38a and 38c are wound rises, and the temperature of the chips 36b and 36d around which the other mature coils 38b and 38d are wound. The temperature drops. If a coil or resistor is used instead of a capacitor as the gate / parallel adjustment circuit, the heating coils 38a and 38c are wound. The degree of thinking of the chips 36a and 36c decreases, and the temperature of the other heating coils 38b and 38 (the chips 36b and 36d around which the coil 1 is wound rises. That is, the condenser and the condenser By selectively connecting gate and balance adjustment circuits, such as coils and resistors, to the ripening coils in parallel, power supply to each ripening coil can be controlled. The distribution can be changed, whereby the chips 36a to 36d are matured by a plurality of ripening coils 38a to 38d connected in series. It is possible to raise and lower the angle separately, which means that the angle is easily reduced by some factor. Also Ri by other pressurized Jukuko Yi Le to have pressurized Jukuko Lee Lumpur and Ruge over to cope with cormorants by a large electric power is Kyoawase Bok bus run-adjust for co-Ne-click _______________________________________________________________________________________________________________________________________________________________________ & 2 Even if a coil or resistor is connected to the gate-balance adjustment connector corresponding to the heating coil so that the supplied power is smaller than the power supplied to the other heating coil Good. Of course, any combination of capacitors, coils, and resistors can be used. However, if a resistor is used as a gate balance adjustment circuit, power is generated, and in that respect, the other two are more desirable. Needless to say, the effect of the gate balance adjustment circuit increases as the value of the element increases. Therefore, the operator can view the temperature display or check the state of the resin in each gate hole, and connect an element with an appropriate value to an appropriate gate-parameter adjustment connector. Or a plurality of gate-parameter adjusting circuits having different values may be set in advance for each ripening coil in advance so that they can be connected according to the humidity difference between the chips. An element having an appropriate value may be selected for connection.
さ ら に第 5 図に示す よ う にその切換を制御回路 62の制御 の下に自動的に行なう よ う に してもよい。 すなわち第 5 図 に示す中継ポ 、ソ クス 40 a において各ゲー 卜バラ ンス調整用 コネ ク タ 一 は 6つの固定接点とその 6つの固定接点のう ち 1 つ に選択的に接触せ しめられる 1 つの可動接点とを備え た リ レー 1 2 1 , 1 22 , 1 23 , 1 24からな つ ている。 各 リ レ - 1 2 1〜 1 24の 6つの接点のう ちの 5 つ に はそれぞれ値の -^- 異なるコ ンデンサーが接点されてお り 、 残り の 1 つの接点 はオープンにな っ て いる。 各 リ レ ー 121〜 124は前記制御 回路 62に よ っ て制御さ れる リ レー駆動回路 125によ っ て駆 動されるよ う にな っ ている。 制御回路 62は前記熱電対 54a 〜 54(1 から入力 さ れる 4 つのチッ プ 36a 〜 36(1 の温度のパ ラツキに応じ て リ レー 121〜 124を選択的に駆勅 し て所望 の値のコ ンデンサーを対応する加熟コ イ ル 38a 〜 38d に並 列に接統するよ う に リ レ ー駆動回路 125を制御す る。 Further, as shown in FIG. 5, the switching may be automatically performed under the control of the control circuit 62. That is, in the relay port and the sock 40a shown in FIG. 5, each gate balance adjustment connector can be selectively brought into contact with six fixed contacts and one of the six fixed contacts. It comprises relays 121, 122, 123, and 124 having three movable contacts. For each of the relays-1 2 1 to 1 24, 5 of the 6 contacts -^-A different capacitor is connected, and the other contact is open. Each of the relays 121 to 124 is driven by a relay drive circuit 125 controlled by the control circuit 62. The control circuit 62 selectively executes the relays 121 to 124 according to the temperature variation of the four chips 36a to 36 (1 input from the thermocouples 54a to 54 (1) to set the desired value. The relay drive circuit 125 is controlled so that the capacitors are connected in parallel to the corresponding ripening coils 38a to 38d.
