JP3535455B2 - Electrolyte membrane-electrode assembly for polymer electrolyte fuel cells - Google Patents

Electrolyte membrane-electrode assembly for polymer electrolyte fuel cells

Info

Publication number
JP3535455B2
JP3535455B2 JP2000204131A JP2000204131A JP3535455B2 JP 3535455 B2 JP3535455 B2 JP 3535455B2 JP 2000204131 A JP2000204131 A JP 2000204131A JP 2000204131 A JP2000204131 A JP 2000204131A JP 3535455 B2 JP3535455 B2 JP 3535455B2
Authority
JP
Japan
Prior art keywords
exchange component
polymer ion
electrolyte membrane
ion exchange
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000204131A
Other languages
Japanese (ja)
Other versions
JP2002025581A (en
Inventor
薫 福田
洋一 浅野
長之 金岡
信広 齋藤
昌昭 七海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000204131A priority Critical patent/JP3535455B2/en
Priority to US09/897,426 priority patent/US20020045081A1/en
Priority to CA002352356A priority patent/CA2352356C/en
Priority to DE10132434A priority patent/DE10132434B4/en
Publication of JP2002025581A publication Critical patent/JP2002025581A/en
Application granted granted Critical
Publication of JP3535455B2 publication Critical patent/JP3535455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,固体高分子型燃料
電池の電解質膜−電極集成体,特に,電解質膜と,その
電解質膜を挟む空気極および燃料極とを備え,前記電解
質膜は第1の高分子イオン交換成分を有し,前記空気極
および燃料極はそれぞれ第2の高分子イオン交換成分
よび触媒粒子を有し,前記第1の高分子イオン交換成分
および前記触媒粒子の回収を可能にした,固体高分子型
燃料電池の電解質膜−電極集成体に関する。
The present invention relates to the electrolyte membrane of a polymer electrolyte fuel cell - electrode assembly, in particular, comprises an electrolyte membrane and an air electrode and the fuel electrode sandwich the electrolyte membrane, the electrolyte <br / > The membrane has a first polymer ion exchange component, and the air electrode and the fuel electrode respectively have a second polymer ion exchange component .
And a catalyst particle, and the first polymer ion exchange component
And an electrolyte membrane-electrode assembly for a polymer electrolyte fuel cell, which enables recovery of the catalyst particles .

【0002】[0002]

【従来の技術】従来,この種の集成体における高分子イ
オン交換成分としてはフッ素樹脂系イオン交換体が用い
られている。
2. Description of the Related Art Conventionally, a fluororesin ion exchanger has been used as a polymer ion exchange component in this type of assembly.

【0003】[0003]

【発明が解決しようとする課題】前記フッ素樹脂系イオ
ン交換体は一般に溶剤に不溶であることから,その回収
再利用は事実上不可能であり,この点不経済であった。
Since the fluororesin ion exchanger is generally insoluble in a solvent, it is practically impossible to recover and reuse it, which is uneconomical.

【0004】また空気極および燃料極において,それら
に含まれた触媒粒子,例えばカーボンブラック粒子に複
数のPt(白金)粒子を担持させたものを回収する場合
には,空気極および燃料極と,電解質膜とが,一般にホ
ットプレスにより一体化されていることから,前記集成
体を燃やしているが,この燃やすことによる回収は作業
性が悪い,という問題もあった。
Further, in the case of recovering the catalyst particles contained in the air electrode and the fuel electrode, for example, carbon black particles carrying a plurality of Pt (platinum) particles, when recovering the air electrode and the fuel electrode, Since the electrolyte membrane is generally integrated by hot pressing, the assembly is burned, but there is also a problem that the recovery by burning is poor in workability.

【0005】[0005]

【課題を解決するための手段】本発明は,高分子イオン
交換成分として特定のものを用いることによって,電解
質膜の回収再利用を可能にし,また空気極および燃料に
含まれている触媒粒子を容易に回収し得るようにした前
記集成体を提供することを目的とする。
The present invention makes it possible to recover and reuse an electrolyte membrane by using a specific polymer ion exchange component, and to use catalyst particles contained in an air electrode and a fuel. It is an object of the present invention to provide the above-mentioned assembly which can be easily recovered.

【0006】前記目的を達成するため本発明によれば,
電解質膜と,その電解質膜を挟む空気極および燃料極と
を備え,前記電解質膜は第1の高分子イオン交換成分を
有し,前記空気極および燃料極はそれぞれ第2の高分子
イオン交換成分および触媒粒子を有し,前記第1の高分
子イオン交換成分および前記触媒粒子の回収を可能にし
,固体高分子型燃料電池の電解質膜−電極集成体であ
って,前記第2の高分子イオン交換成分は,前記触媒粒
子を回収すべく,前記電解質膜−電極集成体を溶剤に浸
漬したとき溶解する,無フッ素の芳香族炭化水素系高分
子イオン交換成分よりなり,前記第1の高分子イオン交
換成分は,それを回収すべく,前記溶剤から取出された
未溶解物を溶剤に浸漬したとき溶解する,無フッ素の芳
香族炭化水素系高分子イオン交換成分よりなる固体高分
子型燃料電池の電解質膜−電極集成体が提供される。
According to the present invention to achieve the above object,
An electrolyte membrane, and a its sandwich the electrolyte membrane air electrode and the fuel electrode, the electrolyte membrane of the first polymeric ion exchange component
And the air electrode and the fuel electrode respectively have a second polymer ion exchange component and catalyst particles,
Enables recovery of child ion exchange components and the catalyst particles
And solid polymer electrolyte fuel cell electrolyte membrane - electrode assembly der
The second polymer ion exchange component is the catalyst particles.
The electrolyte membrane-electrode assembly was immersed in a solvent to collect the particles.
High content of fluorine-free aromatic hydrocarbons that dissolves when pickled
The first polymer ion exchange, which is composed of a child ion exchange component.
The replacement component was removed from the solvent to recover it.
A fluorine-free solution that dissolves undissolved substances when immersed in a solvent.
Provided is an electrolyte membrane-electrode assembly for a polymer electrolyte fuel cell, which comprises an aromatic hydrocarbon-based polymer ion exchange component .

