WO1985001155A1 - Iodine cell - Google Patents

Iodine cell Download PDF

Info

Publication number
WO1985001155A1
WO1985001155A1 PCT/JP1984/000416 JP8400416W WO8501155A1 WO 1985001155 A1 WO1985001155 A1 WO 1985001155A1 JP 8400416 W JP8400416 W JP 8400416W WO 8501155 A1 WO8501155 A1 WO 8501155A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
iodine
positive electrode
battery according
polymer
Prior art date
Application number
PCT/JP1984/000416
Other languages
French (fr)
Japanese (ja)
Inventor
Sadao Kobayashi
Hiroshi Sukawa
Sadaaki Yamamoto
Original Assignee
Mitsui Toatsu Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP58157143A external-priority patent/JPS6049564A/en
Priority claimed from JP58157142A external-priority patent/JPS6049563A/en
Priority claimed from JP58172250A external-priority patent/JPS6065459A/en
Priority claimed from JP59000076A external-priority patent/JPS60146459A/en
Priority claimed from JP59000077A external-priority patent/JPH069145B2/en
Application filed by Mitsui Toatsu Chemicals, Inc. filed Critical Mitsui Toatsu Chemicals, Inc.
Priority to DE8484903289T priority Critical patent/DE3485975T2/en
Priority to KR1019850700022A priority patent/KR890002308B1/en
Publication of WO1985001155A1 publication Critical patent/WO1985001155A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an iodine battery in which iodine is immobilized with a polymer and used as a positive electrode active material.
  • Iodine is a substance that is easy to form as an anion] and is one of suitable ones as a positive electrode active material. This iodine is known to form a charge-transfer complex with various organic substances.
  • the charge-transfer isomers of iodine are iodine (acceptor) and various electron-donating organic compounds (one component of organic donors).
  • 9 J, electron-donating compounds are heterocyclic compounds such as phenothiazine and carpazol; . Ren, Multi 3 ⁇ 4 aromatic compounds such as peri Ren;?
  • iodine complexes or simply complex adducts iodine charge-moving complexes
  • organic polymers such as urea-formaldehyde resin, polyurethane, polyacrylonitrile, polyacrylamide, polymethacrylamide, polyether, and melamine bitumen are also used as organic donor components. Found to be effective.
  • FIG. 1 is a sectional view showing a preferred embodiment of the battery of the present invention.
  • 10 is a positive electrode
  • 20 is a negative electrode
  • 30 is an electrolyte
  • 40 is a cell.
  • Leh data, 5 0 and 5 0 'support 6 0 c 0 Kkin, 7 0 denotes, respectively Re their leads.
  • a complex adduct of iodine and a polymer capable of forming a complex adduct with iodine and / or iodine is dispersed in the polymer.
  • the present invention provides a battery in which the squeezed composition is used as a main component of a positive electrode mixture, wherein the positive electrode mixture contains carbons in a dispersed state.
  • the polymers capable of forming a complex adduct with iodine include polyacrylamide, polymethacrylamide, urea-formaldehyde tree, polyvinyl alcohol, poly (vinyl acetate), nalon-6, and nairon. -6.6, Nylon-12, Nylon-6.9, Nylon-6.10, etc. Aliphatic boramides, wholly aromatic boramides, such as Kevlar (Dupont's product trademark), Boljylene, Poly Propylene, polystyrene, polyethane, melamine resin, polyether, polyacrylonitrile, pallets resin, polymethyl methacrylate, borotetramethylene ether, polyvinyl acetate. Mouth Li Dong, Boli-4-Bürch. Rein, Bol-2-Bilhi. Resin, poly-N-bulcarpazole and the like are mentioned as preferable ones, but the above-mentioned known polymers can of course be used.
  • carbon is dispersedly contained in a positive electrode mixture composed of a polymer and iodine capable of forming a complex adduct with iodine.
  • the method is, for example, as follows.
  • carbon is added to a predetermined amount of a polymer capable of forming an adduct of a complex with iodine to contain the same in a dispersed state.
  • a method for adding the carbons it is preferable to prepare a polymer-carbon composite in advance. This includes Bolima I
  • a complex adduct of a polymer and iodine and a composition in which carbons are dispersed in a dispersion composition of phosphorus or iodine, that is, a composite (positive electrode mixture) are substantially used. It only needs to be able to be made, and the method of making it is not particularly limited. Of course, this manufacturing method also includes a method in which a current collector is incorporated into the positive electrode mixture in order to quickly extract electricity from the positive electrode mixture. .
  • J9 is also a precious metal other than the metal used for the negative electrode, such as platinum or stainless steel net, carbon mat, cloth, and porous metal.
  • Examples of carbons added to the positive electrode mixture in the battery of the present invention include carbon black, acetylene black, graphit, and ketjen plaque (trademark of Zuri Co., Ltd.).
  • a fiber-like shape that is easily dispersed is preferably used.
  • the amount of carbon used depends, of course, on the type of carbon, but it is usually 0.5 to 60% (weight, below) for the polymer to be added. 5% to 5%], and it is 0.5 to 40% for pulverized Dalafite. At this value, the effect of addition is small, and the conductivity decreases sharply at low iodine contents. Further, even if it is used beyond the above value, the effect is not further improved and the formability is deteriorated.
  • Ketjen Black for example, 5 to 40% is more preferable, and 10 to 30% is particularly preferable.
  • iodine prepared as described above a complex adduct of iodine with a polymer capable of forming an adduct with iodine, and Z or iodine is added to the polymer.
  • a complex adduct of iodine with a polymer capable of forming an adduct with iodine, and Z or iodine is added to the polymer.
  • the positive electrode a mixture containing the dispersed composition as a positive electrode mixture, and make the negative electrode a metal such as lithium, zinc, cadmium, magnesium, aluminum or the like, and bring them into contact with each other.
  • iodine is assumed to be mostly in the form of a complex adduct in the polymer, and it is, of course, necessary that all of the iodine be present as a complex activator. Some or all of them may simply be dispersed in free form in the polymer. In short, iodine All that is required is that it be substantially incorporated into Lima. In the case of a normal battery, the positive electrode and the negative electrode are usually brought into contact via an electrolyte, but the battery of the present invention is not necessarily required to have such an electrolyte. It is presumed that this is because the metal iodide generated on the side of the interface where both electrodes come into contact with each other; constitutes the electrolyte. Thus, it can be fully used for applications that require such a large output, such as cardiac pacemakers. Further, it is also possible to supply a solid electrolyte such as lithium iodide and iodine from the beginning.
  • an electrolyte solution of metal iodide for example, subweight iodide if the anode metal is sub-promotion
  • the positive electrode and the negative electrode may be brought into contact through the intermediary.
  • An electrolyte solution such as iodide may be used as the auxiliary electrolyte.
  • porous seha it is also preferable to volatilize between both active materials in the refining solution.
  • the method for forming the storage battery of the present invention will be described in more detail.
  • the positive electrode is made of a metal as described in the section of the formation of the battery, and the metal corresponding to each metal of the negative electrode is used as the negative electrode. It is only necessary to assemble the oxidized image (for example, zinc iodide when the negative electrode metal is 15) as the electrolyte.
  • the auxiliary electrolyte may be used as a substitute for the metal iodide, if necessary, or the auxiliary electrolyte may be added to the metal iodide.
  • Such an electrolyte is usually used by dissolving it in water.
  • the negative electrode is a metal that reacts violently with water, such as lithium sodium
  • the propylene power is used.
  • a solvent with low reactivity such as one-port r-butyl lactone.
  • metal iodide dissolved in these solvents is used by impregnating it with a porous material such as glass short olives (which may be paper) that has a large liquid holding capacity. It is preferred that Such a porous material impregnated with an electrolyte has an advantage that a storage battery can be assembled as it is between the positive electrode and the negative electrode.
  • iodine ions are generated at the negative electrode when the metal ion force is positive, and these combine to form a metal iodide that is an electrolytic poor (discharge product).
  • the metal iodide is decomposed into metal and iodine, and the metal is deposited on the negative electrode.
  • iodine is trapped in the positive electrode mainly composed of boron and lithium. It becomes.
  • the storage battery of the present invention when a DC voltage is applied during charging, iodine is deposited on the positive electrode side, and metal is deposited on the negative electrode side, the iodine deposited on the positive electrode side is volatilized mainly by the positive electrode. And complex adducts easily Formed and included in the polymer. Then, after the charging is completed, by discharging the DC voltage and connecting the bipolar terminals via the load, the discharge occurs, and power is obtained in the load.
  • the battery of the present invention is characterized in that carbon is dispersed in a positive electrode mixture containing iodine and a specific polymer complex adduct and a composition in which iodine is dispersed in Z or the polymer as a main component. It is characterized by being contained.
  • the technical intention of dispersing this carbon is as follows. As described above, it has been known that complex adducts of iodine and certain bolimers have poorer electrical conductivity than each single substance. -2-The iodine complex of vinyl viridine is used as a positive electrode mixture for primary batteries for heart manufacturers.
  • the battery of the present invention by dispersing carbons from the polymer adduct into the main positive electrode mixture, it is possible to form a highly conductive positive electrode mixture, and the discharge proceeds. Even inside the positive electrode side A remarkable effect that a large current can be obtained with little increase in resistance can be obtained.
  • the electrical conductivity of the positive electrode mixture may even increase due to discharge.
  • a conventional porous seha In a preferred embodiment of the present invention, a conventional porous seha.
  • a cation exchange membrane is introduced into the electrolyte solution instead of the rotor. In this way, the traditional Serra. When using a writer: In comparison, the battery life can be greatly extended. It seha yang ion exchange membrane.
  • the iodine (/ 2 ) which is the positive electrode active material immobilized as a complex, reacts with the metal iodide () in the electrolytic solution to form a negative electrode. It is presumed that self-discharge, which may occur in contact with metal, can be prevented very effectively.
  • the cation-exchange membrane used as a collector may be either an inorganic poor type membrane or an organic type membrane.
  • a hydrocarbon-ion type ion exchange membrane and a fluorocarbon type membrane can be used among the inspected types.
  • Zion exchange membranes are preferred.
  • the cation exchange membrane selectively permeates only cations, but the cation exchange groups used in the battery of the present invention include sulfonic acid groups, Either sulfonic acid group or phosphoric acid group It may be an exchange group.
  • a surface treatment is appropriately performed to reduce the electric resistance of the film, and a cloth or a rope is used to enhance the mechanical strength.
  • the cation exchange membrane provided for the * pond of the present invention a commercially available one can be used as it is, provided that the above conditions are satisfied.
  • a hydrocarbon type if it is a selemion cation exchange membrane C f (made by Asahi: ⁇ ⁇ ), a cation exchange membrane d (made by Kuriyo Kagaku Sho ⁇ ), or if it is a fluorocarbon type Nafion 3 2 4 cation exchange membrane (made by Dubon Co., Ltd.) is a cation that selectively permeates cations and selectively blocks anion transmission. Anything is acceptable, especially if not limited to these.
  • a preferable cation exchange membrane a membrane having low air resistance, high mechanical strength, and strong corrosion resistance in a redox atmosphere is of course preferable.
  • a battery having the configuration shown in FIG. 1 was assembled as follows.
  • Ketjen 'Black KB-EC (trademark of STZO) of DMF 6 Q ⁇ containing polyacrylonitrile (average molecular weight: 150,000) 300 was added and dispersed well.
  • the thing in diameter 4 5 cm of the disk-shaped carbon fiber (Kureha Chemical Co., Ltd. - T 1 5).
  • To the coating removing 3 ⁇ 4 natural evaporation Nyo.
  • To the coating by immersing in iodine acetone solution] Used as positive electrode lo.
  • an ⁇ 3 plate (Mitsui Kinzoku Co., Ltd.) was used.
  • the electrolytic solution was a 1 mol / ⁇ aqueous solution of N, which was impregnated with 2 glass fibers ⁇ paper 30 ⁇ 2 , during which time the cell was washed. Tucked the Seremi on ⁇ manufactured by Asahi Glass child (Ltd.) as Lake 4 0. This was placed in the two poles, “No. 1” and the battery was used.
  • 50 and 5 are a support, 60 is a hook, and 7 ′ 0 is a lead wire.
  • the experiment was performed under a nitrogen stream at 25 and the initial short-circuit current (/ S c) at the time of discharge was measured and found to be 80 ⁇ / cm 2 .
  • the open-circuit voltage at this time: 1. was 3 6.