なお 、 金型内に通さ れる リ ー ド棕は実用上余り太く する こ と はできないが、 電力供給回路か ら コ イルま での耱路の 表皮効果を含めた抵抗ロ スをできるだけ小さ く するために 中継ボ ッ クス 40ま でのライ ンに はできるだけ高周波抵抗の 小さい太い導線を使用 し 、 中継ボ ッ クス 40はできるだけ金 型に近い位置に配するのが望 ま し い。  Although the lead palm passed through the mold cannot be made too thick for practical use, the resistance loss including the skin effect of the circuit from the power supply circuit to the coil should be minimized. Therefore, it is desirable to use a thick conductor with as low a high-frequency resistance as possible for the line up to the relay box 40, and to arrange the relay box 40 as close to the mold as possible.
上記実施例において は、 射出後 ( タ イ マー T 2 が U ρ し た後 ) に制御値 Cを最小に し て 、 すなわち加熟コ イル 38a 〜 38(i への電力の供給を断つ こ と に よ ゥ て定常温度 ( 設定 温度) まで下げているが冷却水等に よ っ てチッ プ 36a 〜 36 d の温度を定常温度ま で積極的に下げるよ う に して もよい, これに は各チッ プの周囲に 、 第 7 図に示すよ う に加熱用 コ イ ルと交互になるよ う に冷却媒体用パイ プ Pを巻回 して そのパイプ P に冷却媒休を通すよ う に し てもよい し 、 第 8 図に 38a 一 で示すよ う に加熟コイ ル用の導線を中空のパイ プ状導粽と しその内部に冷却媒体を通すよ う に し て もよい < 特に後者の場合にはチッ プ周 り の構造が複雑化するのを防 止できる ^けでなく 、 加熟コイル用導糠の酸化を防止する こ ともできるという長所がある。 In the above embodiment, after injection and this sever the supply of power with minimal control value C in (Thailand mer T 2 is after U [rho), i.e. the pressurized Jukuko yl 38a ~ 38 (i Therefore, the temperature of the chips 36a to 36d may be positively lowered to the steady temperature by cooling water or the like. As shown in Fig. 7, wrap a cooling medium pipe P around each chip so that it alternates with the heating coil, and pass the cooling medium through the pipe P. Alternatively, as shown by 38a-1 in Fig. 8, the conductor for the ripened coil may be a hollow pipe-shaped lead and a cooling medium may be passed through it. In the latter case, in particular, the structure around the chip can be prevented from becoming complicated, and there is an advantage that oxidation of the bran for the ripening coil can be prevented.
さ ら に、 加熟コ イルの离温化を防止するよう に し たチッ プ周 り の構造の搠を第 9 図に示す。 この図の镧において は チヅプ 36 a は上端に フ ラン ジ部 93を有し 、 このフ ランジ部 93よ り下儺の円筒部の外面 94と加熟コイル 38 a との間に厚 さ約 1 湖程度の空気が充満 し fc空気断熟層 92が形成されて いる 。 この加熟コ イル 38 a はこの状態のま ま充填剤 91を介 してケース 86に支持され、 ケース 86の外面はキ ヤ ビテ ィ ブ レー 卜 2 6と接饑 している 。  Fig. 9 shows the details of the structure around the chip to prevent the ripening coil from heating. In the figure, the tip 36a has a flange portion 93 at the upper end, and a thickness of about 1 mm is formed between the outer surface 94 of the cylindrical portion below the flange 93 and the ripening coil 38a. The lake is filled with air and the fc air ripening layer 92 is formed. The ripened coil 38a is supported by the case 86 via the filler 91 in this state, and the outer surface of the case 86 is in stark contact with the cavity plate 26.
このよ う な構造にする 《! 、 加熟コ イ ル 38 a に よ り チップ 36 a が加熱されても、 空気断熟屠 92に よ り 断熟されるため チッ プ 36a の熟が加熱コイル 38 a に伝わ り に く く 、 さ ら に 加熱コイル 38 a は充壤剤 9 1およびケー ス 86を介 し て 、 水冷 却さ れて比較的低温になっ ているキ ヤ ビティ プ レー 卜 26と 接蝕 し ているので、 加熟コ イル 38 a の熟をキ ヤ ビティ プ レ 一 卜 26の方へ放出させる こ とができ、 加熟コ ィ ル 38 a を比 較的低混に保つ こ とができるよ う になつ ている。 このため 充塡剤 91およぴケース 86は熟伝導率の良い材料を使用 ^る こ とが望ま しい。  With this structure, even if the chip 36a is heated by the ripening coil 38a, the chip 36a is ripened by the air-ripening slaughter 92, so that the ripening of the chip 36a In addition, the heating coil 38a is cooled to a relatively low temperature by the water cooling via the soil agent 91 and the case 86 through the heating coil 26a. The ripening of the ripening coil 38a can be released toward the cavity plate 26, keeping the ripening coil 38a relatively low in mixing. You can do that. For this reason, it is desirable that the filler 91 and the case 86 be made of a material having a good conductivity.
なお、 空気断熟屢 92を設けるこ とに よる加熟効率の問題 が考え られるが、 本発明はコ イルに よる高周波誘導加熱で あるため、 空気断熟層 92の厚さをある程度以下に してお く - - 限り加熟効率の低下はほ とんど問題に な ら ない。 実際に は 加熱コ イ ルの卷き方向長さが 20酺 、 コ イル内径 7 麵 、 コ ィ ル外径 9 MIのコ イルで空気断熟層を 1棚に し ているが、 加 熟効率の低下はほ とんど生 じない。 Although there may be a problem with the ripening efficiency due to the provision of the air ripening layer 92, the thickness of the air ripening layer 92 is reduced to some extent because the present invention employs high-frequency induction heating using a coil. In --As long as the ripening efficiency decreases, there is almost no problem. Actually, the heating coil has a coil length of 20 mm, a coil inner diameter of 7 mm, and a coil outer diameter of 9 MI. Almost no decline occurs.