【0007】前記集成体を溶剤に浸漬すると,外側にあ
る空気極および燃料極の芳香族炭化水素系高分子イオン
交換成分が溶解し,これにより触媒粒子の回収が行われ
る。その後,未溶解物を溶剤から取出せば,それは電解
質膜に相当する部分であるから,電解質膜の回収が行わ
れる。これを膜成形材料として用いて電解質膜を得るこ
とができる。
When the assembly is dipped in a solvent, the aromatic hydrocarbon-based polymer ion exchange components on the air electrode and the fuel electrode on the outer side are dissolved, whereby the catalyst particles are recovered. After that, if the undissolved substance is taken out from the solvent, it is a portion corresponding to the electrolyte membrane, so that the electrolyte membrane is recovered. An electrolyte membrane can be obtained by using this as a membrane molding material.

【0008】[0008]

【発明の実施の形態】図1において,固体高分子型燃料
電池を構成するセル1は,電解質膜2と,その両側にそ
れぞれ密着する空気極3および燃料極4と,それら両極
3,4にそれぞれ密着する一対の拡散層5,6と,それ
ら両拡散層5,6に密着する一対のセパレータ7,8と
よりなる。電解質膜−電極集成体9には,実施例では,
電解質膜2,空気極3,燃料極4だけでなく,両拡散層
5,6も含まれる。
BEST MODE FOR CARRYING OUT THE INVENTION In FIG. 1, a cell 1 which constitutes a polymer electrolyte fuel cell comprises an electrolyte membrane 2, an air electrode 3 and a fuel electrode 4 which are in close contact with both sides of the electrolyte membrane 2, and electrodes 3 and 4 thereof. The diffusion layers 5 and 6 are in close contact with each other, and the separators 7 and 8 are in close contact with the diffusion layers 5 and 6. In the embodiment, the electrolyte membrane-electrode assembly 9 includes
Not only the electrolyte membrane 2, the air electrode 3 and the fuel electrode 4, but also both diffusion layers 5 and 6 are included.

【0009】電解質膜2は芳香族炭化水素系高分子イオ
ン交換成分より構成されている。空気極3および燃料極
4は,それぞれ,カーボンブラック粒子の表面に複数の
Pt粒子を担持させた複数の触媒粒子と,前記と同一ま
たは異なる芳香族炭化水素系高分子イオン交換成分とよ
りなる。
The electrolyte membrane 2 is composed of an aromatic hydrocarbon polymer ion exchange component. Each of the air electrode 3 and the fuel electrode 4 is composed of a plurality of catalyst particles in which a plurality of Pt particles are carried on the surface of carbon black particles, and an aromatic hydrocarbon-based polymer ion exchange component which is the same as or different from the above.

【0010】各拡散層5,6は多孔質のカーボンペー
パ,カーボンプレート等よりなり,また各セパレータ
7,8は,同一の形態を有するように黒鉛化炭素より構
成され,空気極3側のセパレータ7に存する複数の溝1
0に空気が,また燃料極4側のセパレータ8に在って前
記溝10と交差する関係の複数の溝11に水素がそれぞ
れ供給される。
Each of the diffusion layers 5 and 6 is made of porous carbon paper, carbon plate or the like, and each of the separators 7 and 8 is made of graphitized carbon so as to have the same form, and is a separator on the side of the air electrode 3. Grooves 1 in 7
0 is supplied with air, and hydrogen is supplied with a plurality of grooves 11 existing in the separator 8 on the fuel electrode 4 side and intersecting the grooves 10.

【0011】芳香族炭化水素系高分子イオン交換成分
は,無フッ素であって溶剤に可溶であるといった特性を
有する。この種の高分子イオン交換成分としては,表1
に挙げた各種イオン交換体が用いられる。
The aromatic hydrocarbon-based polymer ion-exchange component has the characteristics that it is fluorine-free and soluble in solvents. This type of polymer ion exchange component is shown in Table 1.
Various ion exchangers listed in 1 above are used.

【0012】[0012]

【表1】 [Table 1]

【0013】溶剤としては,表2に挙げた各種極性溶剤
が用いられる。
Various polar solvents listed in Table 2 are used as the solvent.

【0014】[0014]

【表2】 [Table 2]

【0015】電解質膜2を構成する芳香族炭化水素系高
分子イオン交換成分,つまり第1の高分子イオン交換成
分と,空気極3および燃料極4の芳香族炭化水素系高分
子イオン交換成分,つまり第2の高分子イオン交換成
の,溶剤に対する溶解性は,第2の高分子イオン交換
成分の方が第1の高分子イオン交換成分よりも大である
ことが好ましい。その理由は,空気極3および燃料極4
の第2の高分子イオン交換成分は触媒反応が生じる位置
の極く近傍に存在していることから熱的劣化が激しいの
で,電解質膜2よりも先に回収して廃棄することにあ
る。これにより,電解質膜2の第1の高分子イオン交換
成分の純度を高めることが可能である。
Aromatic hydrocarbon type polymer ion exchange component constituting the electrolyte membrane 2, that is, the first polymer ion exchange component.
Min, aromatic hydrocarbon-based polymer ion-exchange components of the air electrode 3 and the fuel electrode 4, i.e. the second polymeric ion exchange Ingredient
The solubility of the second polymer ion-exchange component in the solvent is preferably higher than that of the first polymer ion-exchange component. The reason is that the air electrode 3 and the fuel electrode 4 are
Since the second polymer ion-exchange component is present in the vicinity of the position where the catalytic reaction occurs, the second polymer ion-exchange component is severely thermally deteriorated. Therefore, the second polymer ion-exchange component is collected and discarded before the electrolyte membrane 2. Thereby, the purity of the first polymer ion-exchange component of the electrolyte membrane 2 can be increased.