  • the battery was discharged to a cut-off voltage of 0.9 under the condition of 2U 3 ⁇ 4 current, and then charged and discharged to a cut-off voltage of 1.5.
  • a battery was prepared in exactly the same procedure as above except that a positive electrode mixture containing Ketjen's plaque B- ⁇ (was used.] 7, and the battery was evaluated under the same conditions.
  • the initial short-circuit current (/ sc) at time ⁇ was measured, it was S mA / cm z , and the open-circuit voltage at this time was 1.34. After discharge, charging was attempted, but the voltage rose sharply and the battery could not be charged.
  • a mixture of 2,4-trilendiene sociate and 2,6-trilendiene sociate (Mitsui Nisso Urethane ( ⁇ ) ⁇ Z) / -80Z20)
  • the propylene glycol 0.9- ⁇ containing Ketjen Black KB- was well mixed to synthesize a polyurethane resin composition.
  • the polyurethane resin composition 30 was dissolved in phenol to obtain a mixture. This in diameter 4 5 cm of the disk-shaped carbon fiber (Kureha) made -. 7
  • the battery was discharged to a final voltage of 0.9 under the conditions of Z constant flow, and then charged and discharged to a final voltage of 1.5.
  • Ketjen Black KB-(A battery was prepared in exactly the same procedure as above except that a positive electrode mixture without the addition of 7 was used, and evaluated under the same conditions.
  • Initial short circuit during discharge of this battery the measured current (sc), was 6 m ⁇ / ⁇ ⁇ .
  • the open circuit voltage at this time was 1.3 4. where a single further Gyoru charge and discharge test, after the discharge has been attempted to charge The voltage rises so steeply that it cannot be charged.
  • the electrolyte is a 1 molar Z aqueous solution of N 4 CZ, which is impregnated with two pieces of glass braided paper, and between which the cell is sewn.
  • a SELIMION CJi film manufactured by Asahi Glass Co., Ltd. was sandwiched between them. This was inserted between both sides to form a battery.
  • the configuration of the battery is the same as that of Example 1 as shown in FIG.
  • the experiment was performed at 25 U C under a nitrogen stream, and the initial short-circuit current (/ &) at the time of discharge was measured to be 7 l mAZa ⁇ .
  • the open-circuit voltage at this time: 1. was 3 6.
  • This battery was charge-discharge 'anonymous test Bokuoku Kaee charged to a final voltage of 1.5 gamma After discharged to a final voltage of 0.9 under the conditions of 2 constant 3 ⁇ 4 stream. 600 Even after the cycle, the energy efficiency and current efficiency remained almost unchanged. The electric capacity after 600 cycles was 85 with respect to the initial capacity. This indicates that this battery is practically at a practical level as a secondary battery.
  • a battery was prepared in exactly the same procedure as above except that a positive electrode mixture without the addition of Ketjen's plaque-£ C was used for the sake of comparison, and evaluated under the same conditions.
  • the initial short-circuit W current (/ sc) at the time of discharging of the battery was measured, it was 10 Til A / cm 1 .
  • the open-circuit voltage at this time was 1.34 mm.
  • the charge / discharge test was completed, charging was attempted after discharging, but the voltage rose sharply and the charging could not be performed.
  • the discharge time of the initial short-circuit current (/ sc) was measured and found to be 3 5 w 2.
  • the open-circuit voltage at this time was 1.3 hours.
  • a charge / discharge test for charging to a final voltage of 1.5 was repeated. Even after 600 cycles, the energy efficiency and current efficiency were almost unchanged.
  • the electric capacity after 6'00 cycles with respect to the initial capacity was 45. This indicates that this battery is substantially at a practical level as a secondary battery.
  • a battery was prepared in exactly the same procedure as above except that a positive electrode mixture to which Ketjen Black-C was not added was used and evaluated under the same conditions.
  • s c initial short-circuit current
  • Acrylic amide manufactured by Mitsui Toatsu Chemicals, Inc. 300 ⁇ and bismethylene acryloamide 1 are dissolved in sufficiently deoxygenated water, and persulfuric acid monoxide 3 and sodium acid sulfite 1.5 are added thereto. Add 20 in a stream of nitrogen. The mixture was slightly polymerized with C, and Ketjen'Black-C (trademark of AKZ Hisha) was added thereto and kneaded and dispersed. This thing, diameter of 4 5 of the disc IPO,.: Carbon fiber (Kureha Chemical Co., Ltd.-715) was applied and cured to use as a positive electrode.
  • the electrolytic solution is an aqueous solution of lithium chloride, which is impregnated with two pieces of glass fiber paper, and then the cell is immersed.
  • a rake a Ceremion C i film made by Asahi ⁇ was inserted. This was placed between the electrodes to make a battery.
  • the configuration of the battery is as shown in FIG. 1 as in Example 1.
  • the discharge time of the initial short-circuit current (/ sc) was measured, it was 4 6 m A / cm z.
  • the open-circuit voltage at this time was 1.3 mm.
  • the battery was discharged under a constant current condition of 2 to a cutoff voltage of 0.9 and then charged and discharged to a cutoff voltage of 1.5. Even after 600 cycles, the energy efficiency and the current efficiency were almost unchanged.
  • the electric capacity after 600 cycles with respect to the initial capacity was 72 ° b. This indicates that this battery is practically at a practical level as a secondary battery.
  • Example 6 ⁇ Literamethylene ether (reduced viscosity in 0.1% benzene solution 1.12: Otsu et al. ( ⁇ . Ots, et al) Macromolecule Chem. ⁇ 71 , 150 (1964)) 300 was dissolved in ethyl acetate sorp acetate, and 60 Ketjen Black-5C was added to the solution and dispersed well. This is applied to a disc-shaped carbon fiber with a diameter of 45 cm (Kakuha Manabu Co., Ltd., £ -.715), and the ethyl selone lupe acetate is removed by evaporation.
  • the battery was made in exactly the same procedure as above except that the cathode mixture without the addition of S-(7) was used.9) Under the same conditions, the initial short-circuit current (/ sc) of the battery during discharge was calculated as follows: The measured value was 10 m ⁇ / ⁇ ⁇ , and the open-circuit voltage at this time was 1 * 34 4. Further charge / discharge tests were performed. 'Example ⁇
  • Parex resin (trademark of Sohio, USA, sold by Mitsui Toatsu Chemicals, Inc., acrylic acid nitrile, methylacrylate, butadiene copolymer, graft polymer)
  • a formic acid solution containing 300 ⁇ 3 ⁇ 4! Ketjen's Black ⁇ ⁇ -EC ( ⁇ ZO) was added and dispersed well. This is applied to disc-shaped carbon fiber (Kureha Chemical Co., Ltd.-715) with a diameter of 45, and formic acid is removed by natural evaporation method. This was immersed in an iodine-acetone solution to add j-iodine 380 ⁇ , and used as a positive electrode.
  • a 0.3-inch thick zinc plate (made by Mitsui Kinzoku m) was used as the negative electrode.
  • the electrolyte is a 1 molar aqueous solution of, which is impregnated into two pieces of glass fiber paper, during which time the cell is exposed.
  • a selemiion CM ⁇ membrane made by Asahi Co., Ltd. was sandwiched between them. This was placed between both electrodes to form a battery.
  • the configuration of the battery is the same as in Example 1, as shown in FIG. 1]).
  • a battery was prepared in exactly the same procedure as above except that a positive electrode mixture to which Ketjen * Plac- was not added was used.
  • the initial short-circuit current (/ sc) of the battery at the time of discharge was measured, it was TA / cni L.
  • the opening pressure at this time was 1.34. After a charge / discharge test, the battery was charged after discharge, but the voltage rose sharply and could not be charged.
  • the electrolyte is a 1 molar aqueous solution of N, which is impregnated with two pieces of glass fiber; paper with 2 pieces of water.
  • a selemion membrane made of Asahi Glass (pearl) was inserted as a lator. This was placed between the electrodes to make a battery.
  • the configuration of the battery is as shown in FIG.
  • the open-circuit voltage at this time was 1.36.
  • the electric capacity after 600 cycles with respect to the initial capacity was 82. This indicates that this battery is practically in practical use as a secondary battery.
  • a battery was prepared in exactly the same procedure as above except that a positive electrode mixture without the addition of Ketjen * Black KB-EC was used and evaluated under the same conditions.
  • the initial short-circuit current during discharge of the battery (/ sc) was measured and found to be 7 m A / cm z.
  • the open circuit voltage at this time was 1.34. After a further charge / discharge test, charging was attempted after discharging, but the voltage rose sharply and charging failed.
  • the solution was applied to Hana Chemical Co., Ltd. 7 15), water was removed by a natural evaporation method, and heat treatment was performed at 150 ° C. for 40 minutes. This was immersed in an iodine acetone solution to add 9) iodine 360 ⁇ , and used as a positive electrode.
  • the negative electrode used was a 0.3-female thick zinc plate (Mitsui Metals Co., Ltd.)
  • the electrolyte was a 1M aqueous solution of V ⁇ CZ, which was impregnated into two sheets of glass fiber paper, during which time the separator was used. As shown in Fig. 1, a battery was inserted between both electrodes to form a battery. It belongs to 3ffij.
  • a battery was prepared in exactly the same manner as above except that a positive electrode mixture without Ketjen Black:-was used.
  • the initial short-circuit current during discharge of the battery (/ SC) was measured and found to be 1 6 mA / an z.
  • the opening pressure at this time was 1, 3 4. After further charge / discharge test, after discharge, I tried to charge, It was difficult to charge.
  • the electrolyte is a 1 molar Z ⁇ aqueous solution of CI, which is impregnated with two pieces of paper, two pieces of paper and two pieces of paper.
  • a SELEMION d film made by Asahi Glass (3 ⁇ 4) was inserted as a lator. This was placed between the electrodes to make a battery.
  • the battery is the same as in Example 1, as shown in FIG.
  • the experiment was carried out at 25 ° C under a nitrogen stream, and the initial short-circuit current (sc) at the time of discharge was measured to be 95 mA / ctn 2- .
  • the open-circuit voltage at this time: 1. was 3 6 ⁇ . Discharge the battery to a final voltage of 0.9 under two constant current conditions.
  • a battery was prepared in exactly the same procedure as above except that a positive electrode mixture to which Ketchi's' Black -C was added was used. The evaluation was performed under the same conditions. The initial short-circuit current during discharge of the battery (/ sc) was measured and found to be 1 0 A / cnt z. The open circuit voltage at this time was L34 4. After a further charge / discharge test, we tried to charge the battery after discharging, but the voltage was too high to charge.
  • Nylon-6 (made by ⁇ ) containing 20 weights of Ketjen Black is converted into a carbon-like carbon whip (4.5 cm in diameter) (made by Kureha Chemical (ft)-715) Applied. This was immersed in an iodine acetate solution to add iodine 460 to use as a positive electrode 10.
  • a 0.3 mm thick zinc sheet (made by Sanban Metal Co., Ltd.) was used. 1 molar aqueous solution of electrolyte N ⁇ C, which 2. glass fiber paper to 2 impregnated in, Serra 0 Les therebetween - inserting the various 1-by-exchange membrane as data. This was assembled into a battery using a rubber packing and a support as shown in FIG.
  • SERAMION cation exchange membrane manufactured by Asahi Glass Co., Ltd.
  • Table 1 shows that when used as a rake, the electromotive force hardly decreased even after 300 days, and the battery life was greatly extended.
  • Ketjen. Black is mixed with Euroid * 320 (manufactured by Mitsui Toatsu Chemicals, Inc.), which is the initial reaction product of urea resin, to a weight of 15%, and the hardening agent is added to the mixture 500 ⁇ . and ⁇ kneaded to 1 2 V Shio ⁇ one drop as it diameter 4 5 of the disk-shaped carbon fiber (Kureha chemical Co., Ltd. - 7 1 5). was applied and Kati spoon to. This was immersed in an iodine-acetone solution, and] iodine was added to form a positive electrode. As the negative electrode using 0.3 KyoAtsuA ⁇ (manufactured by Mitsui Metal Co.).
  • the electrolyte is a 1 molar aqueous solution of N, which is impregnated with two pieces of glass bran fiber paper, during which time the cell is washed. Various kinds of positive ion exchange membranes were sandwiched between them. This was placed between the electrodes to form a battery. Battery configuration is implemented! As shown in Fig. 1, there is the one shown in Fig. 1.
  • the iodine Z subcomplex battery (using a selemion-ion ion exchange membrane) obtained by the method of Example 12 was subjected to one constant-current charge / discharge. 5 hours discharge and 5 o'clock charge 1 cycle 1 o'clock As a result of the discussion, 300 cycles
  • the battery of the present invention has a high output and a low internal resistance. In addition, even when iodine fixed to the positive electrode mixture is almost completely released due to the progress of discharge, the conductivity is hardly reduced, so that the charging operation can be easily performed.
  • the battery characteristics are not lost even if the charge / discharge cycle is repeated many times (for example, 300 cycles), and almost no electromotive force occurs even after a long period (for example, 300 days). Battery life has not been reduced, and the battery life has been dramatically increased.
  • the battery of the present invention can be used as a primary battery, or more preferably, as a secondary battery, and includes a VTR communication device, a calculator, a clock, a computer, and