なお、 第 10図に示されるよ う に上記コ イ ル 38a の内径 «¾ に高周波誘導加熟に影響を与えない、 例えば雾母から なる パイ プ 95を設け充塡剤 91の充唭を行ない葛 く し て も よ い。  As shown in FIG. 10, the inner diameter of the coil 38a is not affected by high-frequency induction ripening. For example, a pipe 95 made of a mother is provided and the filler 91 is charged. You may be sick.
さ ら に 、 ケース 86を円筒状に し て外面全体がキ ヤ ビテ ィ プ レ ー 卜 26に接触する例を上記に示 し たが、 倒えば、 第 11 図の断面 ( 第 10図の矢印 A — A断面 ) に示す よ う に 、 ケー ス 86の外面の一部がキ ヤ ビテ ィ プ レ ー 卜 26に接触するよ う に し て もよ い。  Further, an example in which the case 86 is cylindrical and the entire outer surface contacts the cavity plate 26 is shown above. As shown in A-A section), a part of the outer surface of the case 86 may contact the cavity plate 26.
ま た 、 コ イルアセ ンブ リ ( ケース 86、 充塡剤 91、 加熟コ ィル 38a および雲母パイ プ 95 ) に対 し て チッ プ 36a は別休 に し て もよい し 、 一体に して もよい。  Also, the tip 36a of the coil assembly (case 86, filler 91, ripening coil 38a, and mica pipe 95) may be separated or may be integrated. Good.
上記ケー ス 86の材料と し て は非磁性体材料、 例えばステ ン レス、 アルミ ニウム等が好 ま し く 、 充壙剤 と して はセラ ミ ッ クス等が好ま しい。  The case 86 is preferably made of a non-magnetic material such as stainless steel or aluminum, and the pitting agent is preferably made of ceramics.
本実施例の装置は、 制御回路 62内に上記加熟コ イ ル 38a 〜 38d がシ ョ ー 卜 し た場合に これを検出 する シ ョ ー 卜 検出 手段を有 している。 加熱コ イル 38a 〜 38d 自体の電気抵抗 はごく 小さい ため、 加熟コ イル 38a 〜 38d が シ ョ ー ト し た 場合でも、 抵抗の変化がほ とんど表われず 、 このためシ ョ 一 卜 の有無を電流, 電圧, 電圧変化等に基づき電気的に検 出するのは非常に難しい。 そこで、 本発明において は、 熟 電対 54 a 〜 5 4 d によ り検出 した チッ プ 36 a 〜 36 d の先端部 の温度およびこの温度の変化率に基づいてシ ョ ー 卜の有無 を検出するよう に している。 The apparatus of this embodiment has a short circuit detecting means for detecting when the ripening coils 38a to 38d are short-circuited in the control circuit 62. Since the electric resistance of the heating coils 38a to 38d themselves is very small, even when the ripening coils 38a to 38d are short-circuited, the change in the resistance hardly appears, so that the short-circuiting is performed. Is electrically detected based on current, voltage, voltage change, etc. Very difficult to get out. Therefore, in the present invention, the presence or absence of a short is detected based on the temperatures of the tips of the tips 36a to 36d detected by the mature couples 54a to 54d and the rate of change of this temperature. I am trying to do it.
具体的に は、 チッ プ 36 a 〜 36 d の先端部での所定温度、 すなわち樹脂洩れや糸引きを生 じ ないよ う な臨界的濯度の 範囲内の下限値以下の点に判定疽 ( 例えぱ 1 5 0で ) を設定 し、 この判定値よ り低温の領域ではチッ プは加熱コ イルに より加熟され上記温度は上昇方向に変化するため、 加熟コ ィル通電特において温度上昇の鈍化も し く は、 逆に温度が 低下するのを検知 して コ イルのシ ョ 一 卜 を検知するよう'に し ている。 さ ら に 、 上記判定値よ り 高温の成形領域ではチ ッ プ温度をほぼ一定に保つ よ う に適度の加熟が行なわれる ため、 チッ プ想度の所定率を超えた急激な低下の検知 に よ り コ イ ルのシ ョ ー トを検知するよ う-になつ ている。  Specifically, the temperature is determined at a predetermined temperature at the tip of the chips 36a to 36d, that is, at a point below the lower limit value within the range of the critical rinsing degree that does not cause resin leakage or stringing. For example, で is set to 5). In a region where the temperature is lower than this judgment value, the chip is ripened by the heating coil and the temperature changes in the rising direction. The rise is slowed or, conversely, a drop in temperature is detected to detect a short shot of the coil. In addition, in the molding region where the temperature is higher than the above-mentioned judgment value, appropriate ripening is performed so as to keep the chip temperature almost constant. In this way, a short shot of the coil is detected.
上記実施例において は、 高周波霉カ供給回路 42と し て周 波数が低く なる程供拾電力が大き く なる転流方式回路を使 用 し たが、 逆に周波数が髙く なる程供給電力 が大きく なる 靨向方式回路も使用するこ とができる。 さ ら に前記実施倒 においては S度制御回路 5 2は 4つ のチッ プ 36 a 〜 36 d の先 端部の実際 S度の平均値と設定温度を比较するよ う にな つ ているが、 どれか 1 つのチッ プの先端部の実際温度と設定 S度とを比较するよう に してもよい。  In the above embodiment, a commutation type circuit was used as the high-frequency power supply circuit 42, in which the supply power increases as the frequency decreases, but the supply power increases as the frequency increases. Larger circuits can also be used. Furthermore, in the above implementation, the S degree control circuit 52 compares the average value of the actual S degrees at the leading ends of the four chips 36a to 36d with the set temperature. Alternatively, the actual temperature at the tip of any one of the chips may be compared with the set S degree.

