WO1985003649A1 - Procede et appareil de conditionnement d'un fluide magnetique resonnant - Google Patents

Procede et appareil de conditionnement d'un fluide magnetique resonnant Download PDF

Info

Publication number
WO1985003649A1
WO1985003649A1 PCT/US1984/000255 US8400255W WO8503649A1 WO 1985003649 A1 WO1985003649 A1 WO 1985003649A1 US 8400255 W US8400255 W US 8400255W WO 8503649 A1 WO8503649 A1 WO 8503649A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
magnetic
velocities
maximize
over
Prior art date
Application number
PCT/US1984/000255
Other languages
English (en)
Inventor
Klaus J. Kronenberg
Robert G. Bonde
Original Assignee
Kronenberg Klaus J
Bonde Robert G
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kronenberg Klaus J, Bonde Robert G filed Critical Kronenberg Klaus J
Priority to EP19840901461 priority Critical patent/EP0174307A1/fr
Priority to PCT/US1984/000255 priority patent/WO1985003649A1/fr
Publication of WO1985003649A1 publication Critical patent/WO1985003649A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/481Treatment of water, waste water, or sewage with magnetic or electric fields using permanent magnets
    • C02F1/482Treatment of water, waste water, or sewage with magnetic or electric fields using permanent magnets located on the outer wall of the treatment device, i.e. not in contact with the liquid to be treated, e.g. detachable