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Hybrid Cells (AREA)

Abstract

An iodine cell which has a depolarizing mix for cell positive electrode obtained in such a manner that a composite formed by setting iodine by means of a polymer having an ability to form a complex adduct in cooperation with iodine is allowed to dipersedly contain a carbonaceous material, such as carbon black or graphite. The iodine cell preferably employs a cation exchanger film as a separator. The iodine cell features high output, low internal resistance, high charging/discharging life (a high number of cycles), and long life and advantageously permits charging even in a state wherein almost all the iodine has been desorbed from the positive electrode. It is possible to use the iodine cell for a primary battery, more preferably a secondary battery.

Description

明 細 書  Specification
ョゥ素電池  Iodine battery
〔技術分野〕  〔Technical field〕
本発明は、 ヨウ素をボリマーで固定化し、 これを正極活物質として用 いるヨウ素電池に関する。  The present invention relates to an iodine battery in which iodine is immobilized with a polymer and used as a positive electrode active material.
〔背景技術〕 ·  [Background art]
ヨウ素は陰ィオンに ]?易い物質であ 、 正極活物質として適当なも のの一つである。 このヨウ素は各種有機化台物と電荷栘動錯体 ¾作るこ とが知られている。 ヨウ素の電荷移動鍺体はヨウ素 (ァクセプター) と 各種電子供与性有機化合物 (有機ドナ一成分) とよ ]9 J 、 電子供与性 化台物としてはフエノチアヅン、 カルパゾ一ル等のヘテロ環化合物; ヒ。 レン、 ペリ レン等の多 ¾芳香族化合物;およびボリ - 2 - ビニルピリ ヅ ン、 ボ リ エチレン、 ボ リ アセチレン、 7j?リ ハ0ラフェニレン、 7j?リ チェ二 レン、 リ ヒ。ロール、 ボリ エーテル、 ボ リ ァニ リ ン、 ボ リ ァミ ド、 ポ リ ビニノレアルコ 一ノレ、 ボリ エチレン、 ボリフ。口 ビレン、 ボリスチレン等の 有機ボリマ一が知られている。 Iodine is a substance that is easy to form as an anion] and is one of suitable ones as a positive electrode active material. This iodine is known to form a charge-transfer complex with various organic substances. The charge-transfer isomers of iodine are iodine (acceptor) and various electron-donating organic compounds (one component of organic donors). 9 J, electron-donating compounds are heterocyclic compounds such as phenothiazine and carpazol; . Ren, Multi ¾ aromatic compounds such as peri Ren;? And Helsingborg - 2 - Binirupiri Uz down, volume triethylene, volume Li acetylene, 7j Li Ha 0 Rafeniren, 7j Li Choi two Ren, Li arsenide. Rolls, polyethers, polyanilines, polyamides, polybinore alcohols, polyethylene, and borifs. Mouth-organic polymers such as bilen and polystyrene are known.
これらのヨウ素電荷栘動錯体 (以下、 ヨウ素錯体または単に錯体付加 物という) を正極合剤の主成分として用いる電池もいくつか知られてい る。 また、 本発明者らは、 尿素- ホルムアルデヒ ド樹脂、 ボリウ レタン、 ボリァクリロ二卜 リル、 ボリァクリルァミ ド、 ボリ メタク リ ルァミ ド、 ボリエーテル、 メラミン銜脂等の有檨ボリマ—も有機ドナ—成分として 有効であることを見出した。 Some batteries using these iodine charge-moving complexes (hereinafter referred to as iodine complexes or simply complex adducts) as a main component of a positive electrode mixture are also known. Further, the present inventors have found that organic polymers such as urea-formaldehyde resin, polyurethane, polyacrylonitrile, polyacrylamide, polymethacrylamide, polyether, and melamine bitumen are also used as organic donor components. Found to be effective.
しかしたがら、 かかるヨウ素錯体を正極活物質として用いた電池は出 力が低ぐ、 また放電するに従ってヨウ素を失るつて導電率が急激に減少 し、 正極合剤の抵抗が著しく増し、 電池の内部抵抗が顕著に増大すると いう間題があった。  However, a battery using such an iodine complex as a positive electrode active material has a low output, and as iodine is lost as the battery is discharged, the electrical conductivity sharply decreases, and the resistance of the positive electrode mixture increases remarkably. The problem was that the resistance increased significantly.
また、 二次電池にこのヨウ素錯体か.ら る正極合剤を使用すると、 放 電によ 大部分のヨウ素が正極合剤よ i?離脱してしまうので、 通常正極 合剤が絶緣体と 、 再び充電することが不可能に るという二次電池 としては決定的 欠点をもつことに ¾るのである。 これはボリアミ ド、 ボリアク リ ロニ ト リ ル. リ ビュルアルコール、 ボリエ一テル、 リ - In addition, when the positive electrode mixture obtained from the iodine complex is used in a secondary battery, most of the iodine is released from the positive electrode mixture due to discharge, so that the positive electrode mixture is usually completely isolated. A secondary battery that cannot be recharged has a decisive disadvantage. This is boriamid, boriacrilonitril.
2 - ビ ルヒ0 リ ミ ヅン等のもともと絶緣体であるボリ マ一のョゥ素錯体 を甩いた時不可避的に起る問題であった。 2 - the original ® © boron complex of Bollywood Ma one is an absolute緣体such as bi Ruhi 0 Li Mi Uz down was inevitable to occur a problem when there was甩I.
さらに、 かかる電池は電池寿命が短いという欠点があった。  Furthermore, such batteries have the disadvantage that the battery life is short.
〔図面の簡単る説明〕  [Brief description of the drawings]
第 1図は本発明の電池の好適な実施例を示す断面図である。  FIG. 1 is a sectional view showing a preferred embodiment of the battery of the present invention.
図において 1 0は正極、 2 0は負極、 3 0は電解質、 4 0はセハ。レー タ、 5 0および 5 0 ' は支持体、 6 0はハ0ッキン、 7 0はリード線をそ れぞれ示す。 -In the figure, 10 is a positive electrode, 20 is a negative electrode, 30 is an electrolyte, and 40 is a cell. Leh data, 5 0 and 5 0 'support 6 0 c 0 Kkin, 7 0 denotes, respectively Re their leads. -
〔発明の開示〕 . (Disclosure of the Invention)
本発明に従えば、 ヨウ素と、 ヨウ素と錯体付加物を形成する能力のあ るボリマーとの錯体付加物および/または該ボリマ一にヨウ素を分散せ しめた組成物を正極合剤の主成分として用いる電池において、 該正極合 剤に炭素類が分散状に含有せしめられている電池が提供される。 According to the present invention, a complex adduct of iodine and a polymer capable of forming a complex adduct with iodine and / or iodine is dispersed in the polymer. The present invention provides a battery in which the squeezed composition is used as a main component of a positive electrode mixture, wherein the positive electrode mixture contains carbons in a dispersed state.
本発明において、 ョゥ素と錯体付加物形成能のあるボリマ一としては、 ボリァクリルアミ ド、 ボリメタクリルアミ ド、 尿素ホルムアルデヒ ド樹 3旨、 ボリ ビエルアルコール、 ボリ酢酸ビュル、 ナイ ロン - 6、 ナイ ロン - 6 . 6、 ナイ ロン 1 2、 ナイ ロン - 6 . 9、 ナイ ロン - 6 . 1 0等 の脂肪族ボリアミ ドゃ全芳香族ボリアミ ドたとえばケブラ一 (デュポン 社製品商標) 、 ボ リェチレン、 ポリ プロピレン、 ボリスチレン、 ボリ ゥ レタン、 メラミン樹脂、 ボリエーテル、 ポリァクリ ロニト リル、 パレツ クス樹脂、 ボリ メチルメタァク リ レート、 ボリテト ラメチレンエーテル、 ボリ ビニルヒ。口 リ ドン、 ボリ - 4 - ビュルヒ。リ ヅン、 ボ リ - 2 - ビ ル ヒ。リ ジン、 ボ リ N - ビュルカルパゾ一ル等が好ましいものとしてあげら れるが、 その他の前記した公知のボリマ一ももちろん使用可能である。  In the present invention, the polymers capable of forming a complex adduct with iodine include polyacrylamide, polymethacrylamide, urea-formaldehyde tree, polyvinyl alcohol, poly (vinyl acetate), nalon-6, and nairon. -6.6, Nylon-12, Nylon-6.9, Nylon-6.10, etc. Aliphatic boramides, wholly aromatic boramides, such as Kevlar (Dupont's product trademark), Boljylene, Poly Propylene, polystyrene, polyethane, melamine resin, polyether, polyacrylonitrile, pallets resin, polymethyl methacrylate, borotetramethylene ether, polyvinyl acetate. Mouth Li Dong, Boli-4-Bürch. Rein, Bol-2-Bilhi. Resin, poly-N-bulcarpazole and the like are mentioned as preferable ones, but the above-mentioned known polymers can of course be used.
これらは二種以上をプレン ドして用いてもよいしこれらの共重合体を 用いてもよい。 '  These may be used as a blend of two or more kinds, or a copolymer thereof may be used. '
本発明の電池においては、 上記のごとく、 ヨウ素と錯体付加物形成能 のあるボリマ一とョゥ素とからるる正極合剤に炭素類が分散状に含有せ しめられるが、 その一般的 ¾作製方法はたとえば次のごとくである。  In the battery of the present invention, as described above, carbon is dispersedly contained in a positive electrode mixture composed of a polymer and iodine capable of forming a complex adduct with iodine. The method is, for example, as follows.
まず所定量の、 前記ヨウ素と錯体付加物形成能のあるボリマーに炭素 類を添加して分散状に含有せしめる。 この炭素類の添加方法としてはボ リマ一炭素複合体をあらかじめ作るのが好ま しい。 これには、 ボリマ一  First, carbon is added to a predetermined amount of a polymer capable of forming an adduct of a complex with iodine to contain the same in a dispersed state. As a method for adding the carbons, it is preferable to prepare a polymer-carbon composite in advance. This includes Bolima I
OMPI  OMPI
d WIPO を溶媒に溶かし、 このものに炭素類を添加混合し、 しかる後に溶媒を除 去する方法、 あるいはボリマ一に直接炭素類を混練分散せしめる方法等 がある。 こうして得られた.ボリマー炭素複合体にヨウ素を添加する。 ョ ゥ素としては、 通常の固体状、 フレーク状のヨウ素をそのままもしくは これを必要に応じ精 ^したものが便用される。 ヨウ素添加方法としてはd WIPO Is dissolved in a solvent, carbons are added to the mixture, and then mixed, and then the solvent is removed. Alternatively, carbons are directly kneaded and dispersed in a polymer. Iodine is added to the thus obtained Bolimar carbon complex. As the iodine, ordinary solid or flake-like iodine is used as it is or is refined as necessary. As a method of adding iodine,
(i)上記のごときボリマ一炭素複合体に.ョゥ素蒸気を接触させて付加、 吸 着せしめる方法、 '(ii)ポリマー炭素複合体をヨウ素を含むベンゼン、 ァセ 卜ン等の溶液に浸漬してヨウ素を付加 *吸着せしめる方法、 Gii)あるいは ボリマ一炭素複合体にヨウ素を練 込む方法等がある。 ¾お、 ^リマ一 炭素複合体をあらかじめ作る代 に、 所定量のボリマ一に炭素類および ョゥ素を同時に加えて分散状に溶融下混練し、 一工程で正極合剤を作る 方法も採用される。 この場合、 混練するため添加される物貧の添加順序 もしくは混合順序は特に制限はるい。 (i) A method of adding and adsorbing iodine vapor to the polymer-carbon composite as described above by contacting with iodine vapor; (ii) adding the polymer-carbon composite to a solution of iodine-containing benzene, acetate, etc. Addition of iodine by immersion * Adsorption method, Gii) or method of kneading iodine into the volima-carbon complex. Instead of preparing a carbon composite in advance, a method is also used in which carbon and iodine are simultaneously added to a predetermined amount of polymer and melted and kneaded in a dispersed manner to produce a positive electrode mixture in one step. Is done. In this case, there is no particular restriction on the order of addition or mixing of the materials added for kneading.
す ¾わち、 要するに、 実質的にボリマーとヨウ素との錯体付加物およ びノまたはヨウ素の分散組成物に炭素類が分散せしめられた組成物すな わち複合体 (正極合剤) を作ることができればよく、 その作製方法は特 に限定されるものでは ¾い。 もちろんこの作製方法には、 正極合剤から すみやかに電気を取 だすため正極合剤に集電体を組み入れるようにす る方法も含まれる。 .  In other words, in short, a complex adduct of a polymer and iodine and a composition in which carbons are dispersed in a dispersion composition of phosphorus or iodine, that is, a composite (positive electrode mixture) are substantially used. It only needs to be able to be made, and the method of making it is not particularly limited. Of course, this manufacturing method also includes a method in which a current collector is incorporated into the positive electrode mixture in order to quickly extract electricity from the positive electrode mixture. .
集電体としては、 負極に用 る金属よ J9も貴 ¾る金属、 例えば、 白金 やステンレス鋼のネット状のものの他、 炭素のマット、 布、 多孔質プロ  As the current collector, J9 is also a precious metal other than the metal used for the negative electrode, such as platinum or stainless steel net, carbon mat, cloth, and porous metal.
OMPI OMPI
. WIPO一、 J ック等の形状のものが用いられる。 . WIPO-I, J A shape such as a rack is used.
本発明の電池において正極合剤に添加される炭素類としては、 カーボ ンプラック、 アセチレンブラック、 グラフ了イ ト、 ケツチエンプラック ( Zり社商標) どがあるが、 粉状、 リン片状、 短繊維状の如き分 散し易い形状のものが好適に使用される。 炭素類の使用量はもちろん炭 素類の種類によって異なるが、 添加すべきホ°リマーに対して通常は 0. 5 〜 6 0 % (重量 、 以下向じ) であり、 ケッチェンブラックでは 0. 5 % 〜 5 ひ であ]?、 ダラファイ トの粉砕品では 0. 5 〜 4 0 %である。 この 値禾満では添加の効果が少く、 ョゥ素含有量の低いところでは導電率が 急激に低下する。 また、 上記の値を越えて使用しても効果は,それ以上向 上しないうえ、 成形性が悪化する。 なお、 たとえばケッチェンブラック では 5 〜 4 0 %がよ 好ましく、 1 0 〜 3 0 %が特に好ましい。  Examples of carbons added to the positive electrode mixture in the battery of the present invention include carbon black, acetylene black, graphit, and ketjen plaque (trademark of Zuri Co., Ltd.). A fiber-like shape that is easily dispersed is preferably used. The amount of carbon used depends, of course, on the type of carbon, but it is usually 0.5 to 60% (weight, below) for the polymer to be added. 5% to 5%], and it is 0.5 to 40% for pulverized Dalafite. At this value, the effect of addition is small, and the conductivity decreases sharply at low iodine contents. Further, even if it is used beyond the above value, the effect is not further improved and the formability is deteriorated. For Ketjen Black, for example, 5 to 40% is more preferable, and 10 to 30% is particularly preferable.
本発明の電池を形顷するには、 以上の如く して作成したヨウ素と、 ョ ゥ素と鍺体付加物を形成する能力のあるボリマ一との錯体付加物および Zまたは該ボリマーにヨウ素を分散せしめた組成物を正極合剤め主成分 としたものを正極とし、 リ チウム、 亜鉛、 カ ドミ ウム、 マグネシウム、 アルミニゥム等の金属を負極とし、 両者を接触させればよい。  In order to form the battery of the present invention, iodine prepared as described above, a complex adduct of iodine with a polymer capable of forming an adduct with iodine, and Z or iodine is added to the polymer. What is necessary is just to make the positive electrode a mixture containing the dispersed composition as a positive electrode mixture, and make the negative electrode a metal such as lithium, zinc, cadmium, magnesium, aluminum or the like, and bring them into contact with each other.
お、 本発明の電池においては、 ヨウ素はボリマー中で大部分が錯体 付加物を形成しているものであるせ、 必ずしもその全部が錯体付力 Π物と して存在することはもちろん必要るい。 その一部 いし全部が遊離の形 で単にボリマー中に分散されていてもかまわない。 要するに、 ヨウ素が リマ一中に実質的に取 込まれていればよいのである。 通常の電池で あれば、 正極と負極は電解質を介して接触させるのが普通であるが、 本 発明の電池はかかる電解質を必ずしも必要とし いのが特徵である。 こ れは、 両電極が接触する界面の側において生成した金属ヨウ化物自体力;、 電解質を構成するからであろうと推定される。 しかして、 それ程の大出 力を突し い用途、 例えば心臓のペースメーカー等の用途にはこれで充 分使用可能てある。 また、 ヨウ化リチウム、 ヨウ化銷等の固体電解質を 初めから麵することも可能である。 In the battery of the present invention, iodine is assumed to be mostly in the form of a complex adduct in the polymer, and it is, of course, necessary that all of the iodine be present as a complex activator. Some or all of them may simply be dispersed in free form in the polymer. In short, iodine All that is required is that it be substantially incorporated into Lima. In the case of a normal battery, the positive electrode and the negative electrode are usually brought into contact via an electrolyte, but the battery of the present invention is not necessarily required to have such an electrolyte. It is presumed that this is because the metal iodide generated on the side of the interface where both electrodes come into contact with each other; constitutes the electrolyte. Thus, it can be fully used for applications that require such a large output, such as cardiac pacemakers. Further, it is also possible to supply a solid electrolyte such as lithium iodide and iodine from the beginning.