Claims

請 求 の 範 囲 ) 固定働ハーフ と移動側ハー フ とからな り 、 両ハー フ を閉 じ た とき に形成される複数のキ ヤ ビテ ィ と 、 そのキ ャ ビテ ィ と成形機のノズルとを接続 し 、 各キ ヤ ビテ ィ に 開口 し たゲー 卜孔から各キ ヤ ビテ ィ 内に 溶融 し た樹脂を 供拾する樹脂通路 とを備えた金型、 および  (Scope of Claim) Consists of a fixed working half and a movable half, and a plurality of cavities formed when both halves are closed, and the cavities, the nozzles of the molding machine, and the like. A mold having a resin passage for supplying molten resin into each cavity from a gate hole opened in each cavity, and
その金型の前記樹脂通路を加熟 し てその樹脂通路内の 樹脂を溶融状態に保つ加熟手段、  Ripening means for ripening the resin passage of the mold and keeping the resin in the resin passage in a molten state;
から なるホ ッ 卜 ラ ンナ ー式射出成形装鼸に おいて 、 前記樹脂通路の少な く とも各ゲー 卜孔近傍の部分が、 高周波誘導加熟で加熱 し得る材料で形成されたパイ プ状 部材に よ っ て形成さ れてお り 、 前記加熟手段がその各パ イ ブ状部材の周囲に巻回され、 互い に直列に接続された 複数の高周波誘導加熱コ イル、 その高周波誘導加熟コ ィ ルに髙周波電力を供給する高周波電力供給手段、 および 温度検出手段からの温度信号に応じて 、 そ の 為 周 波 電力 供給手段から前記髙周波誘導加熟コ イ ルに供袷される電 力を制御 し て前記パイ プ状部材の温度を所望の値に制御 する濁度制御手段を備え てい る こ と を特徴と する成形装 置。  In a hot runner type injection molding apparatus comprising: a pipe-shaped member, at least a portion of each of the resin passages near each gate hole is formed of a material which can be heated by high-frequency induction ripening. A plurality of high-frequency induction heating coils wound around the respective pipe-like members and connected in series with each other; In response to a temperature signal from a high-frequency power supply means for supplying high-frequency power to the coil and a temperature detection means, the frequency power supply means supplies the coil to the low-frequency induction ripening coil. A molding apparatus comprising turbidity control means for controlling electric power to control the temperature of the pipe-shaped member to a desired value.
) 前記高周波電力供袷手段に よ っ て前記高周波加熟コ ィルに供給される髙周波電力の周波数が 20 K H z 〜 50 K H z であるこ とを特撖と する特許請求の範囲第 1 項記載 の成形装置。 The claim 1, wherein a frequency of the high frequency power supplied to the high frequency ripening coil by the high frequency power supplying means is 20 kHz to 50 kHz. Description Molding equipment.
) 前記各高周波誘導加熟コ イ ルが前記パイ プ状部材の 周囲に前記ゲー 卜孔に近い部分に密に巻かれているこ と を特徴とする特許請求の箱囲第 1 項ま たは第 2 項記載の 成形装霾。 The box-shaped enclosure according to claim 1 or 2, wherein each of the high-frequency induction ripening coils is densely wound around the pipe-shaped member at a portion near the gate hole. Molded information described in paragraph 2.
) 前記各高周波誘導加熟コ イルがその長さの中央部に おい て疎、 先端部におい て密に巻かれているこ とを特徴 と する特許請求の範囲第 3 項記載の成形装置。 4. The molding apparatus according to claim 3, wherein each of the high-frequency induction ripening coils is sparse at a central portion of the length thereof and densely wound at a distal end portion thereof.
) 前記各高周波誘導加熱コ イルが前記パイ プ状部材の 周囲に形成された燦旋溝内に固定されているこ とを特徴 とする特許請求の箱囲第 1 項から第 4 項のいずれか 1 項 記載の成形装置。 The box-shaped enclosure according to any one of claims 1 to 4, wherein each of the high-frequency induction heating coils is fixed in a spiral groove formed around the pipe-shaped member. The molding apparatus according to item 1.
) 前記加熟手段が、 前記各高周波誘導加熱コ イ ルに並 列に接続されてその加熟コ イルへの電力配分を変えるゲ 一 卜パラ ンス調整用回路を接耪するための、 前記各加熟 コ イルに対応し て設け られたゲー 卜パラ ンス調整用回路 接続手段を備えて いるこ とを特徴と する特許請求の箄囲 第 1 項記載の成形装覼。 ) Wherein said ripening means is connected in parallel to each of said high frequency induction heating coils to connect a gate-parameter adjusting circuit for changing power distribution to said ripening coil; 2. The molding apparatus according to claim 1, further comprising a gate connection circuit connecting means provided corresponding to the ripening coil.
> 前記加熟手段が、 前記高周波電力供給手段からの前 記高周波誘導加熟コ イ ルへの電力供铪を所定の周期で所 定の時園だけ停止する切換手段を備えており 、 前記温度 制御手段が前記高周波電力供給手段からの前記髙周 ¾誘 導加熱コ イ ルへの電力供給が停止されている間に前記温 度信号を読み取るよ う にな つ ているこ とを特徴と する特 許請求の範囲第 6項記載の成形装置。 The ripening means includes switching means for stopping the power supply from the high-frequency power supply means to the high-frequency induction ripening coil at a predetermined cycle at a predetermined time; and The control means reads the temperature signal while the power supply from the high-frequency power supply means to the peripheral induction heating coil is stopped. Special 7. The molding apparatus according to claim 6, wherein
) 前記提度制御手段が前記成形機からの信号を受け て 前記パイ プ状部材の温度を前記所望の値に制御するのに 必要な電力 よ り大きい電 を所定の時間だけ前記高周波 誘導加熱コ イ ルに供給するよ う にな っ て いるこ とを特徴 と する特許請求の範囲第 7 項記載の成形装置。 ) The high-frequency induction heating coil for a predetermined period of time is supplied with a power larger than the power required to control the temperature of the pipe-shaped member to the desired value by receiving the signal from the molding machine. 8. The molding device according to claim 7, wherein the molding device is supplied to an oil.
