WO1984002485A1 - Electrode guiding apparatus for wire-cut spark erosion machine - Google Patents

Electrode guiding apparatus for wire-cut spark erosion machine Download PDF

Info

Publication number
WO1984002485A1
WO1984002485A1 PCT/JP1983/000451 JP8300451W WO8402485A1 WO 1984002485 A1 WO1984002485 A1 WO 1984002485A1 JP 8300451 W JP8300451 W JP 8300451W WO 8402485 A1 WO8402485 A1 WO 8402485A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
die
guide
wire
wire electrode
Prior art date
Application number
PCT/JP1983/000451
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyoshi Inoue
Original Assignee
Inoue Japax Res
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP22883082A external-priority patent/JPS59115126A/en
Priority claimed from JP22883182A external-priority patent/JPS59115127A/en
Priority claimed from JP2764883A external-priority patent/JPS59156623A/en
Application filed by Inoue Japax Res filed Critical Inoue Japax Res
Publication of WO1984002485A1 publication Critical patent/WO1984002485A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes
    • B23H7/10Supporting, winding or electrical connection of wire-electrode

Definitions

  • the present invention relates to an electrode guide device in a wire-cut electric discharge machine, and more particularly, to a die which is provided at a position closest to a workpiece and is used to define a position of a portion for performing machining.
  • the present invention relates to the improvement of a metal-type electrode positioning device. Background technology
  • Wire-cut electric discharge machines perform machining using wire electrodes that travel on the path from the wire electrode supply rail to the surface reel or surface storage box. It is.
  • a pair of opposed die-types is used to set an electrode path that passes through a space for moving a workpiece in order to perform machining.
  • the electrode positioning guide is provided on one axis orthogonal to the direction in which the workpiece moves.
  • the wire electrode While receiving a predetermined tension, the wire electrode is moved at a constant speed in a fixed direction along a path set between the pair of die guides, and the supplied machining fluid is supplied. And the action of the voltage pulse cuts the workpiece to be processed and fed relatively in a direction perpendicular to the path.
  • the wire electrode in order to increase the positioning accuracy of the wire electrode, the wire electrode should be provided at the inner side of the die hole through which the wire electrode is passed and the position is determined, and at the outer diameter of the wire electrode. It is necessary to keep the reference as small as possible.
  • the tolerance of the wire of the general-purpose riot material is the same as the desirable tolerance of the clearance to be provided between the die and the wire electrode, or Greater than that.
  • the supply of the voltage pulse to the wire electrode for wire-cut electric discharge machining is performed by using a line-shaped electric wire provided on each of the pair of guides and a line of the work body.
  • the average current is often set to a value close to the permissible limit value, so that the Joule heat generated by energization becomes considerably large, and Therefore, despite the fact that the electrode is cooled, the temperature of the electrode becomes considerably high, and furthermore, a considerable amount of heat is generated when the workpiece is processed by electric discharge. After that, the wire electrode becomes even more powerful.
  • the wire electrode that has been heated to a high temperature by the heat distributes the retained heat to the die-type guide with which it comes into contact.
  • the first is that if this frictional heat is transmitted to the arm supporting the die-type guide, the position of the die-type guide itself will be disturbed, and the positioning accuracy will be reduced. Secondly, the durability and life of the die guide itself is reduced, and the material of the wire electrode is unfavorably affected. As a result, the disconnection accident rate is increased. Third, the average current of the machining current pulse, which is also the cause of heat generation, is limited. However, if the moving speed of the wire electrode is slowed down, particularly when processing a thick workpiece or when processing under consumable conditions, the wire electrode may be worn out. Since the difference in shape between the top and bottom of the workpiece exceeds the allowable range, the desired processing strength cannot be obtained.
  • a die guide is provided on one side of the supplied nozzle filled with the working fluid, or the working fluid jet is formed by using an appropriate nozzle or the like. It has been proposed to cool by spraying.
  • the die guide is almost completely cooled.
  • the present invention has been made to eliminate the above-mentioned drawbacks of the prior art, and it is an object of the present invention to provide a wire capable of reliably cooling a die-shaped guide while having a simple structure.
  • An object of the present invention is to provide an electrode planning device for a Yakatsu electric discharge machine.
  • the gist of the present invention is to generate or conduct as described above around the members or guides that define the passages of the poles of the die guide.
  • a plurality of means for transferring and dissipating the generated heat into the working fluid is provided.
  • the cooling of the rush between the outer peripheral surface of the small die guide having a circular die hole and the grip surface of the die guide of the holder that holds it was performed.
  • a water passage is provided to ensure that the die guide is cooled together with the passing wire electrodes.
  • a die-shaped guide itself is in contact with one R cylinder, and circumscribes each other, contacts with the inner wall surface of the cylinder, and has a plurality of radiation guides arranged in the same shape.
  • the position of the wire electrode is regulated by the respective spheres in the same manner as the cylindrical body, and the coolant flows between the wire electrode and the sphere and between the spheres. A path is formed.
  • a guide having a non-P3-shaped die hole having a triangular shape, an equal strain shape, or the like is used.
  • a die guide is supported.
  • D Numerous cooling water ducts or flow holes are provided in the member.
  • a plurality of high-efficiency heat transfer elements ie, heat pipes, are disposed inside a member that supports the die guide.
  • the die-type guide cools the wire electrode despite the fact that the wire electrode contacts and moves at a high speed under the action of a strong tension.
  • the temperature is maintained at a level slightly higher than that of water, thereby preventing troubles caused by the die-type guide, increasing the machining average current, and improving machining accuracy. Level can be maintained.
  • FIG. 1 is a longitudinal sectional view showing a main part of a wire-cut discharge heating device to which the present invention is applied.
  • FIG. 2 is a vertical cross-sectional view showing a conventional electrode guide device
  • FIG. 3 is a vertical cross-sectional view showing one embodiment of the electrode guide device according to the present invention (DI- ⁇ cut line in FIG. 4). ),
  • FIG. 4 is a schematic cross-sectional view of the electrode guide device shown in FIG. 3 (section line IV-IV),
  • FIG. 5 is a longitudinal sectional view showing one embodiment of another electrode guide device (a VI-VI cutting line in FIG. 6),
  • FIG. 6 is a cross-sectional view (V-V cutting line) of the electrode forming device shown in FIG.
  • FIG. 7 is a longitudinal sectional view showing another embodiment (a section line VII-VII in FIG. 8),
  • Fig. 8 is a cross-sectional view of the electrode guide device shown in Fig. 7 (cutting line),
  • FIG. 9 is a longitudinal sectional view showing the configuration of still another electrode guiding device.
  • FIG. 10 is a schematic sectional view showing the configuration of still another electrode forming apparatus
  • FIG. 11 is a longitudinal sectional view showing the configuration of still another electrode forming apparatus
  • FIG. 13 is a longitudinal sectional view of the electrode guide device shown in FIG. 12 (X
  • FIG. U is a perspective view showing one embodiment of another electrode forming device
  • Fig. 14 is a vertical sectional view of the electrode guide device shown in Fig. 14 (X
  • FIG. 16 is a longitudinal sectional view showing still another embodiment
  • FIG. 17 is a schematic cross-sectional view of the electrode forming device shown in FIG. 16 (X
  • FIG. 18 is a vertical cross-sectional view showing the configuration of still another electrode ratio measuring apparatus
  • FIG. 19 is a schematic cross-sectional view of the electrode forming apparatus shown in FIG. 18 (X
  • FIG. 20 is an enlarged sectional view in the hand direction showing the structure of a heat pipe used in the electrode guide device shown in the preceding two figures. The best form to carry out
  • FIG. 1 shows a main part of a known wire-cut electric discharge machining apparatus to which the present invention can be applied, that is, a workpiece to be machined, a wire electrode which has been machined, The configuration of a part that is composed of a shower line, a working fluid nozzle, and the like that line up the wire electrode is shown.
  • 1 is an upper arm of a known wire-cut electric discharge machine
  • 2 is a wire electrode
  • 3 is a workpiece
  • 4 is a lined electric screen
  • 5 is the nozzle body
  • 6 is the holder for supporting the die guide 61
  • the machining fluid is jetted and supplied between the portion between the nozzles 7 and 7 z of the wire electrode 2 and the workpiece 3.
  • the electric discharge machining is performed by applying a voltage pulse.
  • the zener electrode 2 is guided along a passage set on the inside of the upper arm 1 or on the surface thereof from a lined reel provided on a power ram or the like (not shown) of the apparatus main body. It extends downward through the tension roller and guide roller 11 (not shown) provided in the arm 1 and is symmetrical to the above-mentioned guide roller 11 at the lower arm (not shown).
  • the lower guide roller provided on the shaft is taken up by a diameter, and further via a not-shown capstan or take-up roller, etc., to a take-up reel or surface provided on a force ram, etc. Move to container.
  • the L-shaped support member 13 is attached to the arm 1 so as to be able to move up and down, and is moved up and down through a screw device 11 which is moved by a motor 12 to a desired position. Is held.
  • a hollow cylindrical nozzle body 5 is defined at the lower end of the support member 13 or attached so that the position can be adjusted minutely as needed.
  • Openings 51 and 52 through which the wire electrode 2 passes along the central axis are formed substantially at the upper and lower end surfaces of the nozzle body 5, respectively.
  • an electrode forming device 100 which is an object of the present invention, is provided on a part of the nozzle body 5.
  • the electrode projecting device 100 has a guide holder 6 fixed substantially coaxially to the nozzle body 5 or a micro-position adjustable as required, and a tip end of the extruded body 3 side. And a die-type positioning guide 61 which is held.
  • the guide holder 6 is a cylindrical body whose lower half is narrower than the upper half, and at the lower end thereof is provided a positioning guide 61 by which the passage path of the wire electrode 2 is determined.