また、 湿式すなわち電解質溶液を有する二次電池 (蓄電池) の場合は、 負極の金属に対応した放電生成物たる金属ヨウ化物 (たとえば負極金属 が亜銷であればヨウ化亜錘) の電解質溶液を介して正極と負極とを接触 させればよい。  Further, in the case of a wet type secondary battery (storage battery) having an electrolyte solution, an electrolyte solution of metal iodide (for example, subweight iodide if the anode metal is sub-promotion) is used as a discharge product corresponding to the metal of the anode. The positive electrode and the negative electrode may be brought into contact through the intermediary.
もちろん、 上記のごとき放電によつて生成する金属ョゥ化物電解質の ほかに、 塩化アンモニゥム、 塭化ナト リ ウム、 塩化亜銷、 昊化ナト リ ゥ ム、 昊化カ リ、 ヨウ化リチウム、. ヨウ化亜銷等の電解質溶液を補助電解 質として使用してもよい。 さらに、 自己放電を防ぐため、 多孔性セハ。レ —タ ¾竃解質溶液中両活物質の間に揮入することも好ましい。  Of course, in addition to the metal iodide electrolytes generated by the discharges described above, ammonium chloride, sodium iodide, sodium chloride, sodium halide, sodium halide, potassium halide, lithium iodide, etc. An electrolyte solution such as iodide may be used as the auxiliary electrolyte. In addition, to prevent self-discharge, porous seha. It is also preferable to volatilize between both active materials in the refining solution.
本発明の蓄電池を形成する方法をよ 具体的に説明すれば、 上 のご とくして得られたボリマ一、 炭素およびヨウ素の組成物 (複合体) と集 電体を一体化して形成した電極を正極とし、 上記電池の形成の項で述べ た如き金属を負極とし、 さらに負極のそれぞれの金属に対応した金属ョ ゥ化像 (例えば負極金属が亜 15の場合ヨウ化亜鉛) を電解質として、 こ れを組み上げればよい。 もちろん、 必要に応じて補助電解質を金属ョゥ 化物の代 i?に用いてもよいし、 金属ヨウ化物に補助電解質を加えて用い てもよい。 かかる電解質は通常は水に溶解して使用するが、 場合によつ て、 例えばリチウムゃナ卜リゥムのごとき水と激しく反応する金属を負 極とするよう ¾場合は、 これをプロピ.レン力一ポネ一トゃ r -ブチルラ クトンのごとき反応性の小さい溶媒を使用するのが望ましい。 また、 こ れらの溶媒に溶解した金属ヨウ化物はガラス短橄維マツ卜 (^紙でもよ い) の如き液体保持量の大きい多孔性の材科を支持体とし、 これに含浸 して使用す'るのが好ましい。 かかる'電解質を含浸せしめた多孔性材料は、 そのまま前記した正極と負極の間にはさみ込んで蓄電池を組み立てるこ とができるという利点がある。 The method for forming the storage battery of the present invention will be described in more detail. The electrode formed by integrating the current collector with the composition (composite) of the polymer, carbon and iodine obtained as described above. The positive electrode is made of a metal as described in the section of the formation of the battery, and the metal corresponding to each metal of the negative electrode is used as the negative electrode. It is only necessary to assemble the oxidized image (for example, zinc iodide when the negative electrode metal is 15) as the electrolyte. Of course, the auxiliary electrolyte may be used as a substitute for the metal iodide, if necessary, or the auxiliary electrolyte may be added to the metal iodide. Such an electrolyte is usually used by dissolving it in water. In some cases, for example, when the negative electrode is a metal that reacts violently with water, such as lithium sodium, the propylene power is used. It is desirable to use a solvent with low reactivity such as one-port r-butyl lactone. In addition, metal iodide dissolved in these solvents is used by impregnating it with a porous material such as glass short olives (which may be paper) that has a large liquid holding capacity. It is preferred that Such a porous material impregnated with an electrolyte has an advantage that a storage battery can be assembled as it is between the positive electrode and the negative electrode.
以上のごとくして形成した蓄電池を放電することによ 、 負極では金 属イオン力 正 ではヨウ素イオンがそれぞれ生成し、 これが結合して 電解貧 (放電生成物) たる金属ヨウ化物と ¾るのである。 しかして充電 -時においては該金属ョゥ化物は金属とョゥ素に分解され、 金属は負極に 析出し、 一方、 ヨウ素は冉びボリマ一を主成分とする正極にと こまれ て充電状態になるのである。  By discharging the storage battery formed as described above, iodine ions are generated at the negative electrode when the metal ion force is positive, and these combine to form a metal iodide that is an electrolytic poor (discharge product). . At the time of charging, the metal iodide is decomposed into metal and iodine, and the metal is deposited on the negative electrode. On the other hand, iodine is trapped in the positive electrode mainly composed of boron and lithium. It becomes.
すなわち、 本発明の蓄電池において、 充電に際して直流電圧を印加し、 正極側にヨウ素を析出させ、 負極側に金属を析出させるようにすると、 正極側で析出したョゥ素は正極主成分のボリマ一と容易に錯体付加体を 形成しポリマーにと こまれる。 しかして、 充電終了後、 直流電圧をき つて両極端子を負荷を介して接続することによ 、 放電がおこ]?、 該食 荷に電力が得られるのである。 That is, in the storage battery of the present invention, when a DC voltage is applied during charging, iodine is deposited on the positive electrode side, and metal is deposited on the negative electrode side, the iodine deposited on the positive electrode side is volatilized mainly by the positive electrode. And complex adducts easily Formed and included in the polymer. Then, after the charging is completed, by discharging the DC voltage and connecting the bipolar terminals via the load, the discharge occurs, and power is obtained in the load.
本発明の電池は、 ョゥ素と特定のボリマ一の錯体付加物および Zまた は該^リマ一にヨウ素を分散せしめた組成物を主成分とする正極合剤に、 炭素類が分散状に含有せしめられていることを特徵とする のである。 この炭素類を分散せしめることの技術的意羲はつぎのごとくである。 前記したように従来、 ヨウ素とある種のボリマーの錯体付加物は、 そ れぞれの単体より、 はるかに優れた電気伝導性をもつ物貧に ることが 知られてお j?、 例えばボリ - 2 - ビニルビリヅンのヨウ素錯体は心臓ぺ —スメーカ一用の一次電池の正極合剤として用いられている。 しかしな がら、 これらの錯体付加物は放電するに従い、 ヨウ素 ¾失¾つて導電率 が急激に減少し、 これを使用した電池の内部抵抗が鋇著に増大する欠点 を有している。 特にこの麁体付加物を二次電池の正極合剤に用いた場合 は放電によ 該正極合剤中のヨウ素が極めて少¾く 、 放電終了後に この電池を充電しようと Cみても電極の導電性が上記のごとく全く失 われているので充 は不可能であった。 つま 、 かかる錯体付加物は特 に二次電池としては全く利用することはでき かった。  The battery of the present invention is characterized in that carbon is dispersed in a positive electrode mixture containing iodine and a specific polymer complex adduct and a composition in which iodine is dispersed in Z or the polymer as a main component. It is characterized by being contained. The technical intention of dispersing this carbon is as follows. As described above, it has been known that complex adducts of iodine and certain bolimers have poorer electrical conductivity than each single substance. -2-The iodine complex of vinyl viridine is used as a positive electrode mixture for primary batteries for heart manufacturers. However, these complex adducts have the drawback that, as they discharge, the iodine is lost and the electrical conductivity is sharply reduced, and the internal resistance of a battery using this is significantly increased. In particular, when this rat body adduct is used in the positive electrode mixture of a secondary battery, the amount of iodine in the positive electrode mixture is extremely small due to discharge. As described above, it was impossible to fulfill the charge because it was completely lost. That is, such a complex adduct could not be used at all as a secondary battery.
しかるに、 本発明の電池においては、 篛体付加物から主として る正 極合剤に炭素類を分散せしめることによ 非常に導電性のすぐれた正極 合剤となすことができるだけで く、 放電が進行しても該正極側の内部 抵抗がほとんど増大せず大電流が得られるという顕著る作用効果を奏す ることができるのである。 However, in the battery of the present invention, by dispersing carbons from the polymer adduct into the main positive electrode mixture, it is possible to form a highly conductive positive electrode mixture, and the discharge proceeds. Even inside the positive electrode side A remarkable effect that a large current can be obtained with little increase in resistance can be obtained.
お、 意外なことに、 錯体付加物に炭素類を添加することによ]?、 放 電に って正極合剤の導電率が上がることさえあるのである。  Surprisingly, by adding carbons to the complex adduct, the electrical conductivity of the positive electrode mixture may even increase due to discharge.
上記のごとく、 本発明による正極合剤への炭素類の添加は、 本発明の 錯体電池にとって必 ものである。 .  As described above, the addition of carbons to the positive electrode mixture according to the present invention is necessary for the complex battery of the present invention. .
本発明のよ 好ましい実施の態禄においては、 従来の多孔性セハ。レー タに代えて、 陽イオン交換膜を、 電解質溶液中に揷入する。 かくするこ とに って、 従来のセハ。レ一タを使用する場合に:比較して、 電池寿命を 大巾に長くすることができる。 これは、 陽イ オン交換膜をセハ。レ一タと することによ. 、 錯体として固定化された正極活物質たるヨウ素(/2 ) が電解液中の金属ヨウ化物 ( )と反応して -陰イオンに ]?、 こ れが負極金属と接触して起こると思われる自己放電をきわめて効果的に 防止出来るためでは いかと推定される。 In a preferred embodiment of the present invention, a conventional porous seha. A cation exchange membrane is introduced into the electrolyte solution instead of the rotor. In this way, the traditional Serra. When using a writer: In comparison, the battery life can be greatly extended. It seha yang ion exchange membrane. The iodine (/ 2 ), which is the positive electrode active material immobilized as a complex, reacts with the metal iodide () in the electrolytic solution to form a negative electrode. It is presumed that self-discharge, which may occur in contact with metal, can be prevented very effectively.
本発明の電池において、 セハ。レ一タとして使用される陽イ オン交換膜 は無機貧系の膜あるいは有機系の膜のいずれでもよいが、 特に有檢系の もののうち炭化水茶系のィオン交換膜およびフルォロカ一ボン系のィォ ン交換膜が好ましい。 - お、. 当然のことるがら、 陽イ オン交換膜は陽イ オンのみを選択的に 透過せしめるものであるが、 本発明の電池に使用される陽イ オン交換基 としてはスルホン酸基、 力ルポン酸基およびリ ン酸基のいずれをイ オン 交換基とするものでもよい。 In the battery of the present invention, the cell. The cation-exchange membrane used as a collector may be either an inorganic poor type membrane or an organic type membrane. In particular, among the inspected types, a hydrocarbon-ion type ion exchange membrane and a fluorocarbon type membrane can be used. Zion exchange membranes are preferred. -Naturally, the cation exchange membrane selectively permeates only cations, but the cation exchange groups used in the battery of the present invention include sulfonic acid groups, Either sulfonic acid group or phosphoric acid group It may be an exchange group.
通常、 膜の電気抵抗を下げるために適宜表面処理を行い、 機械的強度 を高めるため布、 綱 ¾どの如きものて補強して使用される。  Usually, a surface treatment is appropriately performed to reduce the electric resistance of the film, and a cloth or a rope is used to enhance the mechanical strength.
本発明の *池に供せられる陽イオン交換膜は、 上記の条件を満たすも のであれば、 市販のものがそのまま使用可能である。 たとえば、 炭化水 素系のものであればセレミ オン陽ィオノ交換膜 C f (旭:^子社製) 、 陽イオン交換膜 d (栗洋科学笙棻社製) 、 フルォロカ一ボン系であれ ばナフイオン 3 2 4陽イオン交換膜 (デュボン社製) ¾どであるが、 要 するに、 陽イオンを達択的に透過し、 陰イオン透過を達択的に阻止する 陽イオン—父瑛腠であれば、 いかなるものでもよく、 特にこれらに限定す るものでは ¾ 。 しかして、 好ましい陽イオン交澳膜としては、 ¾気抵 抗が少るく、 機械的強度が高く、 酸化還元雰囲気下に強い耐食性のある 膜がよいことはもちろんである。  As the cation exchange membrane provided for the * pond of the present invention, a commercially available one can be used as it is, provided that the above conditions are satisfied. For example, if it is a hydrocarbon type, if it is a selemion cation exchange membrane C f (made by Asahi: ^ 子), a cation exchange membrane d (made by Kuriyo Kagaku Sho 棻), or if it is a fluorocarbon type Nafion 3 2 4 cation exchange membrane (made by Dubon Co., Ltd.) is a cation that selectively permeates cations and selectively blocks anion transmission. Anything is acceptable, especially if not limited to these. Thus, as a preferable cation exchange membrane, a membrane having low air resistance, high mechanical strength, and strong corrosion resistance in a redox atmosphere is of course preferable.
〔発明を実施するための最良の形態〕  [Best mode for carrying out the invention]
実施例 1 . Example 1
下記のようにして、 第 1図に示す構成の電池を組み立てた。  A battery having the configuration shown in FIG. 1 was assembled as follows.
ボリァクリ ロニト リル (平均分子量 1 5 2, 0 0 0 ) 3 0 0 含む D M F 6 Q ιφのケッチェン ' ブラック K B - E C ( ST Z O社商標) を 加えよく分散させた。 このものを直径4. 5 cmの円盤状炭素繊維 (呉羽化 学 (株) 製 - T 1 5 ) に塗布し、 ¾自然蒸発法にょ 取 除く。 さらにヨウ素ァセトン溶液に浸すことによ ]9ヨウ累 3 8 0 ^を付加させ、 正極 l oとして用いた。 負極 2 0としては α 3 顧厚亜 5板 (三井金属㈱ ) を用いた。 電解液は N の 1 モル/ ^水溶液でこれを 2枚のガ ラス繊維^紙3 0に2 ^含浸させ、 その間にセハ。レーク 4 0として旭硝 子 (株) 製のセレミ オン 腠をはさみ込んだ。 このものを両極の「曰 1 に入れ電池とした。 ¾お、 第 1図において、 5 0、 5 は支持体、 6 0はハ°ッキン、 7' 0はリード線である。 Ketjen 'Black KB-EC (trademark of STZO) of DMF 6 Qιφ containing polyacrylonitrile (average molecular weight: 150,000) 300 was added and dispersed well. The thing in diameter 4 5 cm of the disk-shaped carbon fiber (Kureha Chemical Co., Ltd. - T 1 5). To the coating, removing ¾ natural evaporation Nyo. Furthermore, by immersing in iodine acetone solution] Used as positive electrode lo. As the negative electrode 20, an α 3 plate (Mitsui Kinzoku Co., Ltd.) was used. The electrolytic solution was a 1 mol / ^ aqueous solution of N, which was impregnated with 2 glass fibers ^ paper 30 ^ 2 , during which time the cell was washed. Tucked the Seremi on腠manufactured by Asahi Glass child (Ltd.) as Lake 4 0. This was placed in the two poles, “No. 1” and the battery was used. In FIG. 1, 50 and 5 are a support, 60 is a hook, and 7 ′ 0 is a lead wire.
実験は窒素気流下 2 5でで行 い、 放電時の初期短絡電流 ( / S c )を 測定した所、 8 0 τη Α /cm2 であった。 またこの時の開放電圧は 1. 3 6 であった。 この電池を 2U ¾電流の条件下で終止'電圧 0. 9 まで放 電したのち終止電圧 1. 5 まで充電する充放電テストをく 返えした。 The experiment was performed under a nitrogen stream at 25 and the initial short-circuit current (/ S c) at the time of discharge was measured and found to be 80 τηΑ / cm 2 . The open-circuit voltage at this time: 1. was 3 6. The battery was discharged to a cut-off voltage of 0.9 under the condition of 2U ¾ current, and then charged and discharged to a cut-off voltage of 1.5.