) 前記加熟手段が 、 前記温度検出手段からの前記温度 信号を受け て温度変化率を算出 し 、 該温度変化率 と前記 温度信号に基づく 温度の関係から前記高周波誘導加熟コ ィルのシ ョ 一 卜 の有無を検出 する シ ョ 一 卜 検 ffi手段を備 えて いる こ とを特徴とする特許請求の範囲第 8 項記載の 成形装置。 The ripening means receives the temperature signal from the temperature detection means, calculates a temperature change rate, and obtains a temperature of the high frequency induction ripening coil from a relationship between the temperature change rate and a temperature based on the temperature signal. 9. The molding apparatus according to claim 8, further comprising a shot detection means for detecting the presence or absence of a shot.
) 前記各高周波誘導加熟コ イ ルが保持部材に よ っ て保 持さ れて コ イルアセ ンブ リ を形成 し て お り 、 その保持部 材が前記パイプ状部材の外周面 との間 に 断熟層を介 して 前記髙周波誘導加熱コ イルを保持するよ う にな っ て いる こ と を特徴とする特許請求の範囲第 9 項記載の成形装置 ) 前記コ イルアセ ンブ リ の外壁が前記金型 と接触 し て いる こ とを特徴 と する特許請求の範囲第 1 0項記載の成形 装置。 ) Each of the high-frequency induction ripening coils is held by a holding member to form a coil assembly, and the holding member is cut between the coil and the outer peripheral surface of the pipe-shaped member. The molding apparatus according to claim 9, wherein the high frequency induction heating coil is held through a mature layer.10) The molding machine according to claim 9, wherein the outer wall of the coil assembly is 10. The molding apparatus according to claim 10, wherein the molding apparatus is in contact with a mold.
) 前記コ イルアセ ンブ リ と前記パイ プ状部材と が一体 に形成されている こ と を特徴 と する特許請求の範囲第 1 1 項記載の成形装置。The molding apparatus according to claim 11, wherein the coil assembly and the pipe-shaped member are integrally formed.
) 前記コ イ ルアセ ンブリ と前記パイ プ状部材 とが別体 に形成されている こ とを特徴と する特許請求の範囲第 1 1 項記載の成形装置。 ) The coil assembly is separate from the pipe-shaped member. Molding apparatus Claims first 1, wherein said that you are formed.
1 4 ) 前記断熟雇が空気断熟雇であるこ とを特徴とする特 許請求の範囲第 1 1項記載の成形装置。  14) The molding apparatus according to claim 11, wherein the severing employee is an air severing employee.
1 5 ) 前記温度制御手段が前記成形.機からの信号を受けて 前記パイ プ状部材の温度を前記所望の値に制御するのに 必要な電力 よ り大きい電力を所定の時園だけ前記寓周波 誘導加熱コイルに供給するよ う にな っ ているこ とを特徴 と する待許蕭求の範囲第 6項記載の成形装置。  15) The temperature control means receives a signal from the molding machine, and supplies electric power, which is larger than electric power necessary to control the temperature of the pipe-shaped member to the desired value, only for a predetermined time. 7. The molding apparatus according to claim 6, wherein the apparatus is supplied to a frequency induction heating coil.
1 6 ) 前記加熟手段が、 前記握度検出手段から の前記温度 信号を受けて温度変化率を算出 し 、 該温度変化率と前記 混度信号に基づく 温度の関係か ら前記髙扇波誘導加熟コ ィルのシ ョ ー 卜 の有無を検出するショ ー 卜検出手段を備 えているこ とを特徴と する特許請求の範囲第 1 5項記載の 成形装置。  16) The ripening means receives the temperature signal from the grip detection means, calculates a temperature change rate, and calculates the fan wave induction from the relationship between the temperature change rate and the temperature based on the mixture signal. 16. The molding apparatus according to claim 15, further comprising a short detecting means for detecting the presence or absence of a short-cut of the ripening coil.
1 7 ) 前記加熱手段が、 前記高周波電力供給手段からの前 記高周波誘導加熟コ イルへの電力供給を所定の周期で所 定の時園た'け停止する切換手段を備えてお り 、 前記温度 制御手段が前記高周波電力供給手段からの前記高周波誘 導加熱コ イ ルへの電力供給が停止されている間に前記温 度信号を読み取るよ う にな つ ているこ とを特徴 とする特 許請求の範囲第 1 項記載の成形装置。  17) The heating means includes switching means for stopping the power supply from the high-frequency power supply means to the high-frequency induction ripening coil at a predetermined time and at a predetermined time. The temperature control means reads the temperature signal while power supply from the high-frequency power supply means to the high-frequency induction heating coil is stopped. The molding device according to claim 1.
1 8 ) 前記溫度制御手段が前記成形機からの信号を受けて 前記パイ プ状部材の温度を前記所望の値に制御するのに 必要な電力 よ り大きい電力 を所定の ^間だけ前記高周波 誘導加熱コイルに供袷するよ う にな ゥ て いるこ とを特徴 と する特許請求の範囲第 1 7項記載の成形装置。18) When the temperature control means receives a signal from the molding machine and controls the temperature of the pipe-shaped member to the desired value. 18. The molding apparatus according to claim 17, wherein a power larger than a required power is supplied to said high-frequency induction heating coil only for a predetermined time.
) 前記加熟手段が 、 前記温度検出手段から の前記渥度 信号を受けて握度変化率を算出 し 、 該温度変化率 と前記 灞度信号に基づく 温度の関係から前記高周波誘導加熟コ ィルのシ ョ 一 卜 の有無を検出 する シ ョ 一 卜検出手段を備 えているこ とを特徴とする特許請求の簕囲第 1 8項記載の 成形装置。 The ripening means receives the Atsushi degree signal from the temperature detecting means, calculates a grip change rate, and obtains the high frequency induction ripening coil from a relationship between the temperature change rate and a temperature based on the temperature signal. 18. The molding apparatus according to claim 18, further comprising a short detection means for detecting the presence or absence of a short shot of the tool.