Definitions

  • This invention relates generally to apparatus and methods of conditioning fluid flow in a conduit so as to prevent and reduce the build up of mineral deposits on the inner walls of the conduit. More particularly, the invention improves upon those devices which condition by impression of alternating magnetic fields upon the fluid.
  • scale reduction effic ⁇ iency can drop significantly, typically by more than 50%, when the flow rate increases or decreases by half from the narrow optimum treatment range. Some drop is also observed when mineral content and structure of the liquid changes. In cer ⁇ tain Metropolitan water districts, for instance, water mineral characteristics change due to seasons. Mineral content also changes with man-made blending of available water, from well, river and reservoir sources, each of which can change with seasonal rain water content. Thus magnetic treatment range, even when optimized for onevelocity can be too narrow to ac- comodate normal variations of flow velocities within the fluid conduit and to changes in fluid structure and mineral content. In addition, early devices were physically constructed such that magnetic field spacing could not be readily varied to accomodate these changes once a system had been installed.
  • the invention disclosed here overcomes the above limita ⁇ tions by combining a. series of individual magnetic treatment sections, called frequency modules, each of which has been separately optimized in accordance with the above principles.
  • frequency modules each of which has been separately optimized in accordance with the above principles.
  • indi-vidual sections which have had their magnetic ele ⁇ ments spaced so as to optimize conditioning at a particular
  • My invention is arranged so that the group of individual frequency modules are physically combined axially into a unit, which for convenience, is referred to as a generator pack.
  • a generator pack will contain an even number of frequency modules, each set for maximum efficiency at a particular spacial frequency or fluid velocity. The number of modules cascaded will depend upon the broadness of the range of fre ⁇ quencies or fluid velocities expected to be treated.
  • the genera ⁇ tor pack will be covered and supported adjacent the outside of a fluid conduit by means of an attachment chassis.
  • This ar- rangment provides the advantages of minimum fluid flow obstruc ⁇ tion and maximum ease of installation and replacement.
  • the vel ⁇ ocity range may be quickly tailored by insertion of a new generator pack.
  • my device Although my device is not designed to be a magnetic par ⁇ ticle separator, it will attract such particles over a period of time. The particles will collect on the inside of the con ⁇ duit wall and will tend to shunt the magnets. With my portable outside attachment means, the device may be easily and rapidly loosened and slid upstream on the conduit.
  • the magnetic treatment sections of the generator pack may be arranged co- axially about the fluid conduit. Since such configurations can result in increased flux density with given volumn constraints,
  • Figure 1 is an isometric view of the cover used to protect the generator pack.
  • Figure 2 is an isometric view of the generator pack re ⁇ moved from the cover of Figure 1.
  • Figure 3 is an isometric view of the mounting chassis structure with attached strap type fasteners, positioned over the enclosed generator pack.
  • Figure 4 is an end cross section of our assembled inven ⁇ tion in working engagement with a fluid conduit work piece.
  • Figure 5 is an end cross section of one unit attached to a cluster of three pipes by means of a strap-type fastener.
  • Figure 6 presents graphical data showing the variation in magnetic field strength under a set of variable spaced poles.
  • Figure 7 presents graphical data showing the variation in water conditioning efficiency with velocity in the conduit.
  • Figure 8 shows a seri.es of partial side cross-sectioned views of alternate generator pack embodiments. Best Mode for Carrying Out the Invention
  • each individual module contains a bar magnet 1, side face magnetized and made preferrably of a true permanent magnet material such as strontium ferrite.
  • Adjacent to each side face of magnet 1 are flux collector plates 2. These plates make close contact with each pole face, and can typically be made of milled steel.
  • the edges of each plate 2 are partial ⁇ ly beveled to reduce the edge thickness by approximately two- thirds so as to better concentrate the magnetic flux lines into increased flux density for communicating across the fluid conduit.
  • the magnets are spaced .apart by a series of non-magnetic
  • OMPI flux separators shown as 3, 4, 5, 6, and 7 in Figure 2. These are depicted as increasing in width from 3 to 7. When so spaced, lower velocity fluid will be more effectively treated at the smaller spaced end of the device.
  • each magnet 1 is shown in Figure 2 as being of equal width, they may also be arranged in staggered thickness or field strength fashion as a further aid to obtaining the desired spacial frequencies.
  • the above set of frequency modules are assembled into a thin walled non-ferrous case 10, shown in Figure 1.
  • the as ⁇ sembly may be rigidly sealed with end cap 9, into a permanent unit, or fitted with a removable seal for field replacement or cleaning .
  • FIG 3 shows chassis structure 11 which is used to support the case 10 of the generator pack firmly against the fluid conduit. Attachment means, such as the strap 12, is used to wrap around and secure both the case and the conduit.
  • Figure 4 shows generator pack 10, so held in place within chassis 11.
  • a hook and eye attachment 12, such as Velcro, is used to hold the chasis and the generator firmly against the conduit 13 containing fluid 14.
  • Figure 5 presents an alternate arrangement in which a plurality of conduits can be serviced by one magnetic conditio ⁇ ner.
  • Three conduits 13 are maintained in direct contact with case 10 without the chassis by attachment strap 12. The number of conduits so serviced is thus limited only by the number sides placed on the magnetic modules and the case.
  • the conditioning efficiency of the device is indicated by measurement of the percent reduction in calcite crystals re ⁇ maining in a drop sample of water.
  • the independent variable in Figure 7 is the velocity of water flow through the conduit. It will be noted that the efficiency curve tends to follow the broadened composite curve of the individual units in keeping with the flux-distance variation of Figure 6. Pro ⁇ per selection of spacing between the magnetic modules therefore has improved the efficiency of mineral removal over a broad range of fluid velocities.
  • Figure 8 A through F present a series of cross-sections of alternate coaxial embodiments arranged for comparison con ⁇ venience with a top half cross-section of the external embodi ⁇ ment, 8G.
  • Figure 8A shows a basic harmonic treatment device composed of six magnetic circuit elements (1,2) separated by five sep ⁇ arators (3), all placed concentrically around a cylindrical tube which contains in its center a coaxial concentrator core (15). All magnetic units have similar dimensions, and all separators are of approximate equal length. The unit is maxi ⁇ mally effective at one specific flow rate, but its effectivity can be improved by changing the length and number of magnetic units.
  • Figure 8B shows a combination of two of the basic devices of figure 8A separated by a spacing element called a harmonic bridge, 16.
  • a plurality of such frequency or impact sections can be arranged to maintain high treatment effectively over a wide range of variable flow rates.
  • the embodiment utilizes similar sized magne ⁇ tic units but with different sized spacers.
  • the variable flow range can thus be covered with fewer magnets where space con ⁇ servation is important.
  • Figure 8D shows a device with equally sized separators but differenly dimensioned magnetic circuit elements. This pro ⁇ vides for a variation of magnetic flux densities which can be useful in cases where the specific mineral content of the liquid presents unusual conditions.
  • figure 8F is especially useful with smaller flow rates through more narrow conduits.
  • the smaller diameters involved permit sufficient magnetic field strength without the aid of the concentrator core, 15 of Figure 8A.
  • This invention has utility in any liquid consuming indus ⁇ try, and has special application to those industries that use water as a motive power.
  • older plants with internal water line corrosion often find that replacement of pipe sections is impossible since wrenching of the pipe produces further deterioration.
  • the externally placed device in accordance with the best mode of our invention can thus be used to reduce the internal scale build-up without physical pipe line disturbance.
  • water chamber devices such as boilers and heat exchangers will benefit from less frequent fouling .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