6 0 0サイ クル後でも、 エネルギー効率および電流効率はほとんど変化 せず竹なわれた。 また、 初期容量に対して 6 0 0サイクル後の電気容量 は 8 7 であった。 このことは、 この電池が二?欠電池として実質的に実 甩レペルにあることを示している。  Even after 600 cycles, the energy efficiency and current efficiency remained almost unchanged. The electric capacity after 600 cycles with respect to the initial capacity was 87. This indicates that this battery is practically at the same level as a dual battery.
比較の為、 ケッチェン ' プラック B - ^ ( の添加してい ¾い正極合 剤を用いるほかは上記と全く向じ手順で電池を作 ]7、 向じ条仵下で評価 した。 この電池の放 ¾時の初期短絡電流 (/ s c )を測定した所、 S m A /cmz であった。 またこの時の開放電圧は 1. 3 4 であった。 更に充放 電テストを行 つた所、 放電後、 充電しようとしたが電圧上昇が激しく、 充 mでき かった。 - 実施例 2 2 , 4 - ト リ レンヅィ ソシァネー卜と 2 , 6 - ト リ レンヅィ ソシァネ ―トの混合物 (三井日曹ウレタン (侏) 製 Γ Z) / - 8 0 Z 2 0 ) 1. 0 f に、 2 0 のケッチェン · ブラック K B - を含むト リプロ ピレン グリコール 0. 9 ^をよく混合し、 ボリウレタン樹脂組成物を合成した。 このホ°リ ウレタン樹脂組成物3 0 Ο ί をフエノールにとかし、 餒液とし た。 このものを直径4. 5 cmの円盤状炭素繊維 (呉羽化学 ) 製 - 7For comparison, a battery was prepared in exactly the same procedure as above except that a positive electrode mixture containing Ketjen's plaque B-^ (was used.] 7, and the battery was evaluated under the same conditions. When the initial short-circuit current (/ sc) at time 測定 was measured, it was S mA / cm z , and the open-circuit voltage at this time was 1.34. After discharge, charging was attempted, but the voltage rose sharply and the battery could not be charged. A mixture of 2,4-trilendiene sociate and 2,6-trilendiene sociate (Mitsui Nisso Urethane (侏) ΓZ) / -80Z20) The propylene glycol 0.9- ^ containing Ketjen Black KB-was well mixed to synthesize a polyurethane resin composition. The polyurethane resin composition 30 was dissolved in phenol to obtain a mixture. This in diameter 4 5 cm of the disk-shaped carbon fiber (Kureha) made -. 7
1 5 ) に塗布し、 フエノールを蒸発法によ 取 除く。 これをヨウ素ァ セトン溶液に浸すことによ ヨウ素 1 2 0 を付加させ、 正極として用 いた。 負極としては、 0- 3聽厚亜鉛板 (三井金属 ) 製) を用いた。 電解液は N 4 の 1モ ^ /レ / I水溶液で、 これを 2枚のガラス繊維^紙 に 2 含 Sさせ、 その間にセハ。レ一タとして旭摘子 (珠) 製のセレミオ ン 腠をはさみ込んだ。 のものを両 の間に入れて電池とした。 電池の構成は、 実施例 1と同禄に、 第 1図に示す通 のものである。 実験は窒素気流下 2 5 °Cで行 い、 放電時の初期短絡電流 (/ s c ) を測定した所、 4 2 /cm2 であった。 またこの時の開放電圧は 1. 3 6 であった。 この電池を Z 定竃流の条仵下で終止電圧 0. 9 まで 放電したのち終止電圧 1. 5 まで充電する充放電テストをく 返えした。 15) Apply to, and remove phenol by evaporation method. This was immersed in an iodine acetate solution to add iodine 120 and used as a positive electrode. As the negative electrode, a 0-3 thick zinc plate (made by Mitsui Kinzoku) was used. Electrolyte in 1 mode ^ / Les / I aqueous solution of N 4, which was 2 S-containing two glass fiber ^ paper, Serra therebetween. Serumion 製 made by Asahiko (pearl) was inserted as a recorder. The battery was inserted between the two. The structure of the battery is the same as that of the first embodiment, as shown in FIG. The experiment was performed at 25 ° C. under a nitrogen stream, and the initial short-circuit current (/ sc) at the time of discharge was measured, and it was 42 / cm 2 . The open-circuit voltage at this time was 1.36. The battery was discharged to a final voltage of 0.9 under the conditions of Z constant flow, and then charged and discharged to a final voltage of 1.5.
6 0 0サイクル後でもェネルギ一効率および電流効率はほとんど変化せ ず行なわれた。 また、 初期容量に対して 6 0 0サイクル後の電気容量は 8 7' であった。 このことは、 この電池が二次電池として実 的に実用 レベルにあることを示している。 比較の為、 ケッチェン · ブラック K B - (7の添加していない正極合 剤を用いるほかは上記と全く同じ手順で電池を作 、 同じ条件下で、 評 価した。 この電池の放電時の初期短絡電流 ( sc)を測定した所、 6 m Α/αηζ であった。 またこの時の開放電圧は 1.3 4 であった。 更に充 放電テストを行るつた所、 放電後、 充電しようとしたが電圧上昇が激し く、 充電でき かっ^。 , Even after 600 cycles, the energy efficiency and the current efficiency were almost unchanged. The electric capacity after 600 cycles with respect to the initial capacity was 87 '. This indicates that this battery is actually at a practical level as a secondary battery. For comparison, Ketjen Black KB-(A battery was prepared in exactly the same procedure as above except that a positive electrode mixture without the addition of 7 was used, and evaluated under the same conditions. Initial short circuit during discharge of this battery the measured current (sc), was 6 m Α / αη ζ. the open circuit voltage at this time was 1.3 4. where a single further Gyoru charge and discharge test, after the discharge has been attempted to charge The voltage rises so steeply that it cannot be charged.
実施例 3 Example 3
ナイ ロン - 6 (東レ (株) 製) 3 0 0 ) を含むギ酸溶液に、 6 0 ^の ケッチエン * ブラック KB - EC ( ZO社商標) を加え、 よく分散 させた。 このものを直径 4.5 の円盤状炭素繊維 (呉羽化学 (株) 製 - 7 1 5 ) に塗布し、 ギ酸を自然蒸発法.によ ]9取 ]9除く。 これをヨウ素 ァセトン溶液に浸すことによ]?ヨウ素 3 6 0 ^を付加させ、 正極として 用いた。 負極としては 0.3顏厚亜鉛板 (三井金属 (侏) 製) を用いた。 電解液は N 4 C Zの 1モル Z 水溶液で、 これを 2枚のガラス飆維^紙 に 2 含浸させ、 その間にセハ。レーターとして旭硝子 (株) 製のセレ ミ オン CJi 膜をはさみ込んだ。 このものを両^の間に入れ電池とした。 電池の構成は、 実施例 1と同様に、 第 1図に示す通 j のものである。 実 験は窒素気流下 2 5UCで行る'い、 放電時の初期短絡電流 (/& ) を測定 した所、 7 l mAZa^ であった。 またこの時の開放電圧は 1.3 6 で あった。 この電池を 2 定 ¾流の条件下で終止電圧 0.9 まで放電し たのち終止電圧 1.5 Γまで充電する充放 '匿テス卜をく 返えした。 600 サイクル後でもエネルギー効率および電流効率はほとんど変化せず行な われた。 また初期容量に対して、 6 0 0サイクル後の電気容量は 8 5 であった。 このことは、 この電池が二次電池として実質的に実用レベル にあることを示している。 To a formic acid solution containing Nylon- 6 (manufactured by Toray Industries, Inc.) 300), 60 ^ ketchene * black KB-EC (trade name of ZO Corporation) was added and well dispersed. This is applied to a disk-shaped carbon fiber with a diameter of 4.5 (product of Kureha Chemical Co., Ltd.-715), and formic acid is removed by a natural evaporation method. This was immersed in an iodine-acetone solution], and iodine 360 ^ was added, and used as a positive electrode. A 0.3-inch thick zinc plate (made by Mitsui Kinzoku (Δ)) was used as the negative electrode. The electrolyte is a 1 molar Z aqueous solution of N 4 CZ, which is impregnated with two pieces of glass braided paper, and between which the cell is sewn. A SELIMION CJi film manufactured by Asahi Glass Co., Ltd. was sandwiched between them. This was inserted between both sides to form a battery. The configuration of the battery is the same as that of Example 1 as shown in FIG. The experiment was performed at 25 U C under a nitrogen stream, and the initial short-circuit current (/ &) at the time of discharge was measured to be 7 l mAZa ^. The open-circuit voltage at this time: 1. was 3 6. This battery was charge-discharge 'anonymous test Bokuoku Kaee charged to a final voltage of 1.5 gamma After discharged to a final voltage of 0.9 under the conditions of 2 constant ¾ stream. 600 Even after the cycle, the energy efficiency and current efficiency remained almost unchanged. The electric capacity after 600 cycles was 85 with respect to the initial capacity. This indicates that this battery is practically at a practical level as a secondary battery.
比馭の為、 ケッチェン ' プラック - £Cの添加していない正極合 剤を用いるほかは上記と全く同じ手順で電池を作 、 问じ条仵下で、 評 価した。 この電池の放電時の初期短絡 W流(/sc) を測定した所、 1 0 Til A /cm1 であった。 またこの時の開放電圧は 1· 3 4 Γであった。 更に 充放電テス卜を Τるった所、 放電後、 充電しようとしたが電圧上昇が激 しく、 充 '竈できなかった。 A battery was prepared in exactly the same procedure as above except that a positive electrode mixture without the addition of Ketjen's plaque-£ C was used for the sake of comparison, and evaluated under the same conditions. When the initial short-circuit W current (/ sc) at the time of discharging of the battery was measured, it was 10 Til A / cm 1 . The open-circuit voltage at this time was 1.34 mm. Furthermore, when the charge / discharge test was completed, charging was attempted after discharging, but the voltage rose sharply and the charging could not be performed.
実施例 Example
尿素樹脂の初期反応生 5乂物であるユーロイ ド # 3 2 0 (三井栗圧化学 (株) 登録 標) 5 0 0 にヨウ素 5 0 および炭素類としてケッチェ -ン ' ブラック KB - EC (^ ZO社商檫) 2 Ο ί を添加してよく混練 した後、 硬化剤として 1 2 N塩酸 1滴を加えて充分混合した。 このもの を、 直径4.5 ^の円盤状炭素镞維 (呉羽化学 (洙) 製 - 7 1 5) に塗 布し、 使化させ正極として用いた。 負極としては 0.3腿厚亜 &板 (三井 金属 (樣) 製) を用いた。 電解液は塩化リチウム 2 0 水溶液で、 これ を 2坎のガラス繊維^紙に 2 含浸させ、 その間にセハ。レ一タとして旭 硝子 (株) 製のセレミオン 膜をはさみ込んだ 0 このものを両極の 間に入れ電池とした。 電池の構成は、 実施例 1と同様に、 第 1図に示す 通 のものである。 Initial reaction of urea resin Euroid # 3 20 (registered mark of Mitsui Kuriatsu Chemical Co., Ltd.), which is a 5 syrup, with iodine 50 and carbon as Ketchen 'Black KB-EC (^ ZO After adding 2Ο and mixing well, 1 drop of 12N hydrochloric acid was added as a hardener and mixed well. The ones, diameter 4 5 ^ disk-shaped carbon镞維(Kureha Chemical (su) manufactured - 7 1 5). To the coated fabric was used as a positive electrode is deer. The negative electrode used was 0.3 thigh & plate (manufactured by Mitsui Kinzoku). The electrolyte is an aqueous solution of lithium chloride 20. This is impregnated with 2 pieces of glass fiber ^ paper, and during that time, it is seha. Les tucked the Asahi Glass Co., Ltd. of Selemion film as one data 0 was the battery put this thing between the two poles. The configuration of the battery is shown in FIG. 1 as in Example 1. It is common.
実験は窒素気流下 2 5 °Cで行ない、 放電時の初期短絡電流 (/ s c ) を 測定した所、 3 5 w 2 であった。 またこの時の開放電圧は 1. 3ひ であった。 この電池を 2 m 定電流の条件下で終止電圧 0. 9 Fまで放 電したのち終止電圧 1. 5 まで充電する充放電テス卜をく ]?返した。 6 0 0サイクル後でもエネルギー効率お.よび電流効率はほとんど変化せず 行 われた。 また初期容量に対して 6' 0 0サイクル後の電気容量は 4 5 であった。 このことは、 この電池が二次電池として実質的に実用レぺ ルにあることを示している。 Experiments conducted under a nitrogen gas stream 2 5 ° C, the discharge time of the initial short-circuit current (/ sc) was measured and found to be 3 5 w 2. The open-circuit voltage at this time was 1.3 hours. After discharging the battery to a final voltage of 0.9 F under the condition of a constant current of 2 m, a charge / discharge test for charging to a final voltage of 1.5 was repeated. Even after 600 cycles, the energy efficiency and current efficiency were almost unchanged. The electric capacity after 6'00 cycles with respect to the initial capacity was 45. This indicates that this battery is substantially at a practical level as a secondary battery.
比較の為、 ケッチェン · ブラック - Cの添加していない正極合 剤を用いるほかは上記と全く同じ手順で電池を作]?、 同じ条件下で評価 した。 この ¾池の放電時の初期短絡電流 ( s c ) を測定した所、 5  For comparison, a battery was prepared in exactly the same procedure as above except that a positive electrode mixture to which Ketjen Black-C was not added was used and evaluated under the same conditions. When the initial short-circuit current (s c) during discharge of this battery was measured,
/cmz であった。 またこの時の開放電圧は 1. 3 であった。 更に充放電 テストを行 つた所、 放電後、 充電しようとしたが電圧上^"が激'しく、 充電できなかった。 / cm z . The open-circuit voltage at this time was 1.3. In addition, when a charge / discharge test was performed, charging was attempted after discharging, but the voltage was "intense" and charging failed.
実施例 5 Example 5
ァクリ口アミ ド (三井東圧化学 (株) 製) 3 0 0 ^およびビスメチレ ンァクリロアミ ド 1 を充分脱酸素した水 に溶解し、 これに過硫酸 了ンモニゥム 3 と酸性亜硫酸ナ卜リゥム 1. 5 を添加し、 窒素気流中 2 0。Cで少し重合させ、 これにケッチェン ' ブラック - C { A K Zひ社商標) を加え、 混練分散させた。 このものを、 直径4. 5 の円盤 IPO 、 : 状炭素繊維 (呉羽化学 (株) 製 - 7 1 5 ) に塗布し、 硬化させ正極と して用いた。 負極としては 0. 3 厚亜鎩板 (三井金属 (株) 製) を用い た。 電解液は塩化リ チウム 2 0 水溶液で、 これを 2枚のガラス繊維^ 紙に 2 含浸させ、 その間にセハ。レークとして旭^ (株) 製のセレミ オン C i 膜をはさみ込んだ。 このものを両極の間に入れ、 電池とした。 電池の構成は、 実施例 1と同様に第 1図に示す通 ] のものである。 Acrylic amide (manufactured by Mitsui Toatsu Chemicals, Inc.) 300 ^ and bismethylene acryloamide 1 are dissolved in sufficiently deoxygenated water, and persulfuric acid monoxide 3 and sodium acid sulfite 1.5 are added thereto. Add 20 in a stream of nitrogen. The mixture was slightly polymerized with C, and Ketjen'Black-C (trademark of AKZ Hisha) was added thereto and kneaded and dispersed. This thing, diameter of 4 5 of the disc IPO,.: Carbon fiber (Kureha Chemical Co., Ltd.-715) was applied and cured to use as a positive electrode. As the negative electrode, 0.3 thick aluminum plate (manufactured by Mitsui Kinzoku Co., Ltd.) was used. The electrolytic solution is an aqueous solution of lithium chloride, which is impregnated with two pieces of glass fiber paper, and then the cell is immersed. As a rake, a Ceremion C i film made by Asahi ^ was inserted. This was placed between the electrodes to make a battery. The configuration of the battery is as shown in FIG. 1 as in Example 1.
実験は窒素気流下 2 5 °Cで行ない、 放電時の初期短絡電流 (/s c ) を 測定した所、 4 6 m A /cmz であった。 またこの時の開放電圧は 1. 3 Γ であった。 この電池を 2 定電流の条件下、 終止電王 0. 9 まで放電 したのち終止電圧 1. 5 まで充電する充放電テストをく 返した。 6 0 0サイクル後てもェネルギ一効率および電流効率はほとんど変化せず行 なわれた。 また初期容量に対して 6 0 0サイクル後の電気容量は 7 2 °b であった。 このことは、 この電池が二次電池として実貧的に実用レベル にあることを示している。 Experiments conducted under a nitrogen gas stream 2 5 ° C, the discharge time of the initial short-circuit current (/ sc) was measured, it was 4 6 m A / cm z. The open-circuit voltage at this time was 1.3 mm. The battery was discharged under a constant current condition of 2 to a cutoff voltage of 0.9 and then charged and discharged to a cutoff voltage of 1.5. Even after 600 cycles, the energy efficiency and the current efficiency were almost unchanged. The electric capacity after 600 cycles with respect to the initial capacity was 72 ° b. This indicates that this battery is practically at a practical level as a secondary battery.
比較の為、 ケッチェン *ブラック - の添加しているい正極合 剤を用いるほかは上 tと全く向じ手順で電池 ¾作 ]9、 同じ条件下で評価 した。 この ¾池の放電時の初期短絡電流(J s c ) を測定した所、 6 m A /cmz であった。 またこの時の開放電圧は 1. 3 であった。 更に充放電 テストを行なった所、 放 ¾後、 充電しようとしたが'電圧上昇が激しく、 充電でき ¾かった。 For comparison, a battery operation was performed in exactly the same procedure as above except that a positive electrode mixture to which Ketjen * Black was added was used, and the battery operation was evaluated under the same conditions. Measurement of the initial short-circuit current during discharge of the ¾ pond (J sc), was 6 m A / cm z. The open-circuit voltage at this time was 1.3. In addition, a charge / discharge test was performed. After discharge, the battery tried to be charged, but the voltage rose sharply, and it was difficult to charge.