) 前記各高周波誘導加熟コ イルが保持部材に よ っ て保 持さ れて コ イ ルア セ ンブ リ を形成 し て お り 、 その保持部 材が前記パイ プ状部材の外周面 との園 に断熟颺を介して 前記高周波誘導加熟コ イルを保持するよ う にな っ て いる こ とを特徴とする特許請求の範囲第 1 9項記載の成形装置 ) 前記加熟手段が、 前記溫度検出 手段か ら の前記温度 信号を受けて温度変化率を算出 し 、 該温度変化率と前記 温度信号に基づく 握度の関係か ら前記高周波誘導加熟コ ィルのシ ョ 一 卜 の有無を検出するシ ョ 一 卜検出手段を備 えているこ と を特徴 と する特許請求の範囲第 1 7項記載の 成形装置。 ) Each of the high-frequency induction ripening coils is held by a holding member to form a coil assembly, and the holding member is in contact with the outer peripheral surface of the pipe-shaped member. 10. The molding apparatus according to claim 19, wherein the high-frequency induction aging coil is held through a ripening step. A temperature change rate is calculated by receiving the temperature signal from the temperature detection means, and the presence or absence of a short circuit of the high frequency induction ripening coil is determined based on a relationship between the temperature change rate and the grip based on the temperature signal. 18. The molding apparatus according to claim 17, further comprising a short-circuit detecting means for detecting the molding.
) 前記温度制御手段が前記成形機からの信号を受けて 前記パイ プ状部材の温度を前記所望の値に制御するのに 必要な電力 よ り大きい電力を所定の時間だけ前記离周波 誘導加熱コ イルに供給するよ う にな っ て いる こ と を特徴 - と する特許請求の範囲第 1 項記載の成形装置。) The temperature control means receives a signal from the molding machine and applies a power larger than a power required to control the temperature of the pipe-shaped member to the desired value for a predetermined time. Is to supply to the -The molding apparatus according to claim 1.
) 前記加熟手段が、 前記種度検出手段から の前記濕度 信号を受けて温度変化率を算出 し、 該温度変率と前記温 度信号に基づく 温度の関係から前記髙周波誘導加熟コ ィ ルのシ ョ 一 卜 の有無を挨出するシ ョ一 卜検出手段を備え ているこ とを特徴と する特許請求の範囲第 22項記載の成 形装置。) The ripening means receives the humidity signal from the seedness detection means, calculates a temperature change rate, and calculates the temperature change rate and the temperature based on the temperature signal based on the relationship between the temperature change rate and the temperature. 23. The molding apparatus according to claim 22, further comprising: a short detection means for indicating whether or not there is a short shot of the tool.
) 前記各高周波誘導加熟コイルが保持部材に よ っ て保 持されて コ イルアセ ンブリ を形成してお り 、 その保持部 材が前記パイプ状部材の外周面との園に断熱雇を介して 前記高周波誘導加熟コ イルを保持するよ う にな っ ている こ とを待截とする特許請求の範囲第 23項記載の成形装置) 前記加熟手段が、 前記混度検出手段か らの前記温度 信号を受けて温度変化率を算出 し 、 該温度変化率と前記 温度信号に基づく 温度の関係から前記高周波誘導加熱コ ィルのシ ョ 一 卜の有無を検出するシ ョ 一 卜検出手段を備 えている こ とを特徴 とする特許請求の籍囲第 1 項記載の 成形装置。) Each of the high-frequency induction ripening coils is held by a holding member to form a coil assembly, and the holding member is insulated to the outer peripheral surface of the pipe-shaped member through a heat insulating member. 24.The molding apparatus according to claim 23, wherein the high-frequency induction ripening coil is held. A short-circuit detecting means for calculating a temperature change rate in response to the temperature signal, and detecting the presence or absence of a short-circuit of the high-frequency induction heating coil from a relationship between the temperature change rate and a temperature based on the temperature signal; The molding apparatus according to claim 1, wherein the molding apparatus is provided with:
) 前記各高周波誘導加熱コ イルが保持部材に よ っ て保 持されてコ イルアセ ンブリ を形成 し てお り 、 その保持部 材が前記パイプ状部材の外周面との園に断熟雇を介して 前記高周波誘導加熟コ イルを保持するよ う にな っ て いる こ とを特镥とする特許諳求の籍囲第 1 項記載の成形装置) 前記コ イルアセ ンブリ の外壁が前記金型 と接被 し て いる こ と を特徴と する特許請求の範囲第 10項記載の成形 装置。 ) Each of the high-frequency induction heating coils is held by a holding member to form a coil assembly, and the holding member is placed in a garden with the outer peripheral surface of the pipe-like member through employment. The molding apparatus according to claim 1, wherein the high-frequency induction ripening coil is held by the mold.The outer wall of the coil assembly is the same as the mold. Covered The molding apparatus according to claim 10, wherein:
28) 前記コ イ ルアセ ンブ リ と前記パイプ状部材とが一体 に形成されて いるこ とを特徴 と する特許請求の範囲第 27 項記載の成形装置。  28. The molding apparatus according to claim 27, wherein the coil assembly and the pipe-shaped member are formed integrally.
29) 前記コ イ ルアセ ンブ リ と前記パイ プ状部材 とが別体 に形成さ れているこ と を特徴 と する特許請求の箱囲第 27 項記載の成形装置。  29. The molding apparatus according to claim 27, wherein the coil assembly and the pipe-shaped member are formed separately.
30) 前記断熟層が空気断熱層であるこ と を特徴と いる特 許請求の範囲第 27項記載の成形装置。  30) The molding apparatus according to claim 27, wherein the ripening layer is an air heat insulating layer.
PCT/JP1985/000091 1984-02-28 1985-02-27 Hot runner-type injection molding device WO1985003904A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE19853590090 DE3590090T (en) 1984-02-28 1985-02-27 Hot runner injection molding machine
CH4674/85A CH668220A5 (en) 1984-02-28 1985-02-27 HOT RUN INJECTION MOLDING SYSTEM.
PCT/JP1985/000091 WO1985003904A1 (en) 1984-02-28 1985-02-27 Hot runner-type injection molding device
US06/817,855 US4726751A (en) 1984-02-28 1985-02-27 Hot-runner plastic injection molding system
DE3590090A DE3590090C2 (en) 1984-02-28 1985-02-27
JP60159649A JPS61197216A (en) 1984-02-28 1985-07-19 Hot runner type injection molding device
JP60159648A JPS61197215A (en) 1984-02-28 1985-07-19 Hot runner type injection molding device