Un dispositif de traitement d'un fluide magnétique pour réduire les dépôts de tartre minéral dans une conduite de fluide comprend un boîtier de conduction non magnétique (10) ayant à l'intérieur une pluralité de modules espacés entre eux. Chaque module contient un aimant en forme de barre (1) à face latérale magnétisée et constitué de préférence d'un aimant réel permanent. Adjacentes à chaque face latérale de l'aimant (1) sont prévues des plaques collectrices de flux (2). Les aimants sont espacés par une série de séparateurs de flux non magnétiques (3, 4, 5, 6 et 7) augmentant en largeur de 3 à 7. Un organe de fixation (12) est utilisé pour fixer le boîtier à une conduite (13).
PCT/US1984/000255 1984-02-21 1984-02-21 Procede et appareil de conditionnement d'un fluide magnetique resonnant WO1985003649A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19840901461 EP0174307A1 (fr) 1984-02-21 1984-02-21 Procede et appareil de conditionnement d'un fluide magnetique resonnant
PCT/US1984/000255 WO1985003649A1 (fr) 1984-02-21 1984-02-21 Procede et appareil de conditionnement d'un fluide magnetique resonnant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1984/000255 WO1985003649A1 (fr) 1984-02-21 1984-02-21 Procede et appareil de conditionnement d'un fluide magnetique resonnant

Publications (1)

Publication Number Publication Date
WO1985003649A1 true WO1985003649A1 (fr) 1985-08-29

Family

ID=22182056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1984/000255 WO1985003649A1 (fr) 1984-02-21 1984-02-21 Procede et appareil de conditionnement d'un fluide magnetique resonnant

Country Status (2)

Country Link
EP (1) EP0174307A1 (fr)
WO (1) WO1985003649A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4883591A (en) * 1985-10-03 1989-11-28 David Belasco Multi-pass fluid treating device
US4888113A (en) * 1986-11-21 1989-12-19 Holcomb Robert R Magnetic water treatment device
US4904391A (en) * 1985-10-09 1990-02-27 Freeman Richard B Method and apparatus for removal of cells from bone marrow
GB2209030B (en) * 1987-06-20 1991-09-25 Garth Stocking Enterprises Lim Apparatus for eliminating scale and corrosion in water systems
EP0506110A1 (fr) * 1991-03-28 1992-09-30 Bossert, Gerdi Appareil de traitement magnétique de liquides, notamment de l'eau
EP0544395A2 (fr) * 1991-11-28 1993-06-02 T.L.H. Brothers Sdn. Bhd. Dispositif pour le traitement magnétique de liquides, gaz ou solides
US5238558A (en) * 1991-04-11 1993-08-24 Rare Earth Technologies Magneto-hydrodynamic fluid treatment system
US5378362A (en) * 1992-09-30 1995-01-03 Fluidmaster, Inc. Apparatus for magnetically treating water
WO1995009816A1 (fr) * 1993-10-04 1995-04-13 Components Aviation Establishment Dispositif de traitement de fluides
US5589065A (en) * 1994-02-04 1996-12-31 Ybm Magnetics, Inc. Magnetohydrodynamic device
US5804067A (en) * 1996-04-02 1998-09-08 Hydroworld International (Canada), Ltd. Apparatus for magnetic treatment of liquids
US6123843A (en) * 1992-09-30 2000-09-26 Fluidmaster, Inc. Water treatment system
WO2004074190A1 (fr) * 2003-02-18 2004-09-02 Hvarre, Laila Dispositif de traitement de liquide magnetique et utilisations associees
EP2349935A1 (fr) * 2008-09-22 2011-08-03 William Steven Lopes Processeur à champ magnétique pour le conditionnement de fluides
RU2635591C1 (ru) * 2017-01-09 2017-11-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный аграрный университет имени И.Т. Трубилина" Устройство для защиты от образования отложений на поверхностях трубопроводов систем теплоснабжения

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1830740A (en) * 1929-03-19 1931-11-03 Leech Carrier Corp Freight handling device
US2004095A (en) * 1933-08-17 1935-06-11 Frederick W Hankins Container transfer apparatus
US2512798A (en) * 1948-03-29 1950-06-27 Hodges Res & Dev Co Transfer mechanism

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1830740A (en) * 1929-03-19 1931-11-03 Leech Carrier Corp Freight handling device
US2004095A (en) * 1933-08-17 1935-06-11 Frederick W Hankins Container transfer apparatus
US2512798A (en) * 1948-03-29 1950-06-27 Hodges Res & Dev Co Transfer mechanism