【0016】この溶解性の差は,第1,第2の高分子イ
オン交換成分が同一または同種である場合には,両高分
子イオン交換成分の平均分子量に差を設けることによっ
て達成される。つまり,平均分子量が低い方が高いもの
よりも溶解し易いのである。例えば,耐久性を考慮し
て,第1,第2の高分子イオン交換成分が5000以上
の平均分子量を持つことを前提として,第1の高分子イ
オン交換成分の平均分子量をAとし,また第2の高分子
イオン交換成分の平均分子量をBとしたとき,両平均分
子量の比B/Aは0.1≦B/A<1.0であることが
好ましい。ただし,比B/AがB/A<0.1になる
と,空気極3および燃料極4の耐久性が低下して,それ
らの厚さ保持能が大いに減退するため発電性能等の経年
変化が著しくなる。一方,B/A≧1.0では電解質膜
2を構成する第1の高分子イオン交換成分の回収率が低
下する。
This difference in solubility is achieved by providing a difference in the average molecular weight of both the high molecular weight ion exchange components when the first and second high molecular weight ion exchange components are the same or of the same type. That is, the one having a lower average molecular weight is more easily dissolved than the one having a higher average molecular weight. For example, in consideration of durability, assuming that the first and second polymer ion-exchange components have an average molecular weight of 5000 or more, the average molecular weight of the first polymer ion-exchange component is A, and When the average molecular weight of the high molecular weight ion exchange component of 2 is B, the ratio B / A of both average molecular weights is preferably 0.1 ≦ B / A <1.0. However, when the ratio B / A becomes B / A <0.1, the durability of the air electrode 3 and the fuel electrode 4 deteriorates, and their thickness retaining ability greatly decreases, so that there is a secular change in power generation performance and the like. It will be noticeable. On the other hand, when B / A ≧ 1.0, the recovery rate of the first polymer ion-exchange component forming the electrolyte membrane 2 decreases.

【0017】第1,第2の高分子イオン交換成分とし
て,溶剤に対する溶解性を異にし,且つ異なった化学組
成を有する二種のものを使用することも可能である。
As the first and second polymer ion exchange components, it is also possible to use two types of compounds having different solubilities in solvents and having different chemical compositions.

【0018】以下,具体例について説明する。 I.電解質膜−電極集成体の製造 カーボンブラック粒子(商品名:ケッチェンブラックE
C)にPt粒子を担持させて触媒粒子を調製した。触媒
粒子におけるPt粒子の含有量は50wt%である。 〔例−I〕芳香族炭化水素系高分子イオン交換成分とし
て,表1の例1(PEEK)であって,平均分子量が5
0,000の第1の高分子イオン交換成分と,平均分子
量が45,000の第2の高分子イオン交換成分を用意
した。この場合,第1の高分子イオン交換成分の平均分
子量Aと第2の高分子イオン交換成分の平均分子量Bと
の比B/AはB/A=0.9である。
A specific example will be described below. I. Production of Electrolyte Membrane-Electrode Assembly Carbon Black Particles (Brand Name: Ketjen Black E
Pt particles were supported on C) to prepare catalyst particles. The content of Pt particles in the catalyst particles is 50 wt%. [Example-I] As an aromatic hydrocarbon-based polymer ion-exchange component, it is Example 1 (PEEK) in Table 1 and has an average molecular weight of 5
50,000 first polymer ion exchange components and a second polymer ion exchange component having an average molecular weight of 45,000 were prepared. In this case, the ratio B / A of the average molecular weight A of the first polymer ion exchange component and the average molecular weight B of the second polymer ion exchange component is B / A = 0.9.

【0019】第1の高分子イオン交換成分を用いて厚さ
50μmの電解質膜2を成形した。また第2の高分子イ
オン交換成分を表2のNMPに還流溶解した。この溶液
における第2の高分子イオン交換成分の含有量は6wt
%である。
An electrolyte membrane 2 having a thickness of 50 μm was formed using the first polymer ion exchange component. The second polymer ion-exchange component was dissolved in NMP shown in Table 2 under reflux. The content of the second polymer ion-exchange component in this solution was 6 wt.
%.

【0020】第2の高分子イオン交換成分含有溶液に,
重量比で第2の高分子イオン交換成分:触媒粒子=3:
5となるように触媒粒子を混合し,次いでボールミルを
用いて触媒粒子の分散を図り,空気極3および燃料極4
用スラリを調製した。このスラリを,Pt量が0.5mg
/cm2 となるように電解質膜2の両面にそれぞれ塗布
し,乾燥後それら塗布層に,それぞれ撥水処理を施され
た拡散層5,6用多孔質カーボンプレートを当て,14
0℃,1.5MPa,1分間の条件でホットプレスを行
い,電解質膜−電極集成体9を得た。これを実施例
(1)とする。 〔例−II〕芳香族炭化水素系高分子イオン交換成分とし
て,例−I同様に,表1の例1(PEEK)であって,
平均分子量が50,000の第1の高分子イオン交換成
分と,平均分子量が45,000の第2の高分子イオン
交換成分を用意した。この場合,第1の高分子イオン交
換成分の平均分子量Aと第2の高分子イオン交換成分の
平均分子量Bとの比B/AはB/A=0.9である。
In the second polymer ion-exchange component-containing solution,
Second polymer ion exchange component: catalyst particles = 3 by weight ratio.
The catalyst particles are mixed so as to be 5, and then the catalyst particles are dispersed by using a ball mill, and the air electrode 3 and the fuel electrode 4 are mixed.
A slurry for use was prepared. This slurry has a Pt content of 0.5 mg
/ Cm 2 on both sides of the electrolyte membrane 2 respectively, and after drying, apply a water repellent porous carbon plate for the diffusion layers 5 and 6 to each of the coated layers.
Hot pressing was performed under the conditions of 0 ° C., 1.5 MPa, and 1 minute to obtain an electrolyte membrane-electrode assembly 9. This is Example (1). [Example-II] The same as Example-I, except that the aromatic hydrocarbon-based polymer ion-exchange component is Example 1 (PEEK) in Table 1,
A first polymer ion exchange component having an average molecular weight of 50,000 and a second polymer ion exchange component having an average molecular weight of 45,000 were prepared. In this case, the ratio B / A of the average molecular weight A of the first polymer ion exchange component and the average molecular weight B of the second polymer ion exchange component is B / A = 0.9.

【0021】以後,ホットプレスの温度を200℃に設
定した,という点を除き,例−Iと同様の方法を実施し
て電解質膜−電極集成体9を得た。これを実施例(2)
とする。 〔例−III 〕芳香族炭化水素系高分子イオン交換成分と
して,表1の例2(PES)であって,平均分子量が5
0,000の第1の高分子イオン交換成分と,平均分子
量が45,000の第2の高分子イオン交換成分を用意
した。この場合,第1の高分子イオン交換成分の平均分
子量Aと第2の高分子イオン交換成分の平均分子量Bと
の比B/AはB/A=0.9である。
Thereafter, an electrolyte membrane-electrode assembly 9 was obtained in the same manner as in Example-I, except that the hot press temperature was set to 200 ° C. This is the embodiment (2)
And [Example-III] As an aromatic hydrocarbon-based polymer ion-exchange component, it is Example 2 (PES) in Table 1 and has an average molecular weight of 5
50,000 first polymer ion exchange components and a second polymer ion exchange component having an average molecular weight of 45,000 were prepared. In this case, the ratio B / A of the average molecular weight A of the first polymer ion exchange component and the average molecular weight B of the second polymer ion exchange component is B / A = 0.9.