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP3712184A JPS60180811A (en) 1984-02-28 1984-02-28 Hot-runner type injection molding machine
JP59/37121 1984-02-28
JP9627684A JPS60239218A (en) 1984-05-14 1984-05-14 Hot runner type injection molding apparatus
JP59/96276 1984-05-14
JP18735584A JPS6164419A (en) 1984-09-07 1984-09-07 Hot runner type injection molding device
JP59/187355 1984-09-07
JP59/231057 1984-11-01
JP23105784A JPS61108522A (en) 1984-11-01 1984-11-01 Hot runner type injection molding equipment
PCT/JP1985/000091 WO1985003904A1 (en) 1984-02-28 1985-02-27 Hot runner-type injection molding device

Publications (1)

Publication Number Publication Date
WO1985003904A1 true WO1985003904A1 (en) 1985-09-12

Family

ID=44763611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1985/000091 WO1985003904A1 (en) 1984-02-28 1985-02-27 Hot runner-type injection molding device

Country Status (5)

Country Link
US (1) US4726751A (en)
JP (2) JPS61197215A (en)
CH (1) CH668220A5 (en)
DE (2) DE3590090C2 (en)
WO (1) WO1985003904A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105563784A (en) * 2016-02-18 2016-05-11 群达模具(深圳)有限公司 Injection mold sensor and manufacturing method of sensing components thereof

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134218A (en) * 1984-12-05 1986-06-21 Shigeru Tsutsumi Temperature control and display device of hot runner in injection molding system of thermoplastic synthetic resin
DE3827285A1 (en) * 1987-08-13 1989-02-23 Toshiba Machine Co Ltd CONTROL DEVICE FOR AN INJECTION MOLDING MACHINE
JPH01217883A (en) * 1988-02-25 1989-08-31 Jiyuuou:Kk Bobbin for dielectric heating coil
JPH01215524A (en) * 1988-02-25 1989-08-29 Hitachi Maxell Ltd Injection molding device
US5221507A (en) * 1990-04-24 1993-06-22 Devtech Labs, Inc. Process for coinjection molding of preforms for multi-layer containers
CA2022122C (en) * 1990-07-27 1998-02-03 Jobst Ulrich Gellert Pre-wired injection molding assembly
DE4206318C2 (en) * 1992-02-29 1994-06-16 Otto Maenner Multiple needle valve nozzle for injection molds
CA2083413C (en) * 1992-11-19 2000-07-04 Jobst Ulrich Gellert Injection molding nozzle with partially unheated heating element
US5885628A (en) * 1993-08-12 1999-03-23 Dynisco, Inc. Injection molding nozzle
US5591366A (en) * 1994-06-23 1997-01-07 Husky Injection Molding Systems Ltd. Injection molding heater including circuit breaking means
JP3232309B2 (en) * 1994-12-08 2001-11-26 株式会社ソディックプラステック Pre-plastic injection molding machine
JPH0890622A (en) * 1994-09-28 1996-04-09 Nec Tohoku Ltd Injection molding device
US5820900A (en) * 1996-08-21 1998-10-13 Mcgrevy; Alan N. Heating device for an injection mold apparatus
US5853631A (en) * 1997-12-08 1998-12-29 D-M-E Company Mold heater startup method
US6382946B1 (en) 1998-04-01 2002-05-07 Dtl Technology Limited Partnership Molding multi-layered articles using coinjection techniques
DE10080726B4 (en) * 1999-02-10 2007-03-01 Ju-Oh Inc., Hiratsuka Mold for a hot sprue injection molding machine and method of making the same
US6717118B2 (en) * 2001-06-26 2004-04-06 Husky Injection Molding Systems, Ltd Apparatus for inductive and resistive heating of an object
US6781100B2 (en) 2001-06-26 2004-08-24 Husky Injection Molding Systems, Ltd. Method for inductive and resistive heating of an object
JP3759480B2 (en) * 2001-10-05 2006-03-22 東洋機械金属株式会社 Injection molding machine
US20050181090A1 (en) * 2002-12-06 2005-08-18 Mold-Masters Limited Injection molding nozzle with embedded and removable heaters
US7118704B2 (en) * 2002-12-13 2006-10-10 Mold-Masters Limited Nozzle and method for making a nozzle with a removable and replaceable heating device
TWI223622B (en) * 2003-03-24 2004-11-11 Chien Hui Chuan Built-in high frequency induction-heating module for injection molding and thereof applications
CA2471439A1 (en) * 2003-06-20 2004-12-20 Mold-Masters Limited Mold and hot runner controller located on the machine platen
JP4365828B2 (en) * 2004-01-07 2009-11-18 住友重機械工業株式会社 Molding machine and temperature control method thereof
US20050236729A1 (en) * 2004-04-23 2005-10-27 Arnott Robin A Method and apparatus for vibrating melt in an injection molding machine using active material elements
EP2042290B1 (en) * 2005-04-07 2013-09-25 Mold-Masters (2007) Limited Injection molding apparatus
US20070215598A1 (en) * 2006-03-20 2007-09-20 Husky Injection Molding Systems Ltd. Controller for a heater and an associated method of use
US20080136066A1 (en) * 2006-11-15 2008-06-12 Xaloy, Incorporated Apparatus and method for inductive heating a workpiece using an interposed thermal insulating layer
PL1935609T3 (en) * 2006-12-22 2010-08-31 Mold Masters 2007 Ltd Injection molding system having a bus
CA2632093A1 (en) * 2007-05-25 2008-11-25 Mold-Masters (2007) Limited Hot runner having temperature sensor for controlling nozzle heater and related method
US20090004318A1 (en) * 2007-06-26 2009-01-01 Xaloy, Incorporated Induction tunnel coil
US20090057300A1 (en) * 2007-08-27 2009-03-05 Xaloy Incorporated Heating system for plastic processing equipment having a profile gap
US8007709B2 (en) * 2007-08-27 2011-08-30 Xaloy, Incorporated Synchronized temperature contol of plastic processing equipment
WO2009104678A1 (en) * 2008-02-20 2009-08-27 住友化学株式会社 Heater, resin molding apparatus, resin molding method and resin molded body
US20100110823A1 (en) * 2008-11-06 2010-05-06 Womer Timothy W Combined Screw Design and Heating Mechanism for Low Shear Resins
JP5731610B2 (en) * 2013-10-15 2015-06-10 ファナック株式会社 Power supply method for injection molding machine having transformer
CN105415630B (en) * 2015-11-25 2018-03-16 广东长盈精密技术有限公司 Heating control apparatus, heater and injection machine
CN112497668A (en) * 2020-11-18 2021-03-16 合肥晟泰克模塑科技有限公司 Hot runner heating device for injection molding of mold