  • Can be -A nozzle to which a hose 53 for supplying a processing fluid is connected is provided at an upper portion of the nozzle body 5, and the processing liquid is supplied from the nozzle 53 to the nozzle body 5.
  • the nozzle 7 is a hollow H cylinder having an appropriate dimension and having a flange 71 at one end, and the cylindrical portion is slidably fitted into the opening 52 at the lower end of the nozzle body 5.
  • the tip of the workpiece 3 is opposed to the surface of the workpiece 3 with an interval determined according to the supply force and flow rate of the machining fluid.
  • the machining fluid cools the positioning guide 61 and the wire electrode 2 inside the nozzle body 5, and on the other hand, moves the nozzle 3 from the nozzle 7 toward the workpiece 3 along the wire electrode 2. And the other side is injected upward from the upper opening 51 so as to cool the power supply shoe 4 and the wire electrode 2.
  • the workpiece 3 is mounted on a processing table 31, and the table 31 includes a motor 32 controlled by a numerical controller or the like. 33 allows the wire electrode 2 to move along a predetermined path on a plane perpendicular to the central axis of the wire electrode 2.
  • Conventionally known guide holders 6 are provided with a large number of fluid flow holes 6a, 6a on the side surfaces thereof in order to prevent dead stock of machining fluid from being generated therein. Although these can prevent the machining liquid from staying in the guide holder 6, they are not very effective for effectively cooling the positioning guide 61.
  • FIG. 2 is a partially enlarged cross-sectional view showing a configuration of a widely used positioning guide 61.
  • the positioning guide 61 includes a diamond and a sapphire having a guide hole 62a at the center. It consists of a die 62 made of cemented carbide such as ear, agate, or cemented carbide, and a metal housing 63.
  • the diameter of the upper and lower openings is large and wide, but the center is an electrode path regulating portion having substantially the same diameter as the diameter of the wire electrode 2.
  • the electrode 2 is configured so as not to be affected by the deviation or vibration of the path set by the guide roller 11 or the like.
  • a clearance of about 0.002 to 0.005 mm is provided between the outer peripheral surface of the wire electrode 2 and the inner wall surface of the die hole 62a, and a loose fit is provided. That is, it is desirable to fit the gap.
  • the second problem is that tight tolerances must be required for the wire electrodes used.
  • the inside diameter of the die hole 62a can be machined with extremely high precision, brass and other wire rods with a diameter of about 0.05 to 0.30 mm used as the It is not very accurate, so there are some problems when trying to maintain the above-mentioned clearance. .
  • the wire electrode 2 is generally stretched by about several percent between the cabin and the tension roller, and generates heat and crepe during discharge. Although it is deformed by the influence, it is extremely difficult to accurately grasp these conditions and keep them in the expected state at all times. It is.
  • the wire electrode 2 passes through the pair of upper and lower die holes under the action of considerable tension, and at that time, the passage path is regulated. Therefore, the wire electrode 2 is connected to the die hole. Even if the fit between them is a loose clearance fit with an ideal clearance, their mutual contact pressures are quite high and therefore the friction generated in that area The heat is also considerable, but the smaller the clearance, the greater the amount of heat generated.
  • machining current is flowing through the wire electrode 2 between the upper and lower lined electric showers and the workpiece 3, and that the lined electric shower 4 is cooled by the jet of machining fluid.
  • the temperature of the wire electrode 2 itself is also considerably high, and as described above, the wire electrode 2 and the die hole 62a
  • the clearance between these two parts is extremely narrow, so a large amount of machining fluid flows into this clearance and wets the contact friction surfaces of both parts, providing sufficient lubrication and cooling. We do not do it.
  • This frictional heat has an adverse effect on the wire electrode 2 first. That is, when the wire electrode 2 passes through the die 62, it is partially or wholly rapidly heated or quenched, and is transformed into an undesirable undesired state.
  • 106 is a guide holder similar to 6 described above, 120 is a die 122 having a die hole 121 in the center, and a die 122 is housed inside. And positioning arrows 130 and 131, which indicate flow lines of the machining fluid flowing poorly through the positioning guide 120.
  • FIGS. 5 and 6 The embodiment shown in FIGS. 5 and 6 is a modification of the above-described embodiment, and the housing 123 has three claws 125 and 125 for holding the die 122 at the center thereof. And the groove 124 between these claws serves as a cooling water flow path. Also in this embodiment, since the water flow 130 flowing down from above the guide holder 106 flows downward through the groove 124, the die 122 and the wire electrode passing therethrough are formed. 2 are both cooled sufficiently.
  • the positioning guide 220 shown in FIGS. 7 and 8 is composed of four spheres 223, 223 provided inside a cylindrical housing 222, and is attached to the lower end of the guide holder 206. I have.
  • the spheres 223, 223 are held in a plane so as to radiate and circumscribe one another, and are initially inserted into a housing 222 made larger or larger in diameter than shown.
  • the housing 222 is then swaged from the outside to create a positioning guide 220 as shown.
  • the diameters of these spheres are set so that the wire electrodes 2 can be passed through and held between these spheres.
  • a die for directly storing the wire electrode 2 is composed of these spheres 223, 223.
  • the wire electrode 2 is held coaxially with the center axis of the cycle in which the above four spheres 223, 223 are arranged, and between each sphere and the wire electrode 2 and the housing 222.
  • Each of the cooling water channels 226, 226 is formed in a pseudo triangular shape surrounded by three arcs.
  • FIG. 9 shows a modification in which the four spheres 223 are arranged in two.
  • FIGS. 10 and 11 show still another modification of the above-mentioned ball type die guide.
  • 229a is a stopper attached to the cylindrical housing 222
  • 229b and 229b are distance beads
  • 229c is a distance provided for the fastener 229d. It is a piece.
  • FIG. 10 shows an example in which the spherical bodies 223, 223 are arranged in three bottles in each stage
  • FIG. 11 shows an example in which the spherical bodies 223 are arranged in three stages.
  • These spheres 223, 223 may be gently held so that they can move on the surface.
  • FIG. 12 and FIG. 13 will be described.
  • a die having a non-H-shaped die hole is employed.
  • reference numeral 306 denotes a guide holder
  • 320 denotes a positioning guide comprising a die 321 having a regular triangular die hole having a throat cross-section rounded at the top, and a housing 322 thereof.
  • 323 and 324 are arrows indicating cooling water flow.
  • the dice hole In the throat, which is located approximately at the center of the thickness, the dice hole has a triangular shape with a rounded apex, and both sides of the throat gradually expand and deform. It has a curved surface 321b that forms a rectangular opening.
  • the path of the wire electrode 2 is determined by the middle point 321 of each side 321a of the above triangle, and the vertex and the wire electrode are determined.
  • a space 321d between 2 and 3 forms a cooling water flow path.
  • the cross section of the throat of the dice hole is a substantially equilateral triangle.
  • the shape is not limited to the equilateral triangle, but may be other shapes such as an arbitrary triangle, three convexes or concaves. It may be a figure consisting of R-arcs, a uniform width, a square, a diamond, or another polygon.
  • the guide holder 401 shown here is substantially the same as the guide holder 6 shown in FIG. 1, and is attached to the [3 ⁇ 4] part of the nozzle body (not shown) filled with the machining fluid. At the bottom
  • the positioning guide 461 is held, and more cooling water holes 420, 420, 421, 421 and 422, 422 are provided on the side surface thereof.
  • these cooling water holes are configured so that the number and / or number of the cooling water holes are increased so as to provide a higher opening ratio as approaching the positioning guide 461. Things.
  • the cooling water hole 421 has a slightly smaller diameter than that of the cooling water hole 421, but has a larger diameter, and an inner diameter of the cooling water hole 421 is larger than that of the cooling water hole 421.
  • the guide holder 41 OA shown here is configured such that the outer diameter of the upper part thereof is the same as the inner diameter of the nozzle body 405.
  • the cooling water holes 42 424 are provided only in the intermediate cone portion and the portion that holds the positioning guide 461. Further, the outer peripheral surface of the holding portion of the positioning guide 461 and the inner wall surface of the nozzle body 405 are provided.
  • a plurality of plate stays-425, 425, which also serve as heat dissipating fins made of a good conductor of heat, are provided in the same shape and are dissipated in the same shape.
  • fan-shaped cooling water passages 454 and 454 are formed therebetween to promote cooling of the positioning guide 461 and the wire electrode 2 in the vicinity thereof.
  • reference numeral 520 denotes a positioning guide, which is a cooling device composed of a die 521, heat pipes 528, 528, and heat radiation fins 530, 530.
  • a housing 522 provided with 524 is attached to the guide holder 506 by an attachment 506c.
  • 506A is a cooling water hole.
  • the heat pipe 528 is provided with a wicked eyebrow 528A at a part of a capsule or a sealed tube made of a good conductor such as aluminum or a net, to which ammonia, water, fluorine, etc.
  • the working fluid 526 is sealed.
  • the heat pipe is set in the housing 522 in order to protect it from mechanical shock.
  • the heat pipe is connected to the die 521. It is recommended that it be wound around and contacted so that the other end protrudes into the working fluid outside housing 522.
  • the frictional heat generated between the wire electrode 2 and the die 521 and the wire electrode 2 generate heat.
  • the heat conducted to the die 521 is quickly dissipated by the heat pipe 528 and the heat dissipating fin 530 into the machining fluid flowing near the positioning guide 521, so that the wire electrode 2 And the die 521 are effectively cooled.
  • the above-described squeezing or transmission is performed around a member or a guide hole which defines a passage of the wire electrode of the die-type guide.
  • Means to carry out the generated heat are arranged in the same shape as the last few heats, so that the above-mentioned heat is quickly radiated into the machining fluid without being stored in the die-type guide-
  • the wire electrode is formed. Can be moved one calendar year faster than before, the machining speed can be improved by increasing the machining average current without impairing machining accuracy, and the durability of each mechanism It has a significant economic benefit if used industrially, as it will improve life and service life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