【0022】以後,ホットプレスの温度を190℃に設
定した,という点を除き,例−Iと同様の方法を実施し
て電解質膜−電極集成体9を得た。これを実施例(3)
とする。 〔例−IV〕芳香族炭化水素系高分子イオン交換成分とし
て,表1の例3(PSF)であって,平均分子量が5
0,000の第1の高分子イオン交換成分と,平均分子
量が25,000の第2の高分子イオン交換成分を用意
した。この場合,第1の高分子イオン交換成分の平均分
子量Aと第2の高分子イオン交換成分の平均分子量Bと
の比B/AはB/A=0.5である。
Thereafter, an electrolyte membrane-electrode assembly 9 was obtained in the same manner as in Example-I except that the hot press temperature was set to 190 ° C. This is the embodiment (3)
And [Example-IV] As an aromatic hydrocarbon-based polymer ion-exchange component, it is Example 3 (PSF) in Table 1 and has an average molecular weight of 5
50,000 first polymer ion exchange components and a second polymer ion exchange component having an average molecular weight of 25,000 were prepared. In this case, the ratio B / A of the average molecular weight A of the first polymer ion exchange component and the average molecular weight B of the second polymer ion exchange component is B / A = 0.5.

【0023】以後,ホットプレスの温度を170℃に設
定した,という点を除き,例−Iと同様の方法を実施し
て電解質膜−電極集成体9を得た。これを実施例(4)
とする。 〔例−V〕芳香族炭化水素系高分子イオン交換成分とし
て,例−IV同様に,表1の例3(PSF)であって,平
均分子量が50,000の第1の高分子イオン交換成分
と,平均分子量が12,500の第2の高分子イオン交
換成分を用意した。この場合,第1の高分子イオン交換
成分の平均分子量Aと第2の高分子イオン交換成分の平
均分子量Bとの比B/AはB/A=0.25である。
Thereafter, an electrolyte membrane-electrode assembly 9 was obtained in the same manner as in Example-I, except that the hot press temperature was set at 170 ° C. This is the embodiment (4)
And [Example-V] The first aromatic polymer-based polymer ion-exchange component is the same as in Example-IV, which is Example 3 (PSF) in Table 1 and has an average molecular weight of 50,000. Then, a second polymer ion exchange component having an average molecular weight of 12,500 was prepared. In this case, the ratio B / A of the average molecular weight A of the first polymer ion exchange component and the average molecular weight B of the second polymer ion exchange component is B / A = 0.25.

【0024】以後,例−IV同様に,ホットプレスの温度
を170℃に設定した,という点を除き,例−Iと同様
の方法を実施して電解質膜−電極集成体9を得た。これ
を実施例(5)とする。 〔例−VI〕 芳香族炭化水素系高分子イオン交換成分として,例−
同様に,表1の例1(PEEK)であって,平均分子量
が50,000の第1の高分子イオン交換成分と,平均
分子量が5,000の第2の高分子イオン交換成分を用
意した。この場合,第1の高分子イオン交換成分の平均
分子量Aと第2の高分子イオン交換成分の平均分子量B
との比B/AはB/A=0.1である。以後,例−IV同
様に,ホットプレスの温度を170℃に設定した,とい
う点を除き,例−Iと同様の方法を実施して電解質膜−
電極集成体9を得た。これを実施例(6)とする。 〔例−VII 〕 芳香族炭化水素系高分子イオン交換成分として,例−I
同様に,表1の例1(PEEK)であって,平均分子量
が50,000の第1の高分子イオン交換成分と,平均
分子量が2,500の第2の高分子イオン交換成分を用
意した。この場合,第1の高分子イオン交換成分の平均
分子量Aと第2の高分子イオン交換成分の平均分子量B
との比B/AはB/A=0.05である。
Thereafter, an electrolyte membrane-electrode assembly 9 was obtained in the same manner as in Example-I, except that the hot pressing temperature was set to 170 ° C. as in Example-IV. This is Example (5). [Example-VI] As an aromatic hydrocarbon-based polymer ion-exchange component, Example- I
Similarly, in Example 1 (PEEK) of Table 1, a first polymer ion exchange component having an average molecular weight of 50,000 and a second polymer ion exchange component having an average molecular weight of 5,000 were prepared. . In this case, the average molecular weight A of the first polymer ion exchange component and the average molecular weight B of the second polymer ion exchange component
The ratio B / A with B / A is 0.1. Thereafter, as in Example IV, the electrolyte membrane was prepared in the same manner as in Example I except that the hot press temperature was set at 170 ° C.
The electrode assembly 9 was obtained. This is Example (6). [Example-VII] As an aromatic hydrocarbon-based polymer ion-exchange component, Example-I
Similarly, in Example 1 (PEEK) of Table 1, a first polymer ion exchange component having an average molecular weight of 50,000 and a second polymer ion exchange component having an average molecular weight of 2,500 were prepared. . In this case, the average molecular weight A of the first polymer ion exchange component and the average molecular weight B of the second polymer ion exchange component
The ratio B / A with B / A = 0.05.

【0025】以後,例−IV同様に,ホットプレスの温度
を170℃に設定した,という点を除き,例−Iと同様
の方法を実施して電解質膜−電極集成体9を得た。これ
を比較例(1)とする。 〔例−VIII〕芳香族炭化水素系高分子イオン交換成分と
して,例−I同様に,表1の例1(PEEK)であっ
て,平均分子量が50,000の第1の高分子イオン交
換成分と,平均分子量が75,000の第2の高分子イ
オン交換成分を用意した。この場合,第1の高分子イオ
ン交換成分の平均分子量Aと第2の高分子イオン交換成
分の平均分子量Bとの比B/AはB/A=1.5であ
る。
Thereafter, as in Example-IV, an electrolyte membrane-electrode assembly 9 was obtained in the same manner as in Example-I, except that the hot press temperature was set at 170 ° C. This is designated as Comparative Example (1). [Example-VIII] As the aromatic hydrocarbon-based polymer ion exchange component, the same as Example-I, which is Example 1 (PEEK) in Table 1 and has an average molecular weight of 50,000. Then, a second polymer ion exchange component having an average molecular weight of 75,000 was prepared. In this case, the ratio B / A of the average molecular weight A of the first polymer ion exchange component and the average molecular weight B of the second polymer ion exchange component is B / A = 1.5.