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839427A (en) * 1981-09-03 1983-03-08 Jiyuuou Shoji Kk Apparatus for molding plastic
JPS58171932A (en) * 1982-04-02 1983-10-08 Jiyuuou Shoji Kk Heater for injection port for plastic molding
JPS5981152A (en) * 1982-11-01 1984-05-10 Jiyuuou Shoji Kk Hot-runner injection molding system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3339227A (en) * 1965-03-18 1967-09-05 Bell & Richardson Inc De Automatic controller for molding
US3520026A (en) * 1968-02-12 1970-07-14 Phillips Petroleum Co Runner system having resistance heated components
JPS5156869A (en) * 1974-11-14 1976-05-18 Toshiba Machine Co Ltd UOOMURANNAKANAGATANO NOZURUBUONDOSEIGYOSOCHI
GB1467180A (en) * 1975-06-13 1977-03-16 Eastholm Electronics Ltd Control apparatus for controlling electrical heaters
JPS6045571B2 (en) * 1980-06-18 1985-10-11 株式会社東芝 Mold equipment for resin sealing
CA1136814A (en) * 1980-07-15 1982-12-07 Jobst U. Gellert Hot tip seal
US4370115A (en) * 1980-07-28 1983-01-25 Takashi Miura Injection molding method and device
JPS5839417A (en) * 1981-09-04 1983-03-08 Showa Electric Wire & Cable Co Ltd Manufacture of heat-shrinkable tube
JPS5851126A (en) * 1981-09-22 1983-03-25 Toshiba Mach Co Ltd Method of controlling mold gate balance and apparatus therefor
JPS597575B2 (en) * 1981-11-20 1984-02-20 「あ」 堤 Synthetic resin injection molding method and equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839427A (en) * 1981-09-03 1983-03-08 Jiyuuou Shoji Kk Apparatus for molding plastic
JPS58171932A (en) * 1982-04-02 1983-10-08 Jiyuuou Shoji Kk Heater for injection port for plastic molding
JPS5981152A (en) * 1982-11-01 1984-05-10 Jiyuuou Shoji Kk Hot-runner injection molding system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105563784A (en) * 2016-02-18 2016-05-11 群达模具(深圳)有限公司 Injection mold sensor and manufacturing method of sensing components thereof

Also Published As

Publication number Publication date
DE3590090T (en) 1986-04-24
JPS61197215A (en) 1986-09-01
US4726751A (en) 1988-02-23
DE3590090C2 (en) 1989-12-14
JPH0550371B2 (en) 1993-07-28
JPS61197216A (en) 1986-09-01
CH668220A5 (en) 1988-12-15
JPH0433253B1 (en) 1992-06-02

Similar Documents

Publication Publication Date Title
WO1985003904A1 (en) Hot runner-type injection molding device
US4940870A (en) Induction heating apparatus for injection molding machine
US4327265A (en) Method for producing one or more contact connections between a lacquer-insulated wire and one or more contact parts of an electric component
JPH02500011A (en) Electrically heated pinpoint gate type injection conduit
US5234637A (en) Method for controlling the temperature of a layer in contact with a plastic material
JPS5927270B2 (en) Molten metal level detection device in continuous casting mold
JPH0360298B1 (en)
US5725307A (en) Wire temperature distribution measuring method for a wire electric discharge machine
CA1176818A (en) Method for control of billet stripping
JPS6164419A (en) Hot runner type injection molding device
JPH0531449B2 (en)
JP2000246769A (en) Mold for molding and method for molding
JP4753304B2 (en) Superconducting coil condition monitoring device, superconducting coil monitoring standard creation method, and superconducting energy storage device
JPH0437767B1 (en)
JPS5919805B2 (en) Rapid molding method for plastic film
JPH04189519A (en) Hot runner type injection molding equipment
JPS5981152A (en) Hot-runner injection molding system
JPH0427934B1 (en)
JP2577682B2 (en) Method and apparatus for measuring temperature of superconductor and method and apparatus for predicting quench of superconducting magnet
JPH039826A (en) Method and apparatus for indexing intermittent heating time for hot runner type injection molding equipment
JPH09159539A (en) Resin surface temperature sensor
JPH0596576A (en) Mold
JPH039825A (en) Method and apparatus for automatically setting gate temperature of hot runner type injection molding equipment
JPH09314392A (en) Molding device for making tablet of powder
JPS61176460A (en) Metal die

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): CH DE US

RET De translation (de og part 6b)

Ref document number: 3590090

Country of ref document: DE

Date of ref document: 19860424

WWE Wipo information: entry into national phase

Ref document number: 3590090

Country of ref document: DE