An electrode guiding apparatus for a wire-cut spark erosion machine, and more particularly, an improvement in a die-type electrode positioning apparatus provided at a position closest to a workpiece and employed for regulating the position of a part to be machined. The electrode guiding apparatus has a die-type guide provided in a working fluid. In addition, around a member (122) or guide bore (121) for regulating the passage of a wire electrode (2), there are provided a plurality of means (124) for taking out the heat generated through the the friction between the member (122) or guide bore (121) and the wire electrode (2) and the heat conducted from the wire electrode (2), for well cooling the die-type guide, thereby to improve the machining accuracy in, mainly, a high-load machining.

Description

明 細 ワ イ ヤ カ ツ ト放電加工装置用電極案內装置 技 術 分  Electrode planning equipment for wire cut electric discharge machine
本発明はワ イ ヤカ ツ ト放電加工装置に於ける電極案内装置 よ り詳し く は被加工体に最も近接した位置に設けられ、 加工 を遂行する部分の位置を規定するために使用されるダイ ス型 の電極位置決め装置の改良に関する。 背 景 技 術  The present invention relates to an electrode guide device in a wire-cut electric discharge machine, and more particularly, to a die which is provided at a position closest to a workpiece and is used to define a position of a portion for performing machining. The present invention relates to the improvement of a metal-type electrode positioning device. Background technology
ワ イ ヤカ ツ ト放電加工装置は、 ワ イ ヤ電極の供給リ ー ルか から面収 リ ー ル又は面収箱等に至る径路を走行する ワ イ 電 極を用いて加工を行な う も のであ る。  Wire-cut electric discharge machines perform machining using wire electrodes that travel on the path from the wire electrode supply rail to the surface reel or surface storage box. It is.
一般的には、 ワ イ ヤカ ツ ト放電加工装署に於ては、 加工を 施すため被加工体を移動させる空間を貫通する電極径路を設 定するため、 相対向する一対のダイ ス型の電極位置決めガイ ドが、 被加工体が移動する方苘と直交する一軸上に設け られ る  Generally, in a wire-cut electric discharge machine, a pair of opposed die-types is used to set an electrode path that passes through a space for moving a workpiece in order to perform machining. The electrode positioning guide is provided on one axis orthogonal to the direction in which the workpiece moves.
ワ イ ヤ電極は、 所定の張力を受けながら、 こ の一対のダイ ス型ガイ ド間に設定された径路に沿っ て、 一定の方向に一定 の速度で移動せ しめ られ、 供給される加工液及び電圧パ ル ス の作用によ り、 上記径路に直角な方向に相対的に加工送り さ れる被加工体を切浙する。  While receiving a predetermined tension, the wire electrode is moved at a constant speed in a fixed direction along a path set between the pair of die guides, and the supplied machining fluid is supplied. And the action of the voltage pulse cuts the workpiece to be processed and fed relatively in a direction perpendicular to the path.
近時、 ワ イ ヤカ ツ ト放電加工装置は次第に髙負荷、 高速加 ェを行な う よ う にな っており、 又、 そ の加工精度に対する要 求も次第に厳し く な つている。  In recent years, wire-cut electric discharge machines have been gradually increasing the load and high-speed machining, and the demands on the machining accuracy have also become increasingly severe.
又、 最近では、 特に大型で厚みのある被加工体を高精度で  Recently, especially large and thick workpieces have been
OMPI 加工する こ とが必要となってきている。 OMPI Processing is becoming necessary.
これらの要求を滴たすためには、 ワ イ ヤ電棰を高張力の作 用下で、 高速で移動させる こ とが要求される。  In order to meet these requirements, it is necessary to move the wire at high speed under high tension.
一方、 ワ イ ヤ電極の位置決め精度を高めるためには、 ワ イ ャ電極が揷通されその位置が決定されるダイ ス孔の内搔と、 ワ イ ヤ電極の外径の閭に設けるべき ク リ ァ ラ ンスを可能な限 り小さ く する こ とが必要である。  On the other hand, in order to increase the positioning accuracy of the wire electrode, the wire electrode should be provided at the inner side of the die hole through which the wire electrode is passed and the position is determined, and at the outer diameter of the wire electrode. It is necessary to keep the reference as small as possible.
然しながら、 ワ イヤ電極は大量に突消されるので、 主と し てコ ス ト上の観点から特別に高精度の線材を使用する こ とは 適切でな く 、 一般工業用の線材を使用する こ とが望ま しいが、 それら汎用繚材の線搔の許容公差は、 上記ダイ ス と ワ イ ヤ電 極との間に設けら るべき ク リ ァ ラ ンスの望ま しい韨と同程度 か、 又はそれ以上に大きい。 "  However, since a large number of wire electrodes are destroyed, it is not appropriate to use a specially high-precision wire mainly from the viewpoint of cost. It is desirable that the tolerance of the wire of the general-purpose riot material is the same as the desirable tolerance of the clearance to be provided between the die and the wire electrode, or Greater than that. "
こ のよ う な事情は、 ウ イ ャ電極を高精度で位置決め しつ 、 高速度で移動させる際、 問題を生じさせる。 即ち、 こ のよ う に し よ う と意図する と、 ダイ ス型ガイ ドには直ちに相当の摩 擦熱が生じる。  Such a situation causes a problem when the wire electrode is positioned with high accuracy and moved at high speed. That is, if this is intended, the die-type guide will immediately generate considerable frictional heat.
又、 ワ イ ヤカ ッ ト放電加工のため の ワ イ ヤ電極への電圧パ ルス の供給は、 上記一対のガイ ドのそれぞれと钹加工体の藺 に設け られる袷電シユ ーゃ袷電ロ ー ラ等を介して行なわれる がその平均電流は許容される限界値に近い値と されるこ とが 多 く 、 そのため通電に伴って発生する ジュール熱も相当に多 量とな り、 加工液に依って冷却されているに も拘わ らず、 つ ィ ャ電極は相当に高温となり、 更に又、 放電によ り被加工体 を加工する際に も相当の熱が発生する ので加工に使用された 後のワ イ ヤ電極は更に髙溘となる。  The supply of the voltage pulse to the wire electrode for wire-cut electric discharge machining is performed by using a line-shaped electric wire provided on each of the pair of guides and a line of the work body. However, the average current is often set to a value close to the permissible limit value, so that the Joule heat generated by energization becomes considerably large, and Therefore, despite the fact that the electrode is cooled, the temperature of the electrode becomes considerably high, and furthermore, a considerable amount of heat is generated when the workpiece is processed by electric discharge. After that, the wire electrode becomes even more powerful.
これらの熱によ り高溘とな っ たワ イ ヤ電極は、 そ _れが接触 するダイ ス型ガイ ドにその保有する熱を分与する。  The wire electrode that has been heated to a high temperature by the heat distributes the retained heat to the die-type guide with which it comes into contact.
O PI  O PI
、 WIPO 一, ^ 叙上の如き プ ロ セ スによ り、 直接、 間接にダイ ス型ガイ ド に与え られた熱は種々 な問題を派生する。 , WIPO one, ^ Due to the processes described above, the heat applied directly and indirectly to the die-type guide raises various problems.
その第一は、 こ の摩擦熱がダイ ス型ガイ ドを支承している アー ム等に伝わる とダイ ス型ガイ ド自身の位置が狂い、 位置 決め精度が柢下する こ とであ り、 第二にはダイ ス型ガイ ド自 身の耐久度、 寿命が低下する と共に、 ワ イ ヤ電極の材質に好 ま し く ない影響が及ぼされ、 そ の結果と して断線事故率が上 昇する こ とであり、 第三には同じ く 発熱の原因である と こ ろ の加工用電流パルス の平均電流が限定される こ とである。 然しながら、 ワ イ ヤ電極の移動速度を遅く する と、 特に厚 い被加工体を加工する場合や、 消耗条件で加工を行な う場合 等に於ては、 ヮ ィ ャ電極の消耗によ り被加工体の上下に於け るそ の形状の相違が許容範囲を越えるため、 所期の加工螬度 が得られない。  The first is that if this frictional heat is transmitted to the arm supporting the die-type guide, the position of the die-type guide itself will be disturbed, and the positioning accuracy will be reduced. Secondly, the durability and life of the die guide itself is reduced, and the material of the wire electrode is unfavorably affected. As a result, the disconnection accident rate is increased. Third, the average current of the machining current pulse, which is also the cause of heat generation, is limited. However, if the moving speed of the wire electrode is slowed down, particularly when processing a thick workpiece or when processing under consumable conditions, the wire electrode may be worn out. Since the difference in shape between the top and bottom of the workpiece exceeds the allowable range, the desired processing strength cannot be obtained.
又、 近時、 ワ イ ヤカ ツ ト放電加工の加工速度は急速に向上 しつ 、 あに も拘わらず、 よ り 以上の高速化が益々強 く 要求さ れるよ う にな っている。 こ の要求を満たすためにはワ イ ヤ電 極への電力供給量、 換言すれば、 加工平均電流を可能な限り 增大してなければな らないが、 そ う する と、 ダイ ス型ガイ ド とそれを通過する ワ イ ヤ電極とはよ り一層高葸となる。  In recent years, the machining speed of wire-cut electric discharge machining has been rapidly increasing, but nevertheless, even higher speeds have been increasingly demanded. To meet this requirement, the amount of power supplied to the wire electrodes, in other words, the machining average current, must be as large as possible. The height of the wire electrode passing therethrough is even higher.
而して、 これらの問題を解決するため、 ダイ ス型ガイ ドを 加工液が充満 している供袷ノ ズルの內部に設けたり、 或いは 適宜のノ ズル等を用いて加工液ジェ ッ ト を吹き付けたり する こ とによ り冷却する こ とが提案されている。  Therefore, in order to solve these problems, a die guide is provided on one side of the supplied nozzle filled with the working fluid, or the working fluid jet is formed by using an appropriate nozzle or the like. It has been proposed to cool by spraying.
然しながら、 本発明者の研究によ って、 こ の従来公知の方 法ではダイ ス型ガイ ドは必ずしも充分に冷却されていない こ とが見出された。  However, according to the study of the present inventor, it has been found that the die-type guide is not always sufficiently cooled by this conventionally known method.
本発明によれば、 このダイ ス型ガイ ドが略完全に冷却さ According to the present invention, the die guide is almost completely cooled.
??t 一 ?? t one
O FI 又、 そ こを通過するワ イ ヤ電極がよ り完全且つ効率的に冷却 されるよ う になるので、 ワ イ ヤ電槿を従来よ り一暦高速度で 移動させ得るよ う になり、 加工精度を損じる こ とな く 加工平 均電流を増加して能率を向上させ、 且つ各部機構の耐久度及 び寿命を改善する こ とを得る。 癸 明 の 開 示 O FI In addition, since the wire electrode passing therethrough is cooled more completely and efficiently, the wire electrode can be moved at a calendar higher speed than before, and It is possible to improve the efficiency by increasing the processing average current without impairing the processing accuracy, and to improve the durability and life of each mechanism. Disclosure of Kishimei
本発明は上記従来技術の欠点を除く ために為されたも ので あ って、 その目的とする と こ ろは、 構造が簡単であり ながら ダ イ ス型ガイ ドを確実に冷却し得るワ イ ヤカ ツ ト放電加工装 置用 の電極案內装置を提供する こ とにある。  The present invention has been made to eliminate the above-mentioned drawbacks of the prior art, and it is an object of the present invention to provide a wire capable of reliably cooling a die-shaped guide while having a simple structure. An object of the present invention is to provide an electrode planning device for a Yakatsu electric discharge machine.
而して、 本発明の要旨とする と こ ろは、 ダイ ス型ガイ ドの ヮ ィ ャ霉極の通路を規定するメ ンパー又は案内 ¾の周囲に、 上記の如く して発生し又は伝導された熱を加工液中に運び出 し放散させる手段を複数配設する こ とにある。  Thus, the gist of the present invention is to generate or conduct as described above around the members or guides that define the passages of the poles of the die guide. In other words, a plurality of means for transferring and dissipating the generated heat into the working fluid is provided.
本癸明の一実施钶に於ては、 円形のダイ ス孔を有する小さ いダイ ス型ガイ ドの外周面と、 それを保持するホルダのダイ ス型ガイ ド把持面との藺に、 冷却水通路が設けられ、 ダイ ス 型ガイ ドが、 通過する ワ イ ヤ電極と共に確実に冷却される。  In one practice of the present invention, the cooling of the rush between the outer peripheral surface of the small die guide having a circular die hole and the grip surface of the die guide of the holder that holds it was performed. A water passage is provided to ensure that the die guide is cooled together with the passing wire electrodes.
本発明の他の実施例に於ては、 ダイ ス型ガイ ド自身が一つ の R筒体と、 互いに外接しつ 、 上記円筒体の内壁面に接し、 放散同形に配設される複数の球体とによ り構成され、 ワ イ ャ 電極は上記各球体によ り上記円筒体と同轴にその位置を規制 され、 ワ イ ヤ電極と上記球体との間及び各球体間に冷却液通 路が形成される。  In another embodiment of the present invention, a die-shaped guide itself is in contact with one R cylinder, and circumscribes each other, contacts with the inner wall surface of the cylinder, and has a plurality of radiation guides arranged in the same shape. The position of the wire electrode is regulated by the respective spheres in the same manner as the cylindrical body, and the coolant flows between the wire electrode and the sphere and between the spheres. A path is formed.
本発明の更に他の実施^に於ては、 三角形状、 等辐歪 ΡΪ状 等の非 P3形ダイ ス孔を有するガイ ドが使用される。 .  In still another embodiment of the present invention, a guide having a non-P3-shaped die hole having a triangular shape, an equal strain shape, or the like is used. .
又、 更に他の実施例に於ては、 ダイ ス型ガイ ドを支承する  In still another embodiment, a die guide is supported.
OMPI  OMPI
く d メ ンパーに多数の冷却水ダク ト又は流通孔が設け られる。 又、 更に他の実施例に於ては、 ダイ ス型ガイ ドを支承する メ ンパーの内部に複数の高能率伝熱要素、 即ち ヒ ー ト パイ ブ が配置される。 D Numerous cooling water ducts or flow holes are provided in the member. In still another embodiment, a plurality of high-efficiency heat transfer elements, ie, heat pipes, are disposed inside a member that supports the die guide.
而して、 上記の如 く 構成する こ とによ り、 ダイ ス型ガイ ド はワ イ ヤ電極が強大な張力の作用下で、 髙速度で接触移動す る にも拘わ らず、 冷却水よ り や ゝ 高い程度の溘度に保たれ、 これによ り ダイ ス型ガイ ドに由来する ト ラブルが防止さ れ、 加工平均電流を增加させる こ と、 及びノ又は、 加工精度を高 い レ ベルに保つこ とが可能となる。 図面の簡単な説明  Thus, with the above configuration, the die-type guide cools the wire electrode despite the fact that the wire electrode contacts and moves at a high speed under the action of a strong tension. The temperature is maintained at a level slightly higher than that of water, thereby preventing troubles caused by the die-type guide, increasing the machining average current, and improving machining accuracy. Level can be maintained. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 本発明装養が応用さ るべき ワ イ ヤカ ツ ト放電加 ェ装置の要部を示す縦断面図、 '  FIG. 1 is a longitudinal sectional view showing a main part of a wire-cut discharge heating device to which the present invention is applied.
第 2 図は、 公知の電極案内装置のー洌を示す縦断面図、 第 3 図は、 本発明に係る電極案内装置の一実施例を示す縦 断面図 (第 4図中 DI - ΠΙ切断線) 、  FIG. 2 is a vertical cross-sectional view showing a conventional electrode guide device, and FIG. 3 is a vertical cross-sectional view showing one embodiment of the electrode guide device according to the present invention (DI-ΠΙ cut line in FIG. 4). ),
第 4図は、 第 3 図中に示した電極案内装置の模断面図 ( IV 一 IV切断線) 、  FIG. 4 is a schematic cross-sectional view of the electrode guide device shown in FIG. 3 (section line IV-IV),
第 5 図は、 他の電極案内装置の一実施例を示す縦断面図 ( 第 6 図中 VI— VI切断線) 、  FIG. 5 is a longitudinal sectional view showing one embodiment of another electrode guide device (a VI-VI cutting line in FIG. 6),
第 6図は、 第 5 図中に示した電極案內装置の横断面図 ( V 一 V切断線〉 、  FIG. 6 is a cross-sectional view (V-V cutting line) of the electrode forming device shown in FIG.
第 7 図は、 更に他の一実施例を示す縦断面図 (第 8 図中 VII 一 VII切断線) 、  FIG. 7 is a longitudinal sectional view showing another embodiment (a section line VII-VII in FIG. 8),
第 8 図は、 第 7 図中に示した電極案内装置の横断面図 — 切断線) 、  Fig. 8 is a cross-sectional view of the electrode guide device shown in Fig. 7 (cutting line),
第 9 図は、 更に他の電極案内装置の構成を示す縦断面図、  FIG. 9 is a longitudinal sectional view showing the configuration of still another electrode guiding device,
OMPI 第 10図は、 更に他の電極案內装置の構成を示す模断面図、 第 11図は、 更に他の電極案內装置の構成を示す縦断面図、 第 12図は、 更に他の一実施例を示す模断面図 (第 13図中 X OMPI FIG. 10 is a schematic sectional view showing the configuration of still another electrode forming apparatus, FIG. 11 is a longitudinal sectional view showing the configuration of still another electrode forming apparatus, and FIG. A schematic cross-sectional view showing an example (X in FIG. 13)
1 - X m切断線) 、  1-Xm cutting line),
第 13図は、 第 12図中に示した電極案内装置の縦断面図 ( X FIG. 13 is a longitudinal sectional view of the electrode guide device shown in FIG. 12 (X
II 一 X n切断線) 、 II-Xn cutting line),
第 U図は、 他の電極案內装置の一実施例を示す斜視図、  FIG. U is a perspective view showing one embodiment of another electrode forming device,
第 図は、 第 14図中に示した電極案内装置の縦断面図 ( X Fig. 14 is a vertical sectional view of the electrode guide device shown in Fig. 14 (X
V - X V切断線) 、 V-XV cutting line),
第 16図は、 更に他の一実施例を示す縦断面図、  FIG. 16 is a longitudinal sectional view showing still another embodiment,
第 17図は、 第 16図中に示した電極案內装置の模断面図 (X FIG. 17 is a schematic cross-sectional view of the electrode forming device shown in FIG. 16 (X
¾ 一 X ¾切断線) 、 ¾ one X ¾ cutting line),
第 18図は、 更に他の電極率內装置の構成を示す縦断面図、 第 19図は、 第 18図中に示した電極案內装置の模断面図 (X FIG. 18 is a vertical cross-sectional view showing the configuration of still another electrode ratio measuring apparatus, and FIG. 19 is a schematic cross-sectional view of the electrode forming apparatus shown in FIG. 18 (X
K— X K切断線) 、 K—XK cutting line),
第 20図は、 前二図で示した電極案内装置に於て用いたヒ ー トパイ プの構造を示す县手方向拡大断面図である。 本癸明を実施するため の最良の形態  FIG. 20 is an enlarged sectional view in the hand direction showing the structure of a heat pipe used in the electrode guide device shown in the preceding two figures. The best form to carry out
第 1 図には、 本 明が応用され得る公知のワ イ ヤカ ツ ト放 電加工装置の要部、 即ち加工されつ ある被加工体と、 それ を加工しっ ある ワ イ ヤ電極と、 そ の ワ イ ヤ電極に袷電する シ ユ ー 、 加工液ノ ズルその他から成る部分の構成が示されて いる。  FIG. 1 shows a main part of a known wire-cut electric discharge machining apparatus to which the present invention can be applied, that is, a workpiece to be machined, a wire electrode which has been machined, The configuration of a part that is composed of a shower line, a working fluid nozzle, and the like that line up the wire electrode is shown.
而して、 図中 1 は公知のワ イ ヤカ ツ ト放電加工装置の上側 アーム、 2 はワ イヤ電極、 3 は被加工体、 4 は袷電シユ ー 、  Thus, in the figure, 1 is an upper arm of a known wire-cut electric discharge machine, 2 is a wire electrode, 3 is a workpiece, 4 is a lined electric screen,
5 はノ ズル本体、 6 はダイ ス型ガイ ド 61を支承するホルダ、 5 is the nozzle body, 6 is the holder for supporting the die guide 61,
7 はノ ズルである。 7 is a nozzle.
WIPO , ^y> 尚、 図には一部しか示されていないが、 図の下方には、 上 厠のアー ム 1 乃至ノ ズル 7 と略対称に、 下側アー ム、 袷電シ ユ ー又はそれに代る ローラ等の外、 ノ ズル本体 5 ノ 、 ガイ ド ホ ルダ 6 Λ 、 ノ ズル 7 z 等の公知の構成要素が配置されてい る。 WIPO, ^ y> In addition, although only a part is shown in the figure, the lower arm, the lined electric shower or a roller instead of it is shown in the lower part of the figure almost symmetrically with the arms 1 to 7 of the upper lavatory. In addition, known components such as a nozzle body 5 nose, a guide holder 6 Λ , and a nozzle 7 z are arranged.
こ の下方の構成要素は上方の もの と略対応する ものである から、 以下では主と して上方の も の のみに就いて説明する。  Since this lower component substantially corresponds to the upper component, the following mainly describes only the upper component.
而して、 こ のワ イ ヤカ ツ ト放電加工装置は、 ワ イ ヤ電極 2 のノ ズル 7、 7 z 間にある部分と、 被加工体 3 との間に加工 液を噴射供給する と共に、 電圧パルスを印加して放電加工を 亍ぅ ものである。  In this wire-cut electric discharge machine, the machining fluid is jetted and supplied between the portion between the nozzles 7 and 7 z of the wire electrode 2 and the workpiece 3. The electric discharge machining is performed by applying a voltage pulse.
ヮ ィ ャ電極 2 は、 図示されていない装置本体の力 ラ ム等に 設けた供袷 リ ー ルから上部アー ム 1 内部又はそ の表面に つ て設定された通路に沿って導かれ、 アー ム 1 に設けられた図 示されていないテ ン シ ョ ン ロ ー ラ及び案内ロ ーラ 11等を経て 下方に延び、 図示されていない下側アー ム內部に上記案内口 ー ラ 11と対称に設けられている下側案内ロ ー ラを径、 更に図 示さ れていないキ ヤプス タ ン又は引取ロ ー ラ等を経由 して、 力 ラ ム等に設けられた巻取リ ー ル又は面収容器へと移動する。  The zener electrode 2 is guided along a passage set on the inside of the upper arm 1 or on the surface thereof from a lined reel provided on a power ram or the like (not shown) of the apparatus main body. It extends downward through the tension roller and guide roller 11 (not shown) provided in the arm 1 and is symmetrical to the above-mentioned guide roller 11 at the lower arm (not shown). The lower guide roller provided on the shaft is taken up by a diameter, and further via a not-shown capstan or take-up roller, etc., to a take-up reel or surface provided on a force ram, etc. Move to container.
L字状の支持部材 1 3は、 アー ム 1 に昇降自在に取り 付け ら れており、 モータ 12によ って 11動せ しめ られるね じ装置を介 して昇降せ しめ られ、 所望の位置に保持される。  The L-shaped support member 13 is attached to the arm 1 so as to be able to move up and down, and is moved up and down through a screw device 11 which is moved by a motor 12 to a desired position. Is held.
支持部材 1 3の下端部前面には、 ヮ ィ ャ電極 2 と接触して電 圧パルスを印加する 目的で、 超硬合金製の通常は円柱状の袷 電シユ ー 4 を設け、 上下案內ロー ラ間を移動する ワ イ ヤ電極  On the front surface of the lower end portion of the support member 13, there is provided a generally cylindrical lined electric shower 4 made of cemented carbide for the purpose of applying a voltage pulse in contact with the lead electrode 2. Wire electrode to move between rollers
2 に接触させる。 Touch 2.
又、 支持部材 1 3の下端部には、 中空円筒状のノ ズル本体 5 が画定、 又は、 必要に応じて微小位置調整可能に取り付け ら  A hollow cylindrical nozzle body 5 is defined at the lower end of the support member 13 or attached so that the position can be adjusted minutely as needed.
一 own One own
、/ W IPO y れる。 , / W IPO y It is.
このノ ズル本体 5 の上下端面にはそれぞれ、 ワ イ ヤ電極 2 がその中心軸に沿って揷通される開口 51、 52が略同翰に形成 されている。  Openings 51 and 52 through which the wire electrode 2 passes along the central axis are formed substantially at the upper and lower end surfaces of the nozzle body 5, respectively.
而して、 ノ ズル本体 5 の內部には、 本発明の対象である と こ ろ の電極案內装置 1 00 が設けられている。  Thus, an electrode forming device 100, which is an object of the present invention, is provided on a part of the nozzle body 5.
この電極案內装置 100 は、 ノ ズル本体 5 に略同軸に固定、 又は、 必要に応じて微小位置調整可能に取り付けられている ガイ ドホ ルダ 6 と、 そ の祓加工体 3 側の先端に保持されてい るダイ ス型の位置決めガイ ド 61 とから成る。  The electrode projecting device 100 has a guide holder 6 fixed substantially coaxially to the nozzle body 5 or a micro-position adjustable as required, and a tip end of the extruded body 3 side. And a die-type positioning guide 61 which is held.
ガイ ドホルダ 6 は、 その下半分が上半分よ り細 く されてい る筒体であり、 その下端には、 それによ り ワ イ ヤ電極 2 の通 過径路が決定される位置決めガイ ド 61が設けられる。 ― ノ ズル本体 5 の上部には加工液を供袷するホース 53が接続 されるノ ズルが設けられており、 こ こから加工液がノ ズル本 体 5 内に供袷される。  The guide holder 6 is a cylindrical body whose lower half is narrower than the upper half, and at the lower end thereof is provided a positioning guide 61 by which the passage path of the wire electrode 2 is determined. Can be -A nozzle to which a hose 53 for supplying a processing fluid is connected is provided at an upper portion of the nozzle body 5, and the processing liquid is supplied from the nozzle 53 to the nozzle body 5.
ノ ズル 7 は、 一端にフ ラ ン ジ 71を有する適宜の寸法の中空 H筒体であり、 そ の円筒部は上記ノ ズル本体 5 の下端の開口 52に摺動自在に嵌合し、 そ の先端は加工液の供袷庄力、 流量 等に応じて定ま る間隔を介して被加工体 3 の表面と対向せし め られている。  The nozzle 7 is a hollow H cylinder having an appropriate dimension and having a flange 71 at one end, and the cylindrical portion is slidably fitted into the opening 52 at the lower end of the nozzle body 5. The tip of the workpiece 3 is opposed to the surface of the workpiece 3 with an interval determined according to the supply force and flow rate of the machining fluid.
加工液はノ ズル本体 5の内部に於て位置決めガイ ド 61及び ワ イ ヤ電極 2 を冷却し、 一方に於てはノ ズル 7 から ワ イ 電 極 2 に沿 っ て被加工体 3 の方へ噴射され、 他の一方に於て上 方の開口 51から上方に噴射され、 給電シ ユ ー 4及びワ イ ヤ電 極 2 を冷却するよ う になっている。  The machining fluid cools the positioning guide 61 and the wire electrode 2 inside the nozzle body 5, and on the other hand, moves the nozzle 3 from the nozzle 7 toward the workpiece 3 along the wire electrode 2. And the other side is injected upward from the upper opening 51 so as to cool the power supply shoe 4 and the wire electrode 2.
又、 被加工体 3 は、 加工テー ブル 31上に取り付けられ、 加 ェテ一ブル 31は、 数値制御装置等による制御されるモータ 32、 33によ ってワ イ ヤ電極 2 の中心軸と直角な平面上を、 所定の 径路に沿って移動せしめ られる。 The workpiece 3 is mounted on a processing table 31, and the table 31 includes a motor 32 controlled by a numerical controller or the like. 33 allows the wire electrode 2 to move along a predetermined path on a plane perpendicular to the central axis of the wire electrode 2.
而して、 こ のワ イ ヤカ ツ ト放電加工装置に於ては、 上下の 袷電シユ ー又はロー ラ及びその間を移動する ワ イ ヤ電極 2 の 冷却が非常に重要である と されているが、 本癸明者等はこれ らの冷却のみな らず、 位置決めガイ ド 61の冷却も亦極めて重 要である こ とを発見した。  Therefore, in this wire-cut electric discharge machine, it is considered that the cooling of the upper and lower lines or the roller and the wire electrode 2 moving between them is very important. However, the founders of the present invention discovered that not only such cooling but also cooling of the positioning guide 61 was also extremely important.
従来公知のガイ ドホルダ 6 には、 その内部に加工液のデツ ドス ト ツ クが生じないよ う にするため、 その側面に多数の加 ェ液流通孔 6 a、 6aが設けられているが、 これらはガイ ドホル ダ 6 内に加工液が滞留する のを防止し得るにせよ、 位置決め ガイ ド 61を有効に冷却するためには余り有効と は言えない。  Conventionally known guide holders 6 are provided with a large number of fluid flow holes 6a, 6a on the side surfaces thereof in order to prevent dead stock of machining fluid from being generated therein. Although these can prevent the machining liquid from staying in the guide holder 6, they are not very effective for effectively cooling the positioning guide 61.
そ の理由は、 第 2 図によ り説明される。  The reason is explained in Figure 2.
第 2 図は広 く 用い られている位置決めガイ ド 61 の構成を示 す一部拡大断面図であ り、 こ の位置決めガイ ド 61は、 中央に 案内孔 62 a を有するダイ ヤモ ン ド、 サフア イ ャ、 瑪瑙、 或い は超硬合金等の超硬物 ®で製造されたダイ ス 62と、 金属製の ハ ウ ジ ング 63とから成る。  FIG. 2 is a partially enlarged cross-sectional view showing a configuration of a widely used positioning guide 61. The positioning guide 61 includes a diamond and a sapphire having a guide hole 62a at the center. It consists of a die 62 made of cemented carbide such as ear, agate, or cemented carbide, and a metal housing 63.
案內 ¾ 62 a は、 上下の開口部の径が大き く 拡がっているが、 そ の真中はワ イ ヤ電極 2 の径と略同径の電極径路規制部分と な っていて、 ワ イ ヤ電極 2 が案内ロー ラ 11等によ り設定され た径路の偏差或いは振動等によ る影響を受げないよ う構成し てある。  In the case of proposal 62a, the diameter of the upper and lower openings is large and wide, but the center is an electrode path regulating portion having substantially the same diameter as the diameter of the wire electrode 2. The electrode 2 is configured so as not to be affected by the deviation or vibration of the path set by the guide roller 11 or the like.
ワ イ ヤ電極 2 の外周面と、 ダイ ス孔 62 a の内壁面との間に は通常は 0 . 002〜 0 . 005 mm程度のク リ ア ラ ン スを設けて、 所 諝緩い嵌め合い、 即ち隙間嵌め と してお く こ とが望ま しい。  Usually, a clearance of about 0.002 to 0.005 mm is provided between the outer peripheral surface of the wire electrode 2 and the inner wall surface of the die hole 62a, and a loose fit is provided. That is, it is desirable to fit the gap.
然しながら、 こ のよ う な理想的なク リ ア ラ ン スを実現しよ う とする と幾つかの問題が生じる その一つは、 位置決めガイ ド部分の冷却が不充分となる こ とであ る。 However, trying to achieve such an ideal clean-up poses several problems. One of them is that the cooling of the positioning guide is insufficient.
第 2 図中に矢印に示すよ う に、 こ の位置決めガイ ド 61の上 方又は下方からダイ ス 62向かって加工液が流れたと しても、 こ の部分の流れは淀みとなり、 ワ イ ヤ電極 2 とダイ ス 62との 藺のク リ ア ラ ンス內の閽には極僅かしか流入し得ず、 そのた め、 単にそれらの表面に潘暂してワ イ ヤ電極 2 とダイ ス 62と を冷却する のと大差がない。  As shown by the arrow in FIG. 2, even if the machining fluid flows from above or below the positioning guide 61 toward the die 62, the flow in this portion becomes stagnant and the wire Only a small portion of the clean clearance between the electrode 2 and the dice 62 can flow into the area of the clear lance between the electrode 2 and the dice 62, so that the surface of the wire 2 and the dice 62 There is not much difference from cooling and.
即ち、 ワ イ ヤ電極 2 と案內孔 62 a との間には前述の如 く 極 めて小さいク リ ア ラ ンス しかない ので、 ワ イ ヤ電極 2 とダイ ス 62の近傍に供袷された加工液は、 容易に更新されず、 こ の ため、 第 1 図に示したよ う に位 S決めガイ ド 61がノ ズル本体 5 内に充満している液中に設けられたと しても、 ノ ズル; ^体 5 內を流れる加工液によってダイ ス 62を十分に冷却する こ と は不可能であっ た。  That is, since there is only an extremely small clearance between the wire electrode 2 and the projecting hole 62a as described above, the wire is supplied near the wire electrode 2 and the die 62. The machining fluid is not easily renewed, and therefore, even if the positioning guide 61 is provided in the fluid filling the nozzle body 5 as shown in FIG. Nozzle: It was not possible to sufficiently cool the die 62 with the machining fluid flowing through the body 5 mm.
第二の問題点は、 使用する ワ イ ャ電極に対し厳しい許容公 差を要求しなければな らないこ とである。  The second problem is that tight tolerances must be required for the wire electrodes used.
ダイ ス孔 62 a の内径は極めて高精度で加工ができ るが、 ヮ ィ ャ電極 2 と して使用される直径 0 . 05〜 0 . 30 mm程度の鋇、 真 鍮その他の線材は、 一般的にはさ ほど高精度の も のではな く . そのため、 上記の如き ク リ ア ラ ン スを保持しょ う とする と幾 つかの問題が生じる。.  Although the inside diameter of the die hole 62a can be machined with extremely high precision, brass and other wire rods with a diameter of about 0.05 to 0.30 mm used as the It is not very accurate, so there are some problems when trying to maintain the above-mentioned clearance. .
先ず、 第一には、 ワ イ ヤ電極 2 と して特別高精度のものを 選択する必要が生じる。  First of all, it is necessary to select a wire electrode 2 with a particularly high precision.
次に、 ワ イ ヤ電極 2 はキ ヤ ブス タ ン と テ ン シ ョ ン ロ ー ラ と の間で、 通常数%程度引き伸ばされ、 又放電の際癸生する熱 及びク レ一タ等の影響で変形する ものであるが、 こ れらの状 ¾を正確に把握し、 常時所期の状態に保つこ とは極めて ¾難 である。 Next, the wire electrode 2 is generally stretched by about several percent between the cabin and the tension roller, and generates heat and crepe during discharge. Although it is deformed by the influence, it is extremely difficult to accurately grasp these conditions and keep them in the expected state at all times. It is.
—方、 コ ス ト上の観点から、 汎用のものを用いる とする と ク リ ア ラ ン スはしばしば過大な も の となっ たり、 或いは逆に マ イ ナ ス、 即ち締め代が生じ、 ワ イ ヤ電極 2 がダイ ス孔 62 a を通過する際多少と も線引き加工される こ と に な つ た り する こ と に な る。  On the other hand, from the point of view of cost, the use of general-purpose ones often leads to excessive cleanliness or, conversely, negative, ie, interference, When the ear electrode 2 passes through the die hole 62a, the wire is somewhat drawn.
加工精度の観点からすれば、 ク リ ァ ラ ン ス は可能な限り小 さ いもの とする必要があり、 コ ス 卜 の点からはク リ ア ラ ンス の許容範囲をよ り広 く 拡大する こ はが要求される。  From the standpoint of machining accuracy, cleanliness must be as small as possible, and in terms of cost, the allowable range of cleanliness will be expanded more widely. This is required.
従って、 加工精度とコ ス 卜 とを極限迄追及しょ う とする と 作業の容易性を損なわない限度で、 極めて小さ いか又は僅か にマ イ ナ ス となる止り 嵌めを容認する必要が生じる。  Therefore, in order to pursue the processing accuracy and cost to the utmost, it is necessary to accept a very small or slightly negative stop fit as long as the workability is not impaired.
ワ イ ヤ電極 2 は、 相当の張力の作用下に、 これら上下一対 の ダ イ ス孔を通過し、 そ の際、 通過径路を規制される の で、 ワ イ ヤ電極 2 とダイ ス孔との間の嵌合が、 理想的なク リ ア ラ ンスが与え られている緩い隙間嵌めである と して も、 その相 互の接触圧力は相当に高く 、 従って、 当該部分で発生する摩 擦熱も相当の もの となるが、 こ のク リ ア ラ ン ス が小さ く なる と この発熱量は飛躍的に增大する。  The wire electrode 2 passes through the pair of upper and lower die holes under the action of considerable tension, and at that time, the passage path is regulated. Therefore, the wire electrode 2 is connected to the die hole. Even if the fit between them is a loose clearance fit with an ideal clearance, their mutual contact pressures are quite high and therefore the friction generated in that area The heat is also considerable, but the smaller the clearance, the greater the amount of heat generated.
又更に、 上下の袷電シユ ー と被加工物 3 との間のワ イ ヤ電 極 2 には加工電流が流れており、 袷電シユ ー 4 は加工液噴流 によ り冷却されている と して も相当の高温とな っているため - ワ イ ヤ電極 2 それ自身の温度も相当に高 く な つており、 又、 上記の如 く ワ イ ヤ電極 2 とダイ ス孔 62 a 內壁面との間のク リ ァ ラ ン ス は極めて狭いので、 加工液がこ のク リ ア ラ ン ス內に 大量に流入して両者の接触摩擦面を濡ら し、 充分に潤滑と冷 却とを行う こ とはない。  Further, it is assumed that machining current is flowing through the wire electrode 2 between the upper and lower lined electric showers and the workpiece 3, and that the lined electric shower 4 is cooled by the jet of machining fluid. The temperature of the wire electrode 2 itself is also considerably high, and as described above, the wire electrode 2 and the die hole 62a The clearance between these two parts is extremely narrow, so a large amount of machining fluid flows into this clearance and wets the contact friction surfaces of both parts, providing sufficient lubrication and cooling. We do not do it.
そのため、 ワ イ ヤ電極 2 とダイ ス 62との接触は、 殆ど Λ イ コ ンタ ク ト に近いものとなり、 ダ ス 62は相当に発熱し、 高温となる。 Therefore, the contact between the wire electrode 2 and the die 62 is almost zero. It is close to the contact, and the dust 62 generates considerable heat and becomes hot.
こ の摩擦熱は先ず第一にワ イ ヤ電極 2 に惡影響を及ぼす。 即ち、 ワ イ ヤ電極 2 はダイ ス 62を通過する際、 部分的又は 全体的に急熱、 急冷され必ずしも望ま し く ない伏態に変質す る o  This frictional heat has an adverse effect on the wire electrode 2 first. That is, when the wire electrode 2 passes through the die 62, it is partially or wholly rapidly heated or quenched, and is transformed into an undesirable undesired state.
次に、 この摩擦熱は、 ワ イ ヤ電極 2 に流れる電流によ っ て 発生せしめ られるジュール熱等と共に、 ハウ ジ ング 63を介し てガイ ドホルダ 6 に伝導され、 こ のためダイ ス 62の位養を汪 わせる。  Next, this frictional heat is transmitted to the guide holder 6 through the housing 63 together with the Joule heat generated by the current flowing through the wire electrode 2, so that the position of the die 62 is reduced. Let your worship go.
そ して第三には、 高価な位置決めガイ ド 61の摩耗を促進し その ラ イ フを短 く する。  And thirdly, it promotes wear of the expensive positioning guide 61 and shortens its life.
以下、 本発明の望ま しい実施例に就いて説明する。 ' 第 3 図及び第 4図に於て、 106は前出の 6 と同様なガイ ド ホルダ、 120は、 中央にダイ ス孔 1 21 を有するダイ ス 122 と、 その内部にダイ ス 122 を収容するハ ウ ジ ング 1 23 とから成る 位置決めガイ ドであり、 130及び 1 31は位置決めガイ ド 120 を貧流する加工液の流線を示す矢印である。  Hereinafter, preferred embodiments of the present invention will be described. '' In FIGS. 3 and 4, 106 is a guide holder similar to 6 described above, 120 is a die 122 having a die hole 121 in the center, and a die 122 is housed inside. And positioning arrows 130 and 131, which indicate flow lines of the machining fluid flowing poorly through the positioning guide 120.
而して、 そのハウ ジ ング 123 がダイ ス 1 22 を把持する中心 孔の內壁面には、 冷却水流用の断面扇形の清 124 が三条、 軸 方! ¾に設けられてお り 、 こ のため、 ガイ ドホルダ 106 の上方 から流下して来た水流 130 は、 こ の溝 124 を通って下方に流 れ、 その際ダイ ス 1 22 と、 当該部分を通過するワ イ ヤ電極 2 とを充分に冷却する。  Thus, on the wall of the center hole where the housing 123 grips the die 122, there is a three-section, axial fan-shaped cleaner 124 for the cooling water flow! Therefore, the water flow 130 flowing down from above the guide holder 106 flows downward through the groove 124, and at this time, the die 122 and the portion concerned are separated. The passing wire electrode 2 is sufficiently cooled.
第 5 図及び第 6 図に示す実施例は、 前出の実施例の一変更 例であ り、 ハウ ジ ング 123 はその中央部にダイ ス 122 を把持 する三本の爪 1 25 , 125を有し、 これらの爪の間の溝 124 は冷 却水流路と して役立つ。 本実施例に於ても、 ガイ ドホルダ 106 の上方から流下して 来た水流 130 は、 こ の溝 124 を通って下方に流れるので、 ダ イ ス 122 及びそれを通過しつ ある ワ イ ヤ電極 2 は共に充分 に冷却される。 The embodiment shown in FIGS. 5 and 6 is a modification of the above-described embodiment, and the housing 123 has three claws 125 and 125 for holding the die 122 at the center thereof. And the groove 124 between these claws serves as a cooling water flow path. Also in this embodiment, since the water flow 130 flowing down from above the guide holder 106 flows downward through the groove 124, the die 122 and the wire electrode passing therethrough are formed. 2 are both cooled sufficiently.
第 7 図及び第 8 図に示した位置決めガイ ド 220 は、 円筒状 のハ ウ ジ ング 222 の内部に設けられた四個の球体 223 , 223か ら成り、 ガイ ドホルダ 206 の下端に取り付け られている。 球体 223 , 223は、 或一つの平面内で、 互いに外接するよ う 放散同形に保持され、 始めは図示されてい る も のよ り や 大 径に作成されたハ ウ ジ ン グ 222 内に挿入され、 次いでハウ ジ ング 222 が外側からかしめ られ、 図示されているよ う な位置 決めガイ ド 220 が作られる。  The positioning guide 220 shown in FIGS. 7 and 8 is composed of four spheres 223, 223 provided inside a cylindrical housing 222, and is attached to the lower end of the guide holder 206. I have. The spheres 223, 223 are held in a plane so as to radiate and circumscribe one another, and are initially inserted into a housing 222 made larger or larger in diameter than shown. The housing 222 is then swaged from the outside to create a positioning guide 220 as shown.
而して、 本実施冽に於ては、 これらの球体の直径は、 これ らの球体の間に丁度ワ イ ヤ電極 2··を揷通、 把持し得るよ う定 め られており、 換言すれば、 ワ イ ヤ電極 2 を直接保待するダ イ ス は、 言わばこれらの球体 223 , 223によ り構成されている。  Thus, in the present embodiment, the diameters of these spheres are set so that the wire electrodes 2 can be passed through and held between these spheres. In other words, a die for directly storing the wire electrode 2 is composed of these spheres 223, 223.
ワ イ ヤ電極 2 は、 上記四個の球体 223 , 223が配置されたサ 一ク ル の中心軸と同軸に保持され、 各球体と ワ イ ヤ電極 2 及 びハゥ ジ ング 222 との間にはそれぞれ三つの円弧で囲まれた 擬似三角形状の冷却水流路 226 , 226が形成される。  The wire electrode 2 is held coaxially with the center axis of the cycle in which the above four spheres 223, 223 are arranged, and between each sphere and the wire electrode 2 and the housing 222. Each of the cooling water channels 226, 226 is formed in a pseudo triangular shape surrounded by three arcs.
第 9 図には、 上記四個の球体 223 , 223を二 に配置した変 更例が示されている。  FIG. 9 shows a modification in which the four spheres 223 are arranged in two.
これらの実施例に於ては、 矢符 227 で示されたガイ ドホ ル ダ 206 の上方からの流れは、 滞留する こ とな く 上記冷却水流 路 226 , 226を通り、 矢符 228 で示されるよ う下方に流れ去る ので、 球体 223 , 223 及びワ イ ヤ電極 2 は適切に冷却さ れる。 第 10図及び第 11図には、 上記ボー ルタ ィ プのダイ ス型ガイ ドの更に他の変更例が示されている。 図中、 229aはや 、县ぃ丹筒状のハウ ジ ング 222 に取り付け られたス ト ッ パ、 229b、 229bはディ ス タ ンス ビース、 229 cは 留金具 229dの為設けられるディ ス タ ンス ピー スである。 In these embodiments, the flow from above the guide holder 206 indicated by the arrow 227 passes through the cooling water channels 226, 226 without stagnation, and is indicated by the arrow 228. The spheres 223, 223 and the wire electrode 2 are appropriately cooled down. FIGS. 10 and 11 show still another modification of the above-mentioned ball type die guide. In the figure, 229a is a stopper attached to the cylindrical housing 222, 229b and 229b are distance beads, and 229c is a distance provided for the fastener 229d. It is a piece.
第 10図には球体 223 , 223を各段三瓶宛配置する例が、 又、 第 11図には三段に配置する例が示されている。 これらの球体 223 , 223は面動自在に緩やかに保持されてもよい。  FIG. 10 shows an example in which the spherical bodies 223, 223 are arranged in three bottles in each stage, and FIG. 11 shows an example in which the spherical bodies 223 are arranged in three stages. These spheres 223, 223 may be gently held so that they can move on the surface.
次に、 第 1 2図及第 1 3図に就いて説明する。 こ の実施例では 非 H形ダイ ス孔を有するダイ スを採用されている。  Next, FIG. 12 and FIG. 13 will be described. In this embodiment, a die having a non-H-shaped die hole is employed.
図中 306はガイ ドホルダ、 320は、 その咽喉部断面が頂部 を丸 く された正三角形状であるダイ ス孔を有するダイ ス 321 と、 そのハウ ジ ン グ 322 とから成る位置决めガイ ド、 323及 び 324は冷却水流を示す矢符である。  In the figure, reference numeral 306 denotes a guide holder, 320 denotes a positioning guide comprising a die 321 having a regular triangular die hole having a throat cross-section rounded at the top, and a housing 322 thereof. , 323 and 324 are arrows indicating cooling water flow.
ダイ ス孔は、 厚みの略中央に位置する咽喉部では、 その.周 辺が頂角部を丸 く された三角形をな し、 その咽喉部の両側は 次第に拡がりつ ^変形して両端部では丹形開口を形成する曲 面 321 bとなっていおり、 上記三角形の各辺 321 aの中点 321じで ワ イ ヤ電極 2 の径路が決定さ れ、 且つ、 その頂点部とワ イ ヤ 電極 2 と の間の空閭 321 dが冷却水流路を形成するよ う になつ ている。  In the throat, which is located approximately at the center of the thickness, the dice hole has a triangular shape with a rounded apex, and both sides of the throat gradually expand and deform. It has a curved surface 321b that forms a rectangular opening. The path of the wire electrode 2 is determined by the middle point 321 of each side 321a of the above triangle, and the vertex and the wire electrode are determined. A space 321d between 2 and 3 forms a cooling water flow path.
こ の も のの作用効果は最早自明であろ う。  The effect of this will be obvious now.
本実施例に於ては、 ダイ ス孔の咽喉部断面を略正三角形と したが、 これは正三角に限定される も のでな く 、 他の形状、 例えば任意の三角形、 三つの凸又は凹の R弧から成る図形、 等幅歪巧、 正方形、 菱形そ の他の多角形等であ ってよい。  In this embodiment, the cross section of the throat of the dice hole is a substantially equilateral triangle. However, the shape is not limited to the equilateral triangle, but may be other shapes such as an arbitrary triangle, three convexes or concaves. It may be a figure consisting of R-arcs, a uniform width, a square, a diamond, or another polygon.
次に第 1 4図及び第 15図に示した実施例に就いて説明する。 こ こで示されたガイ ドホルダ 401 は第 1 図に示したガイ ド ホルダ 6 と略同様の も のであ り、 加工液が充潢している図示 されていないノ ズル本体の ]¾部に取り付けられ、 その下端に  Next, the embodiment shown in FIGS. 14 and 15 will be described. The guide holder 401 shown here is substantially the same as the guide holder 6 shown in FIG. 1, and is attached to the [¾] part of the nozzle body (not shown) filled with the machining fluid. At the bottom
OMPI 位置決めガイ ド 461 を保持する ものであるが、 そ の側面には よ り多数の冷却水孔 420 , 420 , 421 , 421及び 422 , 422が設け られる ものである。 OMPI The positioning guide 461 is held, and more cooling water holes 420, 420, 421, 421 and 422, 422 are provided on the side surface thereof.
而して、 こ れ ら の冷却水孔は、 位置決めガイ ド 461 に近付 く に従ってよ り高い開口率が与え られるよ う、 その搔及びノ 又は数がよ り大き く なるよ う く 構成する ものである。  Thus, these cooling water holes are configured so that the number and / or number of the cooling water holes are increased so as to provide a higher opening ratio as approaching the positioning guide 461. Things.
図示されている状態では、 冷却水孔 421 は同 420 よ り数こ そ少ない も のの その內径が大き く 、 同 422 の内径は同 421 の それよ り更に大き く 、 それらの開口面積比が次第に高 く なる よ う構成されており、 そのため、 矢符 423 で示されるガイ ド ホ ルダ 410 に流入する加工液流は、 位置決めガイ ド 461 の近 谤で、 これを囲繞する強い流れを生じるので、 こ の部分に滞 留が生じな く な り、 位置決めガイ ド 461 が充分に冷却される こ と とな る。  In the state shown in the figure, the cooling water hole 421 has a slightly smaller diameter than that of the cooling water hole 421, but has a larger diameter, and an inner diameter of the cooling water hole 421 is larger than that of the cooling water hole 421. , So that the machining fluid flowing into the guide holder 410 indicated by an arrow 423 generates a strong flow surrounding the positioning guide 461 near the positioning guide 461. Therefore, stagnation does not occur in this portion, and the positioning guide 461 is sufficiently cooled.
而して、 このよ う なガイ ドホルダは、 第 16図及び第 Π図に 示す如 く 構成、 配置する こ とが推奨される。  Therefore, it is recommended that such a guide holder be constructed and arranged as shown in FIGS.
こ こ で示されているガ イ ドホルダ 41 OAは、 その上部の外径 がノ ズル本体 405 の内径と同一に構成されて い る。 そ の冷却 水孔 42 424は、 中間円錐部及び位置決めガイ ド 461 を保持 する部分にのみ設け られており、 更に、 こ の位置決めガイ ド 461 の保持部の外周面とノ ズル本体 405 の内壁面の間には、 熱の良導体から成る放熱フ ィ ンを兼ねた複数のプ レ ー ト ステ - 425 , 425が放散同形に設けられており、 こ のブ レー ト スチ - 425 , 425は、 ガイ ドホルダ 41 OAを確実に固定する と共に、 その間に扇形の冷却水流路 454, 454を形成し、 位置決めガイ ド 461 及びそ の近傍のヮ ィ ャ電極 2 の冷却を促進している。 最後に、 第 1 8図乃至第 20図に示された実施例に就いて説明 する。 これはヒー トパイ プを利用 して位置決めガイ ドの冷却を行 う ものである。 The guide holder 41 OA shown here is configured such that the outer diameter of the upper part thereof is the same as the inner diameter of the nozzle body 405. The cooling water holes 42 424 are provided only in the intermediate cone portion and the portion that holds the positioning guide 461. Further, the outer peripheral surface of the holding portion of the positioning guide 461 and the inner wall surface of the nozzle body 405 are provided. A plurality of plate stays-425, 425, which also serve as heat dissipating fins made of a good conductor of heat, are provided in the same shape and are dissipated in the same shape. In addition to securely fixing the holder 41 OA, fan-shaped cooling water passages 454 and 454 are formed therebetween to promote cooling of the positioning guide 461 and the wire electrode 2 in the vicinity thereof. Finally, the embodiment shown in FIGS. 18 to 20 will be described. This uses a heat pipe to cool the positioning guide.
図中、 520は位置決めガイ ドであり、 ダイ ス 521 と、 ヒー トパイ ブ 528 , 528と放熱フ ィ ン 530 , 530とから成る冷却装 g  In the figure, reference numeral 520 denotes a positioning guide, which is a cooling device composed of a die 521, heat pipes 528, 528, and heat radiation fins 530, 530.
524 を具備したハ ウ ジ ング 522 とから成り、 取付具 506cによ り、 ガイ ドホルダ 506 に取り付けられる。 又、 506Aは冷却水 孔である。 A housing 522 provided with 524 is attached to the guide holder 506 by an attachment 506c. 506A is a cooling water hole.
ヒー トパイ プ 528 は公知の如く 、 ア ルミ 又は網等の熟の良 導体から成るカ プセル又は密封管の內部にウ イ ッ ク眉 528Aを 設け、 こ れにア ンモユア、 水、 フ レオ ン等の作動流体 526 を 封入して成るものである。  As is well known, the heat pipe 528 is provided with a wicked eyebrow 528A at a part of a capsule or a sealed tube made of a good conductor such as aluminum or a net, to which ammonia, water, fluorine, etc. The working fluid 526 is sealed.
尚、 本図では、 ヒー トパイ ブは、 機械的な衝撃から保護す るためハウ ジ ング 522 內部に埕め込むよ う に てあるが、'よ り効率を高めるため、 そのー嫱をダイ ス 521 に巻付けて接触 させ、 他の一端をハ ウ ジ ング 522 外の加工液中に突出させる よ う にする こ とが推奨される。  In this figure, the heat pipe is set in the housing 522 in order to protect it from mechanical shock. However, in order to increase the efficiency, the heat pipe is connected to the die 521. It is recommended that it be wound around and contacted so that the other end protrudes into the working fluid outside housing 522.
本実施例に於ては、 例えば、 ダイ ス 521 の上下で加工液の 淀みが生じるよ う に構成しても、 ワ イ ヤ電極 2 とダイ ス 521 の摩擦熱、 及びワイ ヤ電極 2 に発生しダイ ス 521 に伝導され た熱は、 ヒー トパイ プ 528 及び放熱フ ィ ン 530 によ り、 位置 決めガイ ド 521 の近傍を流れる加工液中に速やかに放散され るので、 ワ イ ヤ電極 2 とダイ ス 52 1 とが有効に冷却される も のであ る。  In the present embodiment, for example, even if it is configured that stagnation of the machining fluid occurs above and below the die 521, the frictional heat generated between the wire electrode 2 and the die 521 and the wire electrode 2 generate heat. The heat conducted to the die 521 is quickly dissipated by the heat pipe 528 and the heat dissipating fin 530 into the machining fluid flowing near the positioning guide 521, so that the wire electrode 2 And the die 521 are effectively cooled.
叙上の如 く 、 本発明に係る電極案內装置に於ては、 ダイ ス 型ガイ ドのワ イ ヤ電極の通路を規定するメ ンバ一又は案内孔 の周囲に、 上記の癸生又は伝達された熱を運び出す手段が後 数放散同形に配設され、 こ れら によ り上記の熱がダイ ス型ガ ィ ドに貯留される こ とな く 迅速に加工液中に放散される - As described above, in the electrode planning apparatus according to the present invention, the above-described squeezing or transmission is performed around a member or a guide hole which defines a passage of the wire electrode of the die-type guide. Means to carry out the generated heat are arranged in the same shape as the last few heats, so that the above-mentioned heat is quickly radiated into the machining fluid without being stored in the die-type guide-
OMH OMH
o ノ 一 1 のであ る。 o ノ One of one.
尚、 本発明の目的をよ り一展確実に達成するために、 叙上 に実施例と して示した構成乃至はア イ デア は互いに補完しあ う よ う適宜組合せられ得る。  Note that, in order to more reliably achieve the object of the present invention, the configurations or ideas described in the above embodiments may be appropriately combined so as to complement each other.
本発明の構成は叙上の実施例に限定される も のでな く 、 本 発明の範囲は、 以下の請求の範囲の記載によ つ てのみ限定さ るべき も のであ る。 工業上の利用可能性  The configuration of the present invention is not limited to the above-described embodiments, and the scope of the present invention should be limited only by the following claims. Industrial applicability
本癸明によれば、 ワ イ ヤカ ツ ト放電加工装置のダイ ス型ガ ィ ド及びワ イ ヤ電極がよ り完全且つ効率的に冶却される よ う にな る ので、 ワ イ ヤ電極を従来よ り一暦高速度で移動させ得 る よ う にな り、 加工精度を損 じる こ とな く 加工平均電流を增 加して加工速度を向上させ得る と共に、 各部機構の耐久度及 び寿命を改善する こ とを得るので、 工業上利用すれば多大の 経済的利益が得られる。  According to the present invention, since the die-type guide and the wire electrode of the wire-cut electric discharge machine are more completely and efficiently mined, the wire electrode is formed. Can be moved one calendar year faster than before, the machining speed can be improved by increasing the machining average current without impairing machining accuracy, and the durability of each mechanism It has a significant economic benefit if used industrially, as it will improve life and service life.