【0026】以後,例−IV同様に,ホットプレスの温度
を170℃に設定した,という点を除き,例−Iと同様
の方法を実施して電解質膜−電極集成体9を得た。これ
を比較例(2)とする。 II.電解質膜を構成する第1の高分子イオン交換成分の
回収等 実施例(1)を表2のDMAc(沸点:165.5℃)
に浸漬し,次いで,そのDMAcを165℃まで昇温
し,これにより空気極3および燃料極4を構成する第2
の高分子イオン交換成分を溶解した。電解質膜2と拡散
層5,6とをDMAc中から取出し,そのDMAcに加
圧濾過処理を施してDMAcから触媒粒子および第2の
高分子イオン交換成分の混合物を分離した。その混合物
を燃やして触媒粒子を回収した。
Thereafter, an electrolyte membrane-electrode assembly 9 was obtained in the same manner as in Example-I, except that the hot pressing temperature was set to 170 ° C. as in Example-IV. This will be referred to as Comparative Example (2). II. DMAc (boiling point: 165.5 ° C.) in Table 2 is shown in Example (1) for recovering the first polymer ion-exchange component constituting the electrolyte membrane
Second, the DMAc is heated to 165 ° C., and the air electrode 3 and the fuel electrode 4 are thereby formed.
The high molecular weight ion exchange component was dissolved. The electrolyte membrane 2 and the diffusion layers 5 and 6 were taken out from the DMAc, and the DMAc was subjected to a pressure filtration treatment to separate the mixture of the catalyst particles and the second polymer ion exchange component from the DMAc. The mixture was burned to recover catalyst particles.

【0027】一方,電解質膜2を,新たなDMAcに浸
漬し,次いで,そのDMAcを165℃まで昇温し,こ
れにより電解質膜2,したがって第1の高分子イオン交
換成分を完全に溶解した。この溶液を引続き昇温状態に
保持して残部が50vol%以下となるまで濃縮した。
濃縮液にアセトンを加えて第1の高分子イオン交換成分
を沈澱させ,次いで濾過を行って第1の高分子イオン交
換成分を回収した。
On the other hand, the electrolyte membrane 2 was dipped in a new DMAc, and then the DMAc was heated to 165 ° C., whereby the electrolyte membrane 2 and thus the first polymer ion exchange component was completely dissolved. This solution was continuously kept at a temperature rising state and concentrated until the balance became 50 vol% or less.
Acetone was added to the concentrated solution to precipitate the first polymer ion-exchange component, and then filtration was performed to recover the first polymer ion-exchange component.

【0028】実施例(2)〜(6)および比較例
(1),(2)につき,前記同様の作業を行って,それ
らにおける触媒粒子および第1の高分子イオン交換成分
を回収した。
The same operation as described above was carried out for Examples (2) to (6) and Comparative Examples (1) and (2) to recover the catalyst particles and the first polymer ion-exchange component therein.

【0029】そして,当初の第1の高分子イオン交換成
分の重量をDとし,回収後のそれの重量をEとして,回
収率F=(E/D)×100(%)を算出した。
Then, with the initial weight of the first polymer ion-exchange component as D and the weight of the first polymer ion-exchange component after recovery as E, a recovery rate F = (E / D) × 100 (%) was calculated.

【0030】また実施例(1)〜(6)および比較例
(1),(2)について,150℃,湿度80%,面圧
0.8MPa,200時間の条件で圧縮耐久試験を行
い,電解質膜2の厚さ保持率Hおよび空気極3(燃料極
4でも可)の厚さ保持率Jを求め,次いで両厚さ保持率
H,Jの比率K=(J/H)×100(%)を算出し
た。
A compression durability test was conducted on Examples (1) to (6) and Comparative Examples (1) and (2) under the conditions of 150 ° C., humidity 80%, surface pressure 0.8 MPa, and 200 hours, and electrolytes The thickness holding ratio H of the membrane 2 and the thickness holding ratio J of the air electrode 3 (the fuel electrode 4 is also acceptable) are obtained, and then the ratio K of both thickness holding ratios H and J = (J / H) × 100 (% ) Was calculated.

【0031】表3は実施例(1)〜(6)および比較例
(1),(2)に関する第1,第2の高分子イオン交換
成分の平均分子量A,Bの比B/A,第1の高分子イオ
ン交換成分の回収率Fおよび両厚さ保持率H,Jの比率
Kを示す。
Table 3 shows the ratio B / A of the average molecular weights A and B of the first and second polymer ion-exchange components, B / A, and the values of Examples (1) to (6) and Comparative Examples (1) and (2). The recovery rate F of the polymer ion exchange component of No. 1 and the ratio K of both thickness retention rates H and J are shown.

【0032】[0032]

【表3】 [Table 3]

【0033】図2は,表3に基づいて,両平均分子量の
比B/Aと,第1の高分子イオン交換成分の回収率Fお
よび両厚さ保持率の比率Kとの関係をグラフ化したもの
である。
FIG. 2 is a graph showing the relationship between the ratio B / A of both average molecular weights, the recovery ratio F of the first polymer ion exchange component and the ratio K of both thickness retention ratios, based on Table 3. It was done.

【0034】表3,図2から明らかなように,実施例
(1)〜(6)においては第1の高分子イオン交換成分
の回収率Fおよび両厚さ保持率の比率Kが高い。これ
は,両平均分子量A,BがA,B≧5000であると共
に比B/Aが0.1≦B/A<1.0であることに起因
する。
As is clear from Table 3 and FIG. 2, in Examples (1) to (6), the recovery rate F of the first polymer ion exchange component and the ratio K of both thickness retention rates are high. This is because both average molecular weights A and B are A and B ≧ 5000 and the ratio B / A is 0.1 ≦ B / A <1.0.