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4883591A (en) * 1985-10-03 1989-11-28 David Belasco Multi-pass fluid treating device
US4904391A (en) * 1985-10-09 1990-02-27 Freeman Richard B Method and apparatus for removal of cells from bone marrow
US4888113A (en) * 1986-11-21 1989-12-19 Holcomb Robert R Magnetic water treatment device
GB2209030B (en) * 1987-06-20 1991-09-25 Garth Stocking Enterprises Lim Apparatus for eliminating scale and corrosion in water systems
EP0506110A1 (fr) * 1991-03-28 1992-09-30 Bossert, Gerdi Appareil de traitement magnétique de liquides, notamment de l'eau
US5238558A (en) * 1991-04-11 1993-08-24 Rare Earth Technologies Magneto-hydrodynamic fluid treatment system
EP0544395A2 (fr) * 1991-11-28 1993-06-02 T.L.H. Brothers Sdn. Bhd. Dispositif pour le traitement magnétique de liquides, gaz ou solides
WO1993010894A1 (fr) * 1991-11-28 1993-06-10 T.L.H. Brothers Sdn. Bhd. Dispositif de traitement magnetique de fluides, de gaz ou de solides
EP0544395A3 (en) * 1991-11-28 1993-07-07 T.L.H. Brothers Sdn. Bhd. Device for magnetically treating fluids gases or solids
US6123843A (en) * 1992-09-30 2000-09-26 Fluidmaster, Inc. Water treatment system
US5378362A (en) * 1992-09-30 1995-01-03 Fluidmaster, Inc. Apparatus for magnetically treating water
WO1995009816A1 (fr) * 1993-10-04 1995-04-13 Components Aviation Establishment Dispositif de traitement de fluides
US5766461A (en) * 1993-10-04 1998-06-16 Kaempf; Roland Device for magnetically treating a fluid
US5589065A (en) * 1994-02-04 1996-12-31 Ybm Magnetics, Inc. Magnetohydrodynamic device
US5804067A (en) * 1996-04-02 1998-09-08 Hydroworld International (Canada), Ltd. Apparatus for magnetic treatment of liquids
WO2004074190A1 (fr) * 2003-02-18 2004-09-02 Hvarre, Laila Dispositif de traitement de liquide magnetique et utilisations associees
EP2349935A1 (fr) * 2008-09-22 2011-08-03 William Steven Lopes Processeur à champ magnétique pour le conditionnement de fluides
EP2349935A4 (fr) * 2008-09-22 2012-11-21 William Steven Lopes Processeur à champ magnétique pour le conditionnement de fluides
AU2009293161B2 (en) * 2008-09-22 2015-01-22 Kaylope Llc Magnetic field processor for conditioning fluids
RU2635591C1 (ru) * 2017-01-09 2017-11-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный аграрный университет имени И.Т. Трубилина" Устройство для защиты от образования отложений на поверхностях трубопроводов систем теплоснабжения

Also Published As

Publication number Publication date
EP0174307A1 (fr) 1986-03-19

Similar Documents

Publication Publication Date Title
WO1985003649A1 (fr) Procede et appareil de conditionnement d'un fluide magnetique resonnant
US5356534A (en) Magnetic-field amplifier
US6143171A (en) Magnetic device for treatment of fluids
US4289621A (en) Device for treating fluids with magnetic lines of force
US5683586A (en) Method and apparatus for magnetically treating a fluid
US4564448A (en) Device for treating fluids with magnetic lines of force
WO1992006042A1 (fr) Dispositif de traitement de fluide
US10370261B2 (en) System and method for transportation and desalination of a liquid
CN100519434C (zh) 水处理装置及使用该装置的水处理方法
CN106277368B (zh) 一种管道水处理设备及处理方法以及电路
US6123843A (en) Water treatment system
CA2092089A1 (fr) Appareil de traitement magnetique de liquides en circulation
Okada et al. High gradient magnetic separation for weakly magnetized fine particles [for geothermal water treatment]
CN105217747A (zh) 一种笼式磁化水设备
KR100704421B1 (ko) 3차원 파울링 저감장치 및 방법
WO1990010598A1 (fr) Un amplificateur a champ magnetique mieux adapte
GB2160855A (en) Apparatus and method for treating fluids
CN114001586A (zh) 一种换热器装置及系统
JPH0966285A (ja) 水処理装置
KR101746142B1 (ko) 자화수 생성장치 및 이를 이용한 자화 냉온수기
CN2704581Y (zh) 一种液体阻垢器
CN216837269U (zh) 在线水质稳定装置
RU2002705C1 (ru) Магнитный активатор дл обработки жидкостей
CN2111951U (zh) 净化磁水器
CN203700043U (zh) E式磁性水处理阻垢除垢装置

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): JP US

AL Designated countries for regional patents

Designated state(s): AT BE CH DE FR GB LU NL SE