実施例 6 ^リテ ト ラメチレンエーテル ( 0. 1 %ベンゼン溶液中での還元粘度 1. 1 2 :大津ら (Γ. Ots , e t al ) マクロモレクラ一レ 'へミ一 {Makro mol . C hem. \ 7 1、 1 5 0 ( 1 9 6 4) ) 3 0 0 をェ チルセ口ソルプアセテ一トに溶かし、 この溶液に 6 0 のケッチェン · ブラック - 5 Cを加えよく分散させた。 このものを直径 4 5cmの円 盤状炭素繊維 (呉羽 学 (株) 製 £ -.7 1 5) に塗布し、 ェチルセロン ルプアセテ一'卜を蒸発法によ J)取]?除く。 このものをヨウ素ァセトン溶 液に浸すことによ ]9ヨウ素 3 2 0 付加させ、 正極として用いた。 負極 としては 0.3廳厚亜鉛板 (三井金属 (株) 製) を用いた。 電解液は N C I の 1モルノ 水溶液でこれを 2枚のガラス繊維 紙に 2 含浸させ、 その間にセハ。レ一タとして旭硝子 (抹) 製の レミ オン C i 膜をはさ み込んだ。 このものを 極の間に入れ電池とした。 電池の構成は、 実施 例 1と同様に、 第 1図に示す; ii j?のものである。 実験は窒素気流下 2 5 °Cで行ない、 放電時の初期短絡電流 (/sc ) を測定した所、 9 2 / cm2 であった。 またこの時の開放'霞圧は 1. 3 6 ^であった。 この電池を 2 mA定電流の条件下で終止電圧 0. 9 まで放電したのち終止電圧 1.5 まで充電する充放電テス卜をく 返えした。 6 0 0サイクル後でもェ ネルギ一効率および電流効率はほとんど変化せず行 われた。 また初期 容量に対して 6 0 0サイクル後の電気容量は 8 8 %であった。 このこと は、 この電池が二次電池として実質的に実用レベルにあることを示して いる。 比較の為、 ケッチェン ' ブラック!: S - (7の添加してい い正極合 剤を用いるほかは上記と全く同じ手順で電池を作 ]9、 同じ条件下、 Hffi した。 この電池の放電時の初期短絡電流 (/sc) を測定した所、 1 0m Α/αι^ であった。 またこの時の開放電圧は 1*3 4 であった。 更に充 放電テストを行なった所、 放電後、 充電しようとしたが電圧上昇が激し く、 充電でき ¾かった。 ' 実施例 Ί Example 6 ^ Literamethylene ether (reduced viscosity in 0.1% benzene solution 1.12: Otsu et al. (Γ. Ots, et al) Macromolecule Chem. \ 71 , 150 (1964)) 300 was dissolved in ethyl acetate sorp acetate, and 60 Ketjen Black-5C was added to the solution and dispersed well. This is applied to a disc-shaped carbon fiber with a diameter of 45 cm (Kakuha Manabu Co., Ltd., £ -.715), and the ethyl selone lupe acetate is removed by evaporation. This was immersed in an iodine acetone solution, and [9] iodine was added to 320 to use it as a positive electrode. As the negative electrode, a 0.3 galvanized zinc plate (manufactured by Mitsui Kinzoku Co., Ltd.) was used. The electrolytic solution was a 1M aqueous solution of NCI, which was impregnated into two pieces of glass fiber paper. As a recorder, a Remion C i film made by Asahi Glass was inserted. This was placed between the poles to make a battery. The structure of the battery is shown in FIG. 1 as in Example 1; Experiments conducted under a nitrogen gas stream 2 5 ° C, the discharge time of the initial short-circuit current (/ sc) was measured, it was 9 2 / cm 2. At this time, the open haze pressure was 1.36 ^. The battery was discharged to a final voltage of 0.9 under the condition of a constant current of 2 mA, and then charged and discharged to a final voltage of 1.5. Even after 600 cycles, the energy efficiency and the current efficiency were almost unchanged. The electric capacity after 600 cycles with respect to the initial capacity was 88%. This indicates that this battery is practically at a practical level as a secondary battery. For comparison, Ketchen 'Black! : The battery was made in exactly the same procedure as above except that the cathode mixture without the addition of S-(7) was used.9) Under the same conditions, the initial short-circuit current (/ sc) of the battery during discharge was calculated as follows: The measured value was 10 mΑ / αι ^, and the open-circuit voltage at this time was 1 * 34 4. Further charge / discharge tests were performed. 'Example Ί
パレックス樹脂 (米国ソハイォ社商標、 三井東圧化学 (株) 販売、 ァ クリ σニ ト リル、 メチルァク リ レート、 ブタヅェン共重合、 グラフ ト重 合体) 3 0 0 ^を含むギ酸溶液に、 6 0/¾!のケッチェン ' ブラック∑ Β - EC (^ ZO社商標) を加えよく分散させた。 このものを、 直径 4 5 の円盤状炭素繊維 (呉羽化学 (株) 製 - 7 1 5) に塗布し、 ギ酸 を自然蒸発法によ]?取]?除く。 これをヨウ素ァセ トン溶液に浸すことに よ j?ヨウ素 3 8 0 ^を付加させ、 正極として用いた。 負極としては 0.3 顏厚亜鉛板 (三井金属 m製) を用いた。 電解液は の 1モル 水溶液で、 これを 2枚のガラス鎩維^紙に 2 含浸させ、 その間に セハ。レータとして旭稱子 (株) 製のセレミ オン CM^膜をはさみ込んだ。 このものを両極の間に入れ電池とした。 電池の構成は、 実施例 1と同様 に、 第 1図に示す通])のものである。  Parex resin (trademark of Sohio, USA, sold by Mitsui Toatsu Chemicals, Inc., acrylic acid nitrile, methylacrylate, butadiene copolymer, graft polymer) In a formic acid solution containing 300 ^ ¾! Ketjen's Black Β Β-EC (^ ZO) was added and dispersed well. This is applied to disc-shaped carbon fiber (Kureha Chemical Co., Ltd.-715) with a diameter of 45, and formic acid is removed by natural evaporation method. This was immersed in an iodine-acetone solution to add j-iodine 380 ^, and used as a positive electrode. A 0.3-inch thick zinc plate (made by Mitsui Kinzoku m) was used as the negative electrode. The electrolyte is a 1 molar aqueous solution of, which is impregnated into two pieces of glass fiber paper, during which time the cell is exposed. A selemiion CM ^ membrane made by Asahi Co., Ltd. was sandwiched between them. This was placed between both electrodes to form a battery. The configuration of the battery is the same as in Example 1, as shown in FIG. 1]).
実験は窒素気流下 5°Cで行ない、 放電時の初期短絡電流 を 測定した所、 7 0 mA/cmz であった。 またこの時の開放電圧は 1: 35 Experiments conducted under a nitrogen gas stream 5 ° C, was measured the initial short-circuit current during discharge was 7 0 mA / cm z. The open voltage at this time is 1:35
、 であった。 この電池を 2 w 定電流の条件下で終止電圧 0. 9 Γまで放 電したのち終止電圧 1. 5 まで充電する充放電テストをく ]返した。 6 0 0サイクル後でもェネルギ一効率および電流効率はほとんど変化せず 行るわれた。 また初期容量に対して 6 0 0サイクル後の電気容量は 8 5 であった。 このことは、 この電池が二次電池として実質的に実用レべ ルにあることを示しでいる。 , Met. The charge-discharge test for charging to a final voltage of 1.5 After electrostatic discharge to the final voltage of 0. 9 gamma under the conditions of the battery 2 w constant current Ku] returned. Even after 600 cycles, the energy efficiency and the current efficiency were almost unchanged. The electric capacity after 600 cycles with respect to the initial capacity was 85. This indicates that this battery is practically at a practical level as a secondary battery.
比較の為、 ケッチェン * プラック - の添加していない正極合 剤を用いるほかは上記と全く问じ手順で電池を作] 9、 向じ条仵下で評価 した。 この電池の放 ¾時の初期短絡電流 (/ s c ) を測定した所、 T A /cniL であった。 またこの時の開放 圧は 1. 3 4 であった。 更に充放 電テス トを行なった所、 放電後、 充電しょうとしたが電圧上昇が激しく、 充電できなかった。 For comparison, a battery was prepared in exactly the same procedure as above except that a positive electrode mixture to which Ketjen * Plac- was not added was used. When the initial short-circuit current (/ sc) of the battery at the time of discharge was measured, it was TA / cni L. The opening pressure at this time was 1.34. After a charge / discharge test, the battery was charged after discharge, but the voltage rose sharply and could not be charged.
実施例 8 Example 8
ボ リ メチルメタ了ク リ レ一 ト (平均分子量 1 5 2 0 0 0 ) 3 0 0 Wを 含む酢酸ェチル浴液に、 も 讥 9<Dケッチエン ' ブラック K B - E C ( A 社商標) を加え、 よく分散させた。 このものを直径4 5 ^の円盤 状炭素繊維 (呉羽化字 (株) 製^ - 7 1 5 ) に塗布し、 酢酸ェチルを自 然蒸発法によ ]9取]?除く。 これをヨウ素アセ ト ン溶液に浸すことによ ヨウ素 2 2 0 ^を付カ卩させ、 正極として用いた。 負極としては 0. 3卿厚 亜錯板 (三井金属 (株) 製) を用いた。 電解液は N の 1 モル 水溶液で、 これを2枚のガラス繊維; 紙に 2 含浸させ、 その間にセハ。 レータとして旭硝子 (珠) 製のセレミ オン 膜をはさみ込んだ。 こ のものを両極の間に入れ電池とした。 電池の構成は、 実施例 1と同様に 第 1図に示す通 のものである。 実験は窒素気流下 2 5 °Cで行ない、 放 電時の初期短絡電流(/s c ) を測定した所、 6 8 A /cmz であった。 またこの時の開放 '電圧は 1. 3 6 であった。 この電池を 2 m 定電流の 条件下で終止電圧 0. 9 まで放電したのち終止電圧 L 5 Vまで充電する 充放電テストをぐ!)返えした。 6 0 0サイクル後でもェネルギ一効率お よび電流効率はほとんど変化せず行なわれた。 また初期容量に対して 6 0 0サイクル後の電気容量は 8 2 であった。 このことは、 この電池が 二次電池として実 ®的に実用レペルにあることを示している。 Add ェ 9 <D ketchene 'Black KB-EC (trademark of Company A) to an ethyl acetate bath containing 300 W of poly (methyl methacrylate) (average molecular weight: 1,500,000). Well dispersed. The intended diameter 4 5 ^ disk-shaped carbon fiber (Kureha of characters Co. ^ - 7 1 5)? A was applied by an acid Echiru the natural evaporation] 9 preparative] excluded. This was immersed in an iodine acetate solution to add iodine 220 ^ and used as a positive electrode. As the negative electrode, a 0.3-thick sub-plate (manufactured by Mitsui Kinzoku Co., Ltd.) was used. The electrolyte is a 1 molar aqueous solution of N, which is impregnated with two pieces of glass fiber; paper with 2 pieces of water. A selemion membrane made of Asahi Glass (pearl) was inserted as a lator. This was placed between the electrodes to make a battery. The configuration of the battery is as shown in FIG. Experiments conducted under a nitrogen gas stream 2 5 ° C, was measured discharge electricity when the initial short-circuit current (/ sc), was 6 8 A / cm z. The open-circuit voltage at this time was 1.36. Discharge the battery to a cut-off voltage of 0.9 under the condition of a constant current of 2 m and then charge it to a cut-off voltage of 5 V. I returned. Even after 600 cycles, the energy efficiency and the current efficiency were almost unchanged. The electric capacity after 600 cycles with respect to the initial capacity was 82. This indicates that this battery is practically in practical use as a secondary battery.
比驟の為、 ケッチェン * ブラック K B - E Cの添加していない正極合 剤を用いるほかは上記と全く同じ手順で電池を作 、 同じ条件下で、 評 価した。 この電池の放電時の初期短絡電流(/ s c ) を測定した所、 7 m A /cmz であった。 またこの時の開放電圧は 1· 3 4 であった。 更に充 放電テス トを行なった所、 放電後、 充電しょうとしたが電圧上昇が激し く、 充電できなかった。 For comparison, a battery was prepared in exactly the same procedure as above except that a positive electrode mixture without the addition of Ketjen * Black KB-EC was used and evaluated under the same conditions. The initial short-circuit current during discharge of the battery (/ sc) was measured and found to be 7 m A / cm z. The open circuit voltage at this time was 1.34. After a further charge / discharge test, charging was attempted after discharging, but the voltage rose sharply and charging failed.
実施例 9 Example 9
ボリビュルアルコール (クラレ (侏) 製) 2 7 0 ^とボリメラミン樹 脂サイメル 3 0 3 (三井東圧化学 (株) 商標) 3 0 を水に溶かし、 こ の水溶液に 6 0 ^のケッチェン ' ブラック s - ( 社商標) を加え、 よく分散させた。 このものを直径 4. 5 の円盤状炭素繊維 (呉  Dissolve Bolibul Alcohol (made by Kuraray (Δ)) 270 ^ and Volimelamine Resin Cymer 303 (trademark of Mitsui Toatsu Chemicals Co., Ltd.) 30 in water, and add 60 ^ Ketjen 'Black to this aqueous solution. s-(trademark) was added and dispersed well. This is disc-shaped carbon fiber with a diameter of 4.5 (Kure
QMPL 羽化学 (株) 製 7 1 5) に塗布し、 水を自然蒸発法で除去し、 1 5 0°Cで 4 0分間熱処理した。 これをヨウ素ァセトン溶液に浸すことによ ]9ヨウ素 3 6 0 ^を付加させ、 正極として用いた。 負極としては 0.3雌 厚亜鉛板 (三井金属 (株) を用いた。 電解液は V^CZの 1モルノ 水溶液で、 これを 2枚のガラス繊維' 紙に 2 含浸させ、 その間にセ ハ。レータとして旭石肖子 (株) 製のセレミ オン C i^膜をはさみ込んだ。 このものを両極の間に入れ電池とした。 電池の構成は、 実施例 1と向様 に、 第 1図に示す 3ffij のものである。 QMPL The solution was applied to Hana Chemical Co., Ltd. 7 15), water was removed by a natural evaporation method, and heat treatment was performed at 150 ° C. for 40 minutes. This was immersed in an iodine acetone solution to add 9) iodine 360 ^, and used as a positive electrode. The negative electrode used was a 0.3-female thick zinc plate (Mitsui Metals Co., Ltd.) The electrolyte was a 1M aqueous solution of V ^ CZ, which was impregnated into two sheets of glass fiber paper, during which time the separator was used. As shown in Fig. 1, a battery was inserted between both electrodes to form a battery. It belongs to 3ffij.
実験は望素気流下 2 5 °Cで行ない、 放電時の初期短絡電流 ( sc) を 測定した所、 3 0 0 mA/cmz であった。 またこの時の開放電圧は 1.3 6 Fであった。 この電池を 2 定電流の条件下で終止電圧 0.9 まで 放電したのち終止電圧 1.5 まで充電する充放電テス卜をく 返えした。 6 0 0サイ クル後でもエネルギー効率、 電流効率はほとんど変化せす行 なわれた。 また初期容量に対して 6 0 0サイクル後の電気容量は 9 0 ° であった。 このことは、 この電池が二次電池として実質的に実用レベル にあることを示している。 Experiments carried out at Nozomimoto stream for 2 5 ° C, where the discharge time of the initial short-circuit current (sc) were measured and found to be 3 0 0 mA / cm z. The open-circuit voltage at this time was 1.36 F. The battery was discharged to a final voltage of 0.9 under the condition of two constant currents, and then charged and discharged to a final voltage of 1.5. Even after 600 cycles, the energy and current efficiencies changed substantially. The electric capacity after 600 cycles with respect to the initial capacity was 90 °. This indicates that this battery is practically at a practical level as a secondary battery.
比較の為、 ケッチェン · ブラック : - の添加していない正極合 剤を用いるほかは上 ¾と全く向じ手順で電池を作 ]9、 问じ条件下で、 評 価した。 この電池の放電時の初期短絡電流(/SC ) を測定した所、 1 6 mA/anz であった。 またこの時の開放 '¾圧は 1, 3 4 であった。 更に 充放電テス卜を行なった所、 放電後、 充電しょうとしたが ¾圧上昇が激 しく、 充電でき かった。 For comparison, a battery was prepared in exactly the same manner as above except that a positive electrode mixture without Ketjen Black:-was used. The initial short-circuit current during discharge of the battery (/ SC) was measured and found to be 1 6 mA / an z. The opening pressure at this time was 1, 3 4. After further charge / discharge test, after discharge, I tried to charge, It was difficult to charge.
実施例 1 0 Example 10
リ ビニルピロリ ドン (平均分子量 1 6 3 0 0 0) 3 0 0 ^を含むテ トラハイ ドロフラン溶液に、 6 0 のケッチェン · ブラック: K B - E C (AKZO m ) を加え、 よく分散させた。 このものを匿径 4.5 の円盤状炭素繊維 ( 羽化.学 (侏) 製 - 7 1 5) に塗布し、 テ卜 ラハ ィ ドロフランを自然蒸発法によ])取 j除く。 これをヨウ素アセ ト ン溶 液に浸すことによ] 9ヨウ素 4 2 0 を付加させ、 正極として用いた。 負 極としては 0:3雌厚亜鉛板 (三并金属 (株) 製) を用いた。 電解液は CIの 1モル Z ^水溶液で、 これを 2枚のガ、ラス镞維; 紙に 2 含 浸させ、 その間にセハ。レータとして旭硝子 (¾) 製のセレミ オン d 膜をはさみ込んだ。 このものを両極の間に入れ'電池とした。 電池の は、 実施例 1と同様に、 第 1図に示す通 のものである。  To a tetrahydrofuran solution containing vinylpyrrolidone (average molecular weight: 163,000) 300 ^^ was added 60 Ketjen Black: KB-EC (AKZO m) and dispersed well. This is applied to disc-shaped carbon fiber with a diameter of 4.5 (manufactured by Hana Kagaku (Δ)-715), and tetrahydrofuran is removed by natural evaporation method. This was immersed in an iodine acetate solution.] 9 Iodine 420 was added to use as a positive electrode. A 0: 3 female zinc plate (manufactured by Sanban Metal Co., Ltd.) was used as the negative electrode. The electrolyte is a 1 molar Z ^ aqueous solution of CI, which is impregnated with two pieces of paper, two pieces of paper and two pieces of paper. A SELEMION d film made by Asahi Glass (¾) was inserted as a lator. This was placed between the electrodes to make a battery. The battery is the same as in Example 1, as shown in FIG.