【0035】比較例(1)は第2の高分子イオン交換成
分の平均分子量Bが,B≦5000であることから,第
1の高分子イオン交換成分の回収率Fは高いが,空気極
3の圧縮耐久性が低く,したがって比率Kが低下する。
一方,比較例(2)は,B/A≧1.0であることか
ら,第1の高分子イオン交換成分の方が第2の高分子イ
オン交換成分よりも溶解し易いため,第1の高分子イオ
ン交換成分の回収率Fが大幅に低下する。 III .撥水剤の有無と発電性能との相関 (1) 実施例(7)の製造 第1のカーボンブラック粒子(商品名:ケッチェンブラ
ックEC)にPt粒子を担持させて燃料極4用触媒粒子
を調製した。触媒粒子におけるPt粒子の含有量は50
wt%である。
In Comparative Example (1), since the average molecular weight B of the second polymer ion exchange component is B ≦ 5000, the recovery rate F of the first polymer ion exchange component is high, but the air electrode 3 Has a low compression durability and therefore the ratio K decreases.
On the other hand, in Comparative Example (2), since B / A ≧ 1.0, the first polymer ion-exchange component is more easily dissolved than the second polymer ion-exchange component. The recovery rate F of the polymer ion-exchange component is significantly reduced. III. Correlation between presence or absence of water repellent and power generation performance (1) Production of Example (7) Pt particles were carried on the first carbon black particles (trade name: Ketjen Black EC) to prepare catalyst particles for the fuel electrode 4. Prepared. The content of Pt particles in the catalyst particles is 50
wt%.

【0036】また第2のカーボンブラック粒子(商品
名:Vulcan XC-72)にPt粒子を担持させて空気極3用
触媒粒子を調製した。この触媒粒子におけるPt粒子の
含有量は50wt%である。
Further, Pt particles were supported on the second carbon black particles (trade name: Vulcan XC-72) to prepare catalyst particles for the air electrode 3. The content of Pt particles in this catalyst particle is 50 wt%.

【0037】芳香族炭化水素系高分子イオン交換成分と
して,表1の例1(PEEK)であって,平均分子量が
50,000の第1の高分子イオン交換成分と,平均分
子量が45,000の第2の高分子イオン交換成分を用
意した。この場合,第1の高分子イオン交換成分の平均
分子量Aと第2の高分子イオン交換成分の平均分子量B
との比B/AはB/A=0.9である。
As the aromatic hydrocarbon-based polymer ion-exchange component, the first polymer ion-exchange component of Example 1 (PEEK) in Table 1 having an average molecular weight of 50,000 and an average molecular weight of 45,000 were used. The second polymer ion exchange component of was prepared. In this case, the average molecular weight A of the first polymer ion exchange component and the average molecular weight B of the second polymer ion exchange component
The ratio B / A with is B / A = 0.9.

【0038】第1の高分子イオン交換成分を用いて厚さ
50μmの電解質膜2を成形した。また第2の高分子イ
オン交換成分を表2のNMPに還流溶解した。この溶液
における第2の高分子イオン交換成分の含有量は6wt
%である。
An electrolyte membrane 2 having a thickness of 50 μm was formed using the first polymer ion exchange component. The second polymer ion-exchange component was dissolved in NMP shown in Table 2 under reflux. The content of the second polymer ion-exchange component in this solution was 6 wt.
%.

【0039】第2の高分子イオン交換成分含有溶液に,
重量比で第2の高分子イオン交換成分:燃料極4用触媒
粒子=3:5となるように,その触媒粒子を混合し,次
いでボールミルを用いて触媒粒子の分散を図り,燃料極
4用スラリを調製した。
In the second polymer ion-exchange component-containing solution,
Mix the catalyst particles so that the weight ratio of the second polymer ion exchange component: catalyst particles for fuel electrode 4 = 3: 5, and then use a ball mill to disperse the catalyst particles, and use for the fuel electrode 4 A slurry was prepared.

【0040】また前記第2の高分子イオン交換成分含有
溶液に,重量比で第2の高分子イオン交換成分:空気極
3用触媒粒子=3:5となるようにその触媒粒子を混合
し,次いでボールミルを用いて触媒粒子の分散を図り,
空気極3用スラリを調製した。両スラリを,Pt量が
0.5mg/cm2 となるように電解質膜2の両面にそれぞ
れ塗布し,乾燥後それら塗布層に,それぞれ拡散層5,
6用カーボンペーパを当て,140℃,1.5MPa,
1分間の条件でホットプレスを行い,電解質膜−電極集
成体9を得た。これを実施例(7)とする。
Further, the catalyst particles are mixed with the second polymer ion exchange component-containing solution so that the weight ratio of the second polymer ion exchange component: catalyst particles for air electrode 3 = 3: 5, Then, using a ball mill to disperse the catalyst particles,
A slurry for air electrode 3 was prepared. Both slurries were applied to both surfaces of the electrolyte membrane 2 so that the Pt amount was 0.5 mg / cm 2, and after drying, the applied layers were respectively applied to the diffusion layers 5 and 5.
Apply carbon paper for 6 at 140 ℃, 1.5MPa,
Hot pressing was performed for 1 minute to obtain an electrolyte membrane-electrode assembly 9. This is Example (7).

【0041】(2)比較例(3)の製造 実施例(7)の製造で述べた空気極3用スラリに,撥水
剤として,PTFE(ポリテトラフルオロエチレン)を
添加して新たな空気極3用スラリを調製した。この場
合,PTFEの添加量Lは,第2の高分子イオン交換成
分および空気極3用触媒粒子の重量和をMとしたとき,
その10wt%,つまりL=0.1Mに設定された。
(2) Production of Comparative Example (3) A new air electrode was prepared by adding PTFE (polytetrafluoroethylene) as a water repellent to the slurry for the air electrode 3 described in the production of Example (7). A slurry for 3 was prepared. In this case, the addition amount L of PTFE is, when M is the weight sum of the second polymer ion exchange component and the catalyst particles for the air electrode 3,
It was set to 10 wt%, that is, L = 0.1M.

【0042】このようなPTFEを含む空気極3用スラ
リを用いた,という点を除き,実施例(7)の場合と同
様の方法を実施して電解質膜−電極集成体9を得た。こ
れを比較例(3)とする。
An electrolyte membrane-electrode assembly 9 was obtained in the same manner as in Example (7), except that the slurry for air electrode 3 containing PTFE was used. This will be referred to as Comparative Example (3).

【0043】(3)実施例(7)を用いて,固体高分子
型燃料電池を組立てて発電を行い,電流密度と端子電圧
との関係を測定した。また比較例(3)についても同様
のことを行った。
(3) Using Example (7), a polymer electrolyte fuel cell was assembled to generate electricity, and the relationship between the current density and the terminal voltage was measured. The same thing was done for Comparative Example (3).