Claims

請 求 の 範 囲 The scope of the claims
1. それぞれダイ ス型ガイ ドと、 そのダイ ス型ガイ ドを支承 するガイ ドホルダ とから成り、 ワ イ ヤカ ツ ト放電加工装置に 於けるワ イ ヤ電極の加工部の位詈を設定するため用い られる 一対の電極案內装置に於て、 1. Each consists of a die-type guide and a guide holder that supports the die-type guide, and is used to set the position of the wire electrode machining part in the wire-cut electric discharge machine. In the pair of electrode forming devices used,
上記ガイ ドホルダの ワ イ ヤ電極の通路を規定する メ ンバー 又は案內孔の周囲に、 発生し及び伝導された熱を運び出す手 段が複数配設されているこ とを特徵とする上記の電極案內装 置。  The above electrode, characterized in that a plurality of means for carrying out generated and conducted heat are provided around the member or the hole defining the passage of the wire electrode of the above guide holder. Draft device.
2. 上記熱を運び出す手段が、 ワ イ ヤ電極の通路を規定する メ ンバーの周囲に設けられた冷却水流路である請求の範囲第 2. The means for transferring heat is a cooling water flow path provided around a member that defines a path for a wire electrode.
1 項記載の電極案內装置。 2. The electrode planning device according to claim 1.
3. ワ イ ヤ電極の通路を規定する メ ンバーがワ イ ヤ電極通路 の周囲に外接するよ う放散同形に配設された複数の球体であ り、 上記熱を運び出す手段が上記球体相互間及びワ イ ヤ電極 との藺に形成された冷却水流路である、 請求の範囲第 1 項記 載の電極案内装置。  3. A plurality of spheres arranged in the same shape so that the members that define the wire electrode passages are circumscribed around the wire electrode passages, and the means for transferring heat is provided between the spheres. 3. The electrode guide device according to claim 1, wherein the electrode guide device is a cooling water passage formed in a line with the wire electrode.
4. 球体から成る ワ イ ヤ電極の通路を規定する メ ンパーが複 数段設けられた請求の範囲第 3 項記載の電極案内装置。  4. The electrode guide device according to claim 3, wherein a plurality of members for defining a passage of the wire electrode formed of a sphere are provided.
5. ダイ ス型ガイ ドが非円形のダイ ス孔を有し、 上記熱を運 び出す手段が上記非 P3形のダイ ス孔の內壁面とヮ ィ ャ電極の 藺に形成される冷却水流路である請求の範面第 1 項記載の電 極案內装置。 5. The die guide has a non-circular die hole, and the means for carrying out the heat is a cooling water flow formed on the wall surface of the non-P3 die hole and the rush of the wire electrode. The electrode proposal device according to claim 1, which is a road.
6. ダイ ス孔の咽喉部が、 頂角が丸 く された正三角形状のも のである請求の範囲第 5 項記載の電極案內装置。  6. The electrode planning device according to claim 5, wherein the throat portion of the die hole has a regular triangular shape with a rounded apex angle.
7. 冷却水流路を流れる流体が加工液である請求の範囲第 1  7. The fluid flowing through the cooling water channel is a machining fluid.
項乃至第 6 項の孰れか一に記載の電極案內装置。 Item 7. The electrode planning device according to any one of Items 6 to 6.
8. 上記熱を運び出す手段が、 ガイ ドホルダのダイ ス型ガイ  8. The means to carry out the heat is the die type guide of the guide holder.
ΟίΛΡΙ "WIFO ,' ド保持部分及びそれに隣接する部分に設け られた多数の加工 液流通孔である請求の範囲第 1 項記載の鼋極案內装置。 ΟίΛΡΙ "WIFO, ' 3. The electrode planning device according to claim 1, wherein the device holding portion and a plurality of working fluid flow holes provided in a portion adjacent thereto.
9. 上記熱を運び出す手段が、 ガイ ドホルダのダイ ス型ガイ ド保持部分に放散同形に設けられた放熱フ ィ ンである請求の 範囲第 1 項記載の電極案內装置。  9. The electrode planning device according to claim 1, wherein the means for carrying out the heat is a heat dissipating fin provided in the die-shaped guide holding portion of the guide holder in the same shape as the heat dissipation fin.
10 . 上記熱を運び出す手段が、 ダ イ ス型ガイ ドの ワ イ ヤ電極 の通路を規定するメ ンバーの周囲に放散同形に配設された ヒ 一 トパ イ プである請求の範囲第 1 項記載の電極案内装置。  10. The claim 1, wherein the means for transferring heat is a heat pipe which is disposed in a uniform shape around a member which defines a passage of the wire electrode of the die-type guide. The electrode guide device as described in the above.
PCT/JP1983/000451 1982-12-22 1983-12-22 Electrode guiding apparatus for wire-cut spark erosion machine WO1984002485A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22883082A JPS59115126A (en) 1982-12-22 1982-12-22 Wire-electrode guide for wire-cut electric discharge machining
JP22883182A JPS59115127A (en) 1982-12-22 1982-12-22 Wire-electrode guide for wire-cut electric discharge machining
JP2764883A JPS59156623A (en) 1983-02-23 1983-02-23 Wire electrode guide of wire cut electric discharge machining

Publications (1)

Publication Number Publication Date
WO1984002485A1 true WO1984002485A1 (en) 1984-07-05

Family

ID=27285890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1983/000451 WO1984002485A1 (en) 1982-12-22 1983-12-22 Electrode guiding apparatus for wire-cut spark erosion machine

Country Status (1)

Country Link
WO (1) WO1984002485A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0191146A2 (en) * 1984-11-16 1986-08-20 Mitsubishi Denki Kabushiki Kaisha Wire guide device for electrical-discharge machining, and discharge-machining apparatus including such a device
US4707580A (en) * 1984-08-27 1987-11-17 Fanuc Ltd. Wire-cut electrical discharge machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157430A (en) * 1979-05-17 1980-12-08 Mitsubishi Electric Corp Guide unit for wire-cut spark erosion electrode
JPS5698531U (en) * 1979-12-26 1981-08-04
JPS56116119U (en) * 1980-01-29 1981-09-05
JPS58113426U (en) * 1982-01-27 1983-08-03 三菱電機株式会社 Wire cut electric discharge machining equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157430A (en) * 1979-05-17 1980-12-08 Mitsubishi Electric Corp Guide unit for wire-cut spark erosion electrode
JPS5698531U (en) * 1979-12-26 1981-08-04
JPS56116119U (en) * 1980-01-29 1981-09-05
JPS58113426U (en) * 1982-01-27 1983-08-03 三菱電機株式会社 Wire cut electric discharge machining equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707580A (en) * 1984-08-27 1987-11-17 Fanuc Ltd. Wire-cut electrical discharge machine
EP0191146A2 (en) * 1984-11-16 1986-08-20 Mitsubishi Denki Kabushiki Kaisha Wire guide device for electrical-discharge machining, and discharge-machining apparatus including such a device
EP0191146A3 (en) * 1984-11-16 1988-07-06 Mitsubishi Denki Kabushiki Kaisha Wire guide device for electrical-discharge machining, and discharge-machining apparatus including such a device

Similar Documents

Publication Publication Date Title
US4539459A (en) Nozzle and power-feed element for wire-cut electrical discharge machine
EP0547801A1 (en) Electrical discharge boring apparatus
JPH0455806B2 (en)
CN109909797A (en) Nozzle, nozzle module and the lathe with nozzle, nozzle module
WO1984002485A1 (en) Electrode guiding apparatus for wire-cut spark erosion machine
US11772144B2 (en) Process for the production of thin-walled hollow profiles which are composed of nonferrous metals and have small diameters
JPH02212025A (en) Wire discharging machining device
JPS61152326A (en) Wire-cut electric discharge apparatus
JP3328577B2 (en) Machining fluid supply nozzle device for wire cut electric discharge machine
JPS59156623A (en) Wire electrode guide of wire cut electric discharge machining
JP2571053B2 (en) Machining fluid supply device for wire electric discharge machine
JPS584322A (en) Apparatus for feeding machining liquid in electric machining
JPS6236585Y2 (en)
JPS60228026A (en) Wire guide device for wire-cut electric discharge machining
JPS5993240A (en) Wire cut electric discharge machine
JPS59115126A (en) Wire-electrode guide for wire-cut electric discharge machining
CN104552627A (en) Semiconductor wire saw including a nozzle for generating a fluid jet
JPS6126454B2 (en)
JPH05177408A (en) Method of cutting machined chip
JP2003311534A (en) Electric discharge machining apparatus
JPS6218288B2 (en)
JP6647469B1 (en) Wire electric discharge machine
JPH01222823A (en) Wire electric discharge machine
SU1479226A1 (en) Double-electrode torch
KR950004811Y1 (en) Wire guiding device for wire cut discharge machine

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): US

AL Designated countries for regional patents

Designated state(s): DE FR GB

WA Withdrawal of international application