実験は窒素気流下 2 5°Cで行ない、 放電時の初期短絡電流 se) を 測定した所、 9 2 τηΑ/αηζ であった。 またこの時の開放'電圧は 1.3 6 であった。 この電池を 2 m 定電流の条件下で終止 ¾圧 0.9 まで放 電したのち終止電圧 1.5 まで充電する充放電テス卜をく 返えした。 Experiments conducted under a nitrogen gas stream 2 5 ° C, was measured the initial short-circuit current se) during discharging was 9 2 τηΑ / αη ζ. The open-circuit voltage at this time was 1.36. The battery was discharged to a cutoff voltage of 0.9 under the condition of a constant current of 2 m, and then charged and discharged to charge it to a cutoff voltage of 1.5.
6 0 0サイクル後でもェネルギ一効率、 電流効率はほとんど変化せず行 なわれた。 また初期容量に対して 6 0 0サイクル後の電気容量は 8 6 % であった。 このことは、 この電池が二次電池として実質的に実用レベル にあることを示している。 比較の為、 ケッチェン · ブラック KB - ECの添加していない正極合 剤を用いるほかは上記と全く同じ手順で電池.を作!)、 同じ条仵下、 評価 した。 この電池の放電時の初期短絡電流 (/sc) を測定した所、 9 mA /cmz であった。 またこの時の開放電圧は 1.3 4 であった。 更に充放 電テス トを行 つた所、 放電後、 充電しようとしたが電圧上昇が激しく、 充電でき かった。 ' ' 実施例 1 1 Even after 600 cycles, the energy efficiency and current efficiency were almost unchanged. The electric capacity after 600 cycles with respect to the initial capacity was 86%. This indicates that this battery is practically at a practical level as a secondary battery. For comparison, a battery was prepared in exactly the same procedure as above except that a positive electrode mixture without Ketjen Black KB-EC was added!) And evaluated under the same conditions. The initial short-circuit current during discharge of the battery (/ sc) was measured, was 9 mA / cm z. The open circuit voltage at this time was 1.34. In addition, when a charge / discharge test was performed, charging was attempted after discharging, but the voltage rose sharply and charging was not possible. '' Example 1 1
ポリ - 2 — ビニルヒ。リ ジン (平均分子量 8 0, 0 0 0 ) 3 0 0 Wを含む テ卜 テハイ ド フラン溶液に、 6 0 のケッチェン ' ブラック Κ Β - Ε C ( ひ社商標) を加え、 よく分散ざせた。 このものを直径 4.5 の円盤状炭素繊維 (呉羽化学 (株) 製 - T 1 5) に塗布しテトラハイ ドロアランを自然蒸発法によ!)取 除く。 このものをヨウ素ァセトン溶 液に浸すことによ. ヨウ素 4 3 0 を付加させ、 正極として用いた。 負 極としては 0.3廳厚亜鉛板 (三井金属 (株) 製) を用いた。 電解液はPoly-2-vinyl quince. To a solution of resin (average molecular weight: 80,000) in tetrahydrofuran containing 300 W was added 60 ketjen'black ブ ラ ッ ク -ΒC (Hisha trademark), which was well dispersed. This is applied to disk-shaped carbon fiber with a diameter of 4.5 (Kuwa Chemical Co., Ltd.-T15), and tetrahydralane is spontaneously evaporated! ) Remove. This was immersed in an iodine acetone solution to add iodine 430 to use as a positive electrode. The negative electrode used was a 0.3-inch thick zinc plate (manufactured by Mitsui Kinzoku Co., Ltd.). The electrolyte is
V 4 C の 1モル Z 水溶液で、 これを 2枚のガラス繊維 ;F紙に 2 含 浸させ、 その r日にセハ0レ一タとして旭 子 (株) 製のセレミ オン 膜をはさみ込んだ。 このものを両極の間に入れ電池とした。 電池の構成 は、 笑施例 1と同様に、 第 1図に示す通 のものである。 This was impregnated with 2 pieces of glass fiber; F paper 2 with a 1 mol Z aqueous solution of V 4 C, and on that day, a selemion membrane manufactured by Asahi Corporation was sandwiched as a seha 0 . This was placed between both electrodes to form a battery. The configuration of the battery is the same as that shown in FIG.
実験は窒素気流下 2 5 °Cで行 ¾い、 放電時の初期短絡電流 ( sc) を 測定した所、 9 5 mA/ctn2- であった。 またこの時の開放電圧は 1.3 6 Γであった。 この電池を 2 定 ¾流の条仵下で終止電圧 0.9 まで放 The experiment was carried out at 25 ° C under a nitrogen stream, and the initial short-circuit current (sc) at the time of discharge was measured to be 95 mA / ctn 2- . The open-circuit voltage at this time: 1. was 3 6 Γ. Discharge the battery to a final voltage of 0.9 under two constant current conditions.
O PI 電したのち終止電圧 1. 5 まで充電する充放電テストをく D返えした。 O PI And D Kaee rather the charge-discharge test for charging to a final voltage of 1.5 After electrodeposition.
6 0 0サイクル後でもエネルギー効率および電流効率はほとんど変化せ ず行なわれた。 また初期容量に対して 6 0 0サイクル後の電気容量は 8 8 %であった。 このことは、 この電池が二次電池として実質的に実用レ ペルにあることを示している。  Even after 600 cycles, the energy efficiency and the current efficiency were almost unchanged. The electric capacity after 600 cycles with respect to the initial capacity was 88%. This indicates that this battery is practically at a practical level as a secondary battery.
比較の為、 ケツチ土ン ' ブラック - Cの添加してぃ¾い正極合 剤を用いるほかは上記と全く同じ手順で電池を作 j?、 同じ条件下、 評価 した。 この電池の放電時の初期短絡電流(/s c ) を測定した所、 1 0 A /cntz であった。 またこの時の開放電圧は L 3 4 Γであった。 更に充 放電テス トを行なった所、 放電後、 充電しょうとしたが電圧上 #が激し く充電できなかった。 For comparison, a battery was prepared in exactly the same procedure as above except that a positive electrode mixture to which Ketchi's' Black -C was added was used. The evaluation was performed under the same conditions. The initial short-circuit current during discharge of the battery (/ sc) was measured and found to be 1 0 A / cnt z. The open circuit voltage at this time was L34 4. After a further charge / discharge test, we tried to charge the battery after discharging, but the voltage was too high to charge.
実施例 1 2 Example 1 2
ケッチェン · ブラックを 2 0重量 含むナイロ ン - 6 (柬レ (侏) 製) 4 0 0 ^を、 直径 4. 5 cmの円盤状炭素鞭維 (呉羽化学 (ft) 製 - 7 1 5 ) に塗布した。 このものをヨウ素アセ ト ン溶液に浸すことによ ヨウ 素 4 6 0 付加させ、 正極 1 0として用いた。 負極としては 0. 3丽厚亜 鉛板 (三并金属 (祙) 製) を用いた。 電解液は N ^ C の 1 モル 水 溶液で、 これを 2.枚のガラス繊維 紙に 2 含浸させ、 その間にセハ0レ —タとして各種 1場イ オン交換膜を挿入した。 これを、 ゴム製ハ°ッキンお よび支持体を用いて、 1図のごとく電池に組み立てた。 Nylon-6 (made by Δ) containing 20 weights of Ketjen Black is converted into a carbon-like carbon whip (4.5 cm in diameter) (made by Kureha Chemical (ft)-715) Applied. This was immersed in an iodine acetate solution to add iodine 460 to use as a positive electrode 10. As the negative electrode, a 0.3 mm thick zinc sheet (made by Sanban Metal Co., Ltd.) was used. 1 molar aqueous solution of electrolyte N ^ C, which 2. glass fiber paper to 2 impregnated in, Serra 0 Les therebetween - inserting the various 1-by-exchange membrane as data. This was assembled into a battery using a rubber packing and a support as shown in FIG.
この ¾池を用いた保存実 は 2 5 °Cで行ない、 時間の経過と起電力 (開放電圧) の関係を測定した。 結果を第 1表に示す。 Save real using the ¾ ponds performed at 2 5 ° C, elapsed and the electromotive force of time (Open circuit voltage) was measured. The results are shown in Table 1.
なお、 比較のためセハ。レ一タを使用し い場合及びクラレ (株) 製 P 系セハ。レ一タ (ビニロン S ^ N) を使用した場合の結果もあわせて 第 1表に示した。  Seh for comparison. When a writer is not used and Kuraray Co., Ltd. P-type seha. Table 1 also shows the results obtained when a writer (vinylon S ^ N) was used.
Figure imgf000027_0001
Figure imgf000027_0001
*起電力の初期値は 1. 3 2〜 1. 3 5 Γ  * The initial value of electromotive force is 1.32 to 1.35 5
第 1表から明らかなごとく、 セハ。レータを使用し かった場合は、 わ ずか 2 日で起電力が 1. 3 2〜; I. 3 5 から 0. 9 へと急激に低下し、 ま た ^Ρ 製セパレ一タを便用した場合は、 もちろんこれよ も改良され てはいるが、 1 0日後には起電力が 0. 5 に低下して、 やは 実用には なら い。 As is evident from Table 1, Seha. If you did not use the regulator, an electromotive force is 1.3 2 in just or two days; I. 3 sharply reduced from 5 to 0.9, for flights to or ^ Ρ made separator one data In that case, of course, although it is better than this, the electromotive force will drop to 0.5 after 10 days, and it will not be practical any longer.
これに対し、 たとえばセレミ オン陽イオン交換膜 (旭硝子 (株) 製) をセハ。レークとして用いた場合は、 3 0 0日経過してもほとんど起電力 は低下せず、 電池寿命が大きく延びることが第 1表からわかる。  On the other hand, for example, SERAMION cation exchange membrane (manufactured by Asahi Glass Co., Ltd.) was used. Table 1 shows that when used as a rake, the electromotive force hardly decreased even after 300 days, and the battery life was greatly extended.
OMPIOMPI
WIPO j ejVATio^ 実施例 1 3 WIPO j ejVATio ^ Example 13
尿素樹脂の初期汉応生成物であるユーロイ ド * 3 2 0 (三井東圧化学 (祙) 製) に 1 5重量 にるるようにケッチェン . ブラックを混合し、 その混合物 5 0 0 ^に硬化剤として 1 2 V塩漦 1滴を加えて无分混練し、 それを直径4. 5 の円盤状炭素繊維 (呉羽化学 (株) - 7 1 5 ) に 塗布し硬ィ匕した。 これをヨウ素-ァセトン溶液に浸すことによ ]3 ヨウ素 1 5 0 ^付加させ、 正極とした。 負極としては 0. 3卿厚亜錯板 (三井金 属 (株) 製) を用いた。 電解液は N の 1モル 水溶液で、 これ を 2枚のガラス糠維萨紙に 2 含浸させ、 その間にセハ。レ一タとして各 種陽イ オン交換膜をはさんだ。 このものを両極の間に入れて電池とした。 電池の構成は、 実施 ! 1 1と向様に、 第 1図に示す通 のものてある。 Ketjen. Black is mixed with Euroid * 320 (manufactured by Mitsui Toatsu Chemicals, Inc.), which is the initial reaction product of urea resin, to a weight of 15%, and the hardening agent is added to the mixture 500 ^. and无分kneaded to 1 2 V Shio漦one drop as it diameter 4 5 of the disk-shaped carbon fiber (Kureha chemical Co., Ltd. - 7 1 5). was applied and Kati spoon to. This was immersed in an iodine-acetone solution, and] iodine was added to form a positive electrode. As the negative electrode using 0.3 KyoAtsuA錯板(manufactured by Mitsui Metal Co.). The electrolyte is a 1 molar aqueous solution of N, which is impregnated with two pieces of glass bran fiber paper, during which time the cell is washed. Various kinds of positive ion exchange membranes were sandwiched between them. This was placed between the electrodes to form a battery. Battery configuration is implemented! As shown in Fig. 1, there is the one shown in Fig. 1.
この電池を用いた保存実験は 2 5 °Cで行ない、 時間の経過と起電力 (開放電圧) の関係を測定した。 結杲を第 2表に示す。  A storage experiment using this battery was performed at 25 ° C, and the relationship between the passage of time and the electromotive force (open circuit voltage) was measured. The results are shown in Table 2.
お、 比較のためセハ。レ一タを便用し い場合及びクラレ (侏) ¾ Γ 系セハ0レータ (ビニロン TN) を使用した場合の結果もあわせて 第 2表に示した。 Contact, Seh for comparison. Shown in Table 2 together also results using the cases have to a stool, single-data and Kuraray (supporting post) ¾ gamma system Serra 0 regulator (Vinylon TN).
第 2表 Table 2
Figure imgf000029_0001
Figure imgf000029_0001
*起電方の初期値は 1. 3 1〜: I. 3 5  * The initial value of the electromotive method is 1.3 1 to: I. 3 5
第 2表から明らかなごとく、 セパレ一タを使用しなかった場合は、 わ ずか 2日で起電力が 1. 3 1〜: L. 3 5 から 0. 8 2 へと急激に低下し、 5日経過した時点では 0. 3 0 Γに低下した。 また Ρ 製セハ。レ一タを 使用した場合は、 もちろんこれよ j9も改良されてはいるが、 1 0日後に は起電力が 0. 4 Γに低下して、 やは]?実用には ら¾い。  As is evident from Table 2, when the separator was not used, the electromotive force suddenly dropped from 1.31 to L.35 to 0.82 in just two days. After 5 days, it decreased to 0.30Γ. Also made by セ. If a writer is used, of course the j9 is also improved, but after 10 days the electromotive force drops to 0.4 mm, which is not practical.
これに対し、 たとえばセレミ オン陽イオン交換膜 (旭硝子 (株) 製) をセパレ—タとして用いた場合は、 3 0 ひ日絰過してもほとんど起電力 は低下せず、 電池寿命が飛躍的に延びることが第 2表からわかる。 On the other hand, for example, when a selemion cation exchange membrane (produced by Asahi Glass Co., Ltd.) is used as a separator, the electromotive force hardly decreases even after 30 days, and the battery life is dramatically improved. It can be seen from Table 2 that
実施例 1 4 Example 14
実施例 1 2の方法で得られたヨウ素 Z亜錯電池 (セレミ オン陽イ オン 交換膜使用) について、 1 定電流充放電を行 つた。 5時間放電お よび 5時 Γ曰充電の 1サイ クル 1 ひ時 Γ曰で筷討した結果、 3 0 0サイクル The iodine Z subcomplex battery (using a selemion-ion ion exchange membrane) obtained by the method of Example 12 was subjected to one constant-current charge / discharge. 5 hours discharge and 5 o'clock charge 1 cycle 1 o'clock As a result of the discussion, 300 cycles
OMPI 目でも電池特性を失うことなく、 その起電力変化は一定であった。 この 特性はこの電池が充放電可能な二次電池す わち蓄電池としてもすぐれ た性質をもっていることを示している。 OMPI The change in electromotive force was constant without losing battery characteristics even by eyes. This characteristic indicates that this battery has excellent properties as a rechargeable secondary battery, that is, a storage battery.
〔産業上の利用可能性〕  [Industrial applicability]
本発明の電池は、 出力が高くまた内部抵抗が低い。 しかも、 放電が進 んで、 正極合剤に固定されているヨウ素がほとんど離脱した状態におい ても、 導電率がほとんど減少しないので、 充電操作が容易に行えるとい う特徵を有する。  The battery of the present invention has a high output and a low internal resistance. In addition, even when iodine fixed to the positive electrode mixture is almost completely released due to the progress of discharge, the conductivity is hardly reduced, so that the charging operation can be easily performed.
また、 多数回 (たとえば 3 0 0サイ クル) の充放霄をく 返しても電 池特性は失なわれす、 さらに長期間 (たとえば 3 0 0日) 経過してもほ とんど起電力が低下せず、 電池寿命が飛躍的に長くなつている。  In addition, the battery characteristics are not lost even if the charge / discharge cycle is repeated many times (for example, 300 cycles), and almost no electromotive force occurs even after a long period (for example, 300 days). Battery life has not been reduced, and the battery life has been dramatically increased.
本発明の電池は一次電池として、 また、 よ 好ましくは二次電池とし て使用可能であ 、 V T R 通信機、 電卓、 時計、 コンピュータ一や O The battery of the present invention can be used as a primary battery, or more preferably, as a secondary battery, and includes a VTR communication device, a calculator, a clock, a computer, and
^機器 (ワードプロセサ一等) のパックアップ電源 ¾いし非常用電源、 さらには太陽電池等、 ソーラーシステム用電池として、 好適に使用可能 であ 。 ^ It is suitable for use as a backup power supply for equipment (such as a word processor), an emergency power supply, and a solar system battery such as a solar battery.
ΟΜΡΓ ΟΜΡΓ
'LwO リ 'L w O