【0044】表4は測定結果を示す。表中,電池〔実
(7)〕は実施例(7)を用いた電池を意味し,電池
〔比(3)〕は比較例(3)を用いた電池を意味する。
これは以後同じである。なお,60℃における水吸着量
は,ケッチェンブラックECが370cc/gであり,
Vulcan XC-72が72cc/gであった。
Table 4 shows the measurement results. In the table, the battery [Ex (7)] means the battery using the example (7), and the battery [ratio (3)] means the battery using the comparative example (3).
This is the same thereafter. The amount of water adsorbed at 60 ° C. was 370 cc / g for Ketjen Black EC,
Vulcan XC-72 was 72 cc / g.

【0045】[0045]

【表4】 [Table 4]

【0046】図3は表4に基づいて電流密度と端子電圧
との関係をグラフ化したものである。表4および図3か
ら明らかなように,撥水剤としてPTFEを用いた電池
〔比(3)〕はPTFEを持たない電池〔実(7)〕に
比べて若干発電性能が優れているが,その差は,電流密
度1.0A/cm2 における端子電圧差が10mVであ
る,といったように僅少である。
FIG. 3 is a graph showing the relationship between the current density and the terminal voltage based on Table 4. As is clear from Table 4 and FIG. 3, the battery using PTFE as a water repellent [ratio (3)] is slightly superior in power generation performance to the battery without PTFE [actual (7)], The difference is so small that the terminal voltage difference at a current density of 1.0 A / cm 2 is 10 mV.

【0047】実施例(7)および比較例(3)におい
て,電解質膜2,したがって第1の高分子イオン交換成
分の回収率は略同じであるが,空気極3からの触媒粒子
の回収は,比較例(3)の場合,PTFEを含んでいる
ことから非常に難しい。
In Example (7) and Comparative Example (3), the recovery rates of the electrolyte membrane 2, and thus the first polymer ion-exchange component, are almost the same, but the recovery of catalyst particles from the air electrode 3 is Comparative Example (3) is extremely difficult because it contains PTFE.

【0048】[0048]

【発明の効果】請求項1記載の発明によれば,前記のよ
うに構成することによって,空気極および燃料極に含ま
れる触媒粒子と,電解質膜の高分子イオン交換成分とを
回収して再利用することが可能な電解質膜−電極集成体
を提供することができる。
According to the invention as set forth in claim 1, the catalyst particles contained in the air electrode and the fuel electrode and the polymer ion-exchange component of the electrolyte membrane are recovered and regenerated by the above-mentioned structure. An electrolyte membrane-electrode assembly that can be utilized can be provided.

【0049】請求項2記載の発明によれば,触媒粒子お
よび電解質膜の回収率を一層向上させることが可能な電
解質膜−電極集成体を提供することができる。
According to the second aspect of the invention, it is possible to provide an electrolyte membrane-electrode assembly which can further improve the recovery rate of the catalyst particles and the electrolyte membrane.

【図面の簡単な説明】[Brief description of drawings]

【図1】固体高分子型燃料電池を構成するセルの概略側
面図である。
FIG. 1 is a schematic side view of cells constituting a polymer electrolyte fuel cell.

【図2】両平均分子量の比B/Aと,第1の高分子イオ
ン交換成分の回収率Fおよび両厚さ保持率の比率Kとの
関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a ratio B / A of both average molecular weights, a recovery ratio F of the first polymer ion exchange component and a ratio K of both thickness retention ratios.

【図3】実施例(7),比較例(3)を用いた固体高分
子型燃料電池の電流密度と端子電圧との関係を示すグラ
フである。
FIG. 3 is a graph showing the relationship between the current density and the terminal voltage of polymer electrolyte fuel cells using Example (7) and Comparative Example (3).

【符号の説明】[Explanation of symbols]

1………セル 2………電解質膜 3………空気極 4………燃料極 1 ... cell 2 ... electrolyte membrane 3 ... Air electrode 4 ......... Fuel electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01M 8/10 H01M 8/10 // B01D 69/12 B01D 69/12 B29K 105:26 B29K 105:26 (72)発明者 齋藤 信広 埼玉県和光市中央1丁目4番1号 株式 会社本田技術研究所内 (72)発明者 七海 昌昭 埼玉県和光市中央1丁目4番1号 株式 会社本田技術研究所内 (56)参考文献 特開 平11−288732(JP,A) 特開 平10−45913(JP,A) 特開 平8−171922(JP,A) 国際公開99/029763(WO,A1) (58)調査した分野(Int.Cl.7,DB名) H01M 8/02 H01M 8/10 H01M 8/04 B01J 38/00 301 B29B 17/02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI H01M 8/10 H01M 8/10 // B01D 69/12 B01D 69/12 B29K 105: 26 B29K 105: 26 (72) Inventor Saito Nobuhiro, 1-4-1, Chuo, Wako, Saitama Prefecture, Honda R & D Co., Ltd. (72) Inventor, Masaaki Nanami, 1-4-1, Chuo, Wako, Saitama, Ltd., R & D Co., Ltd. (56) References 11-288732 (JP, A) JP-A-10-45913 (JP, A) JP-A-8-171922 (JP, A) International Publication 99/029763 (WO, A1) (58) Fields investigated (Int.Cl) . 7, DB name) H01M 8/02 H01M 8/10 H01M 8/04 B01J 38/00 301 B29B 17/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電解質膜(2)と,その電解質膜(2)
を挟む空気極(3)および燃料極(4)とを備え,前記
電解質膜(2)は第1の高分子イオン交換成分を有し,
前記空気極(3)および燃料極(4)はそれぞれ第2の
高分子イオン交換成分および触媒粒子を有し,前記第1
の高分子イオン交換成分および前記触媒粒子の回収を可
能にした,固体高分子型燃料電池の電解質膜−電極集成
であって,前記第2の高分子イオン交換成分は,前記
触媒粒子を回収すべく,前記電解質膜−電極集成体を溶
剤に浸漬したとき溶解する,無フッ素の芳香族炭化水素
系高分子イオン交換成分よりなり,前記第1の高分子イ
オン交換成分は,それを回収すべく,前記溶剤から取出
された未溶解物を溶剤に浸漬したとき溶解する,無フッ
素の芳香族炭化水素系高分子イオン交換成分よりなる
とを特徴とする,固体高分子型燃料電池の電解質膜−電
極集成体。
1. An electrolyte membrane (2) and the electrolyte membrane (2)
And an air electrode (3) and the fuel electrode (4) sandwiching said <br/> electrolyte membrane (2) has a first polymeric ion exchange component,
The air electrode (3) and the fuel electrode (4) each have a second polymer ion exchange component and catalyst particles, and
It is possible to recover the polymer ion-exchange component of
An electrolyte membrane-electrode assembly for a solid polymer electrolyte fuel cell , wherein the second polymer ion exchange component is
Dissolve the electrolyte membrane-electrode assembly to recover the catalyst particles.
Fluorine-free aromatic hydrocarbons that dissolve when immersed in chemicals
The first polymer ion exchange component,
The on-exchange component is removed from the solvent to recover it.
The undissolved material is dissolved when immersed in a solvent.
An electrolyte membrane-electrode assembly for a polymer electrolyte fuel cell, which is characterized by comprising a basic aromatic hydrocarbon-based polymer ion-exchange component .
【請求項2】 前記電解質膜−電極集成体を浸漬する
記溶剤に対する溶解性は前記第2の高分子イオン交換
成分の方が前記第1の高分子イオン交換成分よりも大で
ある,請求項1記載の固体高分子型燃料電池の電解質膜
−電極集成体。
Wherein said electrolyte membrane - solubility before <br/> Symbol solvent for immersing the electrode assembly, rather than high molecular ion exchange components it is of the first of said second high-molecular ion-exchange component The electrolyte membrane-electrode assembly of the polymer electrolyte fuel cell according to claim 1, which is large.
JP2000204131A 2000-07-05 2000-07-05 Electrolyte membrane-electrode assembly for polymer electrolyte fuel cells Expired - Fee Related JP3535455B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000204131A JP3535455B2 (en) 2000-07-05 2000-07-05 Electrolyte membrane-electrode assembly for polymer electrolyte fuel cells
US09/897,426 US20020045081A1 (en) 2000-07-05 2001-07-03 Electrolyte membrane/electrode assembly of solid polymer electrolyte fuel cell
CA002352356A CA2352356C (en) 2000-07-05 2001-07-04 Electrolyte membrane/electrode assembly of solid polymer electrolyte fuel cell
DE10132434A DE10132434B4 (en) 2000-07-05 2001-07-04 Electrolyte membrane / electrode assembly of a solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000204131A JP3535455B2 (en) 2000-07-05 2000-07-05 Electrolyte membrane-electrode assembly for polymer electrolyte fuel cells