Claims

請 求 の 範 囲  The scope of the claims
1. ヨウ素と、 ヨウ素と錯体付加物を形成する能力のあるボリマ一と の錯体付加物および Zまたは該ボリマ一にヨウ素を分散せしめた組 成物を正; S合剤の主成分として甩いる電池において、 該正極合剤に 炭素類が分散状に含有せしめられていることを特徴とする電池。  1. Positive complex adduct of iodine and a polymer capable of forming a complex adduct with iodine and Z or a composition obtained by dispersing iodine in the polymer; the main component of the S mixture A battery, wherein the positive electrode mixture contains carbon in a dispersed state.
2. ボリ マ一がボリナミ ド、 ボリ (メタ) ァク リ ルァミ ド、 ボリ ウレ タン、 ポリ ビュルアルコールおよびボリ ェ一テルからなる群よ ] 達 - 択される請求の範囲第 1項記載の電池。  2. The battery according to claim 1, wherein the polymer is a group consisting of polynamide, poly (meth) acrylamide, polyurethane, polybutyl alcohol, and polyether. .
3. 炭素類が力一ボンブラック、 アセチレンブラック、 ダラファイ ト , およびケッチェンプラックからなる群よ 遴択される請求の範囲第  3. The claim wherein the carbons are selected from the group consisting of carbon black, acetylene black, dalaphite, and ketchup plaque.
1項記載の電池。  Battery according to claim 1.
炭素類が粉状、 リン片状もしくは短鎩維状のごとき分散し易い形 状を有するものである請求の範囲第 3項記載の電池。  4. The battery according to claim 3, wherein the carbon has a shape that is easily dispersed, such as a powder, a scale, or a short fiber.
5. 炭素類がボリマ一に対し 1〜 6 0 含有せしめられている請求の 範囲第 3項記 の電池。  5. The battery according to claim 3, wherein 1 to 60 carbons are contained in the polymer.
6. 負極金属として、 リチウム、 亜鉛、 力 ドミ ゥム、 マグネシゥ厶お よびアルミニウムから る群よ. 選択される金属が便用される請求 の範囲第 1項に記載の'電池。  6. The battery according to claim 1, wherein the negative electrode metal is selected from the group consisting of lithium, zinc, power, magnesium, and aluminum.
7. 電池が一?欠電池である請求の範囲第 1項 いし弟- 6項のいすれか に言 fi の電池。  7. The battery of claim 1, wherein the battery is a single battery.
8. 電池が二次電池である請求の範囲第 1項 ¾いし第 6項のいずれか に記載の電池。 8. The battery according to any one of claims 1 to 6 wherein the battery is a secondary battery The battery according to 1.
9. 電池が電解質溶液を有する二次電池である請求の範囲第 8項記載の  9. The battery according to claim 8, wherein the battery is a secondary battery having an electrolyte solution.
1 0. 陽イオン交換膜がセハ。レータとして電解質溶液中に挿入されてい る請求の範囲第 9項に記載の電池。 1 0. The cation exchange membrane is Sehha. 10. The battery according to claim 9, wherein the battery is inserted into the electrolyte solution as a generator.
1 1. 電解質溶液として、 塩化アンモ.二ゥム、 塩化ナトリゥム、 塩化亜  1 1. As electrolyte solution, ammonium chloride, sodium chloride, sodium chloride
&、 昊化ナト'リウ厶、 具化カリ、 ヨウ化亜 5およびヨウ化リチウムか らなる群よ ]5遠択される電解質の溶液が使用される請求の ¾囲第 1 0 項に記載の電池。  &, A group consisting of NaOH's rhodium, potash, potassium iodide and lithium iodide] 5. An electrolyte solution selected from the group consisting of: battery.
I % 電解貧溶液が多孔性の支持体に含浸せしめられて使用される請求 の範囲第 I 0項記載の電池。 The battery according to claim 10, wherein the I% electrolytic poor solution is used by being impregnated on a porous support.
Ο ΡΓ E D - 】 Ο ΡΓ E D-】
PCT/JP1984/000416 1983-08-30 1984-08-30 Iodine cell WO1985001155A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE8484903289T DE3485975T2 (en) 1983-08-30 1984-08-30 IODINE CELL.
KR1019850700022A KR890002308B1 (en) 1983-08-30 1984-08-30 Iodine battery

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP58/157142 1983-08-30
JP58157143A JPS6049564A (en) 1983-08-30 1983-08-30 Battery containing polyacrylamide or its derivative
JP58/157143 1983-08-30
JP58157142A JPS6049563A (en) 1983-08-30 1983-08-30 Urea-formaldehyde resin battery
JP58172250A JPS6065459A (en) 1983-09-20 1983-09-20 Polyurethane battery
JP58/172250 1983-09-20
JP59/76 1984-01-05
JP59000076A JPS60146459A (en) 1984-01-05 1984-01-05 High output polyamide battery
JP59/77 1984-01-05
JP59000077A JPH069145B2 (en) 1984-01-05 1984-01-05 Iodine battery

Publications (1)

Publication Number Publication Date
WO1985001155A1 true WO1985001155A1 (en) 1985-03-14

Family

ID=27517915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1984/000416 WO1985001155A1 (en) 1983-08-30 1984-08-30 Iodine cell

Country Status (3)

Country Link
US (1) US4656105A (en)
EP (1) EP0161318B1 (en)
WO (1) WO1985001155A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0149421A2 (en) * 1983-12-16 1985-07-24 Eltech Systems Corporation Solid state alkali metal-halogen cell
US5132680A (en) * 1988-12-09 1992-07-21 Fujitsu Limited Polling communication system with priority control

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE79694T1 (en) * 1987-01-15 1992-09-15 Lonza Ag USE OF A CATHODE COATING DISPERSION FOR BATTERIES.
CH674164A5 (en) * 1987-09-29 1990-05-15 Lonza Ag
CH674096A5 (en) * 1988-01-19 1990-04-30 Lonza Ag
CH674477A5 (en) * 1988-03-30 1990-06-15 Lonza Ag
US5217828A (en) * 1989-05-01 1993-06-08 Brother Kogyo Kabushiki Kaisha Flexible thin film cell including packaging material
US5540742A (en) * 1989-05-01 1996-07-30 Brother Kogyo Kabushiki Kaisha Method of fabricating thin film cells and printed circuit boards containing thin film cells using a screen printing process
US5099667A (en) * 1989-06-16 1992-03-31 Lonza Ltd. System for suspending and applying solid lubricants to tools or work pieces
DE59102889D1 (en) * 1990-03-26 1994-10-20 Lonza Ag Method and device for spraying a lubricant suspension at intervals.
US5336273A (en) * 1992-11-27 1994-08-09 Gould Electronics Inc. Laser sealed solid electrolyte cell housed within a ceramic frame and the method for producing it
CN1302570C (en) * 2004-11-25 2007-02-28 复旦大学 Green energy-storing thin-film battery and producing method thereof
US9156957B2 (en) * 2012-02-24 2015-10-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Puncture-healing thermoplastic resin carbon-fiber-reinforced composites
US11001684B2 (en) 2014-12-02 2021-05-11 United States Of America As Represented By The Administrator Of Nasa Puncture healing engineered polymer blends
CN115693022B (en) * 2022-11-23 2023-08-18 浙江大学杭州国际科创中心 Zinc-iodine battery diaphragm based on covalent organic framework and preparation method and application thereof
CN116779829B (en) * 2023-08-16 2023-11-24 中石油深圳新能源研究院有限公司 Organic dual-function composite positive electrode material and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4934086B1 (en) * 1968-11-13 1974-09-11
JPS53120138A (en) * 1977-03-29 1978-10-20 Teijin Ltd Electric cell using halogen salt of n*n**bis *ppcyanophenyl*4*4**bipyridinium as positive electrode active material
JPS5642961A (en) * 1979-09-18 1981-04-21 Matsushita Electric Ind Co Ltd Solid electrolyte battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3438813A (en) * 1967-03-24 1969-04-15 American Cyanamid Co Battery cell depolarizers
US4060673A (en) * 1969-04-07 1977-11-29 P. R. Mallory & Co. Inc. Ion exchange membranes and organic electrolyte cells employing same
US3660164A (en) * 1969-07-02 1972-05-02 California Inst Res Found Primary cell utilizing halogen-organic charge tranfer complex
US3660163A (en) * 1970-06-01 1972-05-02 Catalyst Research Corp Solid state lithium-iodine primary battery
US3773557A (en) * 1972-03-01 1973-11-20 Wurlitzer Co Solid state battery
JPS4934086A (en) * 1972-07-30 1974-03-29
US4550064A (en) * 1983-12-08 1985-10-29 California Institute Of Technology High cycle life secondary lithium battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4934086B1 (en) * 1968-11-13 1974-09-11
JPS53120138A (en) * 1977-03-29 1978-10-20 Teijin Ltd Electric cell using halogen salt of n*n**bis *ppcyanophenyl*4*4**bipyridinium as positive electrode active material
JPS5642961A (en) * 1979-09-18 1981-04-21 Matsushita Electric Ind Co Ltd Solid electrolyte battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0161318A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0149421A2 (en) * 1983-12-16 1985-07-24 Eltech Systems Corporation Solid state alkali metal-halogen cell
EP0149421A3 (en) * 1983-12-16 1986-05-14 Eltech Systems Corporation Solid state alkali metal-halogen cell
US5132680A (en) * 1988-12-09 1992-07-21 Fujitsu Limited Polling communication system with priority control

Also Published As

Publication number Publication date
EP0161318A4 (en) 1988-02-23
EP0161318B1 (en) 1992-11-04
US4656105A (en) 1987-04-07
EP0161318A1 (en) 1985-11-21

Similar Documents

Publication Publication Date Title
WO1985001155A1 (en) Iodine cell
US4547439A (en) Electrochemical generator
JP3068853B2 (en) Solid state electrochemical battery
US3352720A (en) Polymeric depolarizers
US5518838A (en) Electrochemical cell having solid polymer electrolyte and asymmetric inorganic electrodes
JPH08502386A (en) Electrochemical device for power distribution using air electrode
JPH0438104B2 (en)
CN111740177B (en) Positive electrode material, positive electrode, battery, and battery pack
JP2005527942A (en) Electrode for reducing polysulfide species
JP2002216833A (en) Redox cell
US4092463A (en) Secondary battery
CN113066992B (en) Alkaline aqueous single flow battery based on double-metal MOF positive electrode and organic matter negative electrode
JPS5856466B2 (en) dench
JP3535455B2 (en) Electrolyte membrane-electrode assembly for polymer electrolyte fuel cells
JPS62226580A (en) Redox flow battery
JPH0286073A (en) Thin, ribbon-shaped, flexible and chargeable zinc/halide battery
Hishinuma et al. Zinc—iodine secondary cell using 6-nylon or poly (ether) based electrode. Basic research for industrial use of the secondary cell
KR102244179B1 (en) Redox flow cell comprising cellulose
JP4156495B2 (en) Gel electrolyte, its production method and its use
JPH0567477A (en) Battery
US3565692A (en) Rechargeable non-aqueous alkali metal-halogen electrochemical cells
KR890002308B1 (en) Iodine battery
Small et al. Mediated Flow Batteries
JPS58112247A (en) Battery and storage battery using high molecular compound carrying iodine holding power as electrode
WO2021131033A1 (en) Negative electrode material for lead acid storage batteries for system power stabilization or load leveling, and method for producing same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB NL

WWE Wipo information: entry into national phase

Ref document number: 1984903289

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1984903289

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1984903289

Country of ref document: EP