Publications (2)

Publication Number Publication Date
JP2002025581A JP2002025581A (en) 2002-01-25
JP3535455B2 true JP3535455B2 (en) 2004-06-07

Family

ID=18701445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000204131A Expired - Fee Related JP3535455B2 (en) 2000-07-05 2000-07-05 Electrolyte membrane-electrode assembly for polymer electrolyte fuel cells

Country Status (1)

Country Link
JP (1) JP3535455B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4887600B2 (en) 2003-11-10 2012-02-29 トヨタ自動車株式会社 Fuel cell, decomposition method thereof and separator thereof
JP4779345B2 (en) 2003-12-26 2011-09-28 トヨタ自動車株式会社 Fuel cell disassembly method
JP4779346B2 (en) 2004-02-05 2011-09-28 トヨタ自動車株式会社 Fuel cell disassembly method
JP2006092926A (en) * 2004-09-24 2006-04-06 Jsr Corp Paste composition for electrode and electrode layer manufactured from composition
JP5172246B2 (en) * 2007-08-31 2013-03-27 東芝燃料電池システム株式会社 Method for recovering catalyst noble metals for fuel cells
US20100221637A1 (en) 2008-03-11 2010-09-02 Panasonic Corporation Film electrode assembly

Also Published As

Publication number Publication date
JP2002025581A (en) 2002-01-25

Similar Documents

Publication Publication Date Title
Mehmood et al. A review on durability issues and restoration techniques in long-term operations of direct methanol fuel cells
EP0870340B1 (en) New polymer material for electrolytic membranes in fuel cells
US8158300B2 (en) Permselective composite membrane for electrochemical cells
EP2134768B1 (en) Proton conducting aromatic polyether type copolymers bearing main and side chain pyridine groups and use thereof in proton exchange membrane fuel cells
JP3807038B2 (en) POLYMER ELECTROLYTE MEMBRANE-GAS DIFFUSION ELECTRODE AND METHOD FOR PRODUCING THE SAME
JP3535455B2 (en) Electrolyte membrane-electrode assembly for polymer electrolyte fuel cells
CN103172888A (en) Method for conditioning membrane-electrode-units for fuel cells
US20100159350A1 (en) Membrane-electrode assembly, method for production thereof, and solid polymer fuel cell
JP4870360B2 (en) FUEL CELL ELECTRODE, FUEL CELL, AND METHOD FOR PRODUCING FUEL CELL ELECTRODE
Zaffora et al. Methanol and proton transport through chitosan‐phosphotungstic acid membranes for direct methanol fuel cell
JP2009021234A (en) Membrane/electrode conjugant, its manufacturing method, and solid high polymer fuel cell
JP2009021233A (en) Membrane/electrode conjugant, its manufacturing method, and solid high polymer fuel cell
WO2019030557A1 (en) Free-standing oer anode catalyst layers for fuel cells
KR20110124698A (en) Electrode for fuel cell, preparing method thereof, and membrane electrode assembly and fuel cell employing the same
CN101978536B (en) Membrane electrode assembly and fuel cell
KR100590551B1 (en) Proton conductive layer, preparing method therefor, and fuel cell using the same
JP4996823B2 (en) Fuel cell electrode and fuel cell using the same
US20090291348A1 (en) Electrolyte membrane for fuel cell and method of manufacturing the same, membrane electrode assembly and fuel cell
AU2002356654B2 (en) Fuel cell and membrane-electrode assembly thereof
JP2002298869A (en) Solid polymer fuel cell
JP3608564B2 (en) Fuel cell and manufacturing method thereof
JP2011238496A (en) Electrode for fuel cell, membrane electrode assembly and fuel cell using the same, and method for manufacturing electrode for fuel cell
JP5057798B2 (en) Fuel cell electrode and fuel cell
JP2002305007A (en) Solid polymer type fuel cell
KR20210085300A (en) Fuel Cell Electrode Having High Durability, Method for Manufacturing The Same, and Membrane-Electrode Assembly Comprising The